1
|
Pandya NJ, Seeger C, Babai N, Gonzalez-Lozano MA, Mack V, Lodder JC, Gouwenberg Y, Mansvelder HD, Danielson UH, Li KW, Heine M, Spijker S, Frischknecht R, Smit AB. Noelin1 Affects Lateral Mobility of Synaptic AMPA Receptors. Cell Rep 2019; 24:1218-1230. [PMID: 30067977 PMCID: PMC6088136 DOI: 10.1016/j.celrep.2018.06.102] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/26/2018] [Accepted: 06/26/2018] [Indexed: 11/24/2022] Open
Abstract
Lateral diffusion on the neuronal plasma membrane of the AMPA-type glutamate receptor (AMPAR) serves an important role in synaptic plasticity. We investigated the role of the secreted glycoprotein Noelin1 (Olfactomedin-1 or Pancortin) in AMPAR lateral mobility and its dependence on the extracellular matrix (ECM). We found that Noelin1 interacts with the AMPAR with high affinity, however, without affecting rise- and decay time and desensitization properties. Noelin1 co-localizes with synaptic and extra-synaptic AMPARs and is expressed at synapses in an activity-dependent manner. Single-particle tracking shows that Noelin1 reduces lateral mobility of both synaptic and extra-synaptic GluA1-containing receptors and affects short-term plasticity. While the ECM does not constrain the synaptic pool of AMPARs and acts only extrasynaptically, Noelin1 contributes to synaptic potentiation by limiting AMPAR mobility at synaptic sites. This is the first evidence for the role of a secreted AMPAR-interacting protein on mobility of GluA1-containing receptors and synaptic plasticity. Noelin1 interacts with high affinity to AMPA receptors (AMPARs) Noelin1 is secreted upon cellular stimulation (Extra)synaptic AMPAR mobility, but not channel properties, are affected by Noelin1 Reducing synaptic AMPAR lateral mobility by Noelin1 limits synaptic plasticity
Collapse
Affiliation(s)
- Nikhil J Pandya
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Christian Seeger
- Beactica AB, Virdings allé 2, 754 50 Uppsala, Sweden; Department of Chemistry - BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Norbert Babai
- Department of Biology, Animal Physiology, Friedrich Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Miguel A Gonzalez-Lozano
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Volker Mack
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach (an der Riss), Germany
| | - Johannes C Lodder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Yvonne Gouwenberg
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - U Helena Danielson
- Beactica AB, Virdings allé 2, 754 50 Uppsala, Sweden; Department of Chemistry - BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Martin Heine
- Research Group Molecular Physiology, Leibniz Institute for Neurobiology, Brenneckestrasse 6, 39118 Magdeburg, Germany
| | - Sabine Spijker
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
| | - Renato Frischknecht
- Department of Biology, Animal Physiology, Friedrich Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany; Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Brenneckestrasse 6, 39118 Magdeburg, Germany
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Pronker MF, van den Hoek H, Janssen BJC. Design and structural characterisation of olfactomedin-1 variants as tools for functional studies. BMC Mol Cell Biol 2019; 20:50. [PMID: 31726976 PMCID: PMC6857237 DOI: 10.1186/s12860-019-0232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Olfactomedin-1 (Olfm1; also known as Noelin or Pancortin) is a highly-expressed secreted brain and retina protein and its four isoforms have different roles in nervous system development and function. Structural studies showed that the long Olfm1 isoform BMZ forms a disulfide-linked tetramer with a V-shaped architecture. The tips of the Olfm1 "V" each consist of two C-terminal β-propeller domains that enclose a calcium binding site. Functional characterisation of Olfm1 may be aided by new biochemical tools derived from these core structural elements. RESULTS Here we present the production, purification and structural analysis of three novel monomeric, dimeric and tetrameric forms of mammalian Olfm1 for functional studies. We characterise these constructs structurally by high-resolution X-ray crystallography and small-angle X-ray scattering. The crystal structure of the Olfm1 β-propeller domain (to 1.25 Å) represents the highest-resolution structure of an olfactomedin family member to date, revealing features such as a hydrophilic tunnel containing water molecules running into the core of the domain where the calcium binding site resides. The shorter Olfactomedin-1 isoform BMY is a disulfide-linked tetramer with a shape similar to the corresponding region in the longer BMZ isoform. CONCLUSIONS These recombinantly-expressed protein tools should assist future studies, for example of biophysical, electrophysiological or morphological nature, to help elucidate the functions of Olfm1 in the mature mammalian brain. The control over the oligomeric state of Olfm1 provides a firm basis to better understand the role of Olfm1 in the (trans-synaptic) tethering or avidity-mediated clustering of synaptic receptors such as post-synaptic AMPA receptors and pre-synaptic amyloid precursor protein. In addition, the variation in domain composition of these protein tools provides a means to dissect the Olfm1 regions important for receptor binding.
Collapse
Affiliation(s)
- Matti F Pronker
- MRC Laboratory of Molecular Biology, Division of Neurobiology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. .,Bijvoet Center for Biomolecular Research, Utrecht University, Crystal and Structural Chemistry, Kruytgebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Hugo van den Hoek
- Bijvoet Center for Biomolecular Research, Utrecht University, Crystal and Structural Chemistry, Kruytgebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Department of Molecular Structural Biology, Max Planck institute for Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Bert J C Janssen
- Bijvoet Center for Biomolecular Research, Utrecht University, Crystal and Structural Chemistry, Kruytgebouw, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Valo I, Raro P, Boissard A, Maarouf A, Jézéquel P, Verriele V, Campone M, Coqueret O, Guette C. OLFM4 Expression in Ductal Carcinoma In Situ and in Invasive Breast Cancer Cohorts by a SWATH-Based Proteomic Approach. Proteomics 2019; 19:e1800446. [PMID: 31318138 DOI: 10.1002/pmic.201800446] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/04/2019] [Indexed: 12/13/2022]
Abstract
Human olfactomedin-4 (OLFM4) is a secreted protein involved in a variety of cellular functions including proliferation, differentiation, apoptosis, and cell adhesion. OLFM4 expression has been studied in several tumor types including gastric, colorectal, lung, and endometrioid cancers where it has been suggested to be an independent favorable or unfavorable prognostic marker. For breast cancer, the clinical significance of OLFM4 is still unclear. In the present study, SWATH-MS is used as a tool for the robust identification and quantification of breast tissue proteins. SWATH-MS data show that OLFM4 expression is higher in DCIS than in invasive breast cancer. In-depth analysis of the breast tumor proteome show that OLFM4 is a favorable pronostic marker. Serum OLFM4 levels in peripheral blood are also analyzed by ELISA in 825 cases, including 94 cases of healthy individuals, 61 cases of non-invasive breast tumor (DCIS) and 670 cases of breast cancer (BC). It is found that serum OLFM4 levels are significantly higher in the DCIS cohort and in the breast cancer cohort compared with the healthy controls. This result suggests that circulating OLFM4 could be an interesting biomarker of early breast cancer. Data are available via ProteomeXchange with identifier PXD014194.
Collapse
Affiliation(s)
- Isabelle Valo
- Paul Papin ICO Cancer Center, CRCINA, INSERM, 49055, Angers, France
| | - Pedro Raro
- Paul Papin ICO Cancer Center, CRCINA, INSERM, 49055, Angers, France
| | - Alice Boissard
- Paul Papin ICO Cancer Center, CRCINA, INSERM, 49055, Angers, France
| | - Amine Maarouf
- Paul Papin ICO Cancer Center, CRCINA, INSERM, 49055, Angers, France.,Paul Papin ICO Cancer Center, CRCINA, INSERM, Université de Nantes, Université d'Angers, 49100, Angers, France
| | - Pascal Jézéquel
- Paul Papin ICO Cancer Center, CRCINA, INSERM, Unité de Bioinfomique, 44805, Nantes, France.,SIRIC ILIAD, Angers, Nantes, France
| | | | - Mario Campone
- Paul Papin ICO Cancer Center, CRCINA, INSERM, 49055, Angers, France.,SIRIC ILIAD, Angers, Nantes, France
| | - Olivier Coqueret
- Paul Papin ICO Cancer Center, CRCINA, INSERM, Université de Nantes, Université d'Angers, 49100, Angers, France.,SIRIC ILIAD, Angers, Nantes, France
| | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, INSERM, 49055, Angers, France.,SIRIC ILIAD, Angers, Nantes, France
| |
Collapse
|
4
|
Li Q, Liu A, Gu X, Su Z. Olfactomedin domain-containing proteins: evolution, functional divergence, expression patterns and damaging SNPs. Mol Genet Genomics 2019; 294:875-885. [PMID: 30915543 DOI: 10.1007/s00438-019-01549-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/15/2019] [Indexed: 12/11/2022]
Abstract
Olfactomedin domain-containing proteins appear to facilitate neurodevelopment, cell adhesion, intercellular interactions, and protein-protein interactions, and the disruption of their expression will lead to dramatic developmental perturbations and lethality. The aim of the present work was to study how these genes evolved in metazoans and diverged after their duplication as well as to characterize their expression profiles and detrimental mutations. We conducted an exhaustive survey of olfactomedin domain-containing genes in genomic databases, identifying 235 olfactomedin-like (OLF) proteins in 29 representative species covering all the main metazoan lineages. Phylogenetic analyses allowed us to define nine different subfamilies of OLF genes, and subfamily IX, which specifically includes two immunoglobulin domains, was identified for the first time in arthropods. Functional divergence analysis suggested that the function of this arthropod-specific OLF subfamily might have diverged from that of other subfamilies. Expression pattern analysis of OLF genes in humans and rats showed that human OLF genes tended to be highly expressed in the brain, while rat OLF genes were inclined to be expressed in the ovary and brain. We used the SIFT and PolyPhen servers in dbNSFP to distinguish deleterious mutations from neutral mutations for each member of the OLF gene family. The results showed that OLFML2B contains the most destructive SNPs (up to 61), while none of the mutations in OLFM2, OLFM4 and LPHN2 were predicted to be harmful. Taken together, these findings may not only enhance understanding of the phylogenetic relationships of the OLF family but also aid future studies on OLF protein regulation of nervous system development and immune function.
Collapse
Affiliation(s)
- Qin Li
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China.,Fudan University Shanghai Cancer Center, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ake Liu
- Faculty of Biological Science and Technology, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Xun Gu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Zhixi Su
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China. .,Singlera Genomics Inc, Shanghai, China.
| |
Collapse
|
5
|
Hochane M, van den Berg PR, Fan X, Bérenger-Currias N, Adegeest E, Bialecka M, Nieveen M, Menschaart M, Chuva de Sousa Lopes SM, Semrau S. Single-cell transcriptomics reveals gene expression dynamics of human fetal kidney development. PLoS Biol 2019; 17:e3000152. [PMID: 30789893 PMCID: PMC6400406 DOI: 10.1371/journal.pbio.3000152] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/05/2019] [Indexed: 01/30/2023] Open
Abstract
The current understanding of mammalian kidney development is largely based on mouse models. Recent landmark studies revealed pervasive differences in renal embryogenesis between mouse and human. The scarcity of detailed gene expression data in humans therefore hampers a thorough understanding of human kidney development and the possible developmental origin of kidney diseases. In this paper, we present a single-cell transcriptomics study of the human fetal kidney. We identified 22 cell types and a host of marker genes. Comparison of samples from different developmental ages revealed continuous gene expression changes in podocytes. To demonstrate the usefulness of our data set, we explored the heterogeneity of the nephrogenic niche, localized podocyte precursors, and confirmed disease-associated marker genes. With close to 18,000 renal cells from five different developmental ages, this study provides a rich resource for the elucidation of human kidney development, easily accessible through an interactive web application.
Collapse
Affiliation(s)
- Mazène Hochane
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | | | - Xueying Fan
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Esmée Adegeest
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Monika Bialecka
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike Nieveen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Stefan Semrau
- Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| |
Collapse
|
6
|
Murakami K, Kikugawa S, Kobayashi Y, Uehara S, Suzuki T, Kato H, Udagawa N, Nakamura Y. Olfactomedin-like protein OLFML1 inhibits Hippo signaling and mineralization in osteoblasts. Biochem Biophys Res Commun 2018; 505:419-425. [PMID: 30266405 DOI: 10.1016/j.bbrc.2018.09.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 01/06/2023]
Abstract
Congenital scoliosis is a lateral curvature of the spine that is due to the presence of vertebral anomalies. Although genetic and environmental factors are involved in the pathogenesis of congenital scoliosis, the specific cause of only a small number of individuals has been identified to date. We identified a de novo missense mutation in the olfactomedin-like 1 (OLFML1) gene by whole-exome sequencing of a patient with congenital scoliosis. Then, we carried out further functional investigation in mice. An assessment of the tissue distribution of Olfml1 revealed it to be prominently expressed in developing skeletal tissues, specifically osteoblasts. Short hairpin RNA-mediated knockdown of Olfml1 in osteoblasts induced the translocation of Yes-associated protein (YAP) transcriptional coactivator from the cytoplasm to the nucleus, which accelerated the Hippo signaling pathway to promote osteoblast mineralization. In contrast, experimentally induced gain of function of Olfml1 retained YAP in the cytoplasm. There appears to exist a novel cell-autonomous mechanism by which osteoblasts avoid excess mineralization through Olfml1. Our results also indicate that mutation of OLFML1 leads to impaired osteoblast differentiation and abnormal development of bone tissue.
Collapse
Affiliation(s)
- Kohei Murakami
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan; Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Shingo Kikugawa
- DNA Chip Research Inc., 1-15-1 Kaigan, Minato-ku, Tokyo, 105-0022, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan
| | - Takako Suzuki
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Hiroyuki Kato
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan
| | - Yukio Nakamura
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| |
Collapse
|
7
|
Abstract
Olfactomedin 4 (OLFM4) is an olfactomedin domain-containing glycoprotein. Multiple signaling pathways and factors, including NF-κB, Wnt, Notch, PU.1, retinoic acids, estrogen receptor, and miR-486, regulate its expression. OLFM4 interacts with several other proteins, such as gene associated with retinoic-interferon-induced mortality 19 (GRIM-19), cadherins, lectins, nucleotide oligomerization domain-1 (NOD1) and nucleotide oligomerization domain-2 (NOD2), and cathepsins C and D, known to regulate important cellular functions. Recent investigations using Olfm4-deficient mouse models have provided important clues about its in vivo biological functions. Olfm4 inhibited Helicobacter pylori-induced NF-κB pathway activity and inflammation and facilitated H. pylori colonization in the mouse stomach. Olfm4-deficient mice exhibited enhanced immunity against Escherichia coli and Staphylococcus aureus infection. Olfm4 deletion in a chronic granulomatous disease mouse model rescued them from S. aureus infection. Olfm4 deletion in mice treated with azoxymethane/dextran sodium sulfate led to robust intestinal inflammation and intestinal crypt hyperplasia. Olfm4 deletion in Apc (Min/+) mice promoted intestinal polyp formation as well as adenocarcinoma development in the distal colon. Further, Olfm4-deficient mice spontaneously developed prostatic epithelial lesions as they age. OLFM4 expression is correlated with cancer differentiation, stage, metastasis, and prognosis in a variety of cancers, suggesting its potential clinical value as an early-stage cancer marker or a therapeutic target. Collectively, these data suggest that OLFM4 plays important roles in innate immunity against bacterial infection, gastrointestinal inflammation, and cancer. In this review, we have summarized OLFM4's initial characterization, expression, regulation, protein interactions, and biological functions.
Collapse
|
8
|
Pérez-Ibave DC, González-Alvarez R, de La Luz Martinez-Fierro M, Ruiz-Ayma G, Luna-Muñoz M, Martínez-De-Villarreal LE, De Lourdes Garza-Rodríguez M, Reséndez-Pérez D, Mohamed-Noriega J, Garza-Guajardo R, Bautista-De-Lucío VM, Mohamed-Noriega K, Barboza-Quintana O, Arámburo-De-La-Hoz C, Barrera-Saldaña HA, Rodríguez-Sánchez IP. Olfactomedin-like 2 A and B (OLFML2A and OLFML2B) expression profile in primates (human and baboon). Biol Res 2016; 49:44. [PMID: 27821182 PMCID: PMC5100274 DOI: 10.1186/s40659-016-0101-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/24/2016] [Indexed: 12/12/2022] Open
Abstract
Background The olfactomedin-like domain (OLFML) is present in at least four families of proteins, including OLFML2A and OLFML2B, which are expressed in adult rat retina cells. However, no expression of their orthologous has ever been reported in human and baboon. Objective The aim of this study was to investigate the expression of OLFML2A and OLFML2B in ocular tissues of baboons (Papio hamadryas) and humans, as a key to elucidate OLFML function in eye physiology. Methods OLFML2A and OLFML2B cDNA detection in ocular tissues of these species was performed by RT-PCR. The amplicons were cloned and sequenced, phylogenetically analyzed and their proteins products were confirmed by immunofluorescence assays. Results OLFML2A and OLFML2B transcripts were found in human cornea, lens and retina and in baboon cornea, lens, iris and retina. The baboon OLFML2A and OLFML2B ORF sequences have 96% similarity with their human’s orthologous. OLFML2A and OLFML2B evolution fits the hypothesis of purifying selection. Phylogenetic analysis shows clear orthology in OLFML2A genes, while OLFML2B orthology is not clear. Conclusions Expression of OLFML2A and OLFML2B in human and baboon ocular tissues, including their high similarity, make the baboon a powerful model to deduce the physiological and/or metabolic function of these proteins in the eye.
Collapse
Affiliation(s)
- Diana Cristina Pérez-Ibave
- Servicio de Oncología, Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Monterrey, Nuevo León, Mexico
| | | | - Margarita de La Luz Martinez-Fierro
- Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas, Mexico
| | - Gabriel Ruiz-Ayma
- Departamento de Ecología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451, San Nicolás de los Garza, Nuevo León, Mexico
| | - Maricela Luna-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico
| | - Laura Elia Martínez-De-Villarreal
- Departamento de Genética, Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", 64460, Monterrey, Nuevo León, Mexico
| | - María De Lourdes Garza-Rodríguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Diana Reséndez-Pérez
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Jibran Mohamed-Noriega
- Departamento de Oftalmología, Universidad Autónoma de Nuevo León Hospital Universitario "Dr. José Eleuterio González", Monterrey, Nuevo León, Mexico
| | - Raquel Garza-Guajardo
- Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Monterrey, Nuevo León, Mexico
| | - Víctor Manuel Bautista-De-Lucío
- Departamento de Bioquímica y Medicina Molecular, Instituto de Oftalmología. Fundación de Asistencia Privada Conde de Valenciana IAP, Mexico, Mexico
| | - Karim Mohamed-Noriega
- Departamento de Oftalmología, Universidad Autónoma de Nuevo León Hospital Universitario "Dr. José Eleuterio González", Monterrey, Nuevo León, Mexico
| | - Oralia Barboza-Quintana
- Servicio de Anatomía Patológica y Citopatología, Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Monterrey, Nuevo León, Mexico
| | - Carlos Arámburo-De-La-Hoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico
| | - Hugo Alberto Barrera-Saldaña
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - Irám Pablo Rodríguez-Sánchez
- Departamento de Genética, Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", 64460, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
9
|
Mutated olfactomedin 1 in the interphotoreceptor matrix of the mouse retina causes functional deficits and vulnerability to light damage. Histochem Cell Biol 2016; 147:453-469. [PMID: 27787612 DOI: 10.1007/s00418-016-1510-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2016] [Indexed: 12/24/2022]
Abstract
Olfactomedin 1 (OLFM1) is a secreted glycoprotein and member of the olfactomedin protein family, which is preferentially expressed in various areas throughout the central nervous system. To learn about the functional properties of OLFM1 in the eye, we investigated its localization in the mouse and pig eye. In addition, we analyzed the ocular phenotype of Olfm1 mutant mice in which 52 amino acids were deleted in the central part (M2 region) of OLFM1. OLFM1 was detected in cornea, sclera, retina, and optic nerve of both wild-type and Olfm1 mutant littermates. By immunohistochemistry and double labeling with the lectin peanut agglutinin, OLFM1 was found in the interphotoreceptor matrix (IPM) of mouse and pig retina where it was directly localized to the inner segments of photoreceptors. Western blotting confirmed the presence of the OLFM1 isoforms pancortin 1 (BMY) and pancortin 2 (BMZ) in the IPM. The retinal phenotype of Olfm1 mutant mice did not obviously differ from that of wild-type littermates. In addition, outer nuclear layer (ONL) and total retinal thickness were not different, and the same was true for the area of the optic nerve in cross sections. Functional changes were observed though by electroretinography, which showed significantly lower a- and b-wave amplitudes in Olfm1 mutant mice when compared to age-matched wild-type mice. When light damage experiments were performed as an experimental paradigm of photoreceptor apoptosis, significantly more TUNEL-positive cells were observed in Olfm1 mutant mice 30 h after light exposure. One week after light exposure, the ONL was significantly thinner in Olfm1 mutant mice than in wild-type littermates indicating increased photoreceptor loss. No differences were observed when rhodopsin turnover or ERK1/2 signaling was investigated. We conclude that OLFM1 is a newly identified IPM molecule that serves an important role for photoreceptor homeostasis, which is significantly compromised in the eyes of Olfm1 mutant mice.
Collapse
|
10
|
Pronker MF, Bos TGAA, Sharp TH, Thies-Weesie DME, Janssen BJC. Olfactomedin-1 Has a V-shaped Disulfide-linked Tetrameric Structure. J Biol Chem 2015; 290:15092-101. [PMID: 25903135 PMCID: PMC4463452 DOI: 10.1074/jbc.m115.653485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Indexed: 11/06/2022] Open
Abstract
Olfactomedin-1 (Olfm1; also known as noelin and pancortin) is a member of the olfactomedin domain-containing superfamily and a highly expressed neuronal glycoprotein important for nervous system development. It binds a number of secreted proteins and cell surface-bound receptors to induce cell signaling processes. Using a combined approach of x-ray crystallography, solution scattering, analytical ultracentrifugation, and electron microscopy we determined that full-length Olfm1 forms disulfide-linked tetramers with a distinctive V-shaped architecture. The base of the “V” is formed by two disulfide-linked dimeric N-terminal domains. Each of the two V legs consists of a parallel dimeric disulfide-linked coiled coil with a C-terminal β-propeller dimer at the tips. This agrees with our crystal structure of a C-terminal coiled-coil segment and β-propeller combination (Olfm1coil-Olf) that reveals a disulfide-linked dimeric arrangement with the β-propeller top faces in an outward exposed orientation. Similar to its family member myocilin, Olfm1 is stabilized by calcium. The dimer-of-dimers architecture suggests a role for Olfm1 in clustering receptors to regulate signaling and sheds light on the conformation of several other olfactomedin domain family members.
Collapse
Affiliation(s)
- Matti F Pronker
- From the Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and
| | - Trusanne G A A Bos
- From the Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and
| | - Thomas H Sharp
- Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Dominique M E Thies-Weesie
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute of Nanomaterials Science, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands and
| | - Bert J C Janssen
- From the Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research and
| |
Collapse
|
11
|
Francis C, Natarajan S, Lee MT, Khaladkar M, Buckley PT, Sul JY, Eberwine J, Kim J. Divergence of RNA localization between rat and mouse neurons reveals the potential for rapid brain evolution. BMC Genomics 2014; 15:883. [PMID: 25301173 PMCID: PMC4203888 DOI: 10.1186/1471-2164-15-883] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 09/23/2014] [Indexed: 12/12/2022] Open
Abstract
Background Neurons display a highly polarized architecture. Their ability to modify their features under intracellular and extracellular stimuli, known as synaptic plasticity, is a key component of the neurochemical basis of learning and memory. A key feature of synaptic plasticity involves the delivery of mRNAs to distinct sub-cellular domains where they are locally translated. Regulatory coordination of these spatio-temporal events is critical for synaptogenesis and synaptic plasticity as defects in these processes can lead to neurological diseases. In this work, using microdissected dendrites from primary cultures of hippocampal neurons of two mouse strains (C57BL/6 and Balb/c) and one rat strain (Sprague–Dawley), we investigate via microarrays, subcellular localization of mRNAs in dendrites of neurons to assay the evolutionary differences in subcellular dendritic transcripts localization. Results Our microarray analysis highlighted significantly greater evolutionary diversification of RNA localization in the dendritic transcriptomes (81% gene identity difference among the top 5% highly expressed genes) compared to the transcriptomes of 11 different central nervous system (CNS) and non-CNS tissues (average of 44% gene identity difference among the top 5% highly expressed genes). Differentially localized genes include many genes involved in CNS function. Conclusions Species differences in sub-cellular localization may reflect non-functional neutral drift. However, the functional categories of mRNA showing differential localization suggest that at least part of the divergence may reflect activity-dependent functional differences of neurons, mediated by species-specific RNA subcellular localization mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-883) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - James Eberwine
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
12
|
Anholt RRH. Olfactomedin proteins: central players in development and disease. Front Cell Dev Biol 2014; 2:6. [PMID: 25364714 PMCID: PMC4206993 DOI: 10.3389/fcell.2014.00006] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/07/2014] [Indexed: 12/14/2022] Open
Abstract
Olfactomedin proteins are characterized by a conserved domain of \texorpdfstring~\textasciitilde250 amino acids corresponding to the olfactomedin archetype first discovered in olfactory neuroepithelium. They arose early in evolution and occur throughout the animal kingdom. In mice and humans olfactomedin proteins comprise a diverse array of glycoproteins, many of which are critical for early development and functional organization of the nervous system as well as hematopoiesis. Olfactomedin domains appear to facilitate protein-protein interactions, intercellular interactions, and cell adhesion. Several members of the family have been implicated in various common diseases, notably myocilin in glaucoma and OLFM4 in cancer. This review highlights this important, hitherto understudied family of proteins.
Collapse
Affiliation(s)
- Robert R. H. Anholt
- Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State UniversityRaleigh, NC, USA
| |
Collapse
|
13
|
Rodríguez-Sánchez IP, Garza-Rodríguez ML, Mohamed-Noriega K, Voruganti VS, Tejero ME, Delgado-Enciso I, Pérez-Ibave DC, Schlabritz-Loutsevitch NE, Mohamed-Noriega J, Martinez-Fierro ML, Reséndez-Pérez D, Cole SA, Cavazos-Adame H, Comuzzie AG, Mohamed-Hamsho J, Barrera-Saldaña HA. Olfactomedin-like 3 (OLFML3) gene expression in baboon and human ocular tissues: cornea, lens, uvea, and retina. J Med Primatol 2013; 42:105-11. [PMID: 23398349 DOI: 10.1111/jmp.12037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Olfactomedin-like is a family of polyfunctional polymeric glycoproteins. This family has at least four members. One member of this family is OLFML3, which is preferentially expressed in placenta but is also detected in other adult tissues including the liver and heart. However, its orthologous rat gene is expressed in the iris, sclera, trabecular meshwork, retina, and optic nerve. METHODS OLFML3 messenger amplification was performed by RT-PCR from human and baboon ocular tissues. The products were cloned and sequenced. RESULTS We report OLFML3 expression in human and baboon eye. The full coding DNA sequence has 1221 bp, from which an open reading frame of 406 amino acid was obtained. The baboon OLFML3 gene nucleotidic sequence has 98% and amino acidic 99% similarity with humans. CONCLUSIONS OLFML3 gene expression in human and baboon ocular tissues and its high similarity make the baboon a powerful model to deduce the physiological and/or metabolic function of this protein in the eye.
Collapse
Affiliation(s)
- I P Rodríguez-Sánchez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shin SS, Bales JW, Yan HQ, Kline AE, Wagner AK, Lyons-Weiler J, Dixon CE. The effect of environmental enrichment on substantia nigra gene expression after traumatic brain injury in rats. J Neurotrauma 2013; 30:259-70. [PMID: 23094804 DOI: 10.1089/neu.2012.2462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Experimental investigations into the effects of traumatic brain injury (TBI) have demonstrated significant alterations in dopaminergic systems. Dopaminergic fibers originating within the substantia nigra and ventral tegmental area (VTA) are important for reward learning, addiction, movement, and behavior. However, little is known about the effect of TBI on substantia nigra and VTA function. Environmental enrichment (EE) has been shown to improve functional outcome after TBI, and a number of studies suggest that it may exert some benefits via dopaminergic signaling. To better understand the role of dopamine in chronic TBI pathophysiology and the effect of EE, we examined the mRNA expression profile within the substantia nigra and VTA at 4 weeks post-injury. Specifically, three comparisons were made: 1) TBI versus sham, 2) sham+EE versus sham+standard (STD) housing, and 3) TBI+EE versus TBI+STD. There were differential expressions of 25, 4, and 40 genes in these comparisons, respectively. Chronic alterations in genes post-injury within the substantia nigra and VTA included genes important for cellular membrane homeostasis and transcription. EE-induced gene alterations after TBI included genes important for signal transduction, in particular calcium signaling pathways, membrane homeostasis, and metabolism. Elucidation of these alterations in gene expression within the substantia nigra and VTA provides new insights into chronic changes in dopamine signaling post-TBI, and the potential role of EE in TBI rehabilitation.
Collapse
Affiliation(s)
- Samuel S Shin
- Brain Trauma Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Rice HC, Townsend M, Bai J, Suth S, Cavanaugh W, Selkoe DJ, Young-Pearse TL. Pancortins interact with amyloid precursor protein and modulate cortical cell migration. Development 2012; 139:3986-96. [PMID: 22992957 DOI: 10.1242/dev.082909] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuronal precursor cell migration in the developing mammalian brain is a complex process requiring the coordinated interaction of numerous proteins. We have recently shown that amyloid precursor protein (APP) plays a role in migration into the cortical plate through its interaction with two cytosolic signaling proteins, disabled 1 (DAB1) and disrupted in schizophrenia 1 (DISC1). In order to identify extracellular factors that may signal through APP to regulate migration, we performed an unbiased mass spectrometry-based screen for factors that bind to the extracellular domain of APP in the rodent brain. Through this screen, we identified an interaction between APP and pancortins, proteins expressed throughout the developing and mature cerebral cortex. Via co-immunoprecipitation, we show that APP interacts with all four of the mammalian pancortin isoforms (AMY, AMZ, BMY, BMZ). We demonstrate that the BMZ and BMY isoforms of pancortin can specifically reduce β-secretase- but not α-secretase-mediated cleavage of endogenous APP in cell culture, suggesting a biochemical consequence of the association between pancortins and APP. Using in utero electroporation to overexpress and knock down specific pancortin isoforms, we reveal a novel role for pancortins in migration into the cortical plate. Interestingly, we observe opposing roles for alternate pancortin isoforms, with AMY overexpression and BMZ knock down both preventing proper migration of neuronal precursor cells. Finally, we show that BMZ can partially rescue a loss of APP expression and that APP can rescue effects of AMY overexpression, suggesting that pancortins act in conjunction with APP to regulate entry into the cortical plate. Taken together, these results suggest a biochemical and functional interaction between APP and pancortins, and reveal a previously unidentified role for pancortins in mammalian cortical development.
Collapse
Affiliation(s)
- Heather C Rice
- Center for Neurologic Diseases, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Nakaya N, Sultana A, Lee HS, Tomarev SI. Olfactomedin 1 interacts with the Nogo A receptor complex to regulate axon growth. J Biol Chem 2012; 287:37171-84. [PMID: 22923615 DOI: 10.1074/jbc.m112.389916] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Olfm1, a secreted highly conserved glycoprotein, is detected in peripheral and central nervous tissues and participates in neural progenitor maintenance, cell death in brain, and optic nerve arborization. In this study, we identified Olfm1 as a molecule promoting axon growth through interaction with the Nogo A receptor (NgR1) complex. Olfm1 is coexpressed with NgR1 in dorsal root ganglia and retinal ganglion cells in embryonic and postnatal mice. Olfm1 specifically binds to NgR1, as judged by alkaline phosphatase assay and coimmunoprecipitation. The addition of Olfm1 inhibited the growth cone collapse of dorsal root ganglia neurons induced by myelin-associated inhibitors, indicating that Olfm1 attenuates the NgR1 receptor functions. Olfm1 caused the inhibition of NgR1 signaling by interfering with interaction between NgR1 and its coreceptors p75NTR or LINGO-1. In zebrafish, inhibition of optic nerve extension by olfm1 morpholino oligonucleotides was partially rescued by dominant negative ngr1 or lingo-1. These data introduce Olfm1 as a novel NgR1 ligand that may modulate the functions of the NgR1 complex in axonal growth.
Collapse
Affiliation(s)
- Naoki Nakaya
- Section of Molecular Mechanisms of Glaucoma, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-0606, USA
| | | | | | | |
Collapse
|
17
|
Zhao S, Zhang J, Hou X, Zan L, Wang N, Tang Z, Li K. OLFML3 expression is decreased during prenatal muscle development and regulated by microRNA-155 in pigs. Int J Biol Sci 2012; 8:459-69. [PMID: 22419891 PMCID: PMC3303172 DOI: 10.7150/ijbs.3821] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 12/30/2011] [Indexed: 11/25/2022] Open
Abstract
The Olfactomedin-like 3 (OLFML3) gene has matrix-related function involved in embryonic development. MicroRNA-155 (miR-155), 21- to 23-nucleotides (nt) noncoding RNA, regulated myogenesis by target mRNA. Our LongSAGE analysis suggested that OLFML3 gene was differently expressed during muscle development in pig. In this study, we cloned the porcine OLFML3 gene and detected its tissues distribution in adult Tongcheng pigs and dynamical expression in developmental skeletal muscle (12 prenatal and 10 postnatal stages) from Landrace (lean-type) and Tongcheng (obese-type) pigs. Subsequently, we analyzed the interaction between OLFML3 and miR-155. The OLFML3 was abundantly expressed in liver and pancreas, moderately in lung, small intestine and placenta, and weakly in other tissues and postnatal muscle. There were different dynamical expression patterns between Landrace and Tongcheng pigs during prenatal skeletal muscle development. The OLFML3 was down-regulated (33-50 days post coitus, dpc), subsequently up-regulated (50-70 dpc), and then down-regulated (70-100 dpc) in Landrace pigs, while in Tongcheng pigs, it was down-regulated (33-50 dpc), subsequently up-regulated (50-55 dpc) and then down-regulated (55-100 dpc). There was higher expression in Tongcheng than Landrace in prenatal muscle from 33 to 60 dpc, and opposite situation from 65 to 100 dpc. Dual luciferase assay and real time PCR documented that OLFML3 expression was regulated by miR-155 at mRNA level. Our research indicated that OLFML3 gene may affect prenatal skeletal muscle development and was regulated by miR-155. These finding will help understanding biological function and expression regulation of OLFML3 gene in mammal animals.
Collapse
Affiliation(s)
- Shuanping Zhao
- State Key Laboratory for Animal Nutrition, Beijing, P R China
| | | | | | | | | | | | | |
Collapse
|
18
|
Luo Z, Zhang Q, Zhao Z, Li B, Chen J, Wang Y. OLFM4 is associated with lymph node metastasis and poor prognosis in patients with gastric cancer. J Cancer Res Clin Oncol 2011; 137:1713-20. [PMID: 21904905 DOI: 10.1007/s00432-011-1042-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 08/12/2011] [Indexed: 02/06/2023]
Abstract
PURPOSE The present study investigated the clinical significance of the relationship between olfactomedin 4 (OLFM4) expression and the clinicopathological features of patients with gastric cancer. METHODS Tumor tissue and adjacent normal tissue, lymph nodes, and peritoneal metastases were analyzed by the Affymetrix GeneChip(®) HG-U133A2.0 array. The expression of OLFM4 was detected by real-time quantitative RT-PCR in gastric tumor tissue and adjacent normal tissue. OLFM4 expression was analyzed by immunohistochemistry in 436 clinicopathologically characterized gastric cancer cases and in corresponding distant metastases from 61 patients. RESULTS A total of 434 genes and 169 expressed sequence tags were upregulated, including OLFM4. The expression of OLFM4 mRNA or protein differed significantly among gastric tumor tissue, matched normal gastric mucosa, and lymph node metastases. Further multivariate analysis suggested that lymph node metastases and distant metastases, TNM stage, and expression of OLFM4 were independent prognostic indicators for gastric cancer. CONCLUSION Gene expression profiles were useful for simultaneously analyzing the expression levels of thousands of genes. Reduced expression of OLFM4 in gastric cancer is associated significantly with lymph node and distant metastases and with poor prognosis. OLFM4 may prove to be an important molecular marker for predicting the carcinogenesis, development, progression, and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Zuyan Luo
- Department of Radiology, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang Province, China
| | | | | | | | | | | |
Collapse
|
19
|
Sultana A, Nakaya N, Senatorov VV, Tomarev SI. Olfactomedin 2: expression in the eye and interaction with other olfactomedin domain-containing proteins. Invest Ophthalmol Vis Sci 2011; 52:2584-92. [PMID: 21228389 DOI: 10.1167/iovs.10-6356] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Olfactomedin 2 (OLFM2) belongs to the family of olfactomedin domain-containing proteins. Genetic data suggest its association with glaucoma in Japanese patients. However, its functions are still elusive. In this study, the properties of mammalian OLFM2 were investigated. METHODS Expression of the rat and mouse Olfm2 gene was studied by using real-time PCR and in situ hybridization. Substitutions were introduced into OLFM2 by mutagenesis in vitro. Intracellular localization of OLFM2 was studied by confocal microscopy after transient transfection in HEK293 cells. Interaction of OLFM2 with olfactomedin 1 (Olfm1), olfactomedin 3 (Olfm3), myocilin, and gliomedin was studied by using co-immunoprecipitation. RESULTS Two major human OLFM2 mRNAs encode secreted proteins with a length of 454 and 478 amino acids. OLFM2 is more closely related to OLFM1 and -3 than to any other family members. Olfm2 showed the most dynamic expression pattern compared with Olfm1 and -3 during mouse eye development and was expressed preferentially in the developing retinal ganglion cell layer. Among three OLFM2 substitutions tested (T86M, R144Q, and L420S), only L420S completely blocked secretion of the protein. OLFM2 interacted with Olfm1 and -3, but not with myocilin and gliomedin. Co-transfection of the L420S mutant with wild-type Olfm1 and -3 significantly inhibited secretion of Olfm1 and -3. CONCLUSIONS Highly conserved OLFM2 protein may play an important role in the course of retinal and eye development. Severe mutations in one of the closely related olfactomedin domain-containing proteins (Olfm1-3) may block the secretion and probably the activity of all three family members, leading to more pronounced diseases of the retina than the knockout of individual genes.
Collapse
Affiliation(s)
- Afia Sultana
- Section of Molecular Mechanisms of Glaucoma, Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
20
|
Martinez AF, Muenke M, Arcos-Burgos M. From the black widow spider to human behavior: Latrophilins, a relatively unknown class of G protein-coupled receptors, are implicated in psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:1-10. [PMID: 21184579 PMCID: PMC4101183 DOI: 10.1002/ajmg.b.31137] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 09/28/2010] [Indexed: 12/24/2022]
Abstract
The findings of a recent study associate LPHN3, a member of the latrophilin family, with an increased risk of developing attention deficit/hyperactivity disorder (ADHD), the most common psychiatric disorder in childhood and adolescence. Latrophilins comprise a new family of G protein-coupled receptors of unknown native physiological function that mediate the neurotoxic effects of α-latrotoxin, a potent toxin found in black widow spider venom. This receptor-toxin interaction has helped to elucidate the mechanistic aspects of neurotransmitter and hormone release in vertebrates. Such unprecedented discovery points to a new direction in the assessment of ADHD and suggest that further study of this receptor family may provide novel insights into the etiology and treatment of ADHD and other related psychiatric conditions.
Collapse
Affiliation(s)
| | | | - Mauricio Arcos-Burgos
- Correspondence to: Dr. Mauricio Arcos-Burgos, M.D., Ph.D., National Human Genome Research Institute, National Institutes of Health, 35 Convent Drive, MSC 3717, Building 35, Room 1B209, Bethesda, MD 20892.
| |
Collapse
|
21
|
Bohr DC, Koch M, Kritzenberger M, Fuchshofer R, Tamm ER. Increased expression of olfactomedin-1 and myocilin in podocytes during puromycin aminonucleoside nephrosis. Nephrol Dial Transplant 2010; 26:83-92. [PMID: 20595200 DOI: 10.1093/ndt/gfq366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The olfactomedin domain proteins Olfm-1 and myocilin are expressed in podocytes. Myocilin stimulates the formation of focal contacts and actin stress fibres in podocytes and other cell types, effects that are mediated through the Wnt signalling pathway. Here, we tested if the expression of both proteins is modified during puromycin aminonucleoside (PAN) nephrosis, which leads to structural changes in the actin cytoskeleton of podocytes. METHODS Rats were treated with PAN, and the effectiveness of treatment was analysed by electron microscopy of podocytes and protein detection in the urine. The expression of Olfm-1 and myocilin was studied by immunohistochemistry, western blot analysis of glomerular proteins and real-time RT-PCR of glomerular proteins. In parallel experiments, the expression of Olfm-1 was studied in cultured podocytes treated with dexamethasone, TGF-β, TNF-α and PAN. RESULTS Between Days 5 and 22 after treatment, the amounts of the BMZ and BMY splice variants of Olfm-1 and their mRNA were markedly elevated in proteins and mRNA from isolated glomeruli. Immunohistochemistry showed that the expression of Olfm-1 was confined to podocytes. Essentially, comparable results were obtained for myocilin. The BMZ variant of Olfm-1 appeared to be secreted from podocytes and was found in high amounts in urine of treated animals. Treatment of cultured podocytes with dexamethasone and PAN caused an increase in Olfm-1 expression, while treatment with recombinant Olfm-1 increased the formation of actin stress fibres. CONCLUSIONS Olfm-1 and myocilin are markedly induced in podocytes during PAN nephrosis and appear to be involved in the processes that govern the reorganization of the actin cytoskeleton during podocyte repair.
Collapse
Affiliation(s)
- Daniela C Bohr
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Aroca-Aguilar JD, Martínez-Redondo F, Sánchez-Sánchez F, Coca-Prados M, Escribano J. Functional role of proteolytic processing of recombinant myocilin in self-aggregation. Invest Ophthalmol Vis Sci 2009; 51:72-8. [PMID: 19696176 DOI: 10.1167/iovs.09-4118] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Recombinant myocilin expressed in cells in culture is endoproteolytically cleaved in the endoplasmic reticulum by calpain II, releasing an N-terminal and a C-terminal fragment. This proteolytic processing has been speculated to regulate the molecular interactions of myocilin. The main purpose of this study was to analyze the effect of the proteolytic cleavage on myocilin aggregation. METHODS cDNAs encoding human myocilin and the N- and C-terminal fragments were transiently expressed in HEK-293T cells. Covalent interactions of recombinant myocilin were analyzed by SDS-PAGE and Western immunoblot analysis in different dissociating conditions. Noncovalent interactions were studied by solid-phase binding assays, performed with Ni-chelating HPLC-purified recombinant proteins, and by Far-Western blot analysis. RESULTS Western blot analysis of recombinant myocilin aggregates under either increasing ionic strength or increasing concentration of reducing agent indicated that ionic interactions do not contribute to the stability of the molecular complexes linked by disulfide bridges. Disulfide myocilin homoaggregates decreased as the proteolytic processing increased. Solid-phase binding assays showed the existence of high-affinity (K(d) = 0.068 microM) noncovalent myocilin-myocilin interactions and that processed fragments bound to the full-length protein with significantly reduced affinity. Far-Western blot analysis confirmed noncovalent interactions between recombinant myocilin disulfide aggregates. CONCLUSIONS The proteolytic processing of recombinant myocilin decreases myocilin homoaggregates. These data provide the first evidence of a functional role for this processing in myocilin aggregation and suggest that disulfide complexes of myocilin could organize into a dynamic extracellular network sustained by noncovalent N-terminal interactions.
Collapse
Affiliation(s)
- José-Daniel Aroca-Aguilar
- Laboratorio de Genética Molecular Humana, Facultad de Medicina/Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Zebrafish olfactomedin 1 regulates retinal axon elongation in vivo and is a modulator of Wnt signaling pathway. J Neurosci 2008; 28:7900-10. [PMID: 18667622 DOI: 10.1523/jneurosci.0617-08.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Olfactomedin 1 (Olfm1) is a secreted glycoprotein belonging to a family of olfactomedin domain-containing proteins. It is involved in the regulation of neural crest production in chicken and promotes neuronal differentiation in Xenopus. Here, we investigate the functions of Olfm1 in zebrafish eye development. Overexpression of full-length Olfm1, and especially its BMY form lacking the olfactomedin domain, increased the thickness of the optic nerve and produced a more extended projection field in the optic tectum compared with control embryos. In contrast, injection of olfm1-morpholino oligonucleotide (Olfm1-MO) reduced the eye size, inhibited optic nerve extension, and increased the number of apoptotic cells in the retinal ganglion cell and inner nuclear layers. Overexpression of full-length Olfm1 increased the lateral separation of the expression domains of eye-field markers, rx3 and six3. The Olfm1-MO had the opposite effect. These data suggest that zebrafish Olfm1 may play roles in the early eye determination, differentiation, optic nerve extension, and branching of the retinal ganglion cell axon terminals, with the N-terminal region of Olfm1 being critical for these effects. Injection of RNA encoding WIF-1, a secreted inhibitor of Wnt signaling, caused changes in the expression pattern of rx3 similar to those observed after Olfm1-MO injection. Simultaneous overexpression of WIF-1 and Olfm1 abolished the WIF-1 effect. Physical interaction of WIF-1 and Olfm1 was demonstrated by coimmunoprecipitation experiments. We concluded that Olfm1 serves as a modulator of Wnt signaling.
Collapse
|
26
|
Wan B, Zhou YB, Zhang X, Zhu H, Huo K, Han ZG. hOLFML1, a novel secreted glycoprotein, enhances the proliferation of human cancer cell lines in vitro. FEBS Lett 2008; 582:3185-92. [DOI: 10.1016/j.febslet.2008.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 08/07/2008] [Accepted: 08/07/2008] [Indexed: 01/21/2023]
|
27
|
Liu W, Liu Y, Zhu J, Wright E, Ding I, Rodgers GP. Reduced hGC-1 protein expression is associated with malignant progression of colon carcinoma. Clin Cancer Res 2008; 14:1041-9. [PMID: 18281536 DOI: 10.1158/1078-0432.ccr-07-4125] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE hGC-1 (human granulocyte colony-stimulating factor-stimulated clone 1) is a gastrointestinal protein that is a member of the olfactomedin glycoprotein family. Its biological function remains poorly understood. Aberrant expression of hGC-1 in some human carcinomas has been recently reported. The purpose of this study was to examine hGC-1 expression in colon carcinoma and explore the relationship between hGC-1 expression and the clinicopathologic features of patients with colon cancer. EXPERIMENTAL DESIGN The expression of hGC-1 in colon adenocarcinoma tissues was examined by dot-blot analysis, in situ hybridization, and immunohistochemistry. The association of hGC-1 expression pattern with patient differentiation grade, tumor stage, metastasis, and survival were examined. To further investigate the involvement of hGC-1 in colon cancer progression, human colon carcinoma (HT-29) cells overexpressing hGC-1 were established and cell proliferation, adhesion, and migration were studied. RESULTS Compared with normal colon mucosa, the up-regulation of hGC-1 was more frequently detected in more differentiated colon cancers, whereas down-regulation or no expression was associated with poorly differentiated colon cancers. Interestingly, hGC-1 down-regulation was also found in late tumor-node-metastasis stage, metastasis, and in patients with shorter survival. The morphology and cortical actin distribution of HT-29 cells were altered by hGC-1 overexpression. However, this did not change cell proliferation, but decreased cell adhesion and migration. CONCLUSION Our findings indicate that hGC-1 is involved in colon cancer adhesion and metastasis, and that hGC-1 may be a useful marker for tumor differentiation and progression of human colon carcinoma.
Collapse
Affiliation(s)
- Wenli Liu
- Molecular and Clinical Hematology Branch, Digestive Disease Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
28
|
Lee TW, Coates LC, Birch NP. Neuroserpin regulates N-cadherin-mediated cell adhesion independently of its activity as an inhibitor of tissue plasminogen activator. J Neurosci Res 2008; 86:1243-53. [PMID: 18092357 DOI: 10.1002/jnr.21592] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuroserpin is an inhibitor of tissue plasminogen activator (tPA) that is expressed in developing and adult nervous systems. Spatial and temporal analysis of neuroserpin expression suggests that it is involved in regulating the proteolytic balance associated with axonogenesis and synaptogenesis during development and synaptic plasticity in the adult. Here we demonstrate that altered expression of neuroserpin modulates the degree of cell-cell adhesion in pheochromocytoma PC12 cells independently of its role as an inhibitor of tPA. Levels of the homophilic cell-cell adhesion molecule N-cadherin are increased in neuroserpin-overexpressing cell lines. N-cadherin immunoreactivity was detected in a Triton X-100-insoluble fraction and localized to regions of cell contact, consistent with a role in enhancing cell surface adhesion. PC12 cell lines expressing neuroserpin mutants that lack tPA inhibitory activity also showed increased cell-cell adhesion and N-cadherin expression. Our results identify neuroserpin as a novel regulator of cell-cell adhesion and the synaptic adhesion molecule N-cadherin as a key effecter in this response. In nerve cells, neuroserpin may regulate the levels of N-cadherin available for construction, maintenance, and control of synapses and synaptic dynamics.
Collapse
Affiliation(s)
- Tet Woo Lee
- Molecular, Cellular and Developmental Biology Section, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
29
|
Hillier BJ, Vacquier VD. Structural features and functional domains of amassin-1, a cell-binding olfactomedin protein. Biochem Cell Biol 2008; 85:552-62. [PMID: 17901897 DOI: 10.1139/o07-055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amassin-1 mediates a rapid cell adhesion that tightly adheres sea urchin coelomocytes (body cavity immunocytes) together. Three major structural regions exist in amassin-1: a short beta region, 3 coiled coils, and an olfactomedin domain. Amassin-1 contains 8 disulfide-bonded cysteines that, upon reduction, render it inactive. Truncated forms of recombinant amassin-1 were expressed and purified from Pichia pastoris and their disulfide bonding and biological activities investigated. Expressed alone, the olfactomedin domain contained 2 intramolecular disulfide bonds, existed in a monomeric state, and inhibited amassin-1-mediated clotting of coelomocytes by a calcium-dependent cell-binding activity. The N-terminal beta region, containing 3 cysteines, was not required for clotting activity. The coiled coils may dimerize amassin-1 in a parallel orientation through a homodimerizing disulfide bond. Neither amassin-1 fragments that were disulfide-linked as dimers or that were engineered to exist as dimers induced coelomocytes clotting. Clotting required higher multimeric states of amassin-1, possibly tetramers, which occurred through the N-terminal beta region and (or) the first segment of coiled coils.
Collapse
Affiliation(s)
- Brian J Hillier
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA
| | | |
Collapse
|
30
|
Olfactomedin-2 mediates development of the anterior central nervous system and head structures in zebrafish. Mech Dev 2007; 125:167-81. [PMID: 18037275 DOI: 10.1016/j.mod.2007.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 09/06/2007] [Accepted: 09/13/2007] [Indexed: 11/24/2022]
Abstract
Olfactomedins comprise a diverse family of secreted glycoproteins, which includes noelin, tiarin, pancortin and gliomedin, implicated in development of the nervous system, and the glaucoma-associated protein myocilin. Here we show in zebrafish that olfactomedin-2 (OM2) is a developmentally regulated gene, and that knockdown of protein expression by morpholino antisense oligonucleotides leads to perturbations of nervous system development. Interference with OM2 expression results in impaired development of branchiomotor neurons, specific disruption of the late phase branchiomotor axon guidance, and affects development of the caudal pharyngeal arches, olfactory pits, eyes and optic tectum. Effects of OM2 knockdown on eye development are likely associated with Pax6 signaling in developing eyes, as Pax6.1 and Pax6.2 mRNA expression patterns are altered in the eyes of OM2 morphants. The specific absence of most cartilaginous structures in the pharyngeal arches indicates that the observed craniofacial phenotypes may be due to perturbed differentiation of cranial neural crest cells. Our studies show that this member of the olfactomedin protein family is an important regulator of development of the anterior nervous system.
Collapse
|
31
|
Nakaya N, Tomarev S. Expression patterns of alternative transcripts of the zebrafish olfactomedin 1 genes. Gene Expr Patterns 2007; 7:723-9. [PMID: 17681890 PMCID: PMC2081154 DOI: 10.1016/j.modgep.2007.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 06/06/2007] [Accepted: 06/22/2007] [Indexed: 11/19/2022]
Abstract
Olfactomedin 1 (Olfm1) is a founding member of the family of olfactomedin domain-containing proteins. It is a secreted protein that performs different roles in different species. Although the molecular mechanisms of Olfm1 action are not known, its possible roles include the regulation of neural crest cell production, neuronal differentiation, and ischemic neuronal death in adult. Two zebrafish olfm1 genes (olfm1a and olfm1b) located on chromosomes 5 and 21 were identified in zebrafish genome. Four different transcripts are produced from each olfm1 gene. The distribution of these transcripts in the course of zebrafish early development was studied by in situ hybridization and quantitative RT-PCR. Different variants of olfm1 mRNA were present mainly in neurogenic tissues and demonstrated overlapping expression patterns.
Collapse
Affiliation(s)
| | - Stanislav Tomarev
- *Corresponding author. Tel.: +1 301 496 8524. FAX.: +1 301 496 8760. E-mail address:
| |
Collapse
|
32
|
Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis. BMC Genomics 2007; 8:26. [PMID: 17244347 PMCID: PMC1796866 DOI: 10.1186/1471-2164-8-26] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Accepted: 01/23/2007] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal disorder caused by the progressive degeneration of motoneurons in brain and spinal cord. Despite identification of disease-linked mutations, the diversity of processes involved and the ambiguity of their relative importance in ALS pathogenesis still represent a major impediment to disease models as a basis for effective therapies. Moreover, the human motor cortex, although critical to ALS pathology and physiologically altered in most forms of the disease, has not been screened systematically for therapeutic targets. RESULTS By whole-genome expression profiling and stringent significance tests we identify genes and gene groups de-regulated in the motor cortex of patients with sporadic ALS, and interpret the role of individual candidate genes in a framework of differentially expressed pathways. Our findings emphasize the importance of defense responses and cytoskeletal, mitochondrial and proteasomal dysfunction, reflect reduced neuronal maintenance and vesicle trafficking, and implicate impaired ion homeostasis and glycolysis in ALS pathogenesis. Additionally, we compared our dataset with publicly available data for the SALS spinal cord, and show a high correlation of changes linked to the diseased state in the SALS motor cortex. In an analogous comparison with data for the Alzheimer's disease hippocampus we demonstrate a low correlation of global changes and a moderate correlation for changes specifically linked to the SALS diseased state. CONCLUSION Gene and sample numbers investigated allow pathway- and gene-based analyses by established error-correction methods, drawing a molecular portrait of the ALS motor cortex that faithfully represents many known disease features and uncovers several novel aspects of ALS pathology. Contrary to expectations for a tissue under oxidative stress, nuclear-encoded mitochondrial genes are uniformly down-regulated. Moreover, the down-regulation of mitochondrial and glycolytic genes implies a combined reduction of mitochondrial and cytoplasmic energy supply, with a possible role in the death of ALS motoneurons. Identifying candidate genes exclusively expressed in non-neuronal cells, we also highlight the importance of these cells in disease development in the motor cortex. Notably, some pathways and candidate genes identified by this study are direct or indirect targets of medication already applied to unrelated illnesses and point the way towards the rapid development of effective symptomatic ALS therapies.
Collapse
|
33
|
Veroni C, Grasso M, Macchia G, Ramoni C, Ceccarini M, Petrucci TC, Macioce P. β-dystrobrevin, a kinesin-binding receptor, interacts with the extracellular matrix components pancortins. J Neurosci Res 2007; 85:2631-9. [PMID: 17265465 DOI: 10.1002/jnr.21186] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The dystrobrevins (alpha and beta) are components of the dystrophin-associated protein complex (DPC), which links the cytoskeleton to the extracellular matrix and serves as a scaffold for signaling proteins. The precise functions of the beta-dystrobrevin isoform, which is expressed in nonmuscle tissues, have not yet been determined. To gain further insights into the role of beta-dystrobrevin in brain, we performed a yeast two-hybrid screen and identified pancortin-2 as a novel beta-dystrobrevin-binding partner. Pancortins-1-4 are neuron-specific olfactomedin-related glycoproteins, highly expressed during brain development and widely distributed in the mature cerebral cortex of the mouse. Pancortins are important constituents of the extracellular matrix and are thought to play an essential role in neuronal differentiation. We characterized the interaction between pancortin-2 and beta-dystrobrevin by in vitro and in vivo association assays and mapped the binding site of pancortin-2 on beta-dystrobrevin to amino acids 202-236 of the beta-dystrobrevin molecule. We also found that the domain of interaction for beta-dystrobrevin is contained in the B part of pancortin-2, a central region that is common to all four pancortins. Our results indicate that beta-dystrobrevin could interact with all members of the pancortin family, implying that beta-dystrobrevin may be involved in brain development. We suggest that dystrobrevin, a motor protein receptor that binds kinesin heavy chain, might play a role in intracellular transport of pancortin to specific sites in the cell.
Collapse
Affiliation(s)
- Caterina Veroni
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Lee HS, Tomarev SI. Optimedin induces expression of N-cadherin and stimulates aggregation of NGF-stimulated PC12 cells. Exp Cell Res 2006; 313:98-108. [PMID: 17054946 PMCID: PMC1831829 DOI: 10.1016/j.yexcr.2006.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 09/20/2006] [Accepted: 09/21/2006] [Indexed: 10/24/2022]
Abstract
Optimedin, also known as olfactomedin 3, belongs to a family of olfactomedin domain-containing proteins. It is expressed in neural tissues and Pax6 is involved in the regulation of its promoter. To study possible effects of optimedin on the differentiation of neural cells, we produced stably transfected PC12 cell lines expressing optimedin under a tetracycline-inducible promoter. Cells expressing high levels of optimedin showed higher growth rates and stronger adhesion to the collagen extracellular matrix as compared with control PC12 cells. After stimulation with nerve growth factor (NGF), optimedin-expressing cells demonstrated elevated levels of N-cadherin, beta-catenin, alpha-catenin and occludin as compared with stimulated, control PC12 cells. Expression of optimedin induced Ca(2+)-dependent aggregation of NGF-stimulated PC12 cells and this aggregation was blocked by the expression of N-cadherin siRNA. Expression of optimedin also changed the organization of the actin cytoskeleton and inhibited neurite outgrowth in NGF-stimulated PC12 cells. We suggest that expression of optimedin stimulates the formation of adherent and tight junctions on the cell surface and this may play an important role in the differentiation of the brain and retina through the modulation of cytoskeleton organization, cell-cell adhesion and migration.
Collapse
Affiliation(s)
| | - Stanislav I. Tomarev
- * Corresponding author: Stanislav I. Tomarev, Section of Molecular Mechanisms of Glaucoma, Laboratory of Molecular and Developmental Biology, National Eye Institute, NIH, Bldg. 7, Room 103, MSC 0704, Bethesda, MD 20892-0704, USA: Tel.: 301-496-8524; Fax: 301-496-8760; E-mail:
| |
Collapse
|
35
|
Liu W, Chen L, Zhu J, Rodgers GP. The glycoprotein hGC-1 binds to cadherin and lectins. Exp Cell Res 2006; 312:1785-97. [PMID: 16566923 DOI: 10.1016/j.yexcr.2006.02.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/07/2006] [Accepted: 02/09/2006] [Indexed: 12/13/2022]
Abstract
Human granulocyte colony stimulating factor stimulated clone-1 (hGC-1, also known as GW112, OLM4, and hOlfD) is an olfactomedin-related glycoprotein of unknown function. We performed a series of biochemical studies to characterize its function. Using hGC-1 purified from baculovirus Sf9 cells we demonstrated that hGC-1 is a secreted glycoprotein containing N-linked carbohydrate chains and forms disulfide-bonded multimers. It binds to cell surfaces and to the locutions ricinus communis agglutinin I, concanavalin A and wheat germ agglutinin. Purified hGC-1 enhanced NIH3T3 and 293T/17 cell spreading and attachment, as did hGC-1-enriched culture supernatants of 293T/17 cells transfected with an hGC-1 expression vector. Coimmunoprecipitation studies demonstrated that hGC-1 interacts with cadherin in 293T/17 cells. This interaction depends on the C-terminal olfactomedin domain, but does not require the five well-conserved cysteine residues. However, cysteine residues at 83, 85, 246 and 437 are essential for secretion, and cysteine 226 is critical for hGC-1 multimer formation. Our studies demonstrated that hGC-1, an extracellular matrix glycoprotein, facilitates cell adhesion. Its potential interaction with endogenous cell surface lectins and cadherin may mediate this function.
Collapse
Affiliation(s)
- Wenli Liu
- Molecular and Clinical Hematology Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bldg.10, Room 9N119, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
36
|
Sakuragi M, Sasai N, Ikeya M, Kawada M, Onai T, Katahira T, Nakamura H, Sasai Y. Functional analysis of chick ONT1 reveals distinguishable activities among olfactomedin-related signaling factors. Mech Dev 2006; 123:114-23. [PMID: 16412616 DOI: 10.1016/j.mod.2005.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 11/18/2005] [Accepted: 11/21/2005] [Indexed: 11/23/2022]
Abstract
The Olfactomedin family is a relatively new class of extracellular proteins. Two family members have been shown to play roles in the early development of ectodermal tissues: Noelin enhances neural crest generation in chick and Tiarin promotes dorsal neural specification in Xenopus. In this study, we introduce a novel member of the Olfactomedin family, ONT1. In the early chick embryo, ONT1 expression first appears at Hensen's node and subsequently in the axial and paraxial mesoderm. When the neural tube closes, strong expression of ONT1 is transiently found in the roof plate region from the rostral midbrain to the hindbrain. Overexpression of ONT1 in these regions prolongs the generation of neural crest cells in a manner similar to that of Noelin. Interestingly, ONT1 and Noelin have opposing effects on the expression of the migrating neural crest marker HNK-1 in the chick: they, respectively, cause suppression and ectopic induction of this marker. Differential activities among Olfactomedin-related factors are further examined in Xenopus. Microinjection of ONT1 mRNA into the Xenopus embryo expands the expression domain of the neural crest marker FoxD3 at the neurula stage whereas overexpression of Tiarin or Noelin suppresses FoxD3. ONT1 exhibits no dorsalizing effects on the Xenopus neural tube, which contrasts with the strong dorsalizing activity seen for Tiarin. Thus, distinct Olfactomedin-related factors evoke qualitatively different phenotypes even in the same experimental systems, suggesting that Olfactomedin family uses multiple response systems to mediate its signals in embryogenesis.
Collapse
Affiliation(s)
- Makoto Sakuragi
- Organogenesis and Neurogenesis Group, Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hillier BJ, Sundaresan V, Stout CD, Vacquier VD. Expression, purification, crystallization and preliminary X-ray analysis of the olfactomedin domain from the sea urchin cell-adhesion protein amassin. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:16-9. [PMID: 16511251 PMCID: PMC2150939 DOI: 10.1107/s1744309105038996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 11/23/2005] [Indexed: 11/10/2022]
Abstract
A family of animal proteins is emerging which contain a conserved protein motif known as an olfactomedin (OLF) domain. Novel extracellular protein-protein interactions occur through this domain. The OLF-family member amassin, from the sea urchin Strongylocentrotus purpuratus, has previously been identified to mediate a rapid cell-adhesion event resulting in a large aggregation of coelomocytes, the circulating immune cells. In this work, heterologous expression and purification of the OLF domain from amassin was carried out and initial crystallization trials were performed. A native data set has been collected, extending to 2.7 A under preliminary cryoconditions, using an in-house generator. This work leads the way to the determination of the first structure of an OLF domain.
Collapse
Affiliation(s)
- Brian J Hillier
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.
| | | | | | | |
Collapse
|
38
|
Moreno TA, Bronner-Fraser M. Noelins modulate the timing of neuronal differentiation during development. Dev Biol 2005; 288:434-47. [PMID: 16289448 DOI: 10.1016/j.ydbio.2005.09.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 09/09/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
Noelins comprise a family of extracellular proteins with proposed roles in neural and neural crest development. Here, we show that a previously uncharacterized family member, Noelin-4, functions to maintain neural precursors in an undifferentiated state and biases ectoderm toward a neural fate. We show that Noelin-4 is induced by the neurogenic genes X-ngnr-1 and XNeuroD. Over-expression of Noelin-4 causes expansion of the neural plate at the expense of neural crest and epidermis. Although there is an apparent increase in the neural precursor pool, no increase was noted in differentiated neurons. Later, derivatives such as the neural tube and retina appear enlarged. We show biochemically that Noelin-4 protein is glycosylated and secreted and that it interacts with Noelin-1, an isoform previously found to promote differentiation in neuralized animal caps. Accordingly, the neural precursor expansion activity of Noelin-4 is reversed by co-expression of Noelin-1. Our finding that Noelin isoforms can bind to and antagonize one another suggests that interacting Noelin isoforms may play a role in regulating timing of differentiation.
Collapse
Affiliation(s)
- Tanya A Moreno
- Division of Biology, 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
39
|
Furutani Y, Manabe RI, Tsutsui K, Yamada T, Sugimoto N, Fukuda S, Kawai J, Sugiura N, Kimata K, Hayashizaki Y, Sekiguchi K. Identification and characterization of photomedins: novel olfactomedin-domain-containing proteins with chondroitin sulphate-E-binding activity. Biochem J 2005; 389:675-84. [PMID: 15836428 PMCID: PMC1180717 DOI: 10.1042/bj20050120] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We screened more than 60000 RIKEN mouse cDNAs for novel ECM (extracellular matrix) proteins by extensive computational screening followed by recombinant expression and immunohistochemical characterization. We identified two novel olfactomedin-family proteins characterized by the presence of tandem CXCXCX9C motifs in the N-terminal region, a coiled-coil domain and an olfactomedin domain in the C-terminal region. These proteins, named photomedin-1 and photomedin-2, were secreted as disulphide-bonded dimers (photomedin-1) or oligomers/multimers (photomedin-2) with O-linked carbohydrate chains, although photomedin-1 was proteolytically processed in the middle of the molecule after secretion. In the retina, photomedin-1 was selectively expressed in the outer segment of photoreceptor cells and photomedin-2 was expressed in all retinal neurons. Among a panel of ECM components, including glycosaminoglycans, photomedins preferentially bound to chondroitin sulphate-E and heparin. These results, together, indicate that photomedins are novel olfactomedin-domain-containing extracellular proteins capable of binding to proteoglycans containing these glycosaminoglycan chains.
Collapse
Affiliation(s)
- Yutaka Furutani
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Ri-ichiroh Manabe
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Ko Tsutsui
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Tomiko Yamada
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Nagisa Sugimoto
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Shiro Fukuda
- †Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | - Jun Kawai
- †Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | - Nobuo Sugiura
- ‡Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
- ∥Central Research Laboratories, Seikagaku Corporation, Higashiyamato, Tokyo 207-0021, Japan
| | - Koji Kimata
- ‡Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Yoshihide Hayashizaki
- †Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | - Kiyotoshi Sekiguchi
- *Sekiguchi Biomatrix Signaling Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
- ¶Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
40
|
Abstract
The Optimedin gene, also known as Olfactomedin 3, encodes an olfactomedin domain-containing protein. There are two major splice variants of the Optimedin mRNA, Optimedin A and Optimedin B, transcribed from different promoters. The expression pattern of the Optimedin A variant in the eye and brain overlaps with that for Pax6, which encodes a protein containing the paired and homeobox DNA-binding domains. The Pax6 gene plays a critical role for the development of eyes, central nervous system, and endocrine glands. The proximal promoter of the Optimedin A variant contains a putative Pax6 binding site in position -86/-70. Pax6 binds this site through the paired domain in vitro as judged by electrophoretic mobility shift assay. Mutations in this site eliminate Pax6 binding as well as stimulation of the Optimedin promoter activity by Pax6 in transfection experiments. Pax6 occupies the binding site in the proximal promoter in vivo as demonstrated by the chromatin immunoprecipitation assay. Altogether these results identify the Optimedin gene as a downstream target regulated by Pax6. Although the function of optimedin is still not clear, it is suggested to be involved in cell-cell adhesion and cell attachment to the extracellular matrix. Pax6 regulation of Optimedin in the eye and brain may directly affect multiple developmental processes, including cell migration and axon growth.
Collapse
Affiliation(s)
- Oleg Grinchuk
- Section of Molecular Mechanisms of Glaucoma, Laboratory of Molecular and Developmental Biology, NEI, National Institutes of Health, Bethesda, Maryland 20892-0704, USA
| | | | | | | |
Collapse
|
41
|
Zeng LC, Han ZG, Ma WJ. Elucidation of subfamily segregation and intramolecular coevolution of the olfactomedin-like proteins by comprehensive phylogenetic analysis and gene expression pattern assessment. FEBS Lett 2005; 579:5443-53. [PMID: 16212957 DOI: 10.1016/j.febslet.2005.08.064] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 08/20/2005] [Accepted: 08/23/2005] [Indexed: 11/19/2022]
Abstract
The categorization of genes by structural distinctions relevant to biological characteristics is very important for understanding of gene functions and predicting functional implications of uncharacterized genes. It was absolutely necessary to deploy an effective and efficient strategy to deal with the complexity of the large olfactomedin-like (OLF) gene family sharing sequence similarity but playing diversified roles in many important biological processes, as the simple highest-hit homology analysis gave incomprehensive results and led to inappropriate annotation for some uncharacterized OLF members. In light of evolutionary information that may facilitate the classification of the OLF family and proper association of novel OLF genes with characterized homologs, we performed phylogenetic analysis on all 116 OLF proteins currently available, including two novel members cloned by our group. The OLF family segregated into seven subfamilies and members with similar domain compositions or functional properties all fell into relevant subfamilies. Furthermore, our Northern blot analysis and previous studies revealed that the typical human OLF members in each subfamily exhibited tissue-specific expression patterns, which in turn supported the segregation of the OLF subfamilies with functional divergence. Interestingly, the phylogenetic tree topology for the OLF domains alone was almost identical with that of the full-length tree representing the unique phylogenetic feature of full-length OLF proteins and their particular domain compositions. Moreover, each of the major functional domains of OLF proteins kept the same phylogenetic feature in defining similar topology of the tree. It indicates that the OLF domain and the various domains in flanking non-OLF regions have coevolved and are likely to be functionally interdependent. Expanded by a plausible gene duplication and domain couplings scenario, the OLF family comprises seven evolutionarily and functionally distinct subfamilies, in which each member shares similar structural and functional characteristics including the composition of coevolved and interdependent domains. The phylogenetically classified and preliminarily assessed subfamily framework may greatly facilitate the studying on the OLF proteins. Furthermore, it also demonstrated a feasible and reliable strategy to categorize novel genes and predict the functional implications of uncharacterized proteins based on the comprehensive phylogenetic classification of the subfamilies and their relevance to preliminary functional characteristics.
Collapse
Affiliation(s)
- Ling-Chun Zeng
- Health Science Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Second Medical University
| | | | | |
Collapse
|
42
|
Goldwich A, Baulmann DC, Ohlmann A, Flügel-Koch C, Schöcklmann H, Tamm ER. Myocilin is expressed in the glomerulus of the kidney and induced in mesangioproliferative glomerulonephritis. Kidney Int 2005; 67:140-51. [PMID: 15610237 DOI: 10.1111/j.1523-1755.2005.00064.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Myocilin is a 55 to 57 kD secreted glycoprotein and member of the olfactomedin protein family. It is expressed in high amounts in the outflow tissues of the aqueous humor in the eye where it is supposed to contribute to outflow resistance. Myocilin is mutated in some forms of primary open angle glaucoma and affected patients show very high intraocular pressures because of an increase in resistance to aqueous humor outflow. To obtain information, if myocilin may play a comparable role in other tissues with transendothelial fluid flow, we investigated its expression in the rat kidney. METHODS The expression of myocilin in the normal rat kidney and its changes during mesangioproliferative glomerulonephritis were investigated by immunohistochemistry, one- and two-dimensional gel electrophoresis with Western blotting, and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Myocilin and its mRNA were detected in isolated glomeruli. Immunohistochemistry showed specific labeling of glomerular cells, while tubular and interstitial regions were essentially negative. Double staining with the podocyte-specific markers synaptopodin and ezrin indicated that myocilin-positive cells were predominately podocytes. During mesangioproliferative glomerulonephritis, an induction of myocilin immunoreactivity was observed. Labeling for myocilin was now observed in activated mesangial cells and areas of glomerular sclerosis. In parallel cell culture experiments, mRNA for myocilin was detected in cultured murine podocytes and rat mesangial cells. CONCLUSION Myocilin is expressed in podocytes of the kidney and induced in mesangial cells during experimental mesangioproliferative glomerulonephritis. The specific function of myocilin in the kidney is not clear, but in a parallel to functions of other olfactomedin proteins, it might have a role in cell-cell adhesion and/or signaling processes.
Collapse
Affiliation(s)
- Andreas Goldwich
- Department of Anatomy, Molecular Anatomy and Embryology, University of Erlangen-Nürnberg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Ando K, Nagano T, Nakamura A, Konno D, Yagi H, Sato M. Expression and characterization of disulfide bond use of oligomerized A2-Pancortins: Extracellular matrix constituents in the developing brain. Neuroscience 2005; 133:947-57. [PMID: 15927402 DOI: 10.1016/j.neuroscience.2005.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 03/04/2005] [Accepted: 03/09/2005] [Indexed: 11/19/2022]
Abstract
The region-specific characteristics of the extracellular matrix are crucial for diverse functions in the brain. Pancortins/neuron-specific olfactomedin-related glycoproteins are components of the extracellular matrix. They comprise four alternatively spliced variants, Pancortin-1 to -4, which share a common portion, the B part, in the middle of their structure, have two pairs of alternatively spliced 5' regions, A1 and A2, and 3' regions, C1 and C2. Here we demonstrate that in mice, Pancortin-3 (A2-B-C1) and Pancortin-4 (A2-B-C2), which we have grouped together the A2-Pancortins, were transcribed early during the development of the brain in a region specific manner and were expressed very stably in vivo. They are N-glycosylated and secreted. Furthermore, we examined their ontogenetical expression profiles in the developing thalamus using antiserum against the common B region, since transient expressions of their mRNAs were notable there. In the developing thalami, they lasted long in oligomerized form even after the transcription of their mRNAs decreased to an undetectable level. Further analyses revealed that cysteine residues that are located in the common B part are important for homo- and hetero-oligomer formation of A2-Pancortins. When we substituted cysteine residues 45 and 47 with serine residues in that common B part, oligomerization of the A2-Pancortins was highly disturbed.
Collapse
Affiliation(s)
- K Ando
- Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, 23 Shimoaizuki, Matsuoka, Fukui, 910-1193 Japan
| | | | | | | | | | | |
Collapse
|
44
|
Huang X, Saint-Jeannet JP. Induction of the neural crest and the opportunities of life on the edge. Dev Biol 2004; 275:1-11. [PMID: 15464568 DOI: 10.1016/j.ydbio.2004.07.033] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 07/21/2004] [Accepted: 07/23/2004] [Indexed: 01/10/2023]
Abstract
The neural crest is a multipotent population of migratory cells unique to the vertebrate embryo. Neural crest arises at the lateral edge of the neural plate and migrates throughout the embryo to give rise to a wide variety of cell types including peripheral and enteric neurons and glia, craniofacial cartilage and bone, smooth muscle, and pigment cells. Here we review recent studies that have addressed the role of several signaling pathways in the induction of the neural crest. Work in the mouse, chick, Xenopus, and zebrafish have shown that a complex network of genes is activated at the neural plate border in response to neural crest-inducing signals. We also summarize some of these findings and discuss how the differential activation of these genes may contribute to the establishment of neural crest diversity.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
45
|
Abstract
Glaucoma represents a heterogeneous group of optic neuropathies, with different genetic bases. It can affect all ages generally with a rise in intra-ocular pressure. Three major types of glaucoma have been reported: primary open angle glaucoma (POAG), primary acute closed angle glaucoma (PACG) and primary congenital glaucoma (PCG), as well as a few others associated with developmental abnormalities. In recent years impressive progress has been made in the molecular genetic studies of POAG and PCG. These include the discovery of three genes--Myocilin, Optineurin and CYP1B1--defects in which results in Mendelian transmission of glaucoma. Identification of single nucleotide polymorphisms in multiple other genes that are associated with glaucoma and alteration of drug sensitivity are enriching our knowledge regarding the complex nature of the disease. This review attempts to present the recent progress made in the molecular genetics of glaucoma.
Collapse
Affiliation(s)
- Kunal Ray
- Human Genetics and Genomics Division, Indian Institute of Chemical Biology, Jadavpur, Kolkata, India.
| | | | | |
Collapse
|
46
|
Nelson BR, Claes K, Todd V, Chaverra M, Lefcort F. NELL2 promotes motor and sensory neuron differentiation and stimulates mitogenesis in DRG in vivo. Dev Biol 2004; 270:322-35. [PMID: 15183717 DOI: 10.1016/j.ydbio.2004.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2003] [Revised: 03/01/2004] [Accepted: 03/01/2004] [Indexed: 10/26/2022]
Abstract
We previously identified a secreted glycoprotein, neural epidermal growth factor-like like 2 (NELL2), in a subtraction screen designed to identify molecules regulating sensory neurogenesis and differentiation in the chick dorsal root ganglion (DRG). Characterization of NELL2 expression during embryogenesis revealed that NELL2 was specifically expressed during the peak periods of both sensory and motor neuron differentiation, and within the neural crest was restricted to the sensory lineage. We now provide evidence for a function for NELL2 during neuronal development. We report here that NELL2 acts cell autonomously within CNS and PNS progenitors, in vivo, to promote their differentiation into neurons. Additionally, neuron-secreted NELL2 acts paracrinely to stimulate the mitogenesis of adjacent cells within the nascent DRG. These studies implicate dual functions for NELL2 in both the cell autonomous differentiation of neural progenitor cells while simultaneously exerting paracrine proliferative activity.
Collapse
Affiliation(s)
- Branden R Nelson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | |
Collapse
|
47
|
Zeng LC, Liu F, Zhang X, Zhu ZD, Wang ZQ, Han ZG, Ma WJ. hOLF44, a secreted glycoprotein with distinct expression pattern, belongs to an uncharacterized olfactomedin-like subfamily newly identified by phylogenetic analysis. FEBS Lett 2004; 571:74-80. [PMID: 15280020 DOI: 10.1016/j.febslet.2004.06.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 06/23/2004] [Accepted: 06/24/2004] [Indexed: 11/17/2022]
Abstract
Secreted proteins are indispensable for the development and differentiation of multicellular organisms. Cloning and characterization of novel or hypothetical genes encoding these proteins are therefore inviting great incentives. Using bioinformatics tools and experimental approaches, we isolated and characterized a human secreted glycoprotein, hOLF44, which contains a highly conserved olfactomedin-like (OLF) domain in the C-terminal. However, phylogenetic analysis revealed that hOLF44 is not clustered into any of the OLF subfamilies containing characterized members, and obviously falls into a newly identified uncharacterized OLF subfamily. Western blot analysis showed that hOLF44 protein is robustly secreted from the transfected COS-7 cells. Expression levels of hOLF44 mRNA are abundant in placenta, moderate in liver and heart, whereas fairly weak in other tissues examined. Immunohistochemical study on human term placenta demonstrated that hOLF44 is mainly localized extracellularly surrounding the syncytiotrophoblastic cells and very rarely expressed in the maternal decidua layer. These results suggest that hOLF44 may have matrix-related function involved in human placental and embryonic development, or play a similar role in other physiological processes. The further functional characterization of hOLF44 may provide insights into a better understanding of the newly identified OLF subfamily.
Collapse
Affiliation(s)
- Ling-Chun Zeng
- Health Science Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Second Medical University, 225 South Chongqing Road, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Pratap Challa
- Duke University Medical Center, Box 3802, Durham, NC 27710, USA
| |
Collapse
|
49
|
Ohlmann A, Goldwich A, Flügel-Koch C, Fuchs AV, Schwager K, Tamm ER. Secreted glycoprotein myocilin is a component of the myelin sheath in peripheral nerves. Glia 2003; 43:128-40. [PMID: 12838505 DOI: 10.1002/glia.10233] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The structure of the myelin sheath in peripheral nerves requires the expression of a specific set of proteins. In the present study, we report that myocilin, a member of the olfactomedin protein family, is a component of the myelin sheath in peripheral nerves. Myocilin is a secreted glycoprotein that forms multimers and contains a leucine zipper and an olfactomedin domain. Mutations in myocilin are responsible for some forms of glaucoma, a neurodegenerative disease that is characterized by a continuous loss of optic nerve axons. Myocilin mRNA was detected by Northern blotting in RNA from the rat sciatic and ophthalmic nerves. By one- and two-dimensional gel electrophoresis of proteins from the rat and human sciatic nerves, myocilin was found to migrate at an isoelectric point (pI) of 5.2-5.3 and a molecular weight of 55-57 kDa. Immunohistochemistry showed immunoreactivity for myocilin in paranodal terminal loops of the nodes of Ranvier and outer mesaxons and basal/abaxonal regions of the myelin sheath. Double-labeling experiments with antibodies against myelin basic protein showed no overlapping, while overlapping immunoreactivity was observed with antibodies against myelin-associated glycoprotein. The expression of myocilin in the sciatic nerve became detectable at postnatal day (P) 15 and reached adult levels at P20. No or minor expression of myocilin mRNA was found in brain, spinal cord, and optic nerve. mRNA of myocilin was detected in schwannoma cells in situ, but at considerably lower levels than in myelinated nerves. Myocilin might significantly contribute to the structure of the myelin sheath in peripheral nerves.
Collapse
Affiliation(s)
- Andreas Ohlmann
- Department of Anatomy, Molecular Anatomy and Embryology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Nagy I, Trexler M, Patthy L. Expression and characterization of the olfactomedin domain of human myocilin. Biochem Biophys Res Commun 2003; 302:554-61. [PMID: 12615070 DOI: 10.1016/s0006-291x(03)00198-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The olfactomedin-domain has been first identified in olfactomedin, an extracellular matrix protein of the olfactory neuroepithelium. Members of this extracellular domain-family have since been shown to be present in several metazoan proteins, such as latrophilins, myocilins, and noelins, but their biological function is unknown. The olfactomedin-domain of myocilin is of considerable interest, since mutations affecting this domain are associated with primary open angle glaucoma. In order to define structural features of this domain-type we have expressed the olfactomedin-domain of human myocilin in Pichia pastoris. The olfactomedin-domain contains a single disulphide-bond connecting Cys-245 and Cys-433 residues; secondary structure predictions and circular dichroism studies indicate that it consists primarily of beta-strands. It is noteworthy that the majority of mutations associated with severe forms of glaucoma affect residues that reside in conserved secondary structural elements of the olfactomedin-domain or are otherwise critical for the integrity of this protein-fold.
Collapse
Affiliation(s)
- Ildikó Nagy
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary
| | | | | |
Collapse
|