1
|
Liu MM, Feng XL, Qi C, Zhang SE, Zhang GL. The significance of single-cell transcriptome analysis in epididymis research. Front Cell Dev Biol 2024; 12:1357370. [PMID: 38577504 PMCID: PMC10991796 DOI: 10.3389/fcell.2024.1357370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
As a crucial component of the male reproductive system, the epididymis plays multiple roles, including sperm storage and secretion of nutritive fluids for sperm development and maturation. The acquisition of fertilization capacity by sperm occurs during their transport through the epididymis. Compared with the testis, little has been realized about the importance of the epididymis. However, with the development of molecular biology and single-cell sequencing technology, the importance of the epididymis for male fertility should be reconsidered. Recent studies have revealed that different regions of the epididymis exhibit distinct functions and cell type compositions, which are likely determined by variations in gene expression patterns. In this research, we primarily focused on elucidating the cellular composition and region-specific gene expression patterns within different segments of the epididymis and provided detailed insights into epididymal function in male fertility.
Collapse
Affiliation(s)
- Meng-Meng Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xin-Lei Feng
- Animal Products Quality and Safety Center of Shandong Province, Jinan, Shandong, China
| | - Chao Qi
- Provincial Animal Husbandry Station of Shandong Province, Jinan, Shandong, China
| | - Shu-Er Zhang
- Provincial Animal Husbandry Station of Shandong Province, Jinan, Shandong, China
| | - Guo-Liang Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Ogut E. Is the third trochanter of the femur a developmental anomaly, a functional marker, or an evolutionary adaptation? CANADIAN SOCIETY OF FORENSIC SCIENCE JOURNAL 2023; 56:123-142. [DOI: 10.1080/00085030.2022.2104563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Eren Ogut
- Department of Anatomy, Bahçeşehir University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
3
|
Ogut E. Is the third trochanter of the femur a developmental anomaly, a functional marker, or an evolutionary adaptation? CANADIAN SOCIETY OF FORENSIC SCIENCE JOURNAL 2023; 56:123-142. [DOI: https:/doi.org/10.1080/00085030.2022.2104563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 07/22/2023]
Affiliation(s)
- Eren Ogut
- Department of Anatomy, Bahçeşehir University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
4
|
Needham J, Metzis V. Heads or tails: Making the spinal cord. Dev Biol 2022; 485:80-92. [DOI: 10.1016/j.ydbio.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/15/2021] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
|
5
|
Saygili S, Atayar E, Canpolat N, Elicevik M, Kurugoglu S, Sever L, Caliskan S, Ozaltin F. A homozygous HOXA11 variation as a potential novel cause of autosomal recessive congenital anomalies of the kidney and urinary tract. Clin Genet 2021; 98:390-395. [PMID: 32666543 DOI: 10.1111/cge.13813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/09/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) is the leading cause of end-stage kidney disease in children. Until now, more than 50 monogenic causes for CAKUT have been described, all of which only explain 10% to 20% of all patients with CAKUT, suggesting the presence of additional genes that cause CAKUT when mutated. Herein, we report two siblings of a consanguineous family with CAKUT, both of which rapidly progressed to chronic kidney disease in early childhood. Whole-exome sequencing followed by homozygosity mapping identified a homozygous variation in HOXA11. We therefore showed for the first time an association between a homozygous HOXA11 variation with CAKUT in humans, expanding the genetic spectrum of the disease.
Collapse
Affiliation(s)
- Seha Saygili
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Emine Atayar
- Nephrogenetics Laboratory, Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nur Canpolat
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Mehmet Elicevik
- Department of Pediatric Surgery, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Sebuh Kurugoglu
- Department of Pediatric Radiology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Lale Sever
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Salim Caliskan
- Department of Pediatric Nephrology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Fatih Ozaltin
- Nephrogenetics Laboratory, Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Pediatric Nephrology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
6
|
Topaloğlu U, Akbalik ME, Sağsöz H. Immunolocalization of some HOX proteins in immature and mature feline testes. Anat Histol Embryol 2021; 50:726-735. [PMID: 34131940 DOI: 10.1111/ahe.12716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/29/2021] [Indexed: 02/01/2023]
Abstract
Homeobox (HOX) proteins are known for their critical role in body shape formation and tissue differentiation of developing vertebrate embryos. Recent research has shown that HOX proteins have many physiological roles such as cell proliferation, cell cycle, apoptosis and cell differentiation in adults, as well as the development of the vertebrate nerve and reproductive system. This study was conducted to determine the possible physiological functions and expression intensities of HOXA10, HOXA11, HOXB6 and HOXC6 proteins in the male reproductive system (testes, epididymis and deferens ducts), which are important for the continuity of some specific cat breeds in different age ranges. In the study, a total of 18 testicular tissues were used, divided into two groups: less than 6 months (immature) and more than 1 year (mature). Tissue samples were then subjected to immunohistochemical staining with protein-specific antibodies examined in the study. In the findings obtained in the research; it was observed that HOXA10, HOXA11, HOXB6 and HOXC6 produced different intensities of immunolocalization in the epididymis and ductus deferens layers in the immature and mature testicular cells. In addition, it was found that HOXA10 immunoreaction was also seen in some vascular endothelial cells. As a result, it was concluded that the HOX proteins could contribute to the physiological functions of testes, epididymis and ductus deferens and affect male fertility.
Collapse
Affiliation(s)
- Uğur Topaloğlu
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| | - Mehmet Erdem Akbalik
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| | - Hakan Sağsöz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
7
|
Santana Gonzalez L, Rota IA, Artibani M, Morotti M, Hu Z, Wietek N, Alsaadi A, Albukhari A, Sauka-Spengler T, Ahmed AA. Mechanistic Drivers of Müllerian Duct Development and Differentiation Into the Oviduct. Front Cell Dev Biol 2021; 9:605301. [PMID: 33763415 PMCID: PMC7982813 DOI: 10.3389/fcell.2021.605301] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
The conduits of life; the animal oviducts and human fallopian tubes are of paramount importance for reproduction in amniotes. They connect the ovary with the uterus and are essential for fertility. They provide the appropriate environment for gamete maintenance, fertilization and preimplantation embryonic development. However, serious pathologies, such as ectopic pregnancy, malignancy and severe infections, occur in the oviducts. They can have drastic effects on fertility, and some are life-threatening. Despite the crucial importance of the oviducts in life, relatively little is known about the molecular drivers underpinning the embryonic development of their precursor structures, the Müllerian ducts, and their successive differentiation and maturation. The Müllerian ducts are simple rudimentary tubes comprised of an epithelial lumen surrounded by a mesenchymal layer. They differentiate into most of the adult female reproductive tract (FRT). The earliest sign of Müllerian duct formation is the thickening of the anterior mesonephric coelomic epithelium to form a placode of two distinct progenitor cells. It is proposed that one subset of progenitor cells undergoes partial epithelial-mesenchymal transition (pEMT), differentiating into immature Müllerian luminal cells, and another subset undergoes complete EMT to become Müllerian mesenchymal cells. These cells invaginate and proliferate forming the Müllerian ducts. Subsequently, pEMT would be reversed to generate differentiated epithelial cells lining the fully formed Müllerian lumen. The anterior Müllerian epithelial cells further specialize into the oviduct epithelial subtypes. This review highlights the key established molecular and genetic determinants of the processes involved in Müllerian duct development and the differentiation of its upper segment into oviducts. Furthermore, an extensive genome-wide survey of mouse knockout lines displaying Müllerian or oviduct phenotypes was undertaken. In addition to widely established genetic determinants of Müllerian duct development, our search has identified surprising associations between loss-of-function of several genes and high-penetrance abnormalities in the Müllerian duct and/or oviducts. Remarkably, these associations have not been investigated in any detail. Finally, we discuss future directions for research on Müllerian duct development and oviducts.
Collapse
Affiliation(s)
- Laura Santana Gonzalez
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Ioanna A Rota
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Developmental Immunology Research Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Mara Artibani
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom.,Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matteo Morotti
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Zhiyuan Hu
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Nina Wietek
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Abdulkhaliq Alsaadi
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Ashwag Albukhari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ahmed A Ahmed
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Hess RA, Sharpe RM, Hinton BT. Estrogens and development of the rete testis, efferent ductules, epididymis and vas deferens. Differentiation 2021; 118:41-71. [PMID: 33441255 PMCID: PMC8026493 DOI: 10.1016/j.diff.2020.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Estrogen has always been considered the female hormone and testosterone the male hormone. However, estrogen's presence in the testis and deleterious effects of estrogen treatment during development have been known for nearly 90 years, long before estrogen receptors (ESRs) were discovered. Eventually it was learned that testes actually synthesize high levels of estradiol (E2) and sequester high concentrations in the reproductive tract lumen, which seems contradictory to the overwhelming number of studies showing reproductive pathology following exogenous estrogen exposures. For too long, the developmental pathology of estrogen has dominated our thinking, even resulting in the "estrogen hypothesis" as related to the testicular dysgenesis syndrome. However, these early studies and the development of an Esr1 knockout mouse led to a deluge of research into estrogen's potential role in and disruption of development and function of the male reproductive system. What is new is that estrogen action in the male cannot be divorced from that of androgen. This paper presents what is known about components of the estrogen pathway, including its synthesis and target receptors, and the need to achieve a balance between androgen- and estrogen-action in male reproductive tract differentiation and adult functions. The review focuses on what is known regarding development of the male reproductive tract, from the rete testis to the vas deferens, and examines the expression of estrogen receptors and presence of aromatase in the male reproductive system, traces the evidence provided by estrogen-associated knockout and transgenic animal models and discusses the effects of fetal and postnatal exposures to estrogens. Hopefully, there will be enough here to stimulate discussions and new investigations of the androgen:estrogen balance that seems to be essential for development of the male reproductive tract.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, IL, 61802 USA and Epivara, Inc., Research Park, 60 Hazelwood Dr., Suite 230G, Champaign, IL, 61820, USA.
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
9
|
Machnicki AL, Reno PL. Great apes and humans evolved from a long-backed ancestor. J Hum Evol 2020; 144:102791. [DOI: 10.1016/j.jhevol.2020.102791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
|
10
|
Mikhaleva LM, Davydov AI, Patsap OI, Mikhaylenko EV, Nikolenko VN, Neganova ME, Klochkov SG, Somasundaram SG, Kirkland CE, Aliev G. Malignant Transformation and Associated Biomarkers of Ovarian Endometriosis: A Narrative Review. Adv Ther 2020; 37:2580-2603. [PMID: 32385745 PMCID: PMC7467438 DOI: 10.1007/s12325-020-01363-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Indexed: 02/07/2023]
Abstract
This review focuses on pathogenesis of endometriosis, its possible biomarkers and role in endometriosis-associated ovarian cancer. We analyzed various databases to obtain new insights, theories, and biomarkers associated with endometriosis. There are several theories of endometriosis development and biomarker changes including atypical forms. A number of studies have attempted to establish specific, reliable biomarkers to help diagnose endometriosis and endometriosis-associated diseases on the basis of different pathogenetic pathways. Nevertheless, despite intensive research extending even to the molecular level, the origin, natural history, malignant transformation, and laboratory management of endometriosis and related diseases are not yet clearly defined. Therefore, early laboratory diagnoses of endometriosis, its atypical form, and endometriosis-associated ovarian tumors are important problems that require further study in the context of advanced therapeutic strategies to provide maximal health benefits to patients.
Collapse
Affiliation(s)
- Liudmila M Mikhaleva
- Department of Clinical Pathology, Federal State Budgetary Institution "Research Institute of Human Morphology", 3, Tsyurupy Str, Moscow, 117418, Russian Federation
| | - Aleksandr I Davydov
- Department of Obstetrics, Gynecology and Perinatology, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2, Trubetskaya Str., Moscow, 119991, Russian Federation
- Department of Pathology, City Clinical Hospital After Named S.S. Udina, 4, Bld., 3, Kolomensky Passage, Moscow, 115446, Russian Federation
| | - Olga I Patsap
- Department of Pathology, City Clinical Hospital After Named S.S. Udina, 4, Bld., 3, Kolomensky Passage, Moscow, 115446, Russian Federation
| | - Elizaveta V Mikhaylenko
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
| | - Vladimir N Nikolenko
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia
- Department of Normal and Topographic Anatomy, M.V. Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119991, Russia
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 1 Severny pr, Chernogolovka, Moscow Region, 142432, Russia
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 1 Severny pr, Chernogolovka, Moscow Region, 142432, Russia
| | | | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, Salem, WV, 26426, USA
| | - Gjumrakch Aliev
- Department of Clinical Pathology, Federal State Budgetary Institution "Research Institute of Human Morphology", 3, Tsyurupy Str, Moscow, 117418, Russian Federation.
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str, Moscow, 119991, Russia.
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 1 Severny pr, Chernogolovka, Moscow Region, 142432, Russia.
- GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA.
| |
Collapse
|
11
|
Mucenski ML, Mahoney R, Adam M, Potter AS, Potter SS. Single cell RNA-seq study of wild type and Hox9,10,11 mutant developing uterus. Sci Rep 2019; 9:4557. [PMID: 30872674 PMCID: PMC6418183 DOI: 10.1038/s41598-019-40923-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
The uterus is a remarkable organ that must guard against infections while maintaining the ability to support growth of a fetus without rejection. The Hoxa10 and Hoxa11 genes have previously been shown to play essential roles in uterus development and function. In this report we show that the Hoxa9,10,11, Hoxc9,10,11, Hoxd9,10,11 genes play a redundant role in the formation of uterine glands. In addition, we use single cell RNA-seq to create a high resolution gene expression atlas of the developing wild type mouse uterus. Cell types and subtypes are defined, for example dividing endothelial cells into arterial, venous, capillary, and lymphatic, while epithelial cells separate into luminal and glandular subtypes. Further, a surprising heterogeneity of stromal and myocyte cell types are identified. Transcription factor codes and ligand/receptor interactions are characterized. We also used single cell RNA-seq to globally define the altered gene expression patterns in all developing uterus cell types for two Hox mutants, with 8 or 9 mutant Hox genes. The mutants show a striking disruption of Wnt signaling as well as the Cxcl12/Cxcr4 ligand/receptor axis.
Collapse
Affiliation(s)
- Michael L Mucenski
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Robert Mahoney
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Andrew S Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
12
|
Drake KA, Adam M, Mahoney R, Potter SS. Disruption of Hox9,10,11 function results in cellular level lineage infidelity in the kidney. Sci Rep 2018; 8:6306. [PMID: 29679048 PMCID: PMC5910417 DOI: 10.1038/s41598-018-24782-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/10/2018] [Indexed: 01/09/2023] Open
Abstract
Hox genes are important regulators of development. The 39 mammalian Hox genes have considerable functional overlap, greatly confounding their study. In this report, we generated mice with multiple combinations of paralogous and flanking Abd-B Hox gene mutations to investigate functional redundancies in kidney development. The resulting mice developed a number of kidney abnormalities, including hypoplasia, agenesis, and severe cysts, with distinct Hox functions observed in early metanephric kidney formation and nephron progenitor maintenance. Most surprising, however, was that extensive removal of Hox shared function in these kidneys resulted in cellular level lineage infidelity. Strikingly, mutant nephron tubules consisted of intermixed cells with proximal tubule, loop of Henle, and collecting duct identities, with some single cells expressing markers associated with more than one nephron segment. These results indicate that Hox genes are required for proper lineage selection/maintenance and full repression of genes involved in cell fate restriction in the developing kidney.
Collapse
Affiliation(s)
- Keri A Drake
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Robert Mahoney
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
13
|
Magella B, Mahoney R, Adam M, Potter SS. Reduced Abd-B Hox function during kidney development results in lineage infidelity. Dev Biol 2018; 438:84-93. [PMID: 29596840 DOI: 10.1016/j.ydbio.2018.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/28/2018] [Accepted: 03/21/2018] [Indexed: 02/05/2023]
Abstract
Hox genes can function as key drivers of segment identity, with Hox mutations in Drosophila often resulting in dramatic homeotic transformations. In addition, however, they can serve other essential functions. In mammals, the study of Hox gene roles in development is complicated by the presence of four Hox clusters with a total of 39 genes showing extensive functional overlap. In this study, in order to better understand shared core Hox functions, we examined kidney development in mice with frameshift mutations of multiple Abd-B type Hox genes. The resulting phenotypes included dramatically reduced branching morphogenesis of the ureteric bud, premature depletion of nephron progenitors and abnormal development of the stromal compartment. Most unexpected, however, we also observed a cellular level lineage infidelity in nephron segments. Scattered cells within the proximal tubules, for example, expressed genes normally expressed only in collecting ducts. Multiple combinations of inappropriate nephron segment specific marker expression were found. In some cases, cells within a tubule showed incorrect identity, while in other cases cells showed ambiguous character, with simultaneous expression of genes associated with more than one nephron segment. These results give evidence that Hox genes have an overlapping core function at the cellular level in driving and/or maintaining correct differentiation decisions.
Collapse
Affiliation(s)
- Bliss Magella
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Robert Mahoney
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States.
| |
Collapse
|
14
|
Roly ZY, Backhouse B, Cutting A, Tan TY, Sinclair AH, Ayers KL, Major AT, Smith CA. The cell biology and molecular genetics of Müllerian duct development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e310. [DOI: 10.1002/wdev.310] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/06/2017] [Accepted: 11/22/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Zahida Yesmin Roly
- Monash Biomedicine Discovery Institute, Department of Anatomy and Development BiologyMonash UniversityClaytonVictoriaAustralia
| | - Brendan Backhouse
- Murdoch Children's Research Institute and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Andrew Cutting
- Biology Laboratory, Faculty of ScienceThe University of MelbourneMelbourneVictoriaAustralia
| | - Tiong Yang Tan
- Murdoch Children's Research Institute and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Andrew H. Sinclair
- Murdoch Children's Research Institute and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Katie L. Ayers
- Murdoch Children's Research Institute and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Andrew T. Major
- Monash Biomedicine Discovery Institute, Department of Anatomy and Development BiologyMonash UniversityClaytonVictoriaAustralia
| | - Craig A. Smith
- Monash Biomedicine Discovery Institute, Department of Anatomy and Development BiologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
15
|
Abdel-Maksoud FM, Knight R, Waler K, Yaghoubi-Yeganeh N, Olukunle JO, Thompson H, Panizzi JR, Akingbemi BT. Exposures of male rats to environmental chemicals [bisphenol A and di (2-ethylhexyl) phthalate] affected expression of several proteins in the developing epididymis. Andrology 2017; 6:214-222. [DOI: 10.1111/andr.12451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/31/2017] [Accepted: 11/08/2017] [Indexed: 11/30/2022]
Affiliation(s)
- F. M. Abdel-Maksoud
- Department of Anatomy, Physiology, and Pharmacology; College of Veterinary Medicine; Auburn University; Auburn AL USA
| | - R. Knight
- Department of Anatomy, Physiology, and Pharmacology; College of Veterinary Medicine; Auburn University; Auburn AL USA
| | - K. Waler
- Department of Anatomy, Physiology, and Pharmacology; College of Veterinary Medicine; Auburn University; Auburn AL USA
| | - N. Yaghoubi-Yeganeh
- Department of Anatomy, Physiology, and Pharmacology; College of Veterinary Medicine; Auburn University; Auburn AL USA
| | | | - H. Thompson
- Department of Anatomy, Physiology, and Pharmacology; College of Veterinary Medicine; Auburn University; Auburn AL USA
| | - J. R. Panizzi
- Department of Anatomy, Physiology, and Pharmacology; College of Veterinary Medicine; Auburn University; Auburn AL USA
| | - B. T. Akingbemi
- Department of Anatomy, Physiology, and Pharmacology; College of Veterinary Medicine; Auburn University; Auburn AL USA
| |
Collapse
|
16
|
Horan TS, Marre A, Hassold T, Lawson C, Hunt PA. Germline and reproductive tract effects intensify in male mice with successive generations of estrogenic exposure. PLoS Genet 2017; 13:e1006885. [PMID: 28727826 PMCID: PMC5519010 DOI: 10.1371/journal.pgen.1006885] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/21/2017] [Indexed: 12/24/2022] Open
Abstract
The hypothesis that developmental estrogenic exposure induces a constellation of male reproductive tract abnormalities is supported by experimental and human evidence. Experimental data also suggest that some induced effects persist in descendants of exposed males. These multi- and transgenerational effects are assumed to result from epigenetic changes to the germline, but few studies have directly analyzed germ cells. Typically, studies of transgenerational effects have involved exposing one generation and monitoring effects in subsequent unexposed generations. This approach, however, has limited human relevance, since both the number and volume of estrogenic contaminants has increased steadily over time, intensifying rather than reducing or eliminating exposure. Using an outbred CD-1 mouse model, and a sensitive and quantitative marker of germline development, meiotic recombination, we tested the effect of successive generations of exposure on the testis. We targeted the germline during a narrow, perinatal window using oral exposure to the synthetic estrogen, ethinyl estradiol. A complex three generation exposure protocol allowed us to compare the effects of individual, paternal, and grandpaternal (ancestral) exposure. Our data indicate that multiple generations of exposure not only exacerbate germ cell exposure effects, but also increase the incidence and severity of reproductive tract abnormalities. Taken together, our data suggest that male sensitivity to environmental estrogens is increased by successive generations of exposure.
Collapse
Affiliation(s)
- Tegan S. Horan
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Alyssa Marre
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Terry Hassold
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Crystal Lawson
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| | - Patricia A. Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
17
|
Laganà AS, Vitale SG, Salmeri FM, Triolo O, Ban Frangež H, Vrtačnik-Bokal E, Stojanovska L, Apostolopoulos V, Granese R, Sofo V. Unus pro omnibus, omnes pro uno: A novel, evidence-based, unifying theory for the pathogenesis of endometriosis. Med Hypotheses 2017; 103:10-20. [DOI: 10.1016/j.mehy.2017.03.032] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 03/21/2017] [Indexed: 01/17/2023]
|
18
|
Schagdarsurengin U, Western P, Steger K, Meinhardt A. Developmental origins of male subfertility: role of infection, inflammation, and environmental factors. Semin Immunopathol 2016; 38:765-781. [PMID: 27315198 DOI: 10.1007/s00281-016-0576-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 06/06/2016] [Indexed: 12/28/2022]
Abstract
Male gamete development begins with the specification of primordial cells in the epiblast of the early embryo and is not complete until spermatozoa mature in the epididymis of adult males. This protracted developmental process involves extensive alteration of the paternal germline epigenome. Initially, epigenetic reprogramming in fetal germ cells results in removal of most DNA methylation, including parent-specific epigenetic information. The germ cells then establish sex-specific epigenetic information through de novo methylation and undergo spermatogenesis. Chromatin in haploid germ cells is repackaged into protamines during spermiogenesis, providing further widespread epigenetic reorganization. Finally, after fertilization, epigenetic reprogramming in the preimplantation embryo is necessary for regaining totipotency. These events provide substantial windows during which epigenetic errors either may be corrected or may occur in the germline. There is now increasing evidence that environmental factors such as exposure to toxicants, the parents' and individual's diet, and even infectious and inflammatory events in the male reproductive tract may influence epigenetic reprogramming. This, together with other damage inflicted on the germline chromatin, may result in negative consequences for fertility and health. Large epidemiological birth cohort studies have yielded insight into possible causative environmental factors. Together with experimental animal studies, a clearer view of environmental impacts on fetal development and their intergenerational and even transgenerational effects on reproductive health has emerged and is reviewed in this article.
Collapse
Affiliation(s)
- Undraga Schagdarsurengin
- Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Patrick Western
- Centre for Genetic Diseases, Hudson Institute for Medical Research and Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3168, Australia
| | - Klaus Steger
- Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig University of Giessen, Aulweg 123, 35385, Giessen, Germany.
| |
Collapse
|
19
|
Domeniconi RF, Souza ACF, Xu B, Washington AM, Hinton BT. Is the Epididymis a Series of Organs Placed Side By Side? Biol Reprod 2016; 95:10. [PMID: 27122633 PMCID: PMC5029429 DOI: 10.1095/biolreprod.116.138768] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/15/2016] [Indexed: 12/13/2022] Open
Abstract
The mammalian epididymis is more than a highly convoluted tube divided into four regions: initial segment, caput, corpus and cauda. It is a highly segmented structure with each segment expressing its own and overlapping genes, proteins, and signal transduction pathways. Therefore, the epididymis may be viewed as a series of organs placed side by side. In this review we discuss the contributions of septa that divide the epididymis into segments and present hypotheses as to the mechanism by which septa form. The mechanisms of Wolffian duct segmentation are likened to the mechanisms of segmentation of the renal nephron and somites. The renal nephron may provide valuable clues as to how the Wolffian duct is patterned during development, whereas somitogenesis may provide clues as to the timing of the development of each segment. Emphasis is also placed upon how segments are differentially regulated, in support of the idea that the epididymis can be considered a series of multiple organs placed side by side. One region in particular, the initial segment, which consists of 2 or 4 segments in mice and rats, respectively, is unique with respect to its regulation and vascularity compared to other segments; loss of development of these segments leads to male infertility. Different ways of thinking about how the epididymis functions may provide new directions and ideas as to how sperm maturation takes place.
Collapse
Affiliation(s)
- Raquel F Domeniconi
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia
| | | | | | | | | |
Collapse
|
20
|
Machnicki AL, Lovejoy CO, Reno PL. Developmental identity versus typology: Lucy has only four sacral segments. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 160:729-39. [DOI: 10.1002/ajpa.22997] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 02/25/2016] [Accepted: 03/31/2016] [Indexed: 12/28/2022]
Affiliation(s)
| | - C. Owen Lovejoy
- Department of Anthropology and School of Biomedical SciencesKent State UniversityKent OH
| | - Philip L. Reno
- Department of AnthropologyPennsylvania State UniversityUniversity Park PA
| |
Collapse
|
21
|
Zama AM, Bhurke A, Uzumcu M. Effects of Endocrine-disrupting Chemicals on Female Reproductive Health. ACTA ACUST UNITED AC 2016. [DOI: 10.2174/1874070701610010054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are increasingly prevalent in the environment and the evidence demonstrates that they affect reproductive health, has been accumulating for the last few decades. In this review of recent literature, we present evidence of the effects of estrogen-mimicking EDCs on female reproductive health especially the ovaries and uteri. As representative EDCs, data from studies with a pharmaceutical estrogen, diethylstilbestrol (DES), an organochlorine pesticide methoxychlor (MXC), a phytoestrogen (genistein), and a chemical used in plastics, bisphenol a (BPA) have been presented. We also discuss the effects of a commonly found plasticizer in the environment, a phthalate (DEHP), even though it is not a typical estrogenic EDC. Collectively, these studies show that exposures during fetal and neonatal periods cause developmental reprogramming leading to adult reproductive disease. Puberty, estrous cyclicity, ovarian follicular development, and uterine functions are all affected by exposure to these EDCs. Evidence that epigenetic modifications are involved in the progression to adult disease is also presented.
Collapse
|
22
|
Raines AM, Magella B, Adam M, Potter SS. Key pathways regulated by HoxA9,10,11/HoxD9,10,11 during limb development. BMC DEVELOPMENTAL BIOLOGY 2015; 15:28. [PMID: 26186931 PMCID: PMC4506574 DOI: 10.1186/s12861-015-0078-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/07/2015] [Indexed: 11/17/2022]
Abstract
Background The 39 mammalian Hox genes show problematic patterns of functional overlap. In order to more fully define the developmental roles of Hox genes it is necessary to remove multiple combinations of paralogous and flanking genes. In addition, the downstream molecular pathways regulated by Hox genes during limb development remain incompletely delineated. Results In this report we examine limb development in mice with frameshift mutations in six Hox genes, Hoxa9,10,11 and Hoxd9,10,11. The mice were made with a novel recombineering method that allows the simultaneous targeting of frameshift mutations into multiple flanking genes. The Hoxa9,10,11−/−/Hoxd9,10,11−/− mutant mice show a reduced ulna and radius that is more severe than seen in Hoxa11−/−/Hoxd11−/− mice, indicating a minor role for the flanking Hox9,10 genes in zeugopod development, as well as their primary function in stylopod development. The mutant mice also show severe reduction of Shh expression in the zone of polarizing activity, and decreased Fgf8 expression in the apical ectodermal ridge, thereby better defining the roles of these specific Hox genes in the regulation of critical signaling centers during limb development. Importantly, we also used laser capture microdissection coupled with RNA-Seq to characterize the gene expression programs in wild type and mutant limbs. Resting, proliferative and hypertrophic compartments of E15.5 forelimb zeugopods were examined. The results provide an RNA-Seq characterization of the progression of gene expression patterns during normal endochondral bone formation. In addition of the Hox mutants showed strongly altered expression of Pknox2, Zfp467, Gdf5, Bmpr1b, Dkk3, Igf1, Hand2, Shox2, Runx3, Bmp7 and Lef1, all of which have been previously shown to play important roles in bone formation. Conclusions The recombineering based frameshift mutation of the six flanking and paralogous Hoxa9,10,11 and Hoxd9,10,11 genes provides a resource for the analysis of their overlapping functions. Analysis of the Hoxa9,10,11−/−/Hoxd9,10,11−/− mutant limbs confirms and extends the results of previous studies using mice with Hox mutations in single paralogous groups or with entire Hox cluster deletions. The RNA-Seq analysis of specific compartments of the normal and mutant limbs defines the multiple key perturbed pathways downstream of these Hox genes. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0078-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna M Raines
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| | - Bliss Magella
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| |
Collapse
|
23
|
Abstract
The Wolffian ducts (WDs) are the progenitors of the epididymis, vas deferens and seminal vesicles. They form initially as nephric ducts that acquire connection to the developing testis as the mesonephros regresses. The development of the WDs is dependent on androgens. Conventionally, the active androgen is believed to be testosterone delivered locally rather than via the systemic circulation. However, recent studies in marsupials show that 5α-reduced steroids are essential and that these can induce virilisation even when they are delivered via the systemic circulation. The development of the WDs involves an interplay between the duct epithelium and underlying mesenchyme; androgen receptors in both the epithelium and mesenchyme are needed. The epidermal growth factor and epidermal growth factor receptor may play a role, possibly via activation of androgen receptor. The formation of the epididymis involves a complex morphogenetic program to achieve the normal pattern of coiling, formation of septae, and regional functional differentiation. In part, this process may be mediated by inhibin beta A as well as by genes from the HOX cluster. Whilst the development of the WD is androgen dependent, it is clear that there is a complex interplay between androgens, genes and growth factors in the tissues that leads to the formation of the complex anatomy of the male reproductive duct system in the adult.
Collapse
Affiliation(s)
- Geoffrey Shaw
- Department of Zoology, The University of Melbourne, Melbourne, Vic., Australia
| | | |
Collapse
|
24
|
Raines AM, Adam M, Magella B, Meyer SE, Grimes HL, Dey SK, Potter SS. Recombineering-based dissection of flanking and paralogous Hox gene functions in mouse reproductive tracts. Development 2013; 140:2942-52. [PMID: 23760953 DOI: 10.1242/dev.092569] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hox genes are key regulators of development. In mammals, the study of these genes is greatly confounded by their large number, overlapping functions and interspersed shared enhancers. Here, we describe the use of a novel recombineering strategy to introduce simultaneous frameshift mutations into the flanking Hoxa9, Hoxa10 and Hoxa11 genes, as well as their paralogs on the HoxD cluster. The resulting Hoxa9,10,11 mutant mice displayed dramatic synergistic homeotic transformations of the reproductive tracts, with the uterus anteriorized towards oviduct and the vas deferens anteriorized towards epididymis. The Hoxa9,10,11 mutant mice also provided a genetic setting that allowed the discovery of Hoxd9,10,11 redundant reproductive tract patterning function. Both shared and distinct Hox functions were defined. Hoxd9,10,11 play a crucial role in the regulation of uterine immune function. Non-coding non-polyadenylated RNAs were among the key Hox targets, with dramatic downregulation in mutants. We observed Hox cross-regulation of transcription and splicing. In addition, we observed a surprising anti-dogmatic apparent posteriorization of the uterine epithelium. In caudal regions of the uterus, the normal simple columnar epithelium flanking the lumen was replaced by a pseudostratified transitional epithelium, normally found near the more posterior cervix. These results identify novel molecular functions of Hox genes in the development of the male and female reproductive tracts.
Collapse
Affiliation(s)
- Anna M Raines
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Connell M, Owen C, Segars J. Genetic Syndromes and Genes Involved in the Development of the Female Reproductive Tract: A Possible Role for Gene Therapy. ACTA ACUST UNITED AC 2013; 4. [PMID: 25506511 PMCID: PMC4264624 DOI: 10.4172/2157-7412.1000127] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Müllerian and vaginal anomalies are congenital malformations of the female reproductive tract resulting from alterations in the normal developmental pathway of the uterus, cervix, fallopian tubes, and vagina. The most common of the Müllerian anomalies affect the uterus and may adversely impact reproductive outcomes highlighting the importance of gaining understanding of the genetic mechanisms that govern normal and abnormal development of the female reproductive tract. Modern molecular genetics with study of knock out animal models as well as several genetic syndromes featuring abnormalities of the female reproductive tract have identified candidate genes significant to this developmental pathway. Further emphasizing the importance of understanding female reproductive tract development, recent evidence has demonstrated expression of embryologically significant genes in the endometrium of adult mice and humans. This recent work suggests that these genes not only play a role in the proper structural development of the female reproductive tract but also may persist in adults to regulate proper function of the endometrium of the uterus. As endometrial function is critical for successful implantation and pregnancy maintenance, these recent data suggest a target for gene therapy. Future research will be needed to determine if gene therapy may improve reproductive outcomes for patients with demonstrated deficient endometrial expression related to abnormal gene expression.
Collapse
Affiliation(s)
- Mt Connell
- Department of Obstetrics and Gynecology, Truman Medical Center, Kansas City, Missouri
| | - Cm Owen
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Jh Segars
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Spencer TE, Dunlap KA, Filant J. Comparative developmental biology of the uterus: insights into mechanisms and developmental disruption. Mol Cell Endocrinol 2012; 354:34-53. [PMID: 22008458 DOI: 10.1016/j.mce.2011.09.035] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/19/2011] [Accepted: 09/22/2011] [Indexed: 01/30/2023]
Abstract
The uterus is an essential organ for reproduction in mammals that derives from the Müllerian duct. Despite the importance of the uterus for the fertility and health of women and their offspring, relatively little is known about the hormonal, cellular and molecular mechanisms that regulate development of the Müllerian duct and uterus. This review aims to summarize the hormonal, cellular and molecular mechanisms and pathways governing development of the Müllerian duct and uterus as well as highlight developmental programming effects of endocrine disruptor compounds. Organogenesis, morphogenesis, and functional differentiation of the uterus are complex, multifactorial processes. Disruption of uterine development in the fetus and neonate by genetic defects and exposure to endocrine disruptor compounds can cause infertility and cancer in the adult and their offspring via developmental programming. Clear conservation of some factors and pathways are observed between species; therefore, comparative biology is useful to identify candidate genes and pathways underlying congenital abnormalities in humans.
Collapse
Affiliation(s)
- Thomas E Spencer
- Center for Reproductive Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99164-6310, USA.
| | | | | |
Collapse
|
27
|
Migone FF, Ren Y, Cowan RG, Harman RM, Nikitin AY, Quirk SM. Dominant activation of the hedgehog signaling pathway alters development of the female reproductive tract. Genesis 2011; 50:28-40. [PMID: 21809434 DOI: 10.1002/dvg.20786] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/08/2011] [Accepted: 07/01/2011] [Indexed: 12/16/2022]
Abstract
The role of hedgehog (HH) signaling in reproductive tract development was studied in mice in which a dominant active allele of the signal transducer smoothened (SmoM2) was conditionally expressed in the Müllerian duct and ovary. Mutant females are infertile, primarily because they fail to ovulate. Levels of mRNA for targets of HH signaling, Gli1, Ptch1, and Hhip, were elevated in reproductive tracts of 24-day-old mutant mice, confirming overactivation of HH signaling. The tracts of mutant mice developed abnormally. The uterine luminal epithelium had a simple columnar morphology in control mice, but in mutants contained stratified squamous cells typical of the cervix and vagina. In mutant mice, the number of uterine glands were reduced and the oviducts were not coiled. Expression of genes within the Hox and Wnt families that regulate patterning of the reproductive tract were altered. Hoxa13, which is normally expressed primarily in the vagina and cervix, was expressed at 12-fold higher levels in the uterus of mutant mice compared with controls. Wnt5a, which is required for development of the cervix and vagina and postnatal differentiation of the uterus, was expressed at higher levels in the oviduct and uterus of mutant mice compared with controls. Mating mutant females with fertile or vasectomized males induced a severe inflammatory response in the tract. In summary, overactivation of HH signaling causes aberrant development of the reproductive tract. The phenotype observed could be mediated by ectopic expression of Hoxa13 in the uterus and elevated levels of Wnt5a in the oviducts and uterus.
Collapse
Affiliation(s)
- Fernando F Migone
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Cryptorchidism is a common genital anomaly diagnosed at birth or during childhood. Genetic and/or environmental factors that alter expression or function of hormones crucial for testicular descent, insulin-like 3, and testosterone, may contribute to cryptorchidism. When identified at birth, surgical treatment is indicated by 6 months of age if testes fail to descend, or at the time of diagnosis in older children. A laparoscopic approach is preferred for abdominal testes. Early surgical therapy may reduce the risk of subfertility and/or malignancy.
Collapse
|
29
|
Abstract
In patients with severe congenital neutropenia (SCN) and mice with growth factor independent-1 (Gfi1) loss of function, arrested myeloid progenitors accumulate, whereas terminal granulopoiesis is blocked. One might assume that Gfi-null progenitors accumulate because they lack the ability to differentiate. Instead, our data indicate that Gfi1 loss of function deregulates 2 separable transcriptional programs, one of which controls the accumulation and lineage specification of myeloid progenitors, but not terminal granulopoiesis. We demonstrate that Gfi1 directly represses HoxA9, Pbx1, and Meis1 during normal myelopoiesis. Gfi1-/- progenitors exhibit elevated levels of HoxA9, Pbx1 and Meis1, exaggerated HoxA9-Pbx1-Meis1 activity, and progenitor transformation in collaboration with oncogenic K-Ras. Limiting HoxA9 alleles corrects, in a dose-dependent manner, in vivo and in vitro phenotypes observed with loss of Gfi1 in myeloid progenitor cells but did not rescue Gfi1-/- blocked granulopoiesis. Thus, Gfi1 integrates 2 events during normal myeloid differentiation; the suppression of a HoxA9-Pbx1-Meis1 progenitor program and the induction of a granulopoietic transcription program.
Collapse
|
30
|
Joseph A, Yao H, Hinton BT. Development and morphogenesis of the Wolffian/epididymal duct, more twists and turns. Dev Biol 2009; 325:6-14. [PMID: 18992735 PMCID: PMC2639655 DOI: 10.1016/j.ydbio.2008.10.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 09/03/2008] [Accepted: 10/08/2008] [Indexed: 01/16/2023]
Abstract
The epididymis serves a critical function of preparing the male germ cells for fertilization. In order for the epididymis to carry out this role it must undergo a highly coordinated succession of molecular and morphogenic events during development. These events begin with the formation of the Wolffian or nephric duct, the embryonic precursor of the male reproductive system, and end with the three-dimensional coiled postnatal epididymis that is comprised of several distinctly functional segments. How the duct changes from a simple straight tube to a highly convoluted structure will be the focus of this article. In reviewing the literature's current understanding of epididymal morphogenesis, we will highlight some of the classic morphological studies and discuss some of the more recent genetic models that have all served to contribute to our understanding of this system. Where published information is scarce we will provide potential hypotheses that warrant further investigation and may open up new directions of exploration using the epididymis as a model for tubular morphogenesis.
Collapse
Affiliation(s)
- Avenel Joseph
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, IL 61802, U.S.A
| | - Humphrey Yao
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, IL 61802, U.S.A
| | - Barry T. Hinton
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, U.S.A
| |
Collapse
|
31
|
Hong X, Luense LJ, McGinnis LK, Nothnick WB, Christenson LK. Dicer1 is essential for female fertility and normal development of the female reproductive system. Endocrinology 2008; 149:6207-12. [PMID: 18703631 PMCID: PMC2613048 DOI: 10.1210/en.2008-0294] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 08/07/2008] [Indexed: 11/19/2022]
Abstract
The ribonuclease III endonuclease, Dicer1 (also known as Dicer), is essential for the synthesis of the 19-25 nucleotide noncoding RNAs known as micro-RNAs (miRNAs). These miRNAs associate with the RNA-induced silencing complex to regulate gene expression posttranscriptionally by base pairing with 3'untranslated regions of complementary mRNA targets. Although it is established that miRNAs are expressed in the reproductive tract, their functional role and effect on reproductive disease remain unknown. The studies herein establish for the first time the reproductive phenotype of mice with loxP insertions in the Dicer1 gene (Dicer1fl/fl) when crossed with mice expressing Cre-recombinase driven by the anti-müllerian hormone receptor 2 promoter (Amhr2Cre/+). Adult female Dicer1fl/fl;Amhr2Cre/+ mice displayed normal mating behavior but failed to produce offspring when exposed to fertile males during a 5-month breeding trial. Morphological and histological assessments of the reproductive tracts of immature and adult mice indicated that the uterus and oviduct were hypotrophic, and the oviduct was highly disorganized. Natural mating of Dicer1fl/fl;Amhr2Cre/+ females resulted in successful fertilization as evidenced by the recovery of fertilized oocytes on d 1 pregnancy, which developed normally to blastocysts in culture. Developmentally delayed embryos were collected from Dicer1fl/fl; Amhr2Cre/+ mice on d 3 pregnancy when compared with controls. Oviductal transport was disrupted in the Dicer1fl/fl;Amhr2Cre/+ mouse as evidenced by the failure of embryos to enter the uterus on d 4 pregnancy. These studies implicate Dicer1/miRNA mediated posttranscriptional gene regulation in reproductive somatic tissues as critical for the normal development and function of these tissues and for female fertility.
Collapse
Affiliation(s)
- Xiaoman Hong
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|
32
|
Nagaraja AK, Andreu-Vieyra C, Franco HL, Ma L, Chen R, Han DY, Zhu H, Agno JE, Gunaratne PH, DeMayo FJ, Matzuk MM. Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol 2008; 22:2336-52. [PMID: 18687735 DOI: 10.1210/me.2008-0142] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dicer is an evolutionarily conserved ribonuclease III that is necessary for microRNA (miRNA) processing and the synthesis of small interfering RNAs from long double-stranded RNA. Although it has been shown that Dicer plays important roles in the mammalian germline and early embryogenesis, the functions of Dicer-dependent pathways in the somatic cells of the female reproductive tract are unknown. Using a transgenic line in which Cre recombinase is driven by the anti-Müllerian hormone receptor type 2 promoter, we conditionally inactivated Dicer1 in the mesenchyme of the developing Müllerian ducts and postnatally in ovarian granulosa cells and mesenchyme-derived cells of the oviducts and uterus. Deletion of Dicer in these cell types results in female sterility and multiple reproductive defects including decreased ovulation rates, compromised oocyte and embryo integrity, prominent bilateral paratubal (oviductal) cysts, and shorter uterine horns. The paratubal cysts act as a reservoir for spermatozoa and oocytes and prevent embryos from transiting the oviductal isthmus and passing the uterotubal junction to enter the uterus for implantation. Deep sequencing of small RNAs in oviduct revealed down-regulation of specific miRNAs in Dicer conditional knockout females compared with wild type. The majority of these differentially expressed miRNAs are predicted to regulate genes important for Müllerian duct differentiation and mesenchyme-derived structures, and several of these putative target genes were significantly up-regulated upon conditional deletion of Dicer1. Thus, our findings reveal diverse and critical roles for Dicer and its miRNA products in the development and function of the female reproductive tract.
Collapse
Affiliation(s)
- Ankur K Nagaraja
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
We describe recent advances in the understanding of patterning in the vertebrate post-cranial mesoderm. Specifically, we discuss the integration of local information into global level information that results in the overall coordination along the anterioposterior axis. Experiments related to the integration of the axial and appendicular musculoskeletal systems are considered, and examples of genetic interactions between these systems are outlined. We emphasize the utility of the terms primaxial and abaxial as an aid to understanding development of the vertebrate musculoskeletal system, and hypothesize that the lateral somitic frontier is a catalyst for evolutionary change.
Collapse
|
34
|
Kappen C, Neubüser A, Balling R, Finnell R. Molecular basis for skeletal variation: insights from developmental genetic studies in mice. BIRTH DEFECTS RESEARCH. PART B, DEVELOPMENTAL AND REPRODUCTIVE TOXICOLOGY 2007; 80:425-50. [PMID: 18157899 PMCID: PMC3938168 DOI: 10.1002/bdrb.20136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Skeletal variations are common in humans, and potentially are caused by genetic as well as environmental factors. We here review molecular principles in skeletal development to develop a knowledge base of possible alterations that could explain variations in skeletal element number, shape or size. Environmental agents that induce variations, such as teratogens, likely interact with the molecular pathways that regulate skeletal development.
Collapse
Affiliation(s)
- C Kappen
- Center for Human Molecular Genetics, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | | | | | | |
Collapse
|
35
|
Gosiengfiao Y, Horvat R, Thompson A. Transcription factors GATA-1 and Fli-1 regulate human HOXA10 expression in megakaryocytic cells. DNA Cell Biol 2007; 26:577-87. [PMID: 17688409 DOI: 10.1089/dna.2007.0575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HOXA10 is a member of the HOX family of regulatory genes that are involved in hematopoiesis. Its role in megakaryopoiesis has been suggested by its expression in immature megakaryocytes and by the proliferation of megakaryocyte-primitive blast colonies upon HOXA10 overexpression. We sought to understand the role of HOXA10 in megakaryopoiesis better, by investigating its transcriptional regulation. Analysis of the 5' untranslated region and transfection of promoter/plasmids into human tissue culture cell lines identified transcriptionally active sequences that contain GATA-1 and Ets-1 sites and a putative binding site for its neighboring gene, HOXA11. Gel shift assays confirmed protein-DNA interactions at these sites. Mutation of the GATA-1 and the Ets-1 motifs amplified the expression of HOXA10 in HEL and K562 cells, confirming the importance of these cis-acting elements in regulating HOXA10 expression in megakaryocytic cells. Chromatin immunoprecipitation (ChIP) and chloramphenicol acetyl transferase (CAT) assays confirm that HOXA11 binds to the putative binding site, resulting in repression of HOXA10 expression. These data taken together give insight into the regulation of HOXA10 expression in megakaryocytic differentiation.
Collapse
Affiliation(s)
- Yasmin Gosiengfiao
- Division of Hematology-Oncology-Stem Cell Transplantation, Department of Pediatrics, Children's Memorial Hospital, Feinberg School of Medicine of Northwestern University, Chicago, Illinois 60614, USA
| | | | | |
Collapse
|
36
|
Deutscher E, Hung-Chang Yao H. Essential roles of mesenchyme-derived beta-catenin in mouse Müllerian duct morphogenesis. Dev Biol 2007; 307:227-36. [PMID: 17532316 PMCID: PMC2020447 DOI: 10.1016/j.ydbio.2007.04.036] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 04/06/2007] [Accepted: 04/26/2007] [Indexed: 11/26/2022]
Abstract
Members of the Wnt family of genes such as Wnt4, Wnt5a, and Wnt7a have been implicated in the formation and morphogenesis of the Müllerian duct into various parts of the female reproductive tract. These WNT ligands elicit their action via either the canonical WNT/beta-catenin or the non-canonical WNT/calcium pathway and could possibly function redundantly in Müllerian duct differentiation. By using the Müllerian duct-specific anti-Müllerian hormone receptor 2 cre (Amhr2-cre) mouse line, we established a conditional knockout model that removed beta-catenin specifically in the mesenchyme of the Müllerian duct. At birth, loss of beta-catenin in the Müllerian duct mesenchyme disrupted the normal coiling of the oviduct in the knockout embryo, resembling the phenotype of the Wnt7a knockout. The overall development of the female reproductive tract was stunted at birth with a decrease in proliferation in the mesenchyme and epithelium. We also discovered that Wnt5a and Wnt7a expression remained normal, excluding the possibility that the phenotypes resulted from a loss of these WNT ligands. We examined the expression of Frizzled (Fzd), the receptors for WNT, and found that Fzd1 is one receptor present in the Müllerian duct mesenchyme and could be the putative receptor for beta-catenin activation in the Müllerian duct. In summary, our findings suggest that mesenchymal beta-catenin is a downstream effector of Wnt7a that mediates the patterning of the oviduct and proper differentiation of the uterus.
Collapse
Affiliation(s)
- Erica Deutscher
- Department of Veterinary Biosciences, 3806 VMBSB, 2001 South Lincoln Avenue, University of Illinois, Urbana, IL 61802, USA
| | | |
Collapse
|
37
|
Handrigan GR, Wassersug RJ. The anuran Bauplan: a review of the adaptive, developmental, and genetic underpinnings of frog and tadpole morphology. Biol Rev Camb Philos Soc 2007; 82:1-25. [PMID: 17313522 DOI: 10.1111/j.1469-185x.2006.00001.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anurans (frogs, toads, and their larvae) are among the most morphologically derived of vertebrates. While tightly conserved across the order, the anuran Bauplan (body plan) diverges widely from that of other vertebrates, particularly with respect to the skeleton. Here we address the adaptive, ontogenetic, and genetic bases of three such hallmark anuran features: (1) the absence of discrete caudal vertebrae, (2) a truncated axial skeleton, and (3) elongate hind limbs. We review the functional significance of each as it relates to the anuran lifestyle, which includes locomotor adaptations to both aquatic and terrestrial environments. We then shift our focus to the proximal origins of each feature, namely, ontogeny and its molecular regulation. Drawing on relatively limited data, we detail the development of each character and then, by extrapolating from comparative vertebrate data, propose molecular bases for these processes. Cast in this light, the divergent morphology of anurans emerges as a product of evolutionary modulation of the generalised vertebrate developmental machinery. Specifically, we hypothesise that: (1) the formation of caudal vertebrae is precluded due to a failure of sclerotomes to form cartilaginous condensations, perhaps resulting from altered expression of a suite of genes, including Pax1, Pax9, Msx1, Uncx-4.1, Sonic hedgehog, and noggin; (2) anteriorised Hox gene expression in the paraxial mesoderm has led to a rostral shift of morphological boundaries of the vertebral column; and, (3) spatial and temporal shifts in Hox expression may underlie the expanded tarsal elements of the anuran hind limb. Technology is currently in place to investigate each of these scenarios in the African clawed frog Xenopus. Experimental corroboration will further our understanding of the molecular regulation of the anuran Bauplan and provide insight into the origin of vertebrate morphological diversity as well as the role of development in evolution.
Collapse
Affiliation(s)
- Gregory R Handrigan
- Department of Biology, Dalhousie University 1355 Oxford Street, Halifax, Nova Scotia, Canada B3H 4J1.
| | | |
Collapse
|
38
|
Wang Y, Barthold J, Kanetsky PA, Casalunovo T, Pearson E, Manson J. Allelic variants inHOX genes in cryptorchidism. ACTA ACUST UNITED AC 2007; 79:269-75. [PMID: 17216618 DOI: 10.1002/bdra.20343] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Cryptorchidism is one of the most common congenital anomalies and is associated with increased risk for infertility and testicular cancer later in life. Findings from animal models and small clinical studies suggest that the posterior HOX genes (paralogs 9-13) could be potential candidate genes for cryptorchidism and that the HOX genes are functionally redundant within paralogous groups. METHODS The coding regions and exon-intron boundaries of the 16 posterior HOX genes were sequenced and analyzed in group 1 (44 nonsyndromic cryptorchidism cases and 46 healthy controls). Those specific variants found to be significantly different between cases and controls in group 1 were examined in DNA from group 2 (108 cases and 114 controls). RESULTS A total of 57 variants was found in group 1, among which the allele frequency of 180A>G (A60A) in HOXD13 alone was significantly elevated in cases versus controls (P = 0.02). In the combined 1 + 2 group, cases were also more likely than controls to have the G allele (P = 0.002). As predicted by an exonic splicing enhancer finder program, the 180A>G (A60A) variant is expected to have an influence on the splicing of transcripts from HOXD13. In group 1, case subjects were more likely to carry multiple variants in HOXA13 and HOXD13 (P = 0.02) than controls. CONCLUSIONS The variant 180A>G (A60A) in HOXD13 is a risk factor for cryptorchidism, and a dynamic equilibrium of genes in HOX paralog 13 is involved in the pathogenesis of cryptorchidism.
Collapse
Affiliation(s)
- Yanping Wang
- Division of Human Genetics and Molecular Biology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Implantation involves an intricate discourse between the embryo and uterus and is a gateway to further embryonic development. Synchronizing embryonic development until the blastocyst stage with the uterine differentiation that takes place to produce the receptive state is crucial to successful implantation, and therefore to pregnancy outcome. Although implantation involves the interplay of numerous signalling molecules, the hierarchical instructions that coordinate the embryo-uterine dialogue are not well understood. This review highlights our knowledge about the molecular development of preimplantation and implantation and the future challenges of the field. A better understanding of periimplantation biology could alleviate female infertility and help to develop novel contraceptives.
Collapse
Affiliation(s)
- Haibin Wang
- Department of Pediatrics, Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
40
|
Zhao B, Koon D, Bethin KE. Identification of transcription factors at the site of implantation in the later stages of murine pregnancy. Reproduction 2006; 131:561-71. [PMID: 16514199 DOI: 10.1530/rep.1.00874] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite medical advances, preterm delivery continues to complicate 12% of all births in the United States and is a major cause of neonatal deaths. One of the reasons that preterm labor continues to be a significant problem is that very little is understood about the factors involved in normal labor. Many investigators have studied parturition in the mouse and defined essential pathways for normal labor. Prostaglandins play an essential role in mouse labor and are important in human labor as well. We examined the 23 transcription factors from pregnant mouse uterus that change expression after the induction of cyclooxygenase-1, the enzyme that catalyzes the first committed step in prostaglandin synthesis. Using in situ hybridization, we have identified three of these transcription factors, Hoxa10, Hoxa11 and GILZ as being expressed in the decidua and regulated at the end of pregnancy. Both Hoxa10 and Hoxa11 are known to be critical for implantation, but very little is known about their roles in late gestation. GILZ has not previously been identified in the gravid uterus. In summary, we have identified three transcription factors that are regulated in the decidua at the end of pregnancy, suggesting a role in detachment of the fetus and placenta.
Collapse
Affiliation(s)
- Baohui Zhao
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, James Whitcomb Riley Hospital for Children, 702 Barnhill Dr., RI 5960, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
41
|
Morinaga T, Enomoto A, Shimono Y, Hirose F, Fukuda N, Dambara A, Jijiwa M, Kawai K, Hashimoto K, Ichihara M, Asai N, Murakumo Y, Matsuo S, Takahashi M. GDNF-inducible zinc finger protein 1 is a sequence-specific transcriptional repressor that binds to the HOXA10 gene regulatory region. Nucleic Acids Res 2005; 33:4191-201. [PMID: 16049025 PMCID: PMC1180748 DOI: 10.1093/nar/gki734] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The RET tyrosine kinase receptor and its ligand, glial cell line-derived neurotrophic factor (GDNF) are critical regulators of renal and neural development. It has been demonstrated that RET activates a variety of downstream signaling cascades, including the RAS/mitogen-activated protein kinase and phosphatidylinositol-3-kinase(PI3-K)/AKT pathways. However, nuclear targets specific to RET-triggered signaling still remain elusive. We have previously identified a novel zinc finger protein, GZF1, whose expression is induced during GDNF/RET signaling and may play a role in renal branching morphogenesis. Here, we report the DNA binding property of GZF1 and its potential target gene. Using the cyclic amplification and selection of targets technique, the consensus DNA sequence to which GZF1 binds was determined. This sequence was found in the 5' regulatory region of the HOXA10 gene. Electrophoretic mobility shift assay revealed that GZF1 specifically binds to the determined consensus sequence and suppresses transcription of the luciferase gene from the HOXA10 gene regulatory element. These findings thus suggest that GZF1 may regulate the spatial and temporal expression of the HOXA10 gene which plays a role in morphogenesis.
Collapse
Affiliation(s)
- Takatoshi Morinaga
- Department of Pathology, Nagoya University Graduate School of Medicine65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Internal Medicine, Nagoya University Graduate School of Medicine65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yohei Shimono
- Department of Pathology, Nagoya University Graduate School of Medicine65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Fumiko Hirose
- The Department of Life Science, Graduate School of Science, Himeji Institute of Technology3-2-1 Koto, Kamigori, Hyogo 678-1297, Japan
| | - Naoyuki Fukuda
- Department of Pathology, Nagoya University Graduate School of Medicine65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Internal Medicine, Nagoya University Graduate School of Medicine65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Atsushi Dambara
- Department of Pathology, Nagoya University Graduate School of Medicine65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- Department of Internal Medicine, Nagoya University Graduate School of Medicine65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Mayumi Jijiwa
- Department of Pathology, Nagoya University Graduate School of Medicine65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kumi Kawai
- The Division of Molecular Pathology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Katsunori Hashimoto
- The Department of Medical Technology, Nagoya University School of Health Sciences1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Masatoshi Ichihara
- The Department of Medical Technology, Nagoya University School of Health Sciences1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673, Japan
| | - Naoya Asai
- Department of Pathology, Nagoya University Graduate School of Medicine65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshiki Murakumo
- Department of Pathology, Nagoya University Graduate School of Medicine65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Seiichi Matsuo
- Department of Internal Medicine, Nagoya University Graduate School of Medicine65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- The Division of Molecular Pathology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- To whom correspondence should be addressed. Tel: +81 52 744 2092; Fax: +81 52 744 2098;
| |
Collapse
|
42
|
Spencer TE, Hayashi K, Hu J, Carpenter KD. Comparative developmental biology of the mammalian uterus. Curr Top Dev Biol 2005; 68:85-122. [PMID: 16124997 DOI: 10.1016/s0070-2153(05)68004-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The uterus is an essential organ for reproduction in mammals. Despite the importance of the uterus for the fertility and health of women and their offspring, relatively little is known about the hormonal, cellular, and molecular mechanisms that regulate development of the uterus in either the fetus or neonate. Disruption of uterine development in the fetus and neonate by genetic defects or exposure to endocrine disruptors can program the function of the uterus in the adult and lead to infertility, cancer, and even death. The intent of this chapter is to review the current knowledge of regulatory factors and pathways governing prenatal organogenesis and postnatal morphogenesis of the uterus in mammals, with a particular focus on laboratory and domestic animals. Prenatal organogenesis, postnatal morphogenesis, and adult functional differentiation of the uterus are complex, multifactorial processes. Although conservation of some factors and pathways are observed between species, it is clear that mutation of candidate genes in the mouse does not always recapitulate the same defects observed in the human. Therefore, comparative biology of the mechanisms regulating uterine development in other species may be useful to identify candidate genes and pathways to understand congenital abnormalities in humans. This knowledge is necessary to develop rational therapies to prevent and treat infertility and to enhance fertility in humans and domestic animals.
Collapse
Affiliation(s)
- Thomas E Spencer
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
43
|
Yamamoto M, Kuroiwa A. Hoxa-11 and Hoxa-13 are involved in repression of MyoD during limb muscle development. Dev Growth Differ 2004; 45:485-98. [PMID: 14706073 DOI: 10.1111/j.1440-169x.2003.00715.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Under the influence of the limb mesenchyme, Hoxa-11 is expressed in migrating and proliferating premyoblasts in the limb field and Hoxa-13 is induced in subdomains of congregated limb muscle masses. To evaluate the roles of Hoxa-11 and Hoxa-13 in myogenesis of the limb, we performed electroporation in ovo to force expression of these Hox genes in limb muscle precursors. In the presence of ectopic Hoxa-11, expression of MyoD was blocked transiently. In C2C12 myoblasts, transfection of Hoxa-11 also repressed the expression of endogenous MyoD. Forced expression of Hoxa-13 resulted in more pronounced repression of MyoD in both limb and C2C12 myoblasts. In contrast, targeted disruption of Hoxa-13 gave rise to enhanced expression of MyoD in the flexor carpi radialis muscle, a forearm muscle that normally expressed Hoxa-13. These results suggest that Hoxa-11 and Hoxa-13 are involved in the negative regulation of MyoD expression in limb muscle precursors.
Collapse
Affiliation(s)
- Masakazu Yamamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 Japan.
| | | |
Collapse
|
44
|
Carta L, Sassoon D. Wnt7a Is a Suppressor of Cell Death in the Female Reproductive Tract and Is Required for Postnatal and Estrogen-Mediated Growth1. Biol Reprod 2004; 71:444-54. [PMID: 15070830 DOI: 10.1095/biolreprod.103.026534] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The murine female reproductive tract is undifferentiated at birth and undergoes pronounced growth and cytodifferentiation during postnatal life. Postnatal reproductive tract development proceeds in the absence of high levels of circulating estrogens and is disrupted by precocious exposure to estrogens. The WNT gene family is critical in guiding the epithelial-mesenchymal interactions that direct postnatal uterine development. We have previously described a role for Wnt7a in controlling morphogenesis in the uterus. In addition to patterning defects, Wnt7a mutant uteri are atrophic in adults and do not show robust postnatal growth. In the present study, we examine immature female Wnt7a mutant and wild-type uteri to assess the cellular processes that underlie this failure in postnatal uterine growth. Levels of proliferation are higher in wild-type versus Wnt7a mutant uteri. Exposure to the potent estrogen-agonist diethylstilbestrol (DES) leads to an increase in cell proliferation in the uterus in wild-type as well as in mutant uteri, indicating that Wnt7a is not required in mediating cell proliferation. In contrast, we observe that Wnt7a mutant uteri display high levels of cell death in response to DES, whereas wild-type uteri display almost no cell death, revealing that Wnt7a plays a key role as a cell death suppressor. The expression pattern of other key regulatory genes that guide uterine development, including estrogen receptor (alpha), Hox, and other WNT genes, reveals either abnormal spatial distribution of transcripts or abnormal regulation in response to DES exposure. Taken together, the results of the present study demonstrate that Wnt7a coordinates a variety of cell and developmental pathways that guide postnatal uterine growth and hormonal responses and that disruption of these pathways leads to aberrant cell death.
Collapse
Affiliation(s)
- Luca Carta
- Brookdale Department of Developmental, Cellular and Molecular Biology, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
45
|
Klonisch T, Fowler PA, Hombach-Klonisch S. Molecular and genetic regulation of testis descent and external genitalia development. Dev Biol 2004; 270:1-18. [PMID: 15136137 DOI: 10.1016/j.ydbio.2004.02.018] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 01/18/2004] [Accepted: 02/17/2004] [Indexed: 12/27/2022]
Abstract
Testicular descent as a prerequisite for the production of mature spermatozoa and normal external genitalia morphogenesis, and therefore facilitating copulation and internal fertilization, are essential developmental steps in reproduction of vertebrate species. Cryptorchidism, the failure of testis descent, and feminization of external genitalia in the male, usually in the form of hypospadias, in which the opening of the urethra occurs along the ventral aspect of the penis, are the most frequent pediatric complications. Thus, elucidating the molecular mechanisms involved in the regulation of testis descent and the formation of external genitalia merits a special focus. Natural and transgenic rodent models have demonstrated both morphogenic processes to be under the control of a plethora of genetic factors with complex time-, space-, and dose-restricted expression pattern. The review elucidates the molecular mechanisms involved in the regulation of testis descent and the formation of external genitalia and, wherever possible, assesses the differences between these rodent animal models and other mammalian species, including human.
Collapse
Affiliation(s)
- Thomas Klonisch
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University of Halle-Wittenberg, Halle/Saale, Germany.
| | | | | |
Collapse
|
46
|
Mericskay M, Kitajewski J, Sassoon D. Wnt5a is required for proper epithelial-mesenchymal interactions in the uterus. Development 2004; 131:2061-72. [PMID: 15073149 DOI: 10.1242/dev.01090] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epithelial-mesenchymal interactions play a crucial role in the correct patterning of the mammalian female reproductive tract (FRT). Three members of the Wnt family of growth factors are expressed at high levels in the developing FRT in the mouse embryo. The expression of Wnt genes is maintained in the adult FRT, although levels fluctuate during estrous. Wnt4 is required for Müllerian duct initiation, whereas Wnt7a is required for subsequent differentiation. In this study, we show that Wnt5a is required for posterior growth of the FRT. We further demonstrate that the mutant FRT has the potential to form the posterior compartments of the FRT using grafting techniques. Postnatally, Wnt5aplays a crucial role in the generation of uterine glands and is required for cellular and molecular responses to exogenous estrogens. Finally, we show that Wnt5a participates in a regulatory loop with other FRT patterning genes including Wnt7a, Hoxa10 and Hoxa11. Data presented provide a mechanistic basis for how uterine stroma mediates both developmental and estrogen-mediated changes in the epithelium and demonstrates that Wnt5a is a key component in this process. The similarities of the Wnt5a and Wnt7a mutant FRT phenotypes to those described for the Hoxa11 and Hoxa13 mutant FRT phenotypes reveal a mechanism whereby Wnt and Hox genes cooperate to pattern the FRT along the anteroposterior axis.
Collapse
Affiliation(s)
- Mathias Mericskay
- Brookdale Department Molecular, Cell and Developmental Biology, Mount Sinai Medical School, 1 G Levy Place, New York, NY 10029, USA
| | | | | |
Collapse
|
47
|
Abstract
Hox genes often play important roles in segment identity determination and organogenesis. To better understand the roles of Hox genes during kidney development, we performed an extensive analysis of their expression patterns. Section in situ hybridizations were used to define the expression of 37 Hox genes at embryonic day (E) 12.5, E13.5, E15.5, and E17.5 of kidney development. Several interesting principles emerged. First, the concept of colinearity was preserved. Hox genes from the more 3' positions in clusters were more often expressed in the ureteric bud, which is derived from the anterior of the intermediate mesoderm. Second, Hox genes were expressed throughout the ureteric bud without any segment specificity. Third, in the different segments of the forming nephron we did observe overlapping domains of Hox gene expression, which initiated distally at the junction between the nephron and ureteric bud, and extended proximally variable distances. Finally, we observed that paralogous Hox genes often showed surprisingly diverse expression patterns. Indeed, contiguous genes on a single cluster more often showed similar expression patterns than paralogs. In summary, the resulting atlas of Hox gene expression provides a foundation for further study of the overlapping functions Hox genes in the developing kidney.
Collapse
Affiliation(s)
- Larry T Patterson
- Division of Nephrology and Hypertension, The Children's Hospital Research Foundation, Cincinnati, Ohio, USA.
| | | |
Collapse
|
48
|
Tomiyama H, Hutson JM, Truong A, Agoulnik AI. Transabdominal testicular descent is disrupted in mice with deletion of insulinlike factor 3 receptor. J Pediatr Surg 2003; 38:1793-8. [PMID: 14666470 DOI: 10.1016/j.jpedsurg.2003.08.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Several factors are implicated in transabdominal testicular descent, including insulinlike factor 3 (INSL3) hormone and Müllerian-inhibiting substance (MIS). A transgene insertional mutation found on chromosome 5 in the mouse, known as crsp, causes deletion of a transmembrane G protein-coupled receptor gene, Great, which is highly expressed in the gubernaculum. The authors describe here a detailed analysis of the testicular descent and gubernacular development in crsp mice to determine the role of the Great gene in this process. METHODS Homozygous (crsp/crsp) mutant and wild-type heterozygous (crsp/+) mice were examined at birth (D 0) and at days 10 (D 10) and 30 (D 30) postnatally. Serial sagittal or coronal sections were analyzed for position of the gonads and cremaster sac development. RESULTS Transabdominal testicular descent was absent at D 0 in crsp/crsp homozygous mice with no swelling reaction in the gubernacula. By D 10 the cremaster sac was significantly thinner (P <.05) and contained less collagen in the mutants than in the wild-type controls. On D 30 the cremaster sacs of mutant males were similar in thickness to those in females. CONCLUSIONS Disruption of the Great gene causes failure of the transabdominal phase of descent, identical to that seen in the Insl3-deficient mutants, consistent with the recent data suggesting that Great gene encodes the Insl3 transmembrane receptor. No differences between D 30 mutant males and females were found in the gubernacula, suggesting that Insl3/Great signaling regulates gubernacular development.
Collapse
Affiliation(s)
- Hideki Tomiyama
- F. Douglas Stephens Surgical Research Laboratory, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
49
|
Kobayashi A, Behringer RR. Developmental genetics of the female reproductive tract in mammals. Nat Rev Genet 2003; 4:969-80. [PMID: 14631357 DOI: 10.1038/nrg1225] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The female reproductive tract receives the oocytes for fertilization, supports the development of the fetus and provides the passage for birth. Although abnormalities of this organ system can result in infertility and even death, until recently relatively little was known about the genetic processes that underlie its development. By drawing primarily on mouse mutagenesis studies and the analysis of human mutations we review the emerging genetic pathways that regulate female reproductive-tract formation in mammals and that are implicated in congenital abnormalities of this organ system. We also show that these pathways might be conserved between invertebrates and mammals.
Collapse
Affiliation(s)
- Akio Kobayashi
- Program in Developmental Biology, Baylor College of Medicine and Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | | |
Collapse
|
50
|
|