1
|
Lee JI, Park S, Park H, Lee Y, Park J, Lee D, Kim MJ, Choe KM. The matrix glycoprotein Papilin maintains the haematopoietic progenitor pool in Drosophila lymph glands. Development 2025; 152:dev204367. [PMID: 40094323 PMCID: PMC12045604 DOI: 10.1242/dev.204367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025]
Abstract
Differentiation of prohaemocytes, the precursors of Drosophila blood cells (haemocytes), and the release of haemocytes from the lymph gland, a major larval haematopoietic organ, are vital responses to wasp infestation or tissue degeneration. Although cells and extracellular matrix (ECM) in the lymph gland are known to play a crucial role in haemocyte differentiation, the underlying mechanisms remain unclear. Here, we show that the matrix glycoprotein Papilin (Ppn) is essential for maintaining the prohaemocyte population in lymph glands. In Ppn-depleted larvae, haemocyte differentiation increased with a reduction in the prohaemocyte-containing medullary zone, and lymph gland lobes dispersed prematurely. Ppn was synthesised by plasmatocytes, forming lamellae mainly in the medullary zone. Microbial infection or wasp infestation disrupted the Ppn meshwork within lymph glands. Ppn colocalised with collagen, laminin, nidogen and perlecan. Ppn depletion disrupted the ECM structure, including perlecan organisation. Phenotypes caused by Ppn depletion were partially rescued by perlecan overexpression or inactivation of the epidermal growth factor receptor pathway. Thus, Ppn is crucial for maintaining lymph gland architecture and regulating haemocyte differentiation, highlighting an intricate interaction between the ECM and signalling pathways in haematopoiesis.
Collapse
Affiliation(s)
- Jae-In Lee
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Sumin Park
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Hyunji Park
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Youngbin Lee
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - JinYoung Park
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Donghoon Lee
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Moon Jong Kim
- Department of Life Science, Gachon University, Seongnam 13120, South Korea
| | - Kwang-Min Choe
- Department of Systems Biology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
2
|
Marcetteau J, Duarte P, Leitão AB, Sucena É. Transdifferentiation of plasmatocytes to crystal cells in the lymph gland of Drosophila melanogaster. EMBO Rep 2025; 26:2077-2097. [PMID: 40075235 PMCID: PMC12019564 DOI: 10.1038/s44319-025-00366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 03/14/2025] Open
Abstract
Under homeostatic conditions, haematopoiesis in Drosophila larvae occurs in the lymph gland and sessile haemocyte clusters to produce two functionally and morphologically different cells: plasmatocytes and crystal cells. It is well-established that in the lymph gland both cell types stem from a binary decision of the medullary prohaemocyte precursors. However, in sessile clusters and dorsal vessel, crystal cells have been shown to originate from the transdifferentiation of plasmatocytes in a Notch/Serrate-dependent manner. We show that transdifferentiation occurs also in the lymph gland. In vivo phagocytosis assays confirm that cortical plasmatocytes are functionally differentiated phagocytic cells. We uncover a double-positive population in the cortical zone that lineage-tracing and long-term live imaging experiments show will differentiate into crystal cells. The reduction of Notch levels within the lymph gland plasmatocyte population reduces crystal cell number. This extension of a transdifferentiation mechanism reinforces the growing role of haematopoietic plasticity in maintaining homeostasis in Drosophila and vertebrate systems. Future work should test the regulation and relative contribution of these two processes under different immunological and/or metabolic conditions.
Collapse
Affiliation(s)
- Julien Marcetteau
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Patrícia Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | | | - Élio Sucena
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Edifício C2, Campo Grande, 1749-016, Lisbon, Portugal.
- cE3c: Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| |
Collapse
|
3
|
Qin B, Xue H, Wang X, Kim H, Jin LH. Atg2 controls Drosophila hematopoiesis through the PVR/TOR signaling pathways. FEBS J 2025; 292:294-312. [PMID: 39513270 DOI: 10.1111/febs.17288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 06/01/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024]
Abstract
The hematopoietic system of Drosophila is a well-established genetic model for studying hematopoiesis mechanisms, which are strictly regulated by multiple signaling pathways. Autophagy-related 2 (Atg2) protein is involved in autophagosome formation through its lipid transfer function; however, other functions in animal development, especially the role of Atg2 in maintaining hematopoietic homeostasis, are unclear. Here, we show that Atg2 knockdown in the cortical zone (CZ) induced the proliferation and differentiation of mature plasmatocytes and disrupted progenitor maintenance in the medullary zone (MZ). We also observed the differentiation of lamellocytes among circulating hemocytes and in the lymph gland, which is rarely observed in healthy larvae. The above results on hematopoiesis disorders are due to Atg2 regulating the Drosophila PDGF/VEGF receptor (PVR) and target of rapamycin (TOR) in the CZ of lymph gland. In conclusion, we identified Atg2 as a previously undescribed regulator of hematopoiesis. Understanding the mechanism of maintenance of hematopoietic homeostasis in Drosophila will help us better evaluate human blood disorder-related diseases.
Collapse
Affiliation(s)
- Bo Qin
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Institute of Crop Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Hongmei Xue
- Peking University People's Hospital, Qingdao, China
- Women and Children's Hospital, Qingdao University, China
| | - Xiaoran Wang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hyonil Kim
- College of Life Sciences, Northeast Forestry University, Harbin, China
- College of Life Science, Kim Il Sung University, Pyongyang, Korea
| | - Li Hua Jin
- College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
4
|
Kwon SY, Chan K, Stofanko M, Chan KH, Badenhorst P. Abrupt-mediated control of ninjurins regulates Drosophila sessile haemocyte compartments. Development 2024; 151:dev202977. [PMID: 39545919 DOI: 10.1242/dev.202977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Macrophage-like cells called haemocytes are key effectors of Drosophila cellular innate immune function. Larval haemocytes exist either in circulation or localize to segmentally repeated sessile haemocyte compartments (SHCs). While numerous functions have been proposed for SHCs, the mechanisms directing haemocytes to them are unclear. Here, we have exploited the developmentally regulated dispersal of SHCs that occurs at pupariation to identify the Abrupt (Ab) transcription factor (TF) and ninjurin cell-adhesion molecules as regulators of haemocyte recruitment to SHCs. We show that larval haemocytes express ninjurins, which are required for targeting haemocytes to SHCs. However, at pupariation, ecdysteroid signalling stimulates Ab expression, which collaborates with TFs, including Blimp-1 and Hr3, to repress ninjurins and disperse haemocytes. We observe that experimental manipulations that antagonize ninjurin function in larval haemocytes cause premature SHC dispersal, while stabilization of ninjurins in haemocytes blocks developmentally regulated SHC remodelling and increases sensitivity to immune challenges. Cumulatively, our data indicate that control of ninjurin activity provides a common target through which diverse developmental, environmental and immune stimuli can be integrated to control haemocyte dispersal and immune function.
Collapse
Affiliation(s)
- So Yeon Kwon
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Kimberly Chan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Martin Stofanko
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Ka Hei Chan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Paul Badenhorst
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| |
Collapse
|
5
|
Lisi F, Amichot M, Desneux N, Gatti JL, Guedes RNC, Nazzi F, Pennacchio F, Russo A, Sánchez-Bayo F, Wang X, Zappalà L, Biondi A. Pesticide immunotoxicity on insects - Are agroecosystems at risk? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175467. [PMID: 39155008 DOI: 10.1016/j.scitotenv.2024.175467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
Recent years have witnessed heightened scrutiny of the non-target sublethal effects of pesticides on behavioural and physiological traits of insects. Traditionally, attention has focused on investigating pesticides' primary modes of action, often overlooking the potential secondary mechanisms. This review brings forth the nuanced impacts of sublethal pesticide exposure on the immune system of target and non-target insect species. Pesticides, such as for example neonicotinoids, suppress immune response, while others, like certain organophosphates and some insect growth regulators (IGRs), appear to bolster immunocompetence under certain circumstances. Beyond their individual impacts, the synergic effects of pesticide mixtures on insect immunity are garnering increasing interest. This review thus summarizes recent advances in the immunomodulatory effects of pesticides, detailing both mechanisms and consequences of such interactions. The implications of these effects for ecosystem preservation and viability of beneficial organisms, such as pollinators and natural enemies of pests, are discussed. The review also considers further research directions on pesticide secondary modes of action and explores potential implications for integrated pest management (IPM) programs, as several model organisms studied are crop pest species. While current data provide an expansive overview of how insect innate immunity is modulated, concrete endpoints remain elusive requiring further research into pesticide secondary modes of actions.
Collapse
Affiliation(s)
- Fabrizio Lisi
- University of Catania, Department of Agriculture, Food and Environment, via Santa Sofia 100, 95123 Catania, Italy
| | - Marcel Amichot
- INRAE, Université Côte d'Azur, CNRS, UMR ISA, 06903 Sophia-Antipolis, France
| | - Nicolas Desneux
- INRAE, Université Côte d'Azur, CNRS, UMR ISA, 06903 Sophia-Antipolis, France
| | - Jean-Luc Gatti
- INRAE, Université Côte d'Azur, CNRS, UMR ISA, 06903 Sophia-Antipolis, France
| | | | - Francesco Nazzi
- University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), Udine, Italy
| | - Francesco Pennacchio
- University of Naples, Department of Entomology and Zoology, Portici, Naples, Italy
| | - Agatino Russo
- University of Catania, Department of Agriculture, Food and Environment, via Santa Sofia 100, 95123 Catania, Italy
| | | | - Xingeng Wang
- USDA ARS Beneficial Insects Introduction Research Unit, Newark, DE, USA
| | - Lucia Zappalà
- University of Catania, Department of Agriculture, Food and Environment, via Santa Sofia 100, 95123 Catania, Italy
| | - Antonio Biondi
- University of Catania, Department of Agriculture, Food and Environment, via Santa Sofia 100, 95123 Catania, Italy.
| |
Collapse
|
6
|
Deichsel S, Frankenreiter L, Fechner J, Gahr BM, Zimmermann M, Mastel H, Preis I, Preiss A, Nagel AC. Inhibition of the Notch signal transducer CSL by Pkc53E-mediated phosphorylation to fend off parasitic immune challenge in Drosophila. eLife 2024; 12:RP89582. [PMID: 39503739 PMCID: PMC11540305 DOI: 10.7554/elife.89582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Notch signalling activity regulates hematopoiesis in Drosophila and vertebrates alike. Parasitoid wasp infestation of Drosophila larvae, however, requires a timely downregulation of Notch activity to allow the formation of encapsulation-active blood cells. Here, we show that the Drosophila CSL transcription factor Suppressor of Hairless [Su(H)] is phosphorylated at Serine 269 in response to parasitoid wasp infestation. As this phosphorylation interferes with the DNA binding of Su(H), it reversibly precludes its activity. Accordingly, phospho-deficient Su(H)S269A mutants are immune-compromised. A screen for kinases involved in Su(H) phosphorylation identified Pkc53E, required for normal hematopoiesis as well as for parasitoid immune response. Genetic and molecular interactions support the specificity of the Su(H)-Pkc53E relationship. Moreover, phorbol ester treatment inhibits Su(H) activity in vivo and in human cell culture. We conclude that Pkc53E targets Su(H) during parasitic wasp infestation, thereby remodelling the blood cell population required for wasp egg encapsulation.
Collapse
Affiliation(s)
- Sebastian Deichsel
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
- Department of Medical Genetics and Applied Genomics, University of TübingenTübingenGermany
| | - Lisa Frankenreiter
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| | - Johannes Fechner
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
- Institute of Biomedical Genetics (IBMG), University of StuttgartStuttgartGermany
| | - Bernd M Gahr
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
- Department of Internal Medicine II, Molecular Cardiology, University of UlmUlmGermany
| | - Mirjam Zimmermann
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| | - Helena Mastel
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| | - Irina Preis
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| | - Anette Preiss
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| | - Anja C Nagel
- Department of Molecular Genetics, Institute of Biology, University of HohenheimStuttgartGermany
| |
Collapse
|
7
|
Qu J, Feng Y, Zou X, Zhou Y, Cao W. Transcriptome and proteome analyses reveal genes and signaling pathways involved in the response to two insect hormones in the insect-fungal pathogen Hirsutella satumaensis. mSystems 2024; 9:e0016624. [PMID: 38984826 PMCID: PMC11334460 DOI: 10.1128/msystems.00166-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024] Open
Abstract
The insect hormones ecdysone (20E) and juvenile hormone III (JH) have been demonstrated to stimulate the secretion of conidia mucilage and pigments in Hirsutella satumaensis. However, the underlying mechanisms remain elusive. Here, comparative transcriptome and proteome analyses were performed to identify the fungal genes and proteins of H. satumaensis that are up- or downregulated in response to insect hormones. A total of 17,407 unigenes and 1,016 proteins in conidia mucilage were identified. The genes involved in response to the hormones were classified into four functional groups: (1) stress response-related genes that are required for the removal of reactive oxygen species (glutathione synthetase, c7144) and genes involved in the response to osmotic stress in the hemocoel, such as those encoding proteins involved in the G, mTOR, and MAPK signaling pathways (2); insect hormone metabolic genes, including genes encoding ecdysteroid UDP-glucosyltransferase, ecdysteroid-22-kinase, and a key aldehyde dehydrogenase in a juvenile hormone synthesis pathway (3); secretory proteins that share homology with those of the host Bombyx mori, including fibrohexamerin, sericin 1, metalloprotease 1 protein, and silk gum protein, which were revealed by the omics data; and (4) proteins related to amino sugar metabolism and oxidative phosphorylation that were specifically expressed in mucilage in response to 20E and JH, respectively. These findings revealed that H. satumaensis can mount effective responses by modulating the expression of genes involved in the detoxification, adaptation, and evasion of insect hormone-mediated immune responses, providing fresh insights into fungal pathogen-host insect interactions.IMPORTANCEInsect hormones are highly important for the regulation of insect growth, development, and immune system function. Thus, the expansion of entomopathogenic fungi (EPF) could be affected by these hormones when they inhabit the host hemocoel. However, the molecular basis of EPF in response to insect hormones has yet to be determined. Our results revealed that EPF are impacted by 20E and JH, both of which act as signals, as these hormones lead to changes in metabolic pathways of the fungus, thus demonstrating a direct relationship between the fungus and the hormones. Furthermore, adaptive strategies, such as the use of ecdysone-inactivating enzymes and secreted filamentous proteins in H. satumaensis, which strongly resemble those of the host insect, have been discovered, thus illustrating the importance of adaptation to insect hormones for a better understanding of the interaction between insects and EPF.
Collapse
Affiliation(s)
- Jiaojiao Qu
- College of Tea Sciences, Guizhou University, Guiyang, China
| | - Yongli Feng
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Xiao Zou
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Yeming Zhou
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Wei Cao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
8
|
Brantley SE, Stouthamer CM, Kr P, Fischer ML, Hill J, Schlenke TA, Mortimer NT. Host JAK-STAT activity is a target of parasitoid wasp virulence strategies. PLoS Pathog 2024; 20:e1012349. [PMID: 38950076 PMCID: PMC11244843 DOI: 10.1371/journal.ppat.1012349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/12/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Innate immune responses that allow hosts to survive infection depend on the action of multiple conserved signaling pathways. Pathogens and parasites in turn have evolved virulence factors to target these immune signaling pathways in an attempt to overcome host immunity. Consequently, the interactions between host immune molecules and pathogen virulence factors play an important role in determining the outcome of an infection. The immune responses of Drosophila melanogaster provide a valuable model to understand immune signaling and host-pathogen interactions. Flies are commonly infected by parasitoid wasps and mount a coordinated cellular immune response following infection. This response is characterized by the production of specialized blood cells called lamellocytes that form a tight capsule around wasp eggs in the host hemocoel. The conserved JAK-STAT signaling pathway has been implicated in lamellocyte proliferation and is required for successful encapsulation of wasp eggs. Here we show that activity of Stat92E, the D. melanogaster STAT ortholog, is induced in immune tissues following parasitoid infection. Virulent wasp species are able to suppress Stat92E activity during infection, suggesting they target JAK-STAT pathway activation as a virulence strategy. Furthermore, two wasp species (Leptopilina guineaensis and Ganaspis xanthopoda) suppress phenotypes associated with a gain-of-function mutation in hopscotch, the D. melanogaster JAK ortholog, indicating that they inhibit the activity of the core signaling components of the JAK-STAT pathway. Our data suggest that parasitoid wasp virulence factors block JAK-STAT signaling to overcome fly immune defenses.
Collapse
Affiliation(s)
- Susanna E Brantley
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Corinne M Stouthamer
- Department of Entomology, University of Arizona, Tucson, Arizona, United States of America
| | - Pooja Kr
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Mary L Fischer
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Joshua Hill
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Todd A Schlenke
- Department of Entomology, University of Arizona, Tucson, Arizona, United States of America
| | - Nathan T Mortimer
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
9
|
Chou J, Ramroop JR, Saravia-Butler AM, Wey B, Lera MP, Torres ML, Heavner ME, Iyer J, Mhatre SD, Bhattacharya S, Govind S. Drosophila parasitoids go to space: Unexpected effects of spaceflight on hosts and their parasitoids. iScience 2024; 27:108759. [PMID: 38261932 PMCID: PMC10797188 DOI: 10.1016/j.isci.2023.108759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/15/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
While fruit flies (Drosophila melanogaster) and humans exhibit immune system dysfunction in space, studies examining their immune systems' interactions with natural parasites in space are lacking. Drosophila parasitoid wasps modify blood cell function to suppress host immunity. In this study, naive and parasitized ground and space flies from a tumor-free control and a blood tumor-bearing mutant strain were examined. Inflammation-related genes were activated in space in both fly strains. Whereas control flies did not develop tumors, tumor burden increased in the space-returned tumor-bearing mutants. Surprisingly, control flies were more sensitive to spaceflight than mutant flies; many of their essential genes were downregulated. Parasitoids appeared more resilient than fly hosts, and spaceflight did not significantly impact wasp survival or the expression of their virulence genes. Previously undocumented mutant wasps with novel wing color and wing shape were isolated post-flight and will be invaluable for host-parasite studies on Earth.
Collapse
Affiliation(s)
- Jennifer Chou
- Biology Department, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Johnny R. Ramroop
- Biology Department, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Amanda M. Saravia-Butler
- KBR NASA Ames Research Center, Moffett Field, CA 94035, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Brian Wey
- Biology Department, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
- PhD Program in Biology, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Matthew P. Lera
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Medaya L. Torres
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Bionetics, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Mary Ellen Heavner
- Biology Department, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Janani Iyer
- KBR NASA Ames Research Center, Moffett Field, CA 94035, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Universities Space Research Association, Mountain View, CA 94043, USA
| | - Siddhita D. Mhatre
- KBR NASA Ames Research Center, Moffett Field, CA 94035, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | - Shubha Govind
- Biology Department, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
- PhD Program in Biology, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
10
|
Arch M, Vidal M, Fuentes E, Abat AS, Cardona PJ. The reproductive status determines tolerance and resistance to Mycobacterium marinum in Drosophila melanogaster. Evol Med Public Health 2023; 11:332-347. [PMID: 37868078 PMCID: PMC10590161 DOI: 10.1093/emph/eoad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/27/2023] [Indexed: 10/24/2023] Open
Abstract
Sex and reproductive status of the host have a major impact on the immune response against infection. Our aim was to understand their impact on host tolerance or resistance in the systemic Mycobacterium marinum infection of Drosophila melanogaster. We measured host survival and bacillary load at time of death, as well as expression by quantitative real-time polymerase chain reaction of immune genes (diptericin and drosomycin). We also assessed the impact of metabolic and hormonal regulation in the protection against infection by measuring expression of upd3, impl2 and ecR. Our data showed increased resistance in actively mating flies and in mated females, while reducing their tolerance to infection. Data suggests that Toll and immune deficiency (Imd) pathways determine tolerance and resistance, respectively, while higher basal levels of ecR favours the stimulation of the Imd pathway. A dual role has been found for upd3 expression, linked to increased/decreased mycobacterial load at the beginning and later in infection, respectively. Finally, impl2 expression has been related to increased resistance in non-actively mating males. These results allow further assessment on the differences between sexes and highlights the role of the reproductive status in D. melanogaster to face infections, demonstrating their importance to determine resistance and tolerance against M. marinum infection.
Collapse
Affiliation(s)
- Marta Arch
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Catalonia, Spain
| | - Maria Vidal
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Esther Fuentes
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Catalonia, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, 08916 Badalona, Catalonia, Spain
| | - Anmaw Shite Abat
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Department of Veterinary Paraclinical Studies, University of Gondar, Gondar, Ethiopia
| | - Pere-Joan Cardona
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Catalonia, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Catalonia, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, 08916 Badalona, Catalonia, Spain
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
11
|
Abstract
Endocrine signaling networks control diverse biological processes and life history traits across metazoans. In both invertebrate and vertebrate taxa, steroid hormones regulate immune system function in response to intrinsic and environmental stimuli, such as microbial infection. The mechanisms of this endocrine-immune regulation are complex and constitute an ongoing research endeavor facilitated by genetically tractable animal models. The 20-hydroxyecdysone (20E) is the major steroid hormone in arthropods, primarily studied for its essential role in mediating developmental transitions and metamorphosis; 20E also modulates innate immunity in a variety of insect taxa. This review provides an overview of our current understanding of 20E-mediated innate immune responses. The prevalence of correlations between 20E-driven developmental transitions and innate immune activation are summarized across a range of holometabolous insects. Subsequent discussion focuses on studies conducted using the extensive genetic resources available in Drosophila that have begun to reveal the mechanisms underlying 20E regulation of immunity in the contexts of both development and bacterial infection. Lastly, I propose directions for future research into 20E regulation of immunity that will advance our knowledge of how interactive endocrine networks coordinate animals' physiological responses to environmental microbes.
Collapse
Affiliation(s)
- Scott A. Keith
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
12
|
Ishitani Y, Ciacci C, Ujiié Y, Tame A, Tiboni M, Tanifuji G, Inagaki Y, Frontalini F. Fascinating strategies of marine benthic organisms to cope with emerging pollutant: Titanium dioxide nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121538. [PMID: 37011780 DOI: 10.1016/j.envpol.2023.121538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 05/20/2023]
Abstract
Titanium dioxide nanoparticles (NPs) have numerous applications, and their demands have increased as an alternative for banned sunscreen filters. However, the underlying mechanisms of their toxicity, remain largely unknown. Here, we investigate the mechanism of TiO2 NP cytotoxicity and detoxification through time-course experiments (1, 6, and 24 h) based on cellular observations and single-cell transcriptome analyses in a marine benthic foraminifer strain, derived from a common unicellular eukaryotic organism worldwide. After exposure for 1 h, cells enhanced the production of reactive oxygen species (ROS) in acidic endosomes containing TiO2 NPs as well as in mitochondria. In acidic endosomes, ROS were produced through the Fenton reaction on the surface of charged TiO2 NPs. In mitochondria, ROS were associated with porphyrin synthesis that chelated metal ions. Glutathione peroxide and neutral lipids acted as a sink for free radicals, whereas lipid peroxides were excreted to prevent further radical chain reactions. By 24 h, aggregated TiO2 NPs were encapsulated in organic compounds, possibly ceramide, and excreted as mucus, thereby preventing their further uptake. Thus, we reveal that foraminifers can tolerate the toxicity of TiO2 NPs and even prevent their further phagocytosis and uptake by trapping TiO2 NPs inside mucus. This previously unknown strategy could be applied in bioremediation to sequester NPs from the marine environment and can guide management of TiO2 pollution.
Collapse
Affiliation(s)
- Yoshiyuki Ishitani
- Institute for Extra-Cutting-Edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
| | - Caterina Ciacci
- Department of Biomolecular Science, Universita Degli Studi di Urbino, Urbino, Italy
| | - Yurika Ujiié
- Center for Advanced Marine Core Research, Kochi University, Kochi, Japan
| | - Akihiro Tame
- Department of Marine and Earth Sciences, Marine Works Japan Ltd, Yokosuka, Japan
| | - Mattia Tiboni
- Department of Biomolecular Science, Universita Degli Studi di Urbino, Urbino, Italy
| | - Goro Tanifuji
- Department of Zoology, National Museum of Nature and Science, Tsukuba, Japan
| | - Yuji Inagaki
- Center for Computational Sciences and Institute of Biological Sciences, University of Tsukuba, Tsukuba, Japan
| | - Fabrizio Frontalini
- Department of Pure and Applied Science, Universita Degli Studi di Urbino, Urbino, Italy
| |
Collapse
|
13
|
Zhang W, Wang D, Si J, Jin L, Hao Y. Gbb Regulates Blood Cell Proliferation and Differentiation through JNK and EGFR Signaling Pathways in the Drosophila Lymph Gland. Cells 2023; 12:cells12040661. [PMID: 36831328 PMCID: PMC9954825 DOI: 10.3390/cells12040661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The Drosophila lymph gland is an ideal model for studying hematopoiesis, and unraveling the mechanisms of Drosophila hematopoiesis can improve our understanding of the pathogenesis of human hematopoietic malignancies. Bone morphogenetic protein (BMP) signaling is involved in a variety of biological processes and is highly conserved between Drosophila and mammals. Decapentaplegic (Dpp)/BMP signaling is known to limit posterior signaling center (PSC) cell proliferation by repressing the protooncogene dmyc. However, the role of two other TGF-β family ligands, Glass bottom boat (Gbb) and Screw (Scw), in Drosophila hematopoiesis is currently largely unknown. Here, we showed that the loss of Gbb in the cortical zone (CZ) induced lamellocyte differentiation by overactivation of the EGFR and JNK pathways and caused excessive differentiation of plasmatocytes, mainly by the hyperactivation of EGFR. Furthermore, we found that Gbb was also required for preventing the hyperproliferation of the lymph glands by inhibiting the overactivation of the Epidermal Growth Factor Receptor (EGFR) and c-Jun N-terminal Kinase (JNK) pathways. These results further advance our understanding of the roles of Gbb protein and the BMP signaling in Drosophila hematopoiesis and the regulatory relationship between the BMP, EGFR, and JNK pathways in the proliferation and differentiation of lymph gland hemocytes.
Collapse
Affiliation(s)
- Wenhao Zhang
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Dongmei Wang
- Department of Basic Medical, Shenyang Medical College, Shenyang 110034, China
| | - Jingjing Si
- Department of Basic Medical, Shenyang Medical College, Shenyang 110034, China
| | - Lihua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Correspondence: (L.J.); (Y.H.)
| | - Yangguang Hao
- Department of Basic Medical, Shenyang Medical College, Shenyang 110034, China
- Correspondence: (L.J.); (Y.H.)
| |
Collapse
|
14
|
Heightened immune surveillance in Drosophila melanogaster populations selected for faster development and extended longevity. Heliyon 2022; 8:e12090. [PMID: 36544838 PMCID: PMC9761728 DOI: 10.1016/j.heliyon.2022.e12090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/11/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Maximization of life-history traits is under constraints due to both, limitations of resource acquisition and the restricted pathways of resource allocation. Drosophila melanogaster has served as an excellent model organism to not only unravel various trade-offs among life history traits but also numerous aspects of host immune response. Drosophila larvae are semi-aquatic that live, feed and excrete inside the food source-often over-ripe fruits and vegetables that are rich in both commensal and pathogenic microbiota that can impact the larval survival. In this study, we have used six populations of D. melanogaster, three of which are selected for faster pre-adult development and extended adult longevity, and their three ancestral controls, to explore the impact of selection on the basal immune activity in the larval stage. The larvae from selected populations had nearly significantly upregulated plasmatocyte density, significantly higher percent phagocytosis, phagocytic index and higher transcript levels of Tep3, eater and NimC1. Selected populations also had significantly upregulated crystal cell number along with higher transcript of PPO2. Out of seven tested AMPs level, Drosomycin was significantly upregulated in selected populations while Drosocin was significantly higher in control populations. ROS levels were comparable in the selected and control populations. Our results strongly suggest that enhanced basal immune activity during larval stage manages the faster development and could be responsible for comparable larval survival of selected and control populations.
Collapse
|
15
|
Chen Z, Fu T, Fu L, Liu B, Lin Y, Tang B, Hou Y. The Cellular Immunological Responses and Developmental Differences between Two Hosts Parasitized by Asecodes hispinarum. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122025. [PMID: 36556390 PMCID: PMC9781599 DOI: 10.3390/life12122025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022]
Abstract
This study aims to investigate the developmental interactions of Asecodes hispinarum Bouček on Brontispa longissima Gestro and Octodonta nipae Maulik, as well as the cellular immune responses of B. longissima and O. nipae larvae in response to parasitism by A. hispinarum, with the hope of determining the reason for the difference in larval breeding of A. hispinarum in B. longissima and O. nipae. The effects of parasitism by A. hispinarum on the larval development, hemocyte count, and proportion of the hemocyte composition of the two hosts were carried out through selective assay and non-selective assay using statistical analysis and anatomical imaging. There was no significant difference in parasitic selection for A. hispinarum on the larvae of these two beetles; however, more eggs were laid to B. longissima larvae than to O. nipae larvae after parasitism by A. hispinarum. The eggs of A. hispinarum were able to grow and develop normally inside the larvae of B. longissima, and the parasitism caused the larvae of B. longissima become rigid within 7 d, with a high larval mortality rate of 98.88%. In contrast, the eggs of A. hispinarum were not able to develop normally inside the O. nipae larvae, with a high encapsulation rate of 99.05%. In addition, the parasitism by A. hispinarum caused a 15.31% mortality rate in O. nipae larvae and prolonged the larval stage by 5 d and the pupal stage by 1 d. The number of hemocytes during the 12, 24, 48, 72, and 96 h of the four instars from O. nipae larvae was 6.08 times higher than from B. longissima larvae of the same age. After 24 h of being parasitized by A. hispinarum, the total number of hemocytes and granulocyte proportion of B. longissima larvae increased significantly. However, the total number of hemocytes and plasmatocyte proportion of O. nipae increased significantly after 24, 72, and 96 h, and the proportion of granulocytes increased significantly after 12 h post-parasitism. The results in the present study indicated that A. hispinarum was unable to successfully reproduce offspring in O. nipae, but its spawning behavior had an adverse effect on the larval development of its host. In addition, the adequate number of hemocytes and more pronounced changes in the hemocyte count and hemocyte composition ratio in the larvae after parasitization may be important factors for the successful encapsulation in O. nipae larvae.
Collapse
Affiliation(s)
- Zhiming Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Integrated Technical Service Center of Rongcheng Customs, Fuzhou 350015, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tingting Fu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lang Fu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaping Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baozhen Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Province Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Lab of Biopesticide and Chemical Biology, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
16
|
Bruno D, Montali A, Gariboldi M, Wrońska AK, Kaczmarek A, Mohamed A, Tian L, Casartelli M, Tettamanti G. Morphofunctional characterization of hemocytes in black soldier fly larvae. INSECT SCIENCE 2022. [PMID: 36065570 DOI: 10.1111/1744-7917.13111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/03/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
In insects, the cell-mediated immune response involves an active role of hemocytes in phagocytosis, nodulation, and encapsulation. Although these processes have been well documented in multiple species belonging to different insect orders, information concerning the immune response, particularly the hemocyte types and their specific function in the black soldier fly Hermetia illucens, is still limited. This is a serious gap in knowledge given the high economic relevance of H. illucens larvae in waste management strategies and considering that the saprophagous feeding habits of this dipteran species have likely shaped its immune system to efficiently respond to infections. The present study represents the first detailed characterization of black soldier fly hemocytes and provides new insights into the cell-mediated immune response of this insect. In particular, in addition to prohemocytes, we identified five hemocyte types that mount the immune response in the larva, and analyzed their behavior, role, and morphofunctional changes in response to bacterial infection and injection of chromatographic beads. Our results demonstrate that the circulating phagocytes in black soldier fly larvae are plasmatocytes. These cells also take part in nodulation and encapsulation with granulocytes and lamellocyte-like cells, developing a starting core for nodule/capsule formation to remove/encapsulate large bacterial aggregates/pathogens from the hemolymph, respectively. These processes are supported by the release of melanin precursors from crystal cells and likely by mobilizing nutrient reserves in newly circulating adipohemocytes, which could thus trophically support other hemocytes during the immune response. Finally, the regulation of the cell-mediated immune response by eicosanoids was investigated.
Collapse
Affiliation(s)
- Daniele Bruno
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Aurora Montali
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marzia Gariboldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Anna Katarzyna Wrońska
- Host Parasites Molecular Interaction Research Unit, Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kaczmarek
- Host Parasites Molecular Interaction Research Unit, Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Ling Tian
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Morena Casartelli
- Department of Biosciences, University of Milano, Milano, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, Portici, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, Portici, Italy
| |
Collapse
|
17
|
Kharrat B, Csordás G, Honti V. Peeling Back the Layers of Lymph Gland Structure and Regulation. Int J Mol Sci 2022; 23:7767. [PMID: 35887113 PMCID: PMC9319083 DOI: 10.3390/ijms23147767] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/18/2022] Open
Abstract
During the past 60 years, the fruit fly, Drosophila melanogaster, has proven to be an excellent model to study the regulation of hematopoiesis. This is not only due to the evolutionarily conserved signalling pathways and transcription factors contributing to blood cell fate, but also to convergent evolution that led to functional similarities in distinct species. An example of convergence is the compartmentalization of blood cells, which ensures the quiescence of hematopoietic stem cells and allows for the rapid reaction of the immune system upon challenges. The lymph gland, a widely studied hematopoietic organ of the Drosophila larva, represents a microenvironment with similar features and functions to classical hematopoietic stem cell niches of vertebrates. Lymph gland studies were effectively supported by the unparalleled toolkit developed in Drosophila, which enabled the high-resolution investigation of the cellular composition and regulatory interaction networks of the lymph gland. In this review, we summarize how our understanding of lymph gland structure and hematopoietic cell-to-cell communication evolved during the past decades and compare their analogous features to those of the vertebrate hematopoietic stem cell niche.
Collapse
Affiliation(s)
- Bayan Kharrat
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary;
- Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, P.O. Box 427, H-6720 Szeged, Hungary
| | - Gábor Csordás
- Lysosomal Degradation Research Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary;
| | - Viktor Honti
- Drosophila Blood Cell Differentiation Group, Institute of Genetics, Biological Research Centre, P.O. Box 521, H-6701 Szeged, Hungary;
| |
Collapse
|
18
|
Zhang MM, Luo LL, Liu Y, Wang GJ, Zheng HH, Liu XS, Wang JL. Calcium and integrin-binding protein 1-like interacting with an integrin α-cytoplasmic domain facilitates cellular immunity in Helicoverpa armigera. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104379. [PMID: 35231466 DOI: 10.1016/j.dci.2022.104379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Integrins are transmembrane receptor heterodimers composed of α and β subunits. They are known to mediate extracellular signals to promote cell adhesion and spreading, and are therefore essential for cellular immunity. However, proteins that bind to integrin cytoplasmic domains and mediate intracellular signaling to promote cell adhesion require identification. Calcium and integrin-binding protein 1 (CIB1) that binds to the integrin α-cytoplasmic domain has rarely been examined in insects. In this study, we found that 20-hydroxyecdysone promoted cell phagocytosis and spreading in Helicoverpa armigera. Transcriptomic analyses of hemocytes identified an integrin α gene (HaINTα-PS1) whose expression could be induced by either 20-hydroxyecdysone injection or bead challenge. Isothermal titration calorimetry assays showed that H. armigera CIB1-like (HaCIB1-like) weakly bound to the cytoplasmic domain of HaINTα-PS1 in the presence of calcium. HaINTα-PS1 or HaCIB1-like knockdown inhibited hemocytic encapsulation and phagocytosis, and plasmatocyte spreading. Moreover, HaCIB1-like overexpression in a H. armigera epidermal cell line overexpanded cells and impaired cell phagocytosis. Thus, insect CIB1-like potentially interacted with integrin α-cytoplasmic domain and facilitated cell adhesion. This study enriches our understanding of the molecular mechanism underlying integrin-mediated cellular immunity in insects.
Collapse
Affiliation(s)
- Ming-Ming Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ling-Ling Luo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yu Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Gui-Jie Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Huan-Huan Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xu-Sheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
19
|
Koranteng F, Cho B, Shim J. Intrinsic and Extrinsic Regulation of Hematopoiesis in Drosophila. Mol Cells 2022; 45:101-108. [PMID: 35253654 PMCID: PMC8926866 DOI: 10.14348/molcells.2022.2039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 11/27/2022] Open
Abstract
Drosophila melanogaster lymph gland, the primary site of hematopoiesis, contains myeloid-like progenitor cells that differentiate into functional hemocytes in the circulation of pupae and adults. Fly hemocytes are dynamic and plastic, and they play diverse roles in the innate immune response and wound healing. Various hematopoietic regulators in the lymph gland ensure the developmental and functional balance between progenitors and mature blood cells. In addition, systemic factors, such as nutrient availability and sensory inputs, integrate environmental variabilities to synchronize the blood development in the lymph gland with larval growth, physiology, and immunity. This review examines the intrinsic and extrinsic factors determining the progenitor states during hemocyte development in the lymph gland and provides new insights for further studies that may extend the frontier of our collective knowledge on hematopoiesis and innate immunity.
Collapse
Affiliation(s)
| | - Bumsik Cho
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Jiwon Shim
- Department of Life Science, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Science, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
20
|
Abstract
Inflammatory response in Drosophila to sterile (axenic) injury in embryos and adults has received some attention in recent years, and most concentrate on the events at the injury site. Here we focus on the effect sterile injury has on the hematopoietic organ, the lymph gland, and the circulating blood cells in the larva, the developmental stage at which major events of hematopoiesis are evident. In mammals, injury activates Toll-like receptor/NF-κB signaling in macrophages, which then express and secrete secondary, proinflammatory cytokines. In Drosophila larvae, distal puncture injury of the body wall epidermis causes a rapid activation of Toll and Jun kinase (JNK) signaling throughout the hematopoietic system and the differentiation of a unique blood cell type, the lamellocyte. Furthermore, we find that Toll and JNK signaling are coupled in their activation. Secondary to this Toll/JNK response, a cytokine, Upd3, is induced as a Toll pathway transcriptional target, which then promotes JAK/STAT signaling within the blood cells. Toll and JAK/STAT signaling are required for the emergence of the injury-induced lamellocytes. This is akin to the derivation of specialized macrophages in mammalian systems. Upstream, at the injury site, a Duox- and peroxide-dependent signal causes the activation of the proteases Grass and SPE, needed for the activation of the Toll-ligand Spz, but microbial sensors or the proteases most closely associated with them during septic injury are not involved in the axenic inflammatory response.
Collapse
|
21
|
Spratford CM, Goins LM, Chi F, Girard JR, Macias SN, Ho VW, Banerjee U. Intermediate progenitor cells provide a transition between hematopoietic progenitors and their differentiated descendants. Development 2021; 148:273785. [PMID: 34918741 PMCID: PMC8722385 DOI: 10.1242/dev.200216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Genetic and genomic analysis in Drosophila suggests that hematopoietic progenitors likely transition into terminal fates via intermediate progenitors (IPs) with some characteristics of either, but perhaps maintaining IP-specific markers. In the past, IPs have not been directly visualized and investigated owing to lack of appropriate genetic tools. Here, we report a Split GAL4 construct, CHIZ-GAL4, that identifies IPs as cells physically juxtaposed between true progenitors and differentiating hemocytes. IPs are a distinct cell type with a unique cell-cycle profile and they remain multipotent for all blood cell fates. In addition, through their dynamic control of the Notch ligand Serrate, IPs specify the fate of direct neighbors. The Ras pathway controls the number of IP cells and promotes their transition into differentiating cells. This study suggests that it would be useful to characterize such intermediate populations of cells in mammalian hematopoietic systems.
Collapse
Affiliation(s)
- Carrie M Spratford
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA
| | - Lauren M Goins
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA
| | - Fangtao Chi
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, USA
| | - Juliet R Girard
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA
| | - Savannah N Macias
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA
| | - Vivien W Ho
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA
| | - Utpal Banerjee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, USA.,Department of Biological Chemistry, University of California, Los Angeles, USA
| |
Collapse
|
22
|
Girard JR, Goins LM, Vuu DM, Sharpley MS, Spratford CM, Mantri SR, Banerjee U. Paths and pathways that generate cell-type heterogeneity and developmental progression in hematopoiesis. eLife 2021; 10:e67516. [PMID: 34713801 PMCID: PMC8610493 DOI: 10.7554/elife.67516] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022] Open
Abstract
Mechanistic studies of Drosophila lymph gland hematopoiesis are limited by the availability of cell-type-specific markers. Using a combination of bulk RNA-Seq of FACS-sorted cells, single-cell RNA-Seq, and genetic dissection, we identify new blood cell subpopulations along a developmental trajectory with multiple paths to mature cell types. This provides functional insights into key developmental processes and signaling pathways. We highlight metabolism as a driver of development, show that graded Pointed expression allows distinct roles in successive developmental steps, and that mature crystal cells specifically express an alternate isoform of Hypoxia-inducible factor (Hif/Sima). Mechanistically, the Musashi-regulated protein Numb facilitates Sima-dependent non-canonical, and inhibits canonical, Notch signaling. Broadly, we find that prior to making a fate choice, a progenitor selects between alternative, biologically relevant, transitory states allowing smooth transitions reflective of combinatorial expressions rather than stepwise binary decisions. Increasingly, this view is gaining support in mammalian hematopoiesis.
Collapse
Affiliation(s)
- Juliet R Girard
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Lauren M Goins
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Dung M Vuu
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Mark S Sharpley
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Carrie M Spratford
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Shreya R Mantri
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
23
|
Wenzel AN, Apel PJ, Gosnell HL, Grider DJ. Fortuitous Eradication of an Aggressive Basal Cell Carcinoma Via Foreign Body Reaction to a Polyurethane Vacuum-Assisted Closure Sponge. Am J Dermatopathol 2021; 43:740-745. [PMID: 33534210 DOI: 10.1097/dad.0000000000001912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT The foreign body reaction (FBR) is a well-documented immune reaction. Much of the literature on FBRs has focused on minimizing this immune response to mitigate the impact on medical implants. Here, we present a case that illustrates a serendipitous oncologic outcome from an FBR. A 54-year-old man presented with an aggressive basal cell carcinoma (BCC). At the first resection, he had broadly positive surgical margins. The surgical wound was temporized with a polyurethane wound vacuum assisted closure (VAC) device. He was lost to follow-up having retained a VAC sponge for a total of 12 weeks. A wide re-resection was performed 7 months after the initial resection. Exhaustive examination of the resected specimen was performed. There was an absence of any BCC, replaced by a widespread chronic FBR to polyurethane VAC sponge particles. This suggests that the foreign body immune response was sufficiently intense to eradicate any remaining BCC. This case illustrates the concept of an FBR as a novel method of local immunotherapy.
Collapse
Affiliation(s)
| | - Peter J Apel
- Virginia Tech Carilion School of Medicine, Roanoke, VA
- Department of Orthopaedic Surgery, Carilion Clinic, Roanoke, VA; and
| | | | - Douglas J Grider
- Virginia Tech Carilion School of Medicine, Roanoke, VA
- Dominion Pathology Associates, Roanoke VA
| |
Collapse
|
24
|
Yadav RK, Gautam DK, Muj C, Gajula Balija MB, Paddibhatla I. Methotrexate negatively acts on inflammatory responses triggered in Drosophila larva with hyperactive JAK/STAT pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104161. [PMID: 34107277 DOI: 10.1016/j.dci.2021.104161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Drosophila is a valuable paradigm for studying tumorigenesis and cancer. Mutations causing hematopoietic aberrations and melanotic-blood-tumors found in Drosophila mutants are vastly studied. Clear understanding about the blood cells, signaling pathways and the tissues affected during hematopoietic tumor formation provide an opportunity to delineate the effects of cancer therapeutics. Using this simple hematopoietic archetype, we elucidated the effects of the anti-cancer drug, Methotrexate (MTX) on immune responses in two scenarios i.e. against wasp infection and in hematopoietic mutant, hopTum-l. Through this in vivo study we show that MTX impedes the immune responses against wasp infection including the encapsulation response. We further observed that MTX reduces the tumor penetrance in gain-of-function mutants of JAK/STAT pathway, hopTum-l. MTX is anti-inflammatory as it hinders not only the immune responses of acute inflammation as observed after wasp infestation, but also chronic inflammatory responses associated with constitutively activated JAK/STAT pathway mutant (hopTum-l) carrying blood tumors.
Collapse
Affiliation(s)
- Ravi Kant Yadav
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Dushyant Kumar Gautam
- Department of Biochemistry, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Chukhu Muj
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Madhu Babu Gajula Balija
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| | - Indira Paddibhatla
- Department of Biochemistry, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
25
|
Wang GJ, Wang WW, Liu Y, Chai LQ, Wang GX, Liu XS, Wang YF, Wang JL. Steroid hormone 20-hydroxyecdysone promotes CTL1-mediated cellular immunity in Helicoverpa armigera. INSECT SCIENCE 2021; 28:1399-1413. [PMID: 32677271 DOI: 10.1111/1744-7917.12851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Mermithid nematodes, such as Ovomermis sinensis, are used as biological control agents against many insect pests, including cotton bollworm (Helicoverpa armigera). However, given the host's robust immune system, the infection rate of O. sinensis is low, thus restricting its widespread use. To understand the host defense mechanisms against mermithid nematodes, we identified and characterized a protein involved in the recognition of O. sinensis, the potential O. sinensis-binding protein C-type lectin 1 (HaCTL1a and/or HaCTL1b), which was eluted from the surface of O. sinensis after incubation with H. armigera plasma. HaCTL1b is homologous to the previously reported HaCTL1a protein. HaCTL1 was predominantly expressed in hemocytes and was induced by the steroid hormone 20-hydroxyecdysone through ecdysone receptor (HaEcR) or ultraspiracle (HaUSP), or both. Binding assays confirmed the interactions of the HaCTL1 proteins with O. sinensis but not with Romanomermis wuchangensis, a parasitic nematode of mosquito. Moreover, the HaCTL1 proteins were secreted into the hemocoel and promoted hemocyte-mediated encapsulation and phagocytosis. A knockdown of HaEcR and/or HaUSP resulted in compromised encapsulation and phagocytosis. Thus, HaCTL1 appears to modulate cellular immunity in the defense against parasitic nematodes, and the 20-hydroxyecdysone-HaEcR-HaUSP complex is involved in regulating the process.
Collapse
Affiliation(s)
- Gui-Jie Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wen-Wen Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yu Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Lian-Qin Chai
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Guo-Xiu Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xu-Sheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
26
|
Mortimer NT, Fischer ML, Waring AL, Kr P, Kacsoh BZ, Brantley SE, Keebaugh ES, Hill J, Lark C, Martin J, Bains P, Lee J, Vrailas-Mortimer AD, Schlenke TA. Extracellular matrix protein N-glycosylation mediates immune self-tolerance in Drosophila melanogaster. Proc Natl Acad Sci U S A 2021; 118:e2017460118. [PMID: 34544850 PMCID: PMC8488588 DOI: 10.1073/pnas.2017460118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
In order to respond to infection, hosts must distinguish pathogens from their own tissues. This allows for the precise targeting of immune responses against pathogens and also ensures self-tolerance, the ability of the host to protect self tissues from immune damage. One way to maintain self-tolerance is to evolve a self signal and suppress any immune response directed at tissues that carry this signal. Here, we characterize the Drosophila tuSz1 mutant strain, which mounts an aberrant immune response against its own fat body. We demonstrate that this autoimmunity is the result of two mutations: 1) a mutation in the GCS1 gene that disrupts N-glycosylation of extracellular matrix proteins covering the fat body, and 2) a mutation in the Drosophila Janus Kinase ortholog that causes precocious activation of hemocytes. Our data indicate that N-glycans attached to extracellular matrix proteins serve as a self signal and that activated hemocytes attack tissues lacking this signal. The simplicity of this invertebrate self-recognition system and the ubiquity of its constituent parts suggests it may have functional homologs across animals.
Collapse
Affiliation(s)
- Nathan T Mortimer
- School of Biological Sciences, Illinois State University, Normal, IL 61790;
| | - Mary L Fischer
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Ashley L Waring
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Pooja Kr
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Balint Z Kacsoh
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Susanna E Brantley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Joshua Hill
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Chris Lark
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Julia Martin
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Pravleen Bains
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | - Jonathan Lee
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | | | - Todd A Schlenke
- Department of Entomology, University of Arizona, Tucson, AZ 85719
| |
Collapse
|
27
|
Kanwal A, Joshi PV, Mandal S, Mandal L. Ubx-Collier signaling cascade maintains blood progenitors in the posterior lobes of the Drosophila larval lymph gland. PLoS Genet 2021; 17:e1009709. [PMID: 34370733 PMCID: PMC8376192 DOI: 10.1371/journal.pgen.1009709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/19/2021] [Accepted: 07/12/2021] [Indexed: 12/02/2022] Open
Abstract
Drosophila larval hematopoiesis occurs in a specialized multi-lobed organ called the lymph gland. Extensive characterization of the organ has provided mechanistic insights into events related to developmental hematopoiesis. Spanning from the thoracic to the abdominal segment of the larvae, this organ comprises a pair of primary, secondary, and tertiary lobes. Much of our understanding arises from the studies on the primary lobe, while the secondary and tertiary lobes have remained mostly unexplored. Previous studies have inferred that these lobes are composed of progenitors that differentiate during pupation; however, the mechanistic basis of this extended progenitor state remains unclear. This study shows that posterior lobe progenitors are maintained by a local signaling center defined by Ubx and Collier in the tertiary lobe. This Ubx zone in the tertiary lobe shares several markers with the niche of the primary lobe. Ubx domain regulates the homeostasis of the posterior lobe progenitors in normal development and an immune-challenged scenario. Our study establishes the lymph gland as a model to tease out how the progenitors interface with the dual niches within an organ during development and disorders.
Collapse
Affiliation(s)
- Aditya Kanwal
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Pranav Vijay Joshi
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Sudip Mandal
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Lolitika Mandal
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
28
|
Ramesh P, Dey NS, Kanwal A, Mandal S, Mandal L. Relish plays a dynamic role in the niche to modulate Drosophila blood progenitor homeostasis in development and infection. eLife 2021; 10:67158. [PMID: 34292149 PMCID: PMC8363268 DOI: 10.7554/elife.67158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Immune challenges demand the gearing up of basal hematopoiesis to combat infection. Little is known about how during development, this switch is achieved to take care of the insult. Here, we show that the hematopoietic niche of the larval lymph gland of Drosophila senses immune challenge and reacts to it quickly through the nuclear factor-κB (NF-κB), Relish, a component of the immune deficiency (Imd) pathway. During development, Relish is triggered by ecdysone signaling in the hematopoietic niche to maintain the blood progenitors. Loss of Relish causes an alteration in the cytoskeletal architecture of the niche cells in a Jun Kinase-dependent manner, resulting in the trapping of Hh implicated in progenitor maintenance. Notably, during infection, downregulation of Relish in the niche tilts the maintenance program toward precocious differentiation, thereby bolstering the cellular arm of the immune response.
Collapse
Affiliation(s)
- Parvathy Ramesh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Nidhi Sharma Dey
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Aditya Kanwal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Sudip Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Molecular Cell and Developmental Biology Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| | - Lolitika Mandal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, India.,Developmental Genetics Laboratory, IISER Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
29
|
A parasitoid wasp of Drosophila employs preemptive and reactive strategies to deplete its host's blood cells. PLoS Pathog 2021; 17:e1009615. [PMID: 34048506 PMCID: PMC8191917 DOI: 10.1371/journal.ppat.1009615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/10/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022] Open
Abstract
The wasps Leptopilina heterotoma parasitize and ingest their Drosophila hosts. They produce extracellular vesicles (EVs) in the venom that are packed with proteins, some of which perform immune suppressive functions. EV interactions with blood cells of host larvae are linked to hematopoietic depletion, immune suppression, and parasite success. But how EVs disperse within the host, enter and kill hematopoietic cells is not well understood. Using an antibody marker for L. heterotoma EVs, we show that these parasite-derived structures are readily distributed within the hosts’ hemolymphatic system. EVs converge around the tightly clustered cells of the posterior signaling center (PSC) of the larval lymph gland, a small hematopoietic organ in Drosophila. The PSC serves as a source of developmental signals in naïve animals. In wasp-infected animals, the PSC directs the differentiation of lymph gland progenitors into lamellocytes. These lamellocytes are needed to encapsulate the wasp egg and block parasite development. We found that L. heterotoma infection disassembles the PSC and PSC cells disperse into the disintegrating lymph gland lobes. Genetically manipulated PSC-less lymph glands remain non-responsive and largely intact in the face of L. heterotoma infection. We also show that the larval lymph gland progenitors use the endocytic machinery to internalize EVs. Once inside, L. heterotoma EVs damage the Rab7- and LAMP-positive late endocytic and phagolysosomal compartments. Rab5 maintains hematopoietic and immune quiescence as Rab5 knockdown results in hematopoietic over-proliferation and ectopic lamellocyte differentiation. Thus, both aspects of anti-parasite immunity, i.e., (a) phagocytosis of the wasp’s immune-suppressive EVs, and (b) progenitor differentiation for wasp egg encapsulation reside in the lymph gland. These results help explain why the lymph gland is specifically and precisely targeted for destruction. The parasite’s simultaneous and multipronged approach to block cellular immunity not only eliminates blood cells, but also tactically blocks the genetic programming needed for supplementary hematopoietic differentiation necessary for host success. In addition to its known functions in hematopoiesis, our results highlight a previously unrecognized phagocytic role of the lymph gland in cellular immunity. EV-mediated virulence strategies described for L. heterotoma are likely to be shared by other parasitoid wasps; their understanding can improve the design and development of novel therapeutics and biopesticides as well as help protect biodiversity. Parasitoid wasps serve as biological control agents of agricultural insect pests and are worthy of study. Many parasitic wasps develop inside their hosts to emerge as free-living adults. To overcome the resistance of their hosts, parasitic wasps use varied and ingenious strategies such as mimicry, evasion, bioactive venom, virus-like particles, viruses, and extracellular vesicles (EVs). We describe the effects of a unique class of EVs containing virulence proteins and produced in the venom of wasps that parasitize fruit flies of Drosophila species. EVs from Leptopilina heterotoma are widely distributed throughout the Drosophila hosts’ circulatory system after infection. They enter and kill macrophages by destroying the very same subcellular machinery that facilitates their uptake. An important protein in this process, Rab5, is needed to maintain the identity of the macrophage; when Rab5 function is reduced, macrophages turn into a different cell type called lamellocytes. Activities in the EVs can eliminate lamellocytes as well. EVs also interfere with the hosts’ genetic program that promotes lamellocyte differentiation needed to block parasite development. Thus, wasps combine specific preemptive and reactive strategies to deplete their hosts of the very cells that would otherwise sequester and kill them. These findings have applied value in agricultural pest control and medical therapeutics.
Collapse
|
30
|
Mase A, Augsburger J, Brückner K. Macrophages and Their Organ Locations Shape Each Other in Development and Homeostasis - A Drosophila Perspective. Front Cell Dev Biol 2021; 9:630272. [PMID: 33777939 PMCID: PMC7991785 DOI: 10.3389/fcell.2021.630272] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Across the animal kingdom, macrophages are known for their functions in innate immunity, but they also play key roles in development and homeostasis. Recent insights from single cell profiling and other approaches in the invertebrate model organism Drosophila melanogaster reveal substantial diversity among Drosophila macrophages (plasmatocytes). Together with vertebrate studies that show genuine expression signatures of macrophages based on their organ microenvironments, it is expected that Drosophila macrophage functional diversity is shaped by their anatomical locations and systemic conditions. In vivo evidence for diverse macrophage functions has already been well established by Drosophila genetics: Drosophila macrophages play key roles in various aspects of development and organogenesis, including embryogenesis and development of the nervous, digestive, and reproductive systems. Macrophages further maintain homeostasis in various organ systems and promote regeneration following organ damage and injury. The interdependence and interplay of tissues and their local macrophage populations in Drosophila have implications for understanding principles of organ development and homeostasis in a wide range of species.
Collapse
Affiliation(s)
- Anjeli Mase
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Jordan Augsburger
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
31
|
Rodrigues D, Renaud Y, VijayRaghavan K, Waltzer L, Inamdar MS. Differential activation of JAK-STAT signaling reveals functional compartmentalization in Drosophila blood progenitors. eLife 2021; 10:61409. [PMID: 33594977 PMCID: PMC7920551 DOI: 10.7554/elife.61409] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Blood cells arise from diverse pools of stem and progenitor cells. Understanding progenitor heterogeneity is a major challenge. The Drosophila larval lymph gland is a well-studied model to understand blood progenitor maintenance and recapitulates several aspects of vertebrate hematopoiesis. However in-depth analysis has focused on the anterior lobe progenitors (AP), ignoring the posterior progenitors (PP) from the posterior lobes. Using in situ expression mapping and developmental and transcriptome analysis, we reveal PP heterogeneity and identify molecular-genetic tools to study this abundant progenitor population. Functional analysis shows that PP resist differentiation upon immune challenge, in a JAK-STAT-dependent manner. Upon wasp parasitism, AP downregulate JAK-STAT signaling and form lamellocytes. In contrast, we show that PP activate STAT92E and remain undifferentiated, promoting survival. Stat92E knockdown or genetically reducing JAK-STAT signaling permits PP lamellocyte differentiation. We discuss how heterogeneity and compartmentalization allow functional segregation in response to systemic cues and could be widely applicable.
Collapse
Affiliation(s)
- Diana Rodrigues
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Shanmugha Arts, Science, Technology & Research Academy, Tamil Nadu, India
| | - Yoan Renaud
- University of Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - K VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Shanmugha Arts, Science, Technology & Research Academy, Tamil Nadu, India
| | - Lucas Waltzer
- University of Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Maneesha S Inamdar
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
32
|
Yu S, Luo F, Jin LH. Rab5 and Rab11 maintain hematopoietic homeostasis by restricting multiple signaling pathways in Drosophila. eLife 2021; 10:60870. [PMID: 33560224 PMCID: PMC7891935 DOI: 10.7554/elife.60870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/08/2021] [Indexed: 12/26/2022] Open
Abstract
The hematopoietic system of Drosophila is a powerful genetic model for studying hematopoiesis, and vesicle trafficking is important for signal transduction during various developmental processes; however, its interaction with hematopoiesis is currently largely unknown. In this article, we selected three endosome markers, Rab5, Rab7, and Rab11, that play a key role in membrane trafficking and determined whether they participate in hematopoiesis. Inhibiting Rab5 or Rab11 in hemocytes or the cortical zone (CZ) significantly induced cell overproliferation and lamellocyte formation in circulating hemocytes and lymph glands and disrupted blood cell progenitor maintenance. Lamellocyte formation involves the JNK, Toll, and Ras/EGFR signaling pathways. Notably, lamellocyte formation was also associated with JNK-dependent autophagy. In conclusion, we identified Rab5 and Rab11 as novel regulators of hematopoiesis, and our results advance the understanding of the mechanisms underlying the maintenance of hematopoietic homeostasis as well as the pathology of blood disorders such as leukemia.
Collapse
Affiliation(s)
- Shichao Yu
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Fangzhou Luo
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
33
|
Signaling cross-talk during development: Context-specific networking of Notch, NF-κB and JNK signaling pathways in Drosophila. Cell Signal 2021; 82:109937. [PMID: 33529757 DOI: 10.1016/j.cellsig.2021.109937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023]
Abstract
Multicellular organisms depend on a handful of core signaling pathways that regulate a variety of cell fate choices. Often these relatively simple signals integrate to form a large and complex signaling network to achieve a distinct developmental fate in a context-specific manner. Various pathway-dependent and independent events control the assembly of signaling complexes. Notch pathway is one such conserved signaling mechanism that integrates with other signaling pathways to exhibit a context-dependent pleiotropic output. To understand how Notch signaling provides a spectrum of distinct outputs, it is important to understand various regulatory switches involved in mediating signaling cross-talk of Notch with other pathways. Here, we review our current understanding as to how Notch signal integrates with JNK and NF-κB signaling pathways in Drosophila to regulate various developmental events such as sensory organ precursor formation, innate immunity, dorsal closure, establishment of planar cell polarity as well as during proliferation and tumor progression. We highlight the importance of conserved signaling molecules during these cross-talks and debate further possibilities of novel switches that may be involved in mediating these cross-talk events.
Collapse
|
34
|
Gautam DK, Chimata AV, Gutti RK, Paddibhatla I. Comparative hematopoiesis and signal transduction in model organisms. J Cell Physiol 2021; 236:5592-5619. [PMID: 33492678 DOI: 10.1002/jcp.30287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
Hematopoiesis is a continuous phenomenon involving the formation of hematopoietic stem cells (HSCs) giving rise to diverse functional blood cells. This developmental process of hematopoiesis is evolutionarily conserved, yet comparably different in various model organisms. Vertebrate HSCs give rise to all types of mature cells of both the myeloid and the lymphoid lineages sequentially colonizing in different anatomical tissues. Signal transduction in HSCs facilitates their potency and specifies branching of lineages. Understanding the hematopoietic signaling pathways is crucial to gain insights into their deregulation in several blood-related disorders. The focus of the review is on hematopoiesis corresponding to different model organisms and pivotal role of indispensable hematopoietic pathways. We summarize and discuss the fundamentals of blood formation in both invertebrate and vertebrates, examining the requirement of key signaling nexus in hematopoiesis. Knowledge obtained from such comparative studies associated with developmental dynamics of hematopoiesis is beneficial to explore the therapeutic options for hematopoietic diseases.
Collapse
Affiliation(s)
- Dushyant Kumar Gautam
- Department of Biochemistry, School of Life Sciences (SLS), University of Hyderabad, Hyderabad, Telangana, India
| | | | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences (SLS), University of Hyderabad, Hyderabad, Telangana, India
| | - Indira Paddibhatla
- Department of Biochemistry, School of Life Sciences (SLS), University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
35
|
Drosophila Hox genes induce melanized pseudo-tumors when misexpressed in hemocytes. Sci Rep 2021; 11:1838. [PMID: 33469139 PMCID: PMC7815749 DOI: 10.1038/s41598-021-81472-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Hox genes are early determinants of cell identity along the anterior–posterior body axis across bilaterians. Several late non-homeotic functions of Hox genes have emerged in a variety of processes involved in organogenesis in several organisms, including mammals. Several studies have reported the misexpression of Hox genes in a variety of malignancies including acute myeloid leukemia. The Hox genes Dfd, Ubx, abd-A and Abd-B were overexpressed via the UAS-Gal4 system using Cg-Gal4, Lsp2-Gal4, He-Gal4 and HmlD3-Gal4 as specific drivers. Genetic interaction was tested by bringing overexpression lines in heterozygous mutant backgrounds of Polycomb and trithorax group factors. Larvae were visually scored for melanized bodies. Circulating hemocytes were quantified and tested for differentiation. Pupal lethality was assessed. Expression of Dfd, Ubx and abd-A, but not Abd-B in the hematopoietic compartment of Drosophila led to the appearance of circulating melanized bodies, an increase in cell number, cell-autonomous proliferation, and differentiation of hemocytes. Pupal lethality and melanized pseudo-tumors were suppressed in Psc1 and esc2 backgrounds while polycomb group member mutations Pc1 and Su(z)123 and trithorax group member mutation TrlR85 enhanced the phenotype. Dfd, Ubx and abd-A are leukemogenic. Mutations in Polycomb and trithorax group members modulate the leukemogenic phenotype. Our RNAseq of Cg-Gal4 > UAS-abd-A hemocytes may contain genes important to Hox gene induced leukemias.
Collapse
|
36
|
Trainor JE, KR P, Mortimer NT. Immune Cell Production Is Targeted by Parasitoid Wasp Virulence in a Drosophila-Parasitoid Wasp Interaction. Pathogens 2021; 10:49. [PMID: 33429864 PMCID: PMC7826891 DOI: 10.3390/pathogens10010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 11/26/2022] Open
Abstract
The interactions between Drosophila melanogaster and the parasitoid wasps that infect Drosophila species provide an important model for understanding host-parasite relationships. Following parasitoid infection, D. melanogaster larvae mount a response in which immune cells (hemocytes) form a capsule around the wasp egg, which then melanizes, leading to death of the parasitoid. Previous studies have found that host hemocyte load; the number of hemocytes available for the encapsulation response; and the production of lamellocytes, an infection induced hemocyte type, are major determinants of host resistance. Parasitoids have evolved various virulence mechanisms to overcome the immune response of the D. melanogaster host, including both active immune suppression by venom proteins and passive immune evasive mechanisms. We identified a previously undescribed parasitoid species, Asobara sp. AsDen, which utilizes an active virulence mechanism to infect D. melanogaster hosts. Asobara sp. AsDen infection inhibits host hemocyte expression of msn, a member of the JNK signaling pathway, which plays a role in lamellocyte production. Asobara sp. AsDen infection restricts the production of lamellocytes as assayed by hemocyte cell morphology and altered msn expression. Our findings suggest that Asobara sp. AsDen infection alters host signaling to suppress immunity.
Collapse
Affiliation(s)
| | | | - Nathan T. Mortimer
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA; (J.E.T.); (P.K.)
| |
Collapse
|
37
|
Madhwal S, Shin M, Kapoor A, Goyal M, Joshi MK, Ur Rehman PM, Gor K, Shim J, Mukherjee T. Metabolic control of cellular immune-competency by odors in Drosophila. eLife 2020; 9:60376. [PMID: 33372660 PMCID: PMC7808736 DOI: 10.7554/elife.60376] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022] Open
Abstract
Studies in different animal model systems have revealed the impact of odors on immune cells; however, any understanding on why and how odors control cellular immunity remained unclear. We find that Drosophila employ an olfactory-immune cross-talk to tune a specific cell type, the lamellocytes, from hematopoietic-progenitor cells. We show that neuronally released GABA derived upon olfactory stimulation is utilized by blood-progenitor cells as a metabolite and through its catabolism, these cells stabilize Sima/HIFα protein. Sima capacitates blood-progenitor cells with the ability to initiate lamellocyte differentiation. This systemic axis becomes relevant for larvae dwelling in wasp-infested environments where chances of infection are high. By co-opting the olfactory route, the preconditioned animals elevate their systemic GABA levels leading to the upregulation of blood-progenitor cell Sima expression. This elevates their immune-potential and primes them to respond rapidly when infected with parasitic wasps. The present work highlights the importance of the olfaction in immunity and shows how odor detection during animal development is utilized to establish a long-range axis in the control of blood-progenitor competency and immune-priming.
Collapse
Affiliation(s)
- Sukanya Madhwal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Mingyu Shin
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Ankita Kapoor
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Manisha Goyal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India.,The University of Trans-Disciplinary Health Sciences & Technology (TDU), Bengaluru, India
| | - Manish K Joshi
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | | | - Kavan Gor
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, Republic of Korea.,Research Institute for Natural Science, Hanyang University, Seoul, Republic of Korea
| | - Tina Mukherjee
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| |
Collapse
|
38
|
Leitão AB, Arunkumar R, Day JP, Geldman EM, Morin-Poulard I, Crozatier M, Jiggins FM. Constitutive activation of cellular immunity underlies the evolution of resistance to infection in Drosophila. eLife 2020; 9:59095. [PMID: 33357377 PMCID: PMC7785293 DOI: 10.7554/elife.59095] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Organisms rely on inducible and constitutive immune defences to combat infection. Constitutive immunity enables a rapid response to infection but may carry a cost for uninfected individuals, leading to the prediction that it will be favoured when infection rates are high. When we exposed populations of Drosophila melanogaster to intense parasitism by the parasitoid wasp Leptopilina boulardi, they evolved resistance by developing a more reactive cellular immune response. Using single-cell RNA sequencing, we found that immune-inducible genes had become constitutively upregulated. This was the result of resistant larvae differentiating precursors of specialized immune cells called lamellocytes that were previously only produced after infection. Therefore, populations evolved resistance by genetically hard-wiring the first steps of an induced immune response to become constitutive.
Collapse
Affiliation(s)
- Alexandre B Leitão
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Ramesh Arunkumar
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan P Day
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Emma M Geldman
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Ismaël Morin-Poulard
- Centre de Biologie du Développement, Centre de Biologie Intégrative, University Paul Sabatier, Toulouse, France
| | - Michèle Crozatier
- Centre de Biologie du Développement, Centre de Biologie Intégrative, University Paul Sabatier, Toulouse, France
| | - Francis M Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Csordás G, Gábor E, Honti V. There and back again: The mechanisms of differentiation and transdifferentiation in Drosophila blood cells. Dev Biol 2020; 469:135-143. [PMID: 33131706 DOI: 10.1016/j.ydbio.2020.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022]
Abstract
Transdifferentiation is a conversion of an already differentiated cell type into another cell type without the involvement of stem cells. This transition is well described in the case of vertebrate immune cells, as well as in Drosophila melanogaster, which therefore serves as a suitable model to study the process in detail. In the Drosophila larva, the latest single-cell sequencing methods enabled the clusterization of the phagocytic blood cells, the plasmatocytes, which are capable of transdifferentiation into encapsulating cells, the lamellocytes. Here we summarize the available data of the past years on the plasmatocyte-lamellocyte transition, and make an attempt to harmonize them with transcriptome-based blood cell clustering to better understand the underlying mechanisms of transdifferentiation in Drosophila, and in general.
Collapse
Affiliation(s)
- Gábor Csordás
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
| | - Erika Gábor
- Institute of Genetics, Biological Research Centre, Szeged, H-6701, P.O.Box 521, Hungary.
| | - Viktor Honti
- Institute of Genetics, Biological Research Centre, Szeged, H-6701, P.O.Box 521, Hungary.
| |
Collapse
|
40
|
Nunes C, Sucena É, Koyama T. Endocrine regulation of immunity in insects. FEBS J 2020; 288:3928-3947. [PMID: 33021015 DOI: 10.1111/febs.15581] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Organisms have constant contact with potentially harmful agents that can compromise their fitness. However, most of the times these agents fail to cause serious disease by virtue of the rapid and efficient immune responses elicited in the host that can range from behavioural adaptations to immune system triggering. The immune system of insects does not comprise the adaptive arm, making it less complex than that of vertebrates, but key aspects of the activation and regulation of innate immunity are conserved across different phyla. This is the case for the hormonal regulation of immunity as a part of the broad organismal responses to external conditions under different internal states. In insects, depending on the physiological circumstances, distinct hormones either enhance or suppress the immune response integrating individual (and often collective) responses physiologically and behaviourally. In this review, we provide an overview of our current knowledge on the endocrine regulation of immunity in insects, its mechanisms and implications on metabolic adaptation and behaviour. We highlight the importance of this multilayered regulation of immunity in survival and reproduction (fitness) and its dependence on the hormonal integration with other mechanisms and life-history traits.
Collapse
Affiliation(s)
| | - Élio Sucena
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Csordás G, Grawe F, Uhlirova M. Eater cooperates with Multiplexin to drive the formation of hematopoietic compartments. eLife 2020; 9:57297. [PMID: 33026342 PMCID: PMC7541089 DOI: 10.7554/elife.57297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Blood development in multicellular organisms relies on specific tissue microenvironments that nurture hematopoietic precursors and promote their self-renewal, proliferation, and differentiation. The mechanisms driving blood cell homing and their interactions with hematopoietic microenvironments remain poorly understood. Here, we use the Drosophila melanogaster model to reveal a pivotal role for basement membrane composition in the formation of hematopoietic compartments. We demonstrate that by modulating extracellular matrix components, the fly blood cells known as hemocytes can be relocated to tissue surfaces where they function similarly to their natural hematopoietic environment. We establish that the Collagen XV/XVIII ortholog Multiplexin in the tissue-basement membranes and the phagocytosis receptor Eater on the hemocytes physically interact and are necessary and sufficient to induce immune cell-tissue association. These results highlight the cooperation of Multiplexin and Eater as an integral part of a homing mechanism that specifies and maintains hematopoietic sites in Drosophila.
Collapse
Affiliation(s)
- Gábor Csordás
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ferdinand Grawe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
42
|
Cho B, Yoon SH, Lee D, Koranteng F, Tattikota SG, Cha N, Shin M, Do H, Hu Y, Oh SY, Lee D, Vipin Menon A, Moon SJ, Perrimon N, Nam JW, Shim J. Single-cell transcriptome maps of myeloid blood cell lineages in Drosophila. Nat Commun 2020; 11:4483. [PMID: 32900993 PMCID: PMC7479620 DOI: 10.1038/s41467-020-18135-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022] Open
Abstract
The Drosophila lymph gland, the larval hematopoietic organ comprised of prohemocytes and mature hemocytes, has been a valuable model for understanding mechanisms underlying hematopoiesis and immunity. Three types of mature hemocytes have been characterized in the lymph gland: plasmatocytes, lamellocytes, and crystal cells, which are analogous to vertebrate myeloid cells, yet molecular underpinnings of the lymph gland hemocytes have been less investigated. Here, we use single-cell RNA sequencing to comprehensively analyze heterogeneity of developing hemocytes in the lymph gland, and discover previously undescribed hemocyte types including adipohemocytes, stem-like prohemocytes, and intermediate prohemocytes. Additionally, we identify the developmental trajectory of hemocytes during normal development as well as the emergence of the lamellocyte lineage following active cellular immunity caused by wasp infestation. Finally, we establish similarities and differences between embryonically derived- and larval lymph gland hemocytes. Altogether, our study provides detailed insights into the hemocyte development and cellular immune responses at single-cell resolution. How the Drosophila lymph gland hemocytes develop and are regulated at a single-cell level is unclear. Here, the authors use single-cell RNA sequencing to show heterogeneity of developing hemocytes in the lymph gland and how they react to wasp infestation, and compare hemocytes from two independent origins.
Collapse
Affiliation(s)
- Bumsik Cho
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Sang-Ho Yoon
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Daewon Lee
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Ferdinand Koranteng
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | | | - Nuri Cha
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Mingyu Shin
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Hobin Do
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Sue Young Oh
- Department of Oral Biology, Yonsei University, College of Dentistry, Seoul, 03722, Republic of Korea
| | - Daehan Lee
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - A Vipin Menon
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea
| | - Seok Jun Moon
- Department of Oral Biology, Yonsei University, College of Dentistry, Seoul, 03722, Republic of Korea
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.,Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Jin-Wu Nam
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea. .,Research Institute for Natural Sciences, Hanyang University, Seoul, 04736, Republic of Korea. .,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04736, Republic of Korea.
| | - Jiwon Shim
- Department of Life Sciences, College of Natural Science, Hanyang University, Seoul, 04736, Republic of Korea. .,Research Institute for Natural Sciences, Hanyang University, Seoul, 04736, Republic of Korea. .,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04736, Republic of Korea.
| |
Collapse
|
43
|
A putative UDP-glycosyltransferase from Heterorhabditis bacteriophora suppresses antimicrobial peptide gene expression and factors related to ecdysone signaling. Sci Rep 2020; 10:12312. [PMID: 32704134 PMCID: PMC7378173 DOI: 10.1038/s41598-020-69306-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022] Open
Abstract
Insect pathogens have adopted an array of mechanisms to subvert the immune pathways of their respective hosts. Suppression may occur directly at the level of host-pathogen interactions, for instance phagocytic capacity or phenoloxidase activation, or at the upstream signaling pathways that regulate these immune effectors. Insect pathogens of the family Baculoviridae, for example, are known to produce a UDP-glycosyltransferase (UGT) that negatively regulates ecdysone signaling. Normally, ecdysone positively regulates both molting and antimicrobial peptide production, so the inactivation of ecdysone by glycosylation results in a failure of host larvae to molt, and probably a reduced antimicrobial response. Here, we examine a putative ecdysteroid glycosyltransferase, Hba_07292 (Hb-ugt-1), which was previously identified in the hemolymph-activated transcriptome of the entomopathogenic nematode Heterorhabditis bacteriophora. Injection of recombinant Hb-ugt-1 (rHb-ugt-1) into Drosophila melanogaster flies resulted in diminished upregulation of antimicrobial peptides associated with both the Toll and Immune deficiency pathways. Ecdysone was implicated in this suppression by a reduction in Broad Complex expression and reduced pupation rates in r Hb-ugt-1-injected larvae. In addition to the finding that H. bacteriophora excreted-secreted products contain glycosyltransferase activity, these results demonstrate that Hb-ugt-1 is an immunosuppressive factor and that its activity likely involves the inactivation of ecdysone.
Collapse
|
44
|
Khadilkar RJ, Ho KYL, Venkatesh B, Tanentzapf G. Integrins Modulate Extracellular Matrix Organization to Control Cell Signaling during Hematopoiesis. Curr Biol 2020; 30:3316-3329.e5. [PMID: 32649911 DOI: 10.1016/j.cub.2020.06.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 05/04/2020] [Accepted: 06/08/2020] [Indexed: 11/25/2022]
Abstract
During hematopoiesis, progenitor cells receive and interpret a diverse array of regulatory signals from their environment. These signals control the maintenance of the progenitors and regulate the production of mature blood cells. Integrins are well known in vertebrates for their roles in hematopoiesis, particularly in assisting in the migration to, as well as the physical attachment of, progenitors to the niche. However, whether and how integrins are also involved in the signaling mechanisms that control hematopoiesis remains to be resolved. Here, we show that integrins play a key role during fly hematopoiesis in regulating cell signals that control the behavior of hematopoietic progenitors. Integrins can regulate hematopoiesis directly, via focal adhesion kinase (FAK) signaling, and indirectly, by directing extracellular matrix (ECM) assembly and/or maintenance. ECM organization and density controls blood progenitor behavior by modulating multiple signaling pathways, including bone morphogenetic protein (BMP) and Hedgehog (Hh). Furthermore, we show that integrins and the ECM are reduced following infection, which may assist in activating the immune response. Our results provide mechanistic insight into how integrins can shape the signaling environment around hematopoietic progenitors.
Collapse
Affiliation(s)
- Rohan J Khadilkar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kevin Y L Ho
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Bhavya Venkatesh
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
45
|
Koranteng F, Cha N, Shin M, Shim J. The Role of Lozenge in Drosophila Hematopoiesis. Mol Cells 2020; 43:114-120. [PMID: 31992020 PMCID: PMC7057836 DOI: 10.14348/molcells.2019.0249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/04/2019] [Indexed: 01/20/2023] Open
Abstract
Drosophila hematopoiesis is comparable to mammalian differentiation of myeloid lineages, and therefore, has been a useful model organism in illustrating the molecular and genetic basis for hematopoiesis. Multiple novel regulators and signals have been uncovered using the tools of Drosophila genetics. A Runt domain protein, lozenge, is one of the first players recognized and closely studied in the hematopoietic lineage specification. Here, we explore the role of lozenge in determination of prohemocytes into a special class of hemocyte, namely the crystal cell, and discuss molecules and signals controlling the lozenge function and its implication in immunity and stress response. Given the highly conserved nature of Runt domain in both invertebrates and vertebrates, studies in Drosophila will enlighten our perspectives on Runx-mediated development and pathologies.
Collapse
Affiliation(s)
| | - Nuri Cha
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Mingyu Shin
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Jiwon Shim
- Department of Life Science, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Science, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 0476, Korea
| |
Collapse
|
46
|
Kurihara M, Komatsu K, Awane R, Inoue YH. Loss of Histone Locus Bodies in the Mature Hemocytes of Larval Lymph Gland Result in Hyperplasia of the Tissue in mxc Mutants of Drosophila. Int J Mol Sci 2020; 21:E1586. [PMID: 32111032 PMCID: PMC7084650 DOI: 10.3390/ijms21051586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023] Open
Abstract
Mutations in the multi sex combs (mxc) gene in Drosophila results in malignant hyperplasia in larval hematopoietic tissues, called lymph glands (LG). mxc encodes a component of the histone locus body (HLB) that is essential for cell cycle-dependent transcription and processing of histone mRNAs. The mammalian nuclear protein ataxia-telangiectasia (NPAT) gene, encoded by the responsible gene for ataxia telangiectasia, is a functional Mxc orthologue. However, their roles in tumorigenesis are unclear. Genetic analyses of the mxc mutants and larvae having LG-specific depletion revealed that a reduced activity of the gene resulted in the hyperplasia, which is caused by hyper-proliferation of immature LG cells. The depletion of mxc in mature hemocytes of the LG resulted in the hyperplasia. Furthermore, the inhibition of HLB formation was required for LG hyperplasia. In the mutant larvae, the total mRNA levels of the five canonical histones decreased, and abnormal forms of polyadenylated histone mRNAs, detected rarely in normal larvae, were generated. The ectopic expression of the polyadenylated mRNAs was sufficient for the reproduction of the hyperplasia. The loss of HLB function, especially 3-end processing of histone mRNAs, is critical for malignant LG hyperplasia in this leukemia model in Drosophila. We propose that mxc is involved in the activation to induce adenosine deaminase-related growth factor A (Adgf-A), which suppresses immature cell proliferation in LG.
Collapse
Affiliation(s)
| | | | | | - Yoshihiro H. Inoue
- Department of Insect Biomedical Research, Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan; (M.K.); (K.K.); (R.A.)
| |
Collapse
|
47
|
Shin M, Cha N, Koranteng F, Cho B, Shim J. Subpopulation of Macrophage-Like Plasmatocytes Attenuates Systemic Growth via JAK/STAT in the Drosophila Fat Body. Front Immunol 2020; 11:63. [PMID: 32082322 PMCID: PMC7005108 DOI: 10.3389/fimmu.2020.00063] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
Drosophila hemocytes, like those of mammals, are given rise from two distinctive phases during both the embryonic and larval hematopoiesis. Embryonically derived hemocytes, mostly composed of macrophage-like plasmatocytes, are largely identified by genetic markers. However, the cellular diversity and distinct functions of possible subpopulations within plasmatocytes have not been explored in Drosophila larvae. Here, we show that larval plasmatocytes exhibit differential expressions of Hemolectin (Hml) and Peroxidasin (Pxn) during development. Moreover, removal of plasmatocytes by overexpressing pro-apoptotic genes, hid and reaper in Hml-positive plasmatocytes, feeding high sucrose diet, or wasp infestation results in increased circulating hemocytes that are Hml-negative. Interestingly these Hml-negative plasmatocytes retain Pxn expression, and animals expressing Hml-negative and Pxn-positive subtype largely attenuate growth and abrogate metabolism. Furthermore, elevated levels of a cytokine, unpaired 3, are detected when Hml-positive hemocytes are ablated, which in turn activates JAK/STAT activity in several tissues including the fat body. Finally, we observed that insulin signaling is inhibited in this background, which can be recovered by concurrent loss of upd3. Overall, this study highlights heterogeneity in Drosophila plasmatocytes and a functional plasticity of each subtype, which reaffirms extension of their role beyond immunity into metabolic regulation for cooperatively maintaining internal homeostatic balance.
Collapse
Affiliation(s)
- Mingyu Shin
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, South Korea
| | - Nuri Cha
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, South Korea
| | - Ferdinand Koranteng
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, South Korea
| | - Bumsik Cho
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, South Korea
| | - Jiwon Shim
- Department of Life Science, College of Natural Science, Hanyang University, Seoul, South Korea
- Research Institute for Natural Science, College of Natural Science, Hanyang University, Seoul, South Korea
- Research Institute for Convergence of Basic Sciences, College of Natural Science, Hanyang University, Seoul, South Korea
| |
Collapse
|
48
|
Abstract
Immune priming occurs when a past infection experience leads to a more effective immune response upon a secondary exposure to the infection or pathogen. In some instances, parents are able to transmit immune priming to their offspring, creating a subsequent generation with a superior immune capability, through processes that are not yet fully understood. Using a parasitoid wasp, which infects larval stages of Drosophila melanogaster, we describe an example of an intergenerational inheritance of immune priming. This phenomenon is anticipatory in nature and does not rely on parental infection, but rather, when adult fruit flies are cohabitated with a parasitic wasp, they produce offspring that are more capable of mounting a successful immune response against a parasitic macro-infection. This increase in offspring survival correlates with a more rapid induction of lamellocytes, a specialized immune cell. RNA-sequencing of the female germline identifies several differentially expressed genes following wasp exposure, including the peptiodoglycan recognition protein-LB (PGRP-LB). We find that genetic manipulation of maternal PGRP-LB identifies this gene as a key element in this intergenerational phenotype.
Collapse
|
49
|
Creed TM, Baldeosingh R, Eberly CL, Schlee CS, Kim M, Cutler JA, Pandey A, Civin CI, Fossett NG, Kingsbury TJ. The PAX-SIX-EYA-DACH network modulates GATA-FOG function in fly hematopoiesis and human erythropoiesis. Development 2020; 147:dev.177022. [PMID: 31806659 DOI: 10.1242/dev.177022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022]
Abstract
The GATA and PAX-SIX-EYA-DACH transcriptional networks (PSEDNs) are essential for proper development across taxa. Here, we demonstrate novel PSEDN roles in vivo in Drosophila hematopoiesis and in human erythropoiesis in vitro Using Drosophila genetics, we show that PSEDN members function with GATA to block lamellocyte differentiation and maintain the prohemocyte pool. Overexpression of human SIX1 stimulated erythroid differentiation of human erythroleukemia TF1 cells and primary hematopoietic stem-progenitor cells. Conversely, SIX1 knockout impaired erythropoiesis in both cell types. SIX1 stimulation of erythropoiesis required GATA1, as SIX1 overexpression failed to drive erythroid phenotypes and gene expression patterns in GATA1 knockout cells. SIX1 can associate with GATA1 and stimulate GATA1-mediated gene transcription, suggesting that SIX1-GATA1 physical interactions contribute to the observed functional interactions. In addition, both fly and human SIX proteins regulated GATA protein levels. Collectively, our findings demonstrate that SIX proteins enhance GATA function at multiple levels, and reveal evolutionarily conserved cooperation between the GATA and PSEDN networks that may regulate developmental processes beyond hematopoiesis.
Collapse
Affiliation(s)
- T Michael Creed
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rajkumar Baldeosingh
- Center for Vascular and Inflammatory Diseases University of Maryland School of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Christian L Eberly
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Caroline S Schlee
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - MinJung Kim
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jevon A Cutler
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Departments of Biological Chemistry, Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Curt I Civin
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nancy G Fossett
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA .,Center for Vascular and Inflammatory Diseases University of Maryland School of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tami J Kingsbury
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
50
|
Kaur H, Sharma SK, Mandal S, Mandal L. Lar maintains the homeostasis of the hematopoietic organ in Drosophila by regulating insulin signaling in the niche. Development 2019; 146:dev.178202. [PMID: 31784462 DOI: 10.1242/dev.178202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
Stem cell compartments in metazoa get regulated by systemic factors as well as local stem cell niche-derived factors. However, the mechanisms by which systemic signals integrate with local factors in maintaining tissue homeostasis remain unclear. Employing the Drosophila lymph gland, which harbors differentiated blood cells, and stem-like progenitor cells and their niche, we demonstrate how a systemic signal interacts and harmonizes with local factor/s to achieve cell type-specific tissue homeostasis. Our genetic analyses uncovered a novel function of Lar, a receptor protein tyrosine phosphatase. Niche-specific loss of Lar leads to upregulated insulin signaling, causing increased niche cell proliferation and ectopic progenitor differentiation. Insulin signaling assayed by PI3K activation is downregulated after the second instar larval stage, a time point that coincides with the appearance of Lar in the hematopoietic niche. We further demonstrate that Lar physically associates with InR and serves as a negative regulator for insulin signaling in the Drosophila larval hematopoietic niche. Whether Lar serves as a localized invariable negative regulator of systemic signals such as insulin in other stem cell niches remains to be explored.
Collapse
Affiliation(s)
- Harleen Kaur
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Punjab 140306, India
| | - Shiv Kumar Sharma
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Punjab 140306, India
| | - Sudip Mandal
- Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Punjab 140306, India
| | - Lolitika Mandal
- Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Punjab 140306, India
| |
Collapse
|