1
|
Farmer AJ, Katariya R, Islam S, Rayhan MSA, Inlow MH, Ahmad SM, Schwab KR. trithorax is an essential regulator of cardiac Hox gene expression and anterior-posterior patterning of the Drosophila embryonic heart tube. Biol Open 2025; 14:bio061919. [PMID: 40172069 PMCID: PMC11993250 DOI: 10.1242/bio.061919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 04/04/2025] Open
Abstract
The precise regulation of transcription required for embryonic development is partially controlled by the actions of the Trithorax group (TrxG) and Polycomb group (PcG) proteins. The genes trithorax (trx), trithorax-related (trr), and SET domain containing 1 (Set1) encode COMPASS-like histone methyltransferases, a subgroup of TrxG proteins that impart H3K4 methylation modifications onto chromatin in order to activate and maintain transcription. In this study, we identify the role of these genes in the development of the embryonic heart of the fruit fly Drosophila melanogaster. trx, trr, and Set1 independently ensure proper cardiac cell divisions. Additionally, trx regulation of collinear Hox expression is necessary for the anterior-posterior cardiac patterning of the linear heart tube. trx inactivation in Drosophila results in a remarkable homeotic transformation of the posterior heart-proper segment into an aorta-like fate due to the loss of posterior abdominal A expression. Furthermore, cardiac expression of Antennapedia, Ultrabithorax, and Abdominal B is also deregulated in trx mutants. Together, these data suggest that the COMPASS-like histone methyltransferases are essential developmental regulators of cardiogenesis, being necessary for both cardiac cell divisions and heart patterning.
Collapse
Affiliation(s)
- Adam J. Farmer
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Rajnandani Katariya
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Sumaiya Islam
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Md. Sayeed Abu Rayhan
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Mark H. Inlow
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Department of Mathematics and Computer Science, Indiana State University, Terre Haute, IN 47809, USA
| | - Shaad M. Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Kristopher R. Schwab
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| |
Collapse
|
2
|
Schroeder AM, Nielsen T, Lynott M, Vogler G, Colas AR, Bodmer R. Nascent polypeptide-Associated Complex and Signal Recognition Particle have cardiac-specific roles in heart development and remodeling. PLoS Genet 2022; 18:e1010448. [PMID: 36240221 PMCID: PMC9604979 DOI: 10.1371/journal.pgen.1010448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 10/26/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Establishing a catalog of Congenital Heart Disease (CHD) genes and identifying functional networks would improve our understanding of its oligogenic underpinnings. Our studies identified protein biogenesis cofactors Nascent polypeptide-Associated Complex (NAC) and Signal-Recognition-Particle (SRP) as disease candidates and novel regulators of cardiac differentiation and morphogenesis. Knockdown (KD) of the alpha- (Nacα) or beta-subunit (bicaudal, bic) of NAC in the developing Drosophila heart disrupted cardiac developmental remodeling resulting in a fly with no heart. Heart loss was rescued by combined KD of Nacα with the posterior patterning Hox gene Abd-B. Consistent with a central role for this interaction in cardiogenesis, KD of Nacα in cardiac progenitors derived from human iPSCs impaired cardiac differentiation while co-KD with human HOXC12 and HOXD12 rescued this phenotype. Our data suggest that Nacα KD preprograms cardioblasts in the embryo for abortive remodeling later during metamorphosis, as Nacα KD during translation-intensive larval growth or pupal remodeling only causes moderate heart defects. KD of SRP subunits in the developing fly heart produced phenotypes that targeted specific segments and cell types, again suggesting cardiac-specific and spatially regulated activities. Together, we demonstrated directed function for NAC and SRP in heart development, and that regulation of NAC function depends on Hox genes.
Collapse
Affiliation(s)
- Analyne M. Schroeder
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- * E-mail: (AMS); (RB)
| | - Tanja Nielsen
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Michaela Lynott
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Georg Vogler
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Alexandre R. Colas
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- * E-mail: (AMS); (RB)
| |
Collapse
|
3
|
Zhang YH, Ma ZZ, Zhou H, Chao ZJ, Yan S, Shen J. Nanocarrier-delivered dsRNA suppresses wing development of green peach aphids. INSECT SCIENCE 2022; 29:669-682. [PMID: 34288425 DOI: 10.1111/1744-7917.12953] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 05/21/2023]
Abstract
RNA interference (RNAi) has developed rapidly as a potential "green" pest management strategy. At present, most studies have focused on the screening of aphid lethal genes, whereas only a few studies have been conducted on wing development, which is crucial for aphid migration and plant-virus dissemination. Here, the Myzus persicae genes vestigial (vg) and Ultrabithorax (Ubx) related to wing development, were cloned. These two genes were expressed in various tissues of 3rd-instar winged aphids. The mRNA level of vg was high in 3rd-instar nymphs, whereas the expression level of Ubx was high in adults. The nanocarrier-mediated delivery system delivered double-stranded RNAs for aphid RNAi using topical and root applications. The expression levels of vg and Ubx were downregulated by 44.0% and 36.5%, respectively, using the topical application. The simultaneous RNAi of the two target genes caused 63.3% and 32.2% wing aberration rates using topical and root applications, respectively. The current study provided a promising method for controlling aphid migration to alleviate the spread of insect transmitted plant diseases.
Collapse
Affiliation(s)
- Yun-Hui Zhang
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhong-Zheng Ma
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hang Zhou
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zi-Jian Chao
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuo Yan
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Koranteng F, Cho B, Shim J. Intrinsic and Extrinsic Regulation of Hematopoiesis in Drosophila. Mol Cells 2022; 45:101-108. [PMID: 35253654 PMCID: PMC8926866 DOI: 10.14348/molcells.2022.2039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 11/27/2022] Open
Abstract
Drosophila melanogaster lymph gland, the primary site of hematopoiesis, contains myeloid-like progenitor cells that differentiate into functional hemocytes in the circulation of pupae and adults. Fly hemocytes are dynamic and plastic, and they play diverse roles in the innate immune response and wound healing. Various hematopoietic regulators in the lymph gland ensure the developmental and functional balance between progenitors and mature blood cells. In addition, systemic factors, such as nutrient availability and sensory inputs, integrate environmental variabilities to synchronize the blood development in the lymph gland with larval growth, physiology, and immunity. This review examines the intrinsic and extrinsic factors determining the progenitor states during hemocyte development in the lymph gland and provides new insights for further studies that may extend the frontier of our collective knowledge on hematopoiesis and innate immunity.
Collapse
Affiliation(s)
| | - Bumsik Cho
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Jiwon Shim
- Department of Life Science, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Science, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
5
|
Tögel M, Pass G, Paululat A. Wing hearts in four-winged Ultrabithorax-mutant flies-the role of Hox genes in wing heart specification. Genetics 2022; 220:iyab191. [PMID: 34791231 PMCID: PMC8733458 DOI: 10.1093/genetics/iyab191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/18/2021] [Indexed: 11/14/2022] Open
Abstract
Wings are probably the most advanced evolutionary novelty in insects. In the fruit fly Drosophila melanogaster, proper development of wings requires the activity of so-called wing hearts located in the scutellum of the thorax. Immediately after the imaginal ecdysis, these accessory circulatory organs remove hemolymph and apoptotic epidermal cells from the premature wings through their pumping action. This clearing process is essential for the formation of functional wing blades. Mutant flies that lack intact wing hearts are flightless and display malformed wings. The embryonic wing heart progenitors originate from two adjacent parasegments corresponding to the later second and third thoracic segments. However, adult dipterian flies harbor only one pair of wings and only one pair of associated wing hearts in the second thoracic segment. Here we show that the specification of WHPs depends on the regulatory activity of the Hox gene Ultrabithorax. Furthermore, we analyzed the development of wing hearts in the famous four-winged Ultrabithorax (Ubx) mutant, which was first discovered by Ed Lewis in the 1970s. In these flies, the third thoracic segment is homeotically transformed into a second thoracic segment resulting in a second pair of wings instead of the club-shaped halteres. We show that a second pair of functional wing hearts is formed in the transformed third thoracic segment and that all wing hearts originate from the wild-type population of wing heart progenitor cells.
Collapse
Affiliation(s)
- Markus Tögel
- Department of Biology, Zoology/Developmental Biology, University of Osnabrück, Osnabrück D-49069, Germany
| | - Günther Pass
- Department of Evolutionary Biology, University of Vienna, Althanstraße 14, Vienna A-1090, Austria
| | - Achim Paululat
- Department of Biology, Zoology/Developmental Biology, University of Osnabrück, Osnabrück D-49069, Germany
| |
Collapse
|
6
|
Poliacikova G, Maurel-Zaffran C, Graba Y, Saurin AJ. Hox Proteins in the Regulation of Muscle Development. Front Cell Dev Biol 2021; 9:731996. [PMID: 34733846 PMCID: PMC8558437 DOI: 10.3389/fcell.2021.731996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes encode evolutionary conserved transcription factors that specify the anterior-posterior axis in all bilaterians. Being well known for their role in patterning ectoderm-derivatives, such as CNS and spinal cord, Hox protein function is also crucial in mesodermal patterning. While well described in the case of the vertebrate skeleton, much less is known about Hox functions in the development of different muscle types. In contrast to vertebrates however, studies in the fruit fly, Drosophila melanogaster, have provided precious insights into the requirement of Hox at multiple stages of the myogenic process. Here, we provide a comprehensive overview of Hox protein function in Drosophila and vertebrate muscle development, with a focus on the molecular mechanisms underlying target gene regulation in this process. Emphasizing a tight ectoderm/mesoderm cross talk for proper locomotion, we discuss shared principles between CNS and muscle lineage specification and the emerging role of Hox in neuromuscular circuit establishment.
Collapse
Affiliation(s)
| | | | - Yacine Graba
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| | - Andrew J Saurin
- Aix-Marseille University, CNRS, IBDM, UMR 7288, Marseille, France
| |
Collapse
|
7
|
King TR, Kramer J, Cheng YS, Swope D, Kramer SG. Enabled/VASP is required to mediate proper sealing of opposing cardioblasts during Drosophila dorsal vessel formation. Dev Dyn 2021; 250:1173-1190. [PMID: 33587326 DOI: 10.1002/dvdy.317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/16/2021] [Accepted: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The Drosophila dorsal vessel (DV) is comprised of two opposing rows of cardioblasts (CBs) that migrate toward the dorsal midline during development. While approaching the midline, CBs change shape, enabling dorsal and ventral attachments with their contralateral partners to create a linear tube with a central lumen. We previously demonstrated DV closure occurs via a "buttoning" mechanism where specific CBs advance ahead of their lateral neighbors, and attach creating transient holes, which eventually seal. RESULTS Here, we investigate the role of the actin-regulatory protein enabled (Ena) in DV closure. Loss of Ena results in DV cell shape and alignment defects. Live analysis of DV formation in ena mutants shows a reduction in CB leading edge protrusion length and gaps in the DV between contralateral CB pairs. These gaps occur primarily between a specific genetic subtype of CBs, which express the transcription factor seven-up (Svp) and form the ostia inflow tracts of the heart. In WT embryos these gaps between Svp+ CBs are observed transiently during the final stages of DV closure. CONCLUSIONS Our data suggest that Ena modulates the actin cytoskeleton in order to facilitate the complete sealing of the DV during the final stages of cardiac tube formation.
Collapse
Affiliation(s)
- Tiffany R King
- Graduate Program in Cell and Developmental Biology, Rutgers Graduate School of Biomedical Sciences at Robert Wood Johnson Medical School, Department of Pathology and Laboratory Medicine, Piscataway, New Jersey, USA.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph Kramer
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Yi-Shan Cheng
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - David Swope
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.,Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, USA
| | - Sunita G Kramer
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
8
|
Rodrigues D, Renaud Y, VijayRaghavan K, Waltzer L, Inamdar MS. Differential activation of JAK-STAT signaling reveals functional compartmentalization in Drosophila blood progenitors. eLife 2021; 10:61409. [PMID: 33594977 PMCID: PMC7920551 DOI: 10.7554/elife.61409] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Blood cells arise from diverse pools of stem and progenitor cells. Understanding progenitor heterogeneity is a major challenge. The Drosophila larval lymph gland is a well-studied model to understand blood progenitor maintenance and recapitulates several aspects of vertebrate hematopoiesis. However in-depth analysis has focused on the anterior lobe progenitors (AP), ignoring the posterior progenitors (PP) from the posterior lobes. Using in situ expression mapping and developmental and transcriptome analysis, we reveal PP heterogeneity and identify molecular-genetic tools to study this abundant progenitor population. Functional analysis shows that PP resist differentiation upon immune challenge, in a JAK-STAT-dependent manner. Upon wasp parasitism, AP downregulate JAK-STAT signaling and form lamellocytes. In contrast, we show that PP activate STAT92E and remain undifferentiated, promoting survival. Stat92E knockdown or genetically reducing JAK-STAT signaling permits PP lamellocyte differentiation. We discuss how heterogeneity and compartmentalization allow functional segregation in response to systemic cues and could be widely applicable.
Collapse
Affiliation(s)
- Diana Rodrigues
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Shanmugha Arts, Science, Technology & Research Academy, Tamil Nadu, India
| | - Yoan Renaud
- University of Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - K VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Shanmugha Arts, Science, Technology & Research Academy, Tamil Nadu, India
| | - Lucas Waltzer
- University of Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Maneesha S Inamdar
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
9
|
Drosophila Hox genes induce melanized pseudo-tumors when misexpressed in hemocytes. Sci Rep 2021; 11:1838. [PMID: 33469139 PMCID: PMC7815749 DOI: 10.1038/s41598-021-81472-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Hox genes are early determinants of cell identity along the anterior–posterior body axis across bilaterians. Several late non-homeotic functions of Hox genes have emerged in a variety of processes involved in organogenesis in several organisms, including mammals. Several studies have reported the misexpression of Hox genes in a variety of malignancies including acute myeloid leukemia. The Hox genes Dfd, Ubx, abd-A and Abd-B were overexpressed via the UAS-Gal4 system using Cg-Gal4, Lsp2-Gal4, He-Gal4 and HmlD3-Gal4 as specific drivers. Genetic interaction was tested by bringing overexpression lines in heterozygous mutant backgrounds of Polycomb and trithorax group factors. Larvae were visually scored for melanized bodies. Circulating hemocytes were quantified and tested for differentiation. Pupal lethality was assessed. Expression of Dfd, Ubx and abd-A, but not Abd-B in the hematopoietic compartment of Drosophila led to the appearance of circulating melanized bodies, an increase in cell number, cell-autonomous proliferation, and differentiation of hemocytes. Pupal lethality and melanized pseudo-tumors were suppressed in Psc1 and esc2 backgrounds while polycomb group member mutations Pc1 and Su(z)123 and trithorax group member mutation TrlR85 enhanced the phenotype. Dfd, Ubx and abd-A are leukemogenic. Mutations in Polycomb and trithorax group members modulate the leukemogenic phenotype. Our RNAseq of Cg-Gal4 > UAS-abd-A hemocytes may contain genes important to Hox gene induced leukemias.
Collapse
|
10
|
Overton IM, Sims AH, Owen JA, Heale BSE, Ford MJ, Lubbock ALR, Pairo-Castineira E, Essafi A. Functional Transcription Factor Target Networks Illuminate Control of Epithelial Remodelling. Cancers (Basel) 2020; 12:cancers12102823. [PMID: 33007944 PMCID: PMC7652213 DOI: 10.3390/cancers12102823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cell identity is governed by gene expression, regulated by transcription factor (TF) binding at cis-regulatory modules. Decoding the relationship between TF binding patterns and gene regulation is nontrivial, remaining a fundamental limitation in understanding cell decision-making. We developed the NetNC software to predict functionally active regulation of TF targets; demonstrated on nine datasets for the TFs Snail, Twist, and modENCODE Highly Occupied Target (HOT) regions. Snail and Twist are canonical drivers of epithelial to mesenchymal transition (EMT), a cell programme important in development, tumour progression and fibrosis. Predicted "neutral" (non-functional) TF binding always accounted for the majority (50% to 95%) of candidate target genes from statistically significant peaks and HOT regions had higher functional binding than most of the Snail and Twist datasets examined. Our results illuminated conserved gene networks that control epithelial plasticity in development and disease. We identified new gene functions and network modules including crosstalk with notch signalling and regulation of chromatin organisation, evidencing networks that reshape Waddington's epigenetic landscape during epithelial remodelling. Expression of orthologous functional TF targets discriminated breast cancer molecular subtypes and predicted novel tumour biology, with implications for precision medicine. Predicted invasion roles were validated using a tractable cell model, supporting our approach.
Collapse
Affiliation(s)
- Ian M. Overton
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
- Department of Systems Biology, Harvard University, Boston, MA 02115, USA;
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH9 3BF, UK
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
- Correspondence:
| | - Andrew H. Sims
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Jeremy A. Owen
- Department of Systems Biology, Harvard University, Boston, MA 02115, USA;
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bret S. E. Heale
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Matthew J. Ford
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Alexander L. R. Lubbock
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Erola Pairo-Castineira
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Abdelkader Essafi
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| |
Collapse
|
11
|
Banerjee U, Girard JR, Goins LM, Spratford CM. Drosophila as a Genetic Model for Hematopoiesis. Genetics 2019; 211:367-417. [PMID: 30733377 PMCID: PMC6366919 DOI: 10.1534/genetics.118.300223] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
In this FlyBook chapter, we present a survey of the current literature on the development of the hematopoietic system in Drosophila The Drosophila blood system consists entirely of cells that function in innate immunity, tissue integrity, wound healing, and various forms of stress response, and are therefore functionally similar to myeloid cells in mammals. The primary cell types are specialized for phagocytic, melanization, and encapsulation functions. As in mammalian systems, multiple sites of hematopoiesis are evident in Drosophila and the mechanisms involved in this process employ many of the same molecular strategies that exemplify blood development in humans. Drosophila blood progenitors respond to internal and external stress by coopting developmental pathways that involve both local and systemic signals. An important goal of these Drosophila studies is to develop the tools and mechanisms critical to further our understanding of human hematopoiesis during homeostasis and dysfunction.
Collapse
Affiliation(s)
- Utpal Banerjee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
- Molecular Biology Institute, University of California, Los Angeles, California 90095
- Department of Biological Chemistry, University of California, Los Angeles, California 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California 90095
| | - Juliet R Girard
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Lauren M Goins
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Carrie M Spratford
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| |
Collapse
|
12
|
Schwarz B, Hollfelder D, Scharf K, Hartmann L, Reim I. Diversification of heart progenitor cells by EGF signaling and differential modulation of ETS protein activity. eLife 2018; 7:32847. [PMID: 29869981 PMCID: PMC6033539 DOI: 10.7554/elife.32847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
For coordinated circulation, vertebrate and invertebrate hearts require stereotyped arrangements of diverse cell populations. This study explores the process of cardiac cell diversification in the Drosophila heart, focusing on the two major cardioblast subpopulations: generic working myocardial cells and inflow valve-forming ostial cardioblasts. By screening a large collection of randomly induced mutants, we identified several genes involved in cardiac patterning. Further analysis revealed an unexpected, specific requirement of EGF signaling for the specification of generic cardioblasts and a subset of pericardial cells. We demonstrate that the Tbx20 ortholog Midline acts as a direct target of the EGFR effector Pointed to repress ostial fates. Furthermore, we identified Edl/Mae, an antagonist of the ETS factor Pointed, as a novel cardiac regulator crucial for ostial cardioblast specification. Combining these findings, we propose a regulatory model in which the balance between activation of Pointed and its inhibition by Edl controls cardioblast subtype-specific gene expression. Organs contain many different kinds of cells, each specialised to perform a particular role. The fruit fly heart, for example, has two types of muscle cells: generic heart muscle cells and ostial heart muscle cells. The generic cells contract to force blood around the body, whilst the ostial cells form openings that allow blood to enter the heart. Though both types of cells carry the same genetic information, each uses a different combination of active genes to perform their role. During development, the cells must decide whether to become generic or ostial. They obtain signals from other cells in and near the developing heart, and respond by turning genes on or off. The response uses proteins called transcription factors, which bind to regulatory portions of specific genes. The sequence of signals and transcription factors that control the fate of developing heart muscle cells was not known. So Schwarz et al. examined the process using a technique called a mutagenesis screen. This involved triggering random genetic mutations and looking for flies with defects in their heart muscle cells. Matching the defects to the mutations revealed genes responsible for heart development. Schwarz et al. found that for cells to develop into generic heart muscle cells, a signal called epidermal growth factor (EGF) switches on a transcription factor called Pointed in the cells. Pointed then turns on another transcription factor that switches off the genes for ostial cells. Conversely, ostial heart muscle cells develop when a protein called ‘ETS-domain lacking’ (Edl) interferes with Pointed, allowing the ostial genes to remain on. The balance between Pointed and Edl controls which type of heart cell each cell will become. Many cells in other tissues in fruit flies also produce the Pointed and Edl proteins and respond to EGF signals. This means that this system may help to decide the fate of cells in other organs. The EGF signaling system is also present in other animals, including humans. Future work could reveal whether the same molecular decision making happens in our own hearts.
Collapse
Affiliation(s)
- Benjamin Schwarz
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik Hollfelder
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Scharf
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leonie Hartmann
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ingolf Reim
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
Yu S, Luo F, Jin LH. The Drosophila lymph gland is an ideal model for studying hematopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:60-69. [PMID: 29191551 DOI: 10.1016/j.dci.2017.11.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/30/2017] [Accepted: 11/26/2017] [Indexed: 06/07/2023]
Abstract
Hematopoiesis in Drosophila melanogaster occurs throughout the entire life cycle, from the embryo to adulthood. The healthy lymph gland, as a hematopoietic organ during the larval stage, can give rise to two mature types of hemocytes, plasmatocytes and crystal cells, which persist into the pupal and adult stages. Homeostasis of the lymph gland is tightly controlled by a series of conserved factors and signaling pathways, which also play key roles in mammalian hematopoiesis. Thus, revealing the hematopoietic mechanisms in Drosophila will advance our understanding of hematopoietic stem cells and their niche as well as leukemia in mammals. In addition, the lymph gland employs a battery of strategies to produce lamellocytes, another type of mature hemocyte, to fight against parasitic wasp eggs, making the lymph gland an important immunological organ. In this review, the developmental process of the lymph gland and the regulatory networks of hematopoiesis are summarized. Moreover, we outline the current knowledge and novel insight into homeostasis of the lymph gland.
Collapse
Affiliation(s)
- Shichao Yu
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Fangzhou Luo
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China.
| |
Collapse
|
14
|
Zmojdzian M, de Joussineau S, Da Ponte JP, Jagla K. Distinct subsets of Eve-positive pericardial cells stabilise cardiac outflow and contribute to Hox gene-triggered heart morphogenesis in Drosophila. Development 2018; 145:dev.158717. [PMID: 29247145 PMCID: PMC5825839 DOI: 10.1242/dev.158717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/11/2017] [Indexed: 11/20/2022]
Abstract
The Drosophila heart, composed of discrete subsets of cardioblasts and pericardial cells, undergoes Hox-triggered anterior-posterior morphogenesis, leading to a functional subdivision into heart proper and aorta, with its most anterior part forming a funnel-shaped cardiac outflow. Cardioblasts differentiate into Tin-positive 'working myocytes' and Svp-expressing ostial cells. However, developmental fates and functions of heart-associated pericardial cells remain elusive. Here, we show that the pericardial cells that express the transcription factor Even Skipped adopt distinct fates along the anterior-posterior axis. Among them, the most anterior Antp-Ubx-AbdA-negative cells form a novel cardiac outflow component we call the outflow hanging structure, whereas the Antp-expressing cells differentiate into wing heart precursors. Interestingly, Hox gene expression in the Even Skipped-positive cells not only underlies their antero-posterior diversification, but also influences heart morphogenesis in a non-cell-autonomous way. In brief, we identify a new cardiac outflow component derived from a subset of Even Skipped-expressing cells that stabilises the anterior heart tip, and demonstrate non-cell-autonomous effects of Hox gene expression in the Even Skipped-positive cells on heart morphogenesis.
Collapse
Affiliation(s)
- Monika Zmojdzian
- GReD - INSERM U1103, CNRS UMR6293, University of Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Svetlana de Joussineau
- GReD - INSERM U1103, CNRS UMR6293, University of Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Jean Philippe Da Ponte
- GReD - INSERM U1103, CNRS UMR6293, University of Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Krzysztof Jagla
- GReD - INSERM U1103, CNRS UMR6293, University of Clermont Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
15
|
Mönck H, Toppe D, Michael E, Sigrist S, Richter V, Hilpert D, Raccuglia D, Efetova M, Schwärzel M. A new method to characterize function of the Drosophila heart by means of optical flow. J Exp Biol 2017; 220:4644-4653. [DOI: 10.1242/jeb.164343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/09/2017] [Indexed: 01/05/2023]
Abstract
ABSTRACT
The minuteness of Drosophila poses a challenge to quantify performance of its tubular heart and computer-aided analysis of its beating heart has evolved as a resilient compromise between instrumental costs and data robustness. Here, we introduce an optical flow algorithm (OFA) that continuously registers coherent movement within videos of the beating Drosophila heart and uses this information to subscribe the time course of observation with characteristic phases of cardiac contraction or relaxation. We report that the OFA combines high discriminatory power with robustness to characterize the performance of the Drosophila tubular heart using indicators from human cardiology. We provide proof of this concept using the test bed of established cardiac conditions that include the effects of ageing, knockdown of the slow repolarizing potassium channel subunit KCNQ and ras-mediated hypertrophy of the heart tube. Together, this establishes the analysis of coherent movement as a suitable indicator of qualitative changes of the heart's beating characteristics, which improves the usefulness of Drosophila as a model of cardiac diseases.
Collapse
Affiliation(s)
- Hauke Mönck
- Freie Universität Berlin, Department of Biology/Neurobiology, Königin-Luise Strasse 28-30, D-14195 Berlin, Germany
| | - David Toppe
- Freie Universität Berlin, Department of Biology/Neurobiology, Königin-Luise Strasse 28-30, D-14195 Berlin, Germany
| | - Eva Michael
- Freie Universität Berlin, Department of Biology/Neurogenetics, Takustrasse 6, D-14195 Berlin, Germany
| | - Stephan Sigrist
- Freie Universität Berlin, Department of Biology/Neurogenetics, Takustrasse 6, D-14195 Berlin, Germany
| | - Vincent Richter
- Freie Universität Berlin, Department of Biology/Neurobiology, Königin-Luise Strasse 28-30, D-14195 Berlin, Germany
| | - Diana Hilpert
- Freie Universität Berlin, Department of Biology/Neurobiology, Königin-Luise Strasse 28-30, D-14195 Berlin, Germany
| | - Davide Raccuglia
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117 Berlin, Germany
| | - Marina Efetova
- Freie Universität Berlin, Department of Biology/Neurobiology, Königin-Luise Strasse 28-30, D-14195 Berlin, Germany
| | - Martin Schwärzel
- Freie Universität Berlin, Department of Biology/Neurobiology, Königin-Luise Strasse 28-30, D-14195 Berlin, Germany
| |
Collapse
|
16
|
Burkhard S, van Eif V, Garric L, Christoffels VM, Bakkers J. On the Evolution of the Cardiac Pacemaker. J Cardiovasc Dev Dis 2017; 4:jcdd4020004. [PMID: 29367536 PMCID: PMC5715705 DOI: 10.3390/jcdd4020004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 01/26/2023] Open
Abstract
The rhythmic contraction of the heart is initiated and controlled by an intrinsic pacemaker system. Cardiac contractions commence at very early embryonic stages and coordination remains crucial for survival. The underlying molecular mechanisms of pacemaker cell development and function are still not fully understood. Heart form and function show high evolutionary conservation. Even in simple contractile cardiac tubes in primitive invertebrates, cardiac function is controlled by intrinsic, autonomous pacemaker cells. Understanding the evolutionary origin and development of cardiac pacemaker cells will help us outline the important pathways and factors involved. Key patterning factors, such as the homeodomain transcription factors Nkx2.5 and Shox2, and the LIM-homeodomain transcription factor Islet-1, components of the T-box (Tbx), and bone morphogenic protein (Bmp) families are well conserved. Here we compare the dominant pacemaking systems in various organisms with respect to the underlying molecular regulation. Comparative analysis of the pathways involved in patterning the pacemaker domain in an evolutionary context might help us outline a common fundamental pacemaker cell gene programme. Special focus is given to pacemaker development in zebrafish, an extensively used model for vertebrate development. Finally, we conclude with a summary of highly conserved key factors in pacemaker cell development and function.
Collapse
Affiliation(s)
- Silja Burkhard
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
| | - Vincent van Eif
- Department of Medical Biology, Academic Medical Center Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Laurence Garric
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
| | - Vincent M Christoffels
- Department of Medical Biology, Academic Medical Center Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
17
|
Abstract
The development of the dorsal vessel in Drosophila is one of the first systems in which key mechanisms regulating cardiogenesis have been defined in great detail at the genetic and molecular level. Due to evolutionary conservation, these findings have also provided major inputs into studies of cardiogenesis in vertebrates. Many of the major components that control Drosophila cardiogenesis were discovered based on candidate gene approaches and their functions were defined by employing the outstanding genetic tools and molecular techniques available in this system. More recently, approaches have been taken that aim to interrogate the entire genome in order to identify novel components and describe genomic features that are pertinent to the regulation of heart development. Apart from classical forward genetic screens, the availability of the thoroughly annotated Drosophila genome sequence made new genome-wide approaches possible, which include the generation of massive numbers of RNA interference (RNAi) reagents that were used in forward genetic screens, as well as studies of the transcriptomes and proteomes of the developing heart under normal and experimentally manipulated conditions. Moreover, genome-wide chromatin immunoprecipitation experiments have been performed with the aim to define the full set of genomic binding sites of the major cardiogenic transcription factors, their relevant target genes, and a more complete picture of the regulatory network that drives cardiogenesis. This review will give an overview on these genome-wide approaches to Drosophila heart development and on computational analyses of the obtained information that ultimately aim to provide a description of this process at the systems level.
Collapse
|
18
|
Lovato TL, Cripps RM. Regulatory Networks that Direct the Development of Specialized Cell Types in the Drosophila Heart. J Cardiovasc Dev Dis 2016; 3. [PMID: 27695700 PMCID: PMC5044875 DOI: 10.3390/jcdd3020018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Drosophila cardiac tube was once thought to be a simple linear structure, however research over the past 15 years has revealed significant cellular and molecular complexity to this organ. Prior reviews have focused upon the gene regulatory networks responsible for the specification of the cardiac field and the activation of cardiac muscle structural genes. Here we focus upon highlighting the existence, function, and development of unique cell types within the dorsal vessel, and discuss their correspondence to analogous structures in the vertebrate heart.
Collapse
|
19
|
Trujillo GV, Nodal DH, Lovato CV, Hendren JD, Helander LA, Lovato TL, Bodmer R, Cripps RM. The canonical Wingless signaling pathway is required but not sufficient for inflow tract formation in the Drosophila melanogaster heart. Dev Biol 2016; 413:16-25. [PMID: 26983369 PMCID: PMC4834244 DOI: 10.1016/j.ydbio.2016.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
The inflow tracts of the embryonic Drosophila cardiac tube, termed ostia, arise in its posterior three segments from cardiac cells that co-express the homeotic transcription factor Abdominal-A (abdA), the orphan nuclear receptor Seven-up (Svp), and the signaling molecule Wingless (Wg). To define the roles of these factors in inflow tract development, we assessed their function in inflow tract formation. We demonstrate, using several criteria, that abdA, svp, and wg are each critical for normal inflow tract formation. We further show that Wg acts in an autocrine manner to impact ostia fate, and that it mediates this effect at least partially through the canonical Wg signaling pathway. By contrast, neither wg expression nor Wg signaling are sufficient for inflow tract formation when expressed in anterior Svp cells that do not normally form inflow tracts in the embryo. Instead, ectopic abd-A expression throughout the cardiac tube is required for the formation of ectopic inflow tracts, indicating that autocrine Wg signaling must be supplemented by additional Hox-dependent factors to effect inflow tract formation. Taken together, these studies define important cellular and molecular events that contribute to cardiac inflow tract development in Drosophila. Given the broad conservation of the cardiac regulatory network through evolution, our studies provide insight into mechanisms of cardiac development in higher animals.
Collapse
Affiliation(s)
- Gloriana V Trujillo
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA; Sanford Burnham Medical Research Institute, Development and Aging Program, La Jolla, CA 92037, USA
| | - Dalea H Nodal
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Candice V Lovato
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jill D Hendren
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Lynda A Helander
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - TyAnna L Lovato
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Rolf Bodmer
- Sanford Burnham Medical Research Institute, Development and Aging Program, La Jolla, CA 92037, USA
| | - Richard M Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
20
|
On the Morphology of the Drosophila Heart. J Cardiovasc Dev Dis 2016; 3:jcdd3020015. [PMID: 29367564 PMCID: PMC5715677 DOI: 10.3390/jcdd3020015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/03/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022] Open
Abstract
The circulatory system of Drosophilamelanogaster represents an easily amenable genetic model whose analysis at different levels, i.e., from single molecules up to functional anatomy, has provided new insights into general aspects of cardiogenesis, heart physiology and cardiac aging, to name a few examples. In recent years, the Drosophila heart has also attracted the attention of researchers in the field of biomedicine. This development is mainly due to the fact that several genes causing human heart disease are also present in Drosophila, where they play the same or similar roles in heart development, maintenance or physiology as their respective counterparts in humans. This review will attempt to briefly introduce the anatomy of the Drosophila circulatory system and then focus on the different cell types and non-cellular tissue that constitute the heart.
Collapse
|
21
|
Chen Z, Zhu JY, Fu Y, Richman A, Han Z. Wnt4 is required for ostia development in the Drosophila heart. Dev Biol 2016; 413:188-98. [PMID: 26994311 DOI: 10.1016/j.ydbio.2016.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 12/31/2022]
Abstract
The Drosophila ostia are valve-like structures in the heart with functional similarity to vertebrate cardiac valves. The Wnt/β-catenin signaling pathway is critical for valve development in zebrafish and mouse, but the key ligand(s) for valve induction remains unclear. We observed high levels of Wnt4 gene expression in Drosophila ostia progenitor cells, immediately prior to morphological differentiation of these cells associated with ostia formation. This differentiation was blocked in Wnt4 mutants and in flies expressing canonical Wnt signaling pathway inhibitors but not inhibitors of the planar cell polarity pathway. High levels of Wnt4 dependent activation of a canonical Wnt signaling reporter was observed specifically in ostia progenitor cells. In vertebrate valve formation Wnt signaling is active in cells undergoing early endothelial-mesenchymal transition (EMT) and the Wnt9 homolog of Drosophila Wnt4 is expressed in valve progenitors. In demonstrating an essential role for Wnt4 in ostia development we have identified similarities between molecular and cellular events associated with early EMT during vertebrate valve development and the differentiation and partial delamination of ostia progenitor cells in the process of ostia formation.
Collapse
Affiliation(s)
- Zhimin Chen
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | - Jun-Yi Zhu
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | - Yulong Fu
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | - Adam Richman
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC 20010, USA
| | - Zhe Han
- Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, 111 Michigan Ave. NW, Washington, DC 20010, USA; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA.
| |
Collapse
|
22
|
Xiong XP, Vogler G, Kurthkoti K, Samsonova A, Zhou R. SmD1 Modulates the miRNA Pathway Independently of Its Pre-mRNA Splicing Function. PLoS Genet 2015; 11:e1005475. [PMID: 26308709 PMCID: PMC4550278 DOI: 10.1371/journal.pgen.1005475] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/29/2015] [Indexed: 02/07/2023] Open
Abstract
microRNAs (miRNAs) are a class of endogenous regulatory RNAs that play a key role in myriad biological processes. Upon transcription, primary miRNA transcripts are sequentially processed by Drosha and Dicer ribonucleases into ~22-24 nt miRNAs. Subsequently, miRNAs are incorporated into the RNA-induced silencing complexes (RISCs) that contain Argonaute (AGO) family proteins and guide RISC to target RNAs via complementary base pairing, leading to post-transcriptional gene silencing by a combination of translation inhibition and mRNA destabilization. Select pre-mRNA splicing factors have been implicated in small RNA-mediated gene silencing pathways in fission yeast, worms, flies and mammals, but the underlying molecular mechanisms are not well understood. Here, we show that SmD1, a core component of the Drosophila small nuclear ribonucleoprotein particle (snRNP) implicated in splicing, is required for miRNA biogenesis and function. SmD1 interacts with both the microprocessor component Pasha and pri-miRNAs, and is indispensable for optimal miRNA biogenesis. Depletion of SmD1 impairs the assembly and function of the miRISC without significantly affecting the expression of major canonical miRNA pathway components. Moreover, SmD1 physically and functionally associates with components of the miRISC, including AGO1 and GW182. Notably, miRNA defects resulting from SmD1 silencing can be uncoupled from defects in pre-mRNA splicing, and the miRNA and splicing machineries are physically and functionally distinct entities. Finally, photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) analysis identifies numerous SmD1-binding events across the transcriptome and reveals direct SmD1-miRNA interactions. Our study suggests that SmD1 plays a direct role in miRNA-mediated gene silencing independently of its pre-mRNA splicing activity and indicates that the dual roles of splicing factors in post-transcriptional gene regulation may be evolutionarily widespread.
Collapse
Affiliation(s)
- Xiao-Peng Xiong
- Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Krishna Kurthkoti
- Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | | | - Rui Zhou
- Tumor Initiation and Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Bataillé L, Frendo JL, Vincent A. Hox control of Drosophila larval anatomy; The Alary and Thoracic Alary-Related Muscles. Mech Dev 2015. [PMID: 26219857 DOI: 10.1016/j.mod.2015.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The body plan of arthropods and vertebrates involves the formation of repetitive segments, which subsequently diversify to give rise to different body parts along the antero-posterior/rostro-caudal body axis. Anatomical variations between body segments are crucial for organ function and organismal fitness. Pioneering work in Drosophila has established that Hox transcription factors play key roles both in endowing initially identical segments with distinct identities and organogenesis. The focus of this review is on Alary Muscles (AMs) and the newly discovered Thoracic Alary-Related Muscles (TARMs). AMs and TARMs are thin muscles which together connect the circulatory system and different midgut regions to the exoskeleton, while intertwining with the respiratory tubular network. They were hypothesized to represent a new type of muscles with spring-like properties, maintaining internal organs in proper anatomical positions during larval locomotion. Both the morphology of TARMs relative to AMs, and morphogenesis of connected tissues is under Hox control, emphasizing the key role of Hox proteins in coordinating the anatomical development of the larva.
Collapse
Affiliation(s)
- Laetitia Bataillé
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse Cedex 09, France.
| | - Jean-Louis Frendo
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse Cedex 09, France
| | - Alain Vincent
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse Cedex 09, France.
| |
Collapse
|
24
|
Swope D, Kramer J, King TR, Cheng YS, Kramer SG. Cdc42 is required in a genetically distinct subset of cardiac cells during Drosophila dorsal vessel closure. Dev Biol 2014; 392:221-32. [PMID: 24949939 DOI: 10.1016/j.ydbio.2014.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/19/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
The embryonic heart tube is formed by the migration and subsequent midline convergence of two bilateral heart fields. In Drosophila the heart fields are organized into two rows of cardioblasts (CBs). While morphogenesis of the dorsal ectoderm, which lies directly above the Drosophila dorsal vessel (DV), has been extensively characterized, the migration and concomitant fundamental factors facilitating DV formation remain poorly understood. Here we provide evidence that DV closure occurs at multiple independent points along the A-P axis of the embryo in a "buttoning" pattern, divergent from the zippering mechanism observed in the overlying epidermis during dorsal closure. Moreover, we demonstrate that a genetically distinct subset of CBs is programmed to make initial contact with the opposing row. To elucidate the cellular mechanisms underlying this process, we examined the role of Rho GTPases during cardiac migration using inhibitory and overexpression approaches. We found that Cdc42 shows striking cell-type specificity during DV formation. Disruption of Cdc42 function specifically prevents CBs that express the homeobox gene tinman from completing their dorsal migration, resulting in a failure to make connections with their partnering CBs. Conversely, neighboring CBs that express the orphan nuclear receptor, seven-up, are not sensitive to Cdc42 inhibition. Furthermore, this phenotype was specific to Cdc42 and was not observed upon perturbation of Rac or Rho function. Together with the observation that DV closure occurs through the initial contralateral pairing of tinman-expressing CBs, our studies suggest that the distinct buttoning mechanism we propose for DV closure is elaborated through signaling pathways regulating Cdc42 activity in this cell type.
Collapse
Affiliation(s)
- David Swope
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Joseph Kramer
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Tiffany R King
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA; Graduate Program in Cell and Developmental Biology, Rutgers Graduate School of Biomedical Sciences at Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Yi-Shan Cheng
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Sunita G Kramer
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA; Graduate Program in Cell and Developmental Biology, Rutgers Graduate School of Biomedical Sciences at Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA.
| |
Collapse
|
25
|
Methods to assess Drosophila heart development, function and aging. Methods 2014; 68:265-72. [PMID: 24727147 DOI: 10.1016/j.ymeth.2014.03.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 12/11/2022] Open
Abstract
In recent years the Drosophila heart has become an established model for many different aspects of human cardiac disease. This model has allowed identification of disease-causing mechanisms underlying congenital heart disease and cardiomyopathies and has permitted the study of underlying genetic, metabolic and age-related contributions to heart function. In this review we discuss methods currently employed in the analysis of the Drosophila heart structure and function, such as optical methods to infer heart function and performance, electrophysiological and mechanical approaches to characterize cardiac tissue properties, and conclude with histological techniques used in the study of heart development and adult structure.
Collapse
|
26
|
Frazzled/DCC facilitates cardiac cell outgrowth and attachment during Drosophila dorsal vessel formation. Dev Biol 2013; 380:233-42. [PMID: 23685255 DOI: 10.1016/j.ydbio.2013.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 01/30/2023]
Abstract
Drosophila embryonic dorsal vessel (DV) morphogenesis is a highly stereotyped process that involves the migration and morphogenesis of 52 pairs of cardioblasts (CBs) in order to form a linear tube. This process requires spatiotemporally-regulated localization of signaling and adhesive proteins in order to coordinate the formation of a central lumen while maintaining simultaneous adhesion between CBs. Previous studies have shown that the Slit/Roundabout and Netrin/Unc5 repulsive signaling pathways facilitate site-specific loss of adhesion between contralateral CBs in order to form a luminal space. However, the concomitant mechanism by which attraction initiates CB outgrowth and discrete localization of adhesive proteins remains poorly understood. Here we provide genetic evidence that Netrin signals through DCC (Deleted in Colorectal Carcinoma)/UNC-40/Frazzled (Fra) to mediate CB outgrowth and attachment and that this function occurs prior to and independently of Netrin/UNC-5 signaling. fra mRNA is expressed in the CBs prior to and during DV morphogenesis. Loss-of-fra-function results in significant defects in cell shape and alignment between contralateral CB rows. In addition, CB outgrowth and attachment is impaired in both fra loss- and gain-of-function mutants. Deletion of both Netrin genes (NetA and NetB) results in CB attachment phenotypes similar to fra mutants. Similar defects are also seen when both fra and unc5 are deleted. Finally we show that Fra accumulates at dorsal and ventral leading edges of paired CBs, and this localization is dependent upon Netrin. We propose that while repulsive guidance mechanisms contribute to lumen formation by preventing luminal domains from coming together, site-specific Netrin/Frazzled signaling mediates CB attachment.
Collapse
|
27
|
Tauc HM, Mann T, Werner K, Pandur P. A role for Drosophila Wnt-4 in heart development. Genesis 2012; 50:466-81. [DOI: 10.1002/dvg.22021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/13/2012] [Accepted: 02/16/2012] [Indexed: 01/09/2023]
|
28
|
Peter IS, Davidson EH. Evolution of gene regulatory networks controlling body plan development. Cell 2011; 144:970-85. [PMID: 21414487 PMCID: PMC3076009 DOI: 10.1016/j.cell.2011.02.017] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 12/16/2010] [Accepted: 02/10/2011] [Indexed: 11/29/2022]
Abstract
Evolutionary change in animal morphology results from alteration of the functional organization of the gene regulatory networks (GRNs) that control development of the body plan. A major mechanism of evolutionary change in GRN structure is alteration of cis-regulatory modules that determine regulatory gene expression. Here we consider the causes and consequences of GRN evolution. Although some GRN subcircuits are of great antiquity, other aspects are highly flexible and thus in any given genome more recent. This mosaic view of the evolution of GRN structure explains major aspects of evolutionary process, such as hierarchical phylogeny and discontinuities of paleontological change.
Collapse
Affiliation(s)
- Isabelle S. Peter
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Eric H. Davidson
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
29
|
Shah AP, Nongthomba U, Kelly Tanaka KK, Denton ML, Meadows SM, Bancroft N, Molina MR, Cripps RM. Cardiac remodeling in Drosophila arises from changes in actin gene expression and from a contribution of lymph gland-like cells to the heart musculature. Mech Dev 2011; 128:222-33. [PMID: 21237266 PMCID: PMC3065548 DOI: 10.1016/j.mod.2011.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/26/2010] [Accepted: 01/06/2011] [Indexed: 11/30/2022]
Abstract
Understanding the basis of normal heart remodeling can provide insight into the plasticity of the cardiac state, and into the potential for treating diseased tissue. In Drosophila, the adult heart arises during metamorphosis from a series of events, that include the remodeling of an existing cardiac tube, the elaboration of new inflow tracts, and the addition of a layer of longitudinal muscle fibers. We have identified genes active in all these three processes, and studied their expression in order to characterize in greater detail normal cardiac remodeling. Using a Transglutaminase-lacZ transgenic line, that is expressed in the inflow tracts of the larval and adult heart, we confirm the existence of five inflow tracts in the adult structure. In addition, expression of the Actin87E actin gene is initiated in the remodeling cardiac tube, but not in the longitudinal fibers, and we have identified an Act87E promoter fragment that recapitulates this switch in expression. We also establish that the longitudinal fibers are multinucleated, characterizing these cells as specialized skeletal muscles. Furthermore, we have defined the origin of the longitudinal fibers, as a subset of lymph gland cells associated with the larval dorsal vessel. These studies underline the myriad contributors to the formation of the adult Drosophila heart, and provide new molecular insights into the development of this complex organ.
Collapse
Affiliation(s)
| | - Upendra Nongthomba
- Dept. of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore – 560 012, India
| | | | | | | | | | | | | |
Collapse
|
30
|
Piazza N, Wessells RJ. Drosophila models of cardiac disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:155-210. [PMID: 21377627 PMCID: PMC3551295 DOI: 10.1016/b978-0-12-384878-9.00005-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fruit fly Drosophila melanogaster has emerged as a useful model for cardiac diseases, both developmental abnormalities and adult functional impairment. Using the tools of both classical and molecular genetics, the study of the developing fly heart has been instrumental in identifying the major signaling events of cardiac field formation, cardiomyocyte specification, and the formation of the functioning heart tube. The larval stage of fly cardiac development has become an important model system for testing isolated preparations of living hearts for the effects of biological and pharmacological compounds on cardiac activity. Meanwhile, the recent development of effective techniques to study adult cardiac performance in the fly has opened new uses for the Drosophila model system. The fly system is now being used to study long-term alterations in adult performance caused by factors such as diet, exercise, and normal aging. The fly is a unique and valuable system for the study of such complex, long-term interactions, as it is the only invertebrate genetic model system with a working heart developmentally homologous to the vertebrate heart. Thus, the fly model combines the advantages of invertebrate genetics (such as large populations, facile molecular genetic techniques, and short lifespan) with physiological measurement techniques that allow meaningful comparisons with data from vertebrate model systems. As such, the fly model is well situated to make important contributions to the understanding of complicated interactions between environmental factors and genetics in the long-term regulation of cardiac performance.
Collapse
Affiliation(s)
- Nicole Piazza
- University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
31
|
Choma MA, Suter MJ, Vakoc BJ, Bouma BE, Tearney GJ. Physiological homology between Drosophila melanogaster and vertebrate cardiovascular systems. Dis Model Mech 2010; 4:411-20. [PMID: 21183476 PMCID: PMC3097462 DOI: 10.1242/dmm.005231] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The physiology of the Drosophila melanogaster cardiovascular system remains poorly characterized compared with its vertebrate counterparts. Basic measures of physiological performance remain unknown. It also is unclear whether subtle physiological defects observed in the human cardiovascular system can be reproduced in D. melanogaster. Here we characterize the cardiovascular physiology of D. melanogaster in its pre-pupal stage by using high-speed dye angiography and optical coherence tomography. The heart has vigorous pulsatile contractions that drive intracardiac, aortic and extracellular-extravascular hemolymph flow. Several physiological measures, including weight-adjusted cardiac output, body-length-adjusted aortic velocities and intracardiac shear forces, are similar to those in the closed vertebrate cardiovascular systems, including that of humans. Extracellular-extravascular flow in the pre-pupal D. melanogaster circulation drives convection-limited fluid transport. To demonstrate homology in heart dysfunction, we showed that, at the pre-pupal stage, a troponin I mutant, held-up2 (hdp2), has impaired systolic and diastolic heart wall velocities. Impaired heart wall velocities occur in the context of a non-dilated phenotype with a mildly depressed fractional shortening. We additionally derive receiver operating characteristic curves showing that heart wall velocity is a potentially powerful discriminator of systolic heart dysfunction. Our results demonstrate physiological homology and support the use of D. melanogaster as an animal model of complex cardiovascular disease.
Collapse
|
32
|
Medioni C, Sénatore S, Salmand PA, Lalevée N, Perrin L, Sémériva M. The fabulous destiny of the Drosophila heart. Curr Opin Genet Dev 2009; 19:518-25. [PMID: 19717296 DOI: 10.1016/j.gde.2009.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 07/22/2009] [Indexed: 01/08/2023]
Abstract
For the last 15 years the fly cardiovascular system has attracted developmental geneticists for its potential as a model system of organogenesis. Heart development in Drosophila indeed provides a remarkable system for elucidating the basic molecular and cellular mechanisms of morphogenesis and, more recently, for understanding the genetic control of cardiac physiology. The success of these studies can in part be attributed to multidisciplinary approaches, the multiplicity of existing genetic tools, and a detailed knowledge of the system. Striking similarities with vertebrate cardiogenesis have long been stressed, in particular concerning the conservation of key molecular regulators of cardiogenesis and the new data presented here confirm Drosophila cardiogenesis as a model not only for organogenesis but also for the study of molecular mechanisms of human cardiac disease.
Collapse
Affiliation(s)
- Caroline Medioni
- Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR 6216 CNRS-Université de la Méditerranée, Campus de Luminy, Marseille Cedex 09, France
| | | | | | | | | | | |
Collapse
|
33
|
LaBeau EM, Trujillo DL, Cripps RM. Bithorax complex genes control alary muscle patterning along the cardiac tube of Drosophila. Mech Dev 2009; 126:478-86. [PMID: 19272319 PMCID: PMC2680478 DOI: 10.1016/j.mod.2009.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 12/10/2008] [Accepted: 01/08/2009] [Indexed: 11/30/2022]
Abstract
Cardiac specification models are widely utilized to provide insight into the expression and function of homologous genes and structures in humans. In Drosophila, contractions of the alary muscles control hemolymph inflow and support the cardiac tube, however embryonic development of these muscles remain largely understudied. We found that alary muscles in Drosophila embryos appear as segmental pairs, attaching dorsally at the seven-up (svp) expressing pericardial cells along the cardiac dorsal vessel, and laterally to the body wall. Normal patterning of alary muscles along the dorsal vessel was found to be a function of the Bithorax Complex genes abdominal-A (abd-A) and Ultrabithorax (Ubx) but not of the orphan nuclear receptor gene svp. Ectopic expression of either abd-A or Ubx resulted in an increase in the number of alary muscle pairs from seven to 10, and also produced a general elongation of the dorsal vessel. A single knockout of Ubx resulted in a reduced number of alary muscles. Double knockouts of both Ubx and abd-A prevented alary muscles from developing normally and from attaching to the dorsal vessel. These studies demonstrate an additional facet of muscle development that depends upon the Hox genes, and define for the first time mechanisms that impact development of this important subset of muscles.
Collapse
Affiliation(s)
- Elisa M. LaBeau
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Damian L. Trujillo
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Richard M. Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
34
|
Bryantsev AL, Cripps RM. Cardiac gene regulatory networks in Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1789:343-53. [PMID: 18849017 PMCID: PMC2706142 DOI: 10.1016/j.bbagrm.2008.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/09/2008] [Accepted: 09/09/2008] [Indexed: 11/29/2022]
Abstract
The Drosophila system has proven a powerful tool to help unlock the regulatory processes that occur during specification and differentiation of the embryonic heart. In this review, we focus upon a temporal analysis of the molecular events that result in heart formation in Drosophila, with a particular emphasis upon how genomic and other cutting-edge approaches are being brought to bear upon the subject. We anticipate that systems-level approaches will contribute greatly to our comprehension of heart development and disease in the animal kingdom.
Collapse
Affiliation(s)
- Anton L. Bryantsev
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Richard M. Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
35
|
Pan MH, Wang XY, Chai CL, Zhang CD, Lu C, Xiang ZH. Identification and function of Abdominal-A in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2009; 18:155-160. [PMID: 19320756 DOI: 10.1111/j.1365-2583.2009.00862.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Abdominal-A (adb-A) is a key gene in the development of insects. To understand its function in the silkworm, we cloned 1193 bp of the abd-A gene of Bombyx mori (Bmabd-A), including the complete coding sequence and part of the 3' untranslated region sequence. Bmabd-A has at least three mRNA splice variants with coding sequences of lengths 1032, 1044 and 1059 bp, encoding 343, 347 and 352 amino acids, respectively. Each splice variant of Bmabd-A has three exons and differs only in second exon size. Bmabd-A was expressed at low levels in unfertilized eggs, but increased gradually in fertilized eggs after laying 22 h. Bmabd-A expression decreased in ant silkworms (newly hatched silkworms). After RNA interference for Bmabd-A, the embryos had two mutant phenotypes, either completely or partially absent abdominal feet from the third to sixth abdominal segments, suggesting that Bmabd-A is responsible for normal development of the third to sixth abdominal segments during embryonic development.
Collapse
Affiliation(s)
- M-H Pan
- Southwest University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
36
|
Zmojdzian M, Da Ponte JP, Jagla K. Cellular components and signals required for the cardiac outflow tract assembly in Drosophila. Proc Natl Acad Sci U S A 2008; 105:2475-80. [PMID: 18250318 PMCID: PMC2268161 DOI: 10.1073/pnas.0706402105] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Indexed: 11/18/2022] Open
Abstract
Specification of cardiac primordia and formation of the Drosophila heart tube is highly reminiscent of the early steps of vertebrate heart development. We previously reported that the final morphogenesis of the Drosophila heart involves a group of nonmesodermal cells called heart-anchoring cells and a pair of derived from the pharyngeal mesoderm cardiac outflow muscles. Like the vertebrate cardiac neural crest cells, heart-anchoring cells migrate, interact with the tip of the heart, and participate in shaping the cardiac outflow tract. To better understand this process, we performed an in-depth analysis of how the Drosophila outflow tract is formed. We found that the most anterior cardioblasts that form a central outflow tract component, the funnel-shaped heart tip, do not originate from the cardiac primordium. They are initially associated with the pharyngeal cardiac outflow muscles and join the anterior aorta during outflow tract assembly. The particular morphology of the heart tip is disrupted in embryos in which heart-anchoring cells were ablated, revealing their critical role in outflow tract morphogenesis. We also demonstrate that Slit and Robo are required for directed movements of heart-anchoring cells toward the heart tip and that the cell-cell contact between the heart-anchoring cells and the ladybird-expressing cardioblasts is critically dependent on DE-cadherin Shotgun. Our observations suggest that the similarities between Drosophila and vertebrate cardiogenesis extend beyond the early developmental events.
Collapse
Affiliation(s)
- Monika Zmojdzian
- Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6247-GreD, Clermont–Ferrand University, Institut National de la Santé et de la Recherche Médicale Clermont–Ferrand, 28 Place Henri Dunant, F-63000 Clermont–Ferrand, France
| | - Jean Philippe Da Ponte
- Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6247-GreD, Clermont–Ferrand University, Institut National de la Santé et de la Recherche Médicale Clermont–Ferrand, 28 Place Henri Dunant, F-63000 Clermont–Ferrand, France
| | - Krzysztof Jagla
- Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6247-GreD, Clermont–Ferrand University, Institut National de la Santé et de la Recherche Médicale Clermont–Ferrand, 28 Place Henri Dunant, F-63000 Clermont–Ferrand, France
| |
Collapse
|
37
|
van der Plas MC, Pilgram GSK, de Jong AWM, Bansraj MRKS, Fradkin LG, Noordermeer JN. Drosophila Dystrophin is required for integrity of the musculature. Mech Dev 2007; 124:617-30. [PMID: 17543506 DOI: 10.1016/j.mod.2007.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 03/17/2007] [Accepted: 04/16/2007] [Indexed: 11/21/2022]
Abstract
Duchenne muscular dystrophy is caused by mutations in the dystrophin gene and is characterized by progressive muscle wasting. The highly conserved dystrophin gene encodes a number of protein isoforms. The Dystrophin protein is part of a large protein assembly, the Dystrophin glycoprotein complex, which stabilizes the muscle membrane during contraction and acts as a scaffold for signaling molecules. How the absence of Dystrophin results in the onset of muscular dystrophy remains unclear. Here, we have used transgenic RNA interference to examine the roles of the Drosophila Dystrophin isoforms in muscle. We previously reported that one of the Drosophila Dystrophin orthologs, the DLP2 isoform, is not required to maintain muscle integrity, but plays a role in neuromuscular homeostasis by regulating neurotransmitter release. In this report, we show that reduction of all Dystrophin isoform expression levels in the musculature does not apparently affect myogenesis or muscle attachment, but results in progressive muscle degeneration in larvae and adult flies. We find that a recently identified Dystrophin isoform, Dp117, is expressed in the musculature and is required for muscle integrity. Muscle fibers with reduced levels of Dp117 display disorganized actin-myosin filaments and the cellular hallmarks of necrosis. Our results indicate the existence of at least two possibly separate roles of dystrophin in muscle, maintaining synaptic homeostasis and preserving the structural stability of the muscle.
Collapse
Affiliation(s)
- Mariska C van der Plas
- Laboratory of Developmental Neurobiology, Department of Molecular and Cell Biology, Leiden University Medical Center, Einthovenweg 20, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Mandal L, Martinez-Agosto JA, Evans CJ, Hartenstein V, Banerjee U. A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 2007; 446:320-4. [PMID: 17361183 PMCID: PMC2807630 DOI: 10.1038/nature05585] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 01/08/2007] [Indexed: 01/15/2023]
Abstract
The Drosophila melanogaster lymph gland is a haematopoietic organ in which pluripotent blood cell progenitors proliferate and mature into differentiated haemocytes. Previous work has defined three domains, the medullary zone, the cortical zone and the posterior signalling centre (PSC), within the developing third-instar lymph gland. The medullary zone is populated by a core of undifferentiated, slowly cycling progenitor cells, whereas mature haemocytes comprising plasmatocytes, crystal cells and lamellocytes are peripherally located in the cortical zone. The PSC comprises a third region that was first defined as a small group of cells expressing the Notch ligand Serrate. Here we show that the PSC is specified early in the embryo by the homeotic gene Antennapedia (Antp) and expresses the signalling molecule Hedgehog. In the absence of the PSC or the Hedgehog signal, the precursor population of the medullary zone is lost because cells differentiate prematurely. We conclude that the PSC functions as a haematopoietic niche that is essential for the maintenance of blood cell precursors in Drosophila. Identification of this system allows the opportunity for genetic manipulation and direct in vivo imaging of a haematopoietic niche interacting with blood precursors.
Collapse
Affiliation(s)
- Lolitika Mandal
- Department of Molecular, Cell and Developmental Biology, Molecular Biology Institute, Mattel Children's Hospital at UCLA, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
39
|
Ryan KM, Hendren JD, Helander LA, Cripps RM. The NK homeodomain transcription factor Tinman is a direct activator of seven-up in the Drosophila dorsal vessel. Dev Biol 2007; 302:694-702. [PMID: 17098220 DOI: 10.1016/j.ydbio.2006.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 09/20/2006] [Accepted: 10/14/2006] [Indexed: 11/16/2022]
Abstract
A complex regulatory cascade is required for normal cardiac development, and many aspects of this network are conserved from Drosophila to mammals. In Drosophila, the seven-up (svp) gene, an ortholog of the vertebrate chick ovalbumin upstream promoter transcription factors (COUP-TFI and II), is initially activated in the cardiac mesoderm and is subsequently restricted to cells forming the cardiac inflow tracts. Here, we investigate svp regulation in the developing cardiac tube. Using bioinformatics, we identify a 1007-bp enhancer of svp which recapitulates its entire expression in the embryonic heart and other mesodermal derivatives, and we show that this enhancer is initially activated by the NK homeodomain factor Tinman (Tin) via two conserved Tin binding sites. Mutation of the Tin binding sites significantly reduces enhancer activity both during normal development and in response to ectopic Tin. This is the first identification of an enhancer for the complex svp gene, demonstrating the effectiveness of bioinformatics tools in assisting in unraveling transcriptional regulatory networks. Our studies define a critical component of the svp regulatory cascade and place gene regulatory events in direct apposition to the formation of critical cardiac structures.
Collapse
Affiliation(s)
- Kathryn M Ryan
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The Drosophila heart, also called the dorsal vessel, is an organ for hemolymph circulation that resembles the vertebrate heart at its transient linear tube stage. Dorsal vessel morphogenesis shares several similarities with early events of vertebrate heart development and has proven to be an insightful system for the study of cardiogenesis due to its relatively simple structure and the productive use of Drosophila genetic approaches. In this review, we summarize published findings on Drosophila heart development in terms of the regulators and genetic pathways required for cardiac cell specification and differentiation, and organ formation and function. Emerging genome-based strategies should further facilitate the use of Drosophila as an advantageous system in which to identify previously unknown genes and regulatory networks essential for normal cardiac development and function.
Collapse
Affiliation(s)
- Ye Tao
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | |
Collapse
|
41
|
Zaffran S, Reim I, Qian L, Lo PC, Bodmer R, Frasch M. Cardioblast-intrinsic Tinman activity controls proper diversification and differentiation of myocardial cells in Drosophila. Development 2006; 133:4073-83. [PMID: 16987868 DOI: 10.1242/dev.02586] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The NK homeobox gene tinman (tin) is required for the specification of the cardiac, visceral muscle and somatic muscle progenitors in the early dorsal mesoderm of Drosophila. Like its vertebrate counterpart Nkx2.5, the expression of tin is maintained in cardiac cells during cardiac maturation and differentiation; however, owing to the complete lack of a dorsal vessel in tin mutant embryos, the function of tin in these cells has not been defined. Here we show that myocardial cells and dorsal vessels can form even though they lack Tin, and that viable adults can develop, as long as Tin is provided in the embryonic precardiac mesoderm. However, embryos in which tin expression is specifically missing from cardial cells show severe disruptions in the normal diversification of the myocardial cells, and adults exhibit severe defects in cardiac remodeling and function. Our study reveals that the normal expression and activity of Tin in four of the six bilateral cardioblasts within each hemisegment of the heart allows these cells to adopt a cell fate as ;working' myocardium, as opposed to a fate as inflow tract (ostial) cells. This function of tin involves the repression of Dorsocross (Doc) T-box genes and, hence, the restriction of Doc to the Tin-negative cells that will form ostia. We conclude that tin has a crucial role within myocardial cells that is required for the proper diversification, differentiation, and post-embryonic maturation of cardiomyocytes, and we present a pathway involving regulatory interactions among seven-up, midline, tinman and Dorsocross that establishes these developmental events upon myocardial cell specification.
Collapse
Affiliation(s)
- Stéphane Zaffran
- Brookdale Department of Molecular, Cell and Developmental Biology, Box 1020, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
42
|
Albrecht S, Wang S, Holz A, Bergter A, Paululat A. The ADAM metalloprotease Kuzbanian is crucial for proper heart formation in Drosophila melanogaster. Mech Dev 2006; 123:372-87. [PMID: 16713197 DOI: 10.1016/j.mod.2006.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/07/2006] [Accepted: 03/09/2006] [Indexed: 10/24/2022]
Abstract
We have screened a collection of EMS mutagenized fly lines in order to identify genes involved in cardiogenesis. In the present work, we have studied a group of alleles exhibiting a hypertrophic heart. Our analysis revealed that the ADAM protein (A Disintegrin And Metalloprotease) Kuzbanian, which is the functional homologue of the vertebrate ADAM10, is crucial for proper heart formation. ADAMs are a family of transmembrane proteins that play a critical role during the proteolytic conversion (shedding) of membrane bound proteins to soluble forms. Enzymes harboring a sheddase function recently became candidates for causing several congenital diseases, like distinct forms of the Alzheimer disease. ADAMs play also a pivotal role during heart formation and vascularisation in vertebrates, therefore mutations in ADAM genes potentially could cause congenital heart defects in humans. In Drosophila, the zygotic loss of an active form of the Kuzbanian protein results in a dramatic excess of cardiomyocytes, accompanied by a loss of pericardial cells. Our data presented herein suggest that Kuzbanian acts during lateral inhibition within the cardiac primordium. Furthermore we discuss a second function of Kuzbanian in heart cell morphogenesis.
Collapse
Affiliation(s)
- Stefanie Albrecht
- Universität Osnabrück, Fachbereich Biologie/Chemie, Zoologie, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | | | | | | | | |
Collapse
|
43
|
Sellin J, Albrecht S, Kölsch V, Paululat A. Dynamics of heart differentiation, visualized utilizing heart enhancer elements of the Drosophila melanogaster bHLH transcription factor Hand. Gene Expr Patterns 2006; 6:360-75. [PMID: 16455308 DOI: 10.1016/j.modgep.2005.09.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 09/25/2005] [Indexed: 11/27/2022]
Abstract
Drosophila melanogaster has become one of the important model systems to investigate the development and differentiation of the heart. After 24h after egg deposition (h AED), a simple tube-like organ is formed, consisting of essentially only two cell types, the contractile cardioblasts and non-myogenic pericardial cells. In contrast to the detailed knowledge of heart formation during embryogenesis, only a few studies deal with later changes in heart morphology and/or function. This is mainly due to the difficulties to carry out whole mount stainings in later stages without complicated dissections or treatments of the cuticle and puparium. In this paper we describe the identification of a hand genomic region, which is fully sufficient to drive GFP expression in heart cells of embryos, larvae, and adults. This serves as an initial step to understand the position of hand in the early regulatory network in heart development. Furthermore, we demonstrate that our newly created GFP reporter line is extremely useful to study postembryonic heart differentiation. For the first time we document heart differentiation in living animals throughout all developmental stages of Drosophila melanogaster, including embryogenesis, all three larval stages, metamorphosis, and the adult life with respect to pericardial cells and cardiomyocytes.
Collapse
Affiliation(s)
- Julia Sellin
- Universität Osnabrück, Fachbereich Biologie/Chemie - Zoologie, Barbarastrasse 11, 49069 Osnabrück, Germany
| | | | | | | |
Collapse
|
44
|
Yuan WZ, Zhang YJ, Tang WX, Wang J, Li YQ, Wang YQ, Zhu CB, Yang H, Wu XS, Rolf B. Role of svp in Drosophila pericardial cell growth. ACTA ACUST UNITED AC 2006; 33:32-40. [PMID: 16450585 DOI: 10.1016/s0379-4172(06)60005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The Drosophila dorsal vessel is a segmentally repeated linear organ, in which seven-up (svp) is expressed in two pairs of cardioblasts and two pairs of pericardial cells in each segment. Under the control of hedgehog (hh) signaling from the dorsal ectoderm, svp participates in diversifying cardioblast identities within each segment. In this experiment, the homozygous embryos of svp mutants exhibited an increase in cell size of Eve positive pericardial cells (EPCs) and a disarranged expression pattern, while the cardioblasts pattern of svp-lacZ expression was normal. In the meantime, the DAI muscle founders were absent in some segments in svp mutant embryos, and the dorsal somatic muscle patterning was also severely damaged in the late stage mutant embryos, suggesting that svp is required for the differentiation of Eve-positive pericardial cells and DA1 muscle founders and may have a role in EPC cell growth.
Collapse
Affiliation(s)
- Wu-Zhou Yuan
- The Center for Heart Development, the Key Laboratory of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Liu J, Qian L, Wessells RJ, Bidet Y, Jagla K, Bodmer R. Hedgehog and RAS pathways cooperate in the anterior–posterior specification and positioning of cardiac progenitor cells. Dev Biol 2006; 290:373-85. [PMID: 16387294 DOI: 10.1016/j.ydbio.2005.11.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 11/03/2005] [Accepted: 11/18/2005] [Indexed: 10/25/2022]
Abstract
The Drosophila heart is a highly ordered structure with only a limited number of cell types, which are arranged in a stereotyped metameric pattern. Ras signaling has previously been implicated in contributing to heart formation, but how positional information is integrated with this pathway to specify, distinguish and precisely position individual cardiac progenitors within the presumptive heart-forming region are not known. Here, we present evidence that the striped pattern of the secreted factor Hedgehog (Hh), in combination with the RAS pathway, specifies and positions neighboring groups of cardiac progenitors within each segment: the anterior ladybird (lbe)- and the posterior even skipped (eve)-expressing cardiac progenitors. Loss of hh function (while maintaining wg activity) results in the absence of the Eve cells, whereas the Lbe cells are expanded within the cardiac mesoderm. Overexpressing the repressor form of Cubitus interruptus (Ci), a Hh pathway antagonist, also results in expansion of Lbe at the expense of Eve, as does lowering Ras signaling. Conversely, overexpression of Hh or increasing Ras signaling eliminates Lbe expression while expanding Eve within the cardiogenic mesoderm. Increasing Ras signaling in the absence of Hh suggests that the Ras pathway is in part epistatic to Hh. Hh controls dorsal mesodermal Ras signaling by transcriptional regulation of the EGF receptor ligand protease, encoded by rhomboid (rho). Conversely, Hh overexpression can fully inhibit Lbe even when Ras signaling is much reduced, suggesting that Hh also acts in parallel to Ras. We propose that the Eve precursors next to the Hh stripe are distinguished from more distant Lbe precursors by locally augmenting Ras signaling via elevating rho transcripts. Thus, the spatial precision of cell type specification within an organ depends on multiple phases of inductive interaction between the ectoderm and the mesoderm.
Collapse
Affiliation(s)
- Jiandong Liu
- The Burnham Institute, Center for Neurosciences and Aging, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
46
|
Monier B, Astier M, Sémériva M, Perrin L. Steroid-dependent modification of Hox function drives myocyte reprogramming in the Drosophila heart. Development 2005; 132:5283-93. [PMID: 16284119 DOI: 10.1242/dev.02091] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the Drosophila larval cardiac tube, aorta and heart differentiation are controlled by the Hox genes Ultrabithorax(Ubx) and abdominal A (abdA), respectively. There is evidence that the cardiac tube undergoes extensive morphological and functional changes during metamorphosis to form the adult organ, but both the origin of adult cardiac tube myocytes and the underlying genetic control have not been established. Using in vivo time-lapse analysis, we show that the adult fruit fly cardiac tube is formed during metamorphosis by the reprogramming of differentiated and already functional larval cardiomyocytes,without cell proliferation. We characterise the genetic control of the process, which is cell autonomously ensured by the modulation of Ubxexpression and AbdA activity. Larval aorta myocytes are remodelled to differentiate into the functional adult heart, in a process that requires the regulation of Ubx expression. Conversely, the shape, polarity,function and molecular characteristics of the surviving larval contractile heart myocytes are profoundly transformed as these cells are reprogrammed to form the adult terminal chamber. This process is mediated by the regulation of AbdA protein function, which is successively required within these persisting myocytes for the acquisition of both larval and adult differentiated states. Importantly, AbdA specificity is switched at metamorphosis to induce a novel genetic program that leads to differentiation of the terminal chamber. Finally, the steroid hormone ecdysone controls cardiac tube remodelling by impinging on both the regulation of Ubx expression and the modification of AbdA function. Our results shed light on the genetic control of one in vivo occurring remodelling process, which involves a steroid-dependent modification of Hox expression and function.
Collapse
Affiliation(s)
- Bruno Monier
- Laboratoire de Génétique et Physiologie du Développement, UMR 6545 CNRS-Université, Campus de Luminy, Case 907, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
47
|
Reim I, Mohler JP, Frasch M. Tbx20-related genes, mid and H15, are required for tinman expression, proper patterning, and normal differentiation of cardioblasts in Drosophila. Mech Dev 2005; 122:1056-69. [PMID: 15922573 DOI: 10.1016/j.mod.2005.04.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/13/2005] [Accepted: 04/19/2005] [Indexed: 11/20/2022]
Abstract
Tbx20-related T-box genes have been implicated in the regulation of heart development in several vertebrate species. In the present report, we demonstrate that a pair of genes representing Drosophila orthologs of Tbx20, midline (mid) and H15, have important functions during the development of the Drosophila equivalent of the heart, i.e. the dorsal vessel. We show that mid is among the earliest known genes that are specifically expressed in all cardioblasts during early embryogenesis, and H15 expression is subsequently activated in the same cells. Mutant embryos lacking the activity of mid, or both mid and H15, are able to form dorsal vessels with largely normal numbers of cardioblasts and pericardial cells. Furthermore, the mutant cardioblasts express several general cardioblast markers such as Mef2 and Toll at normal levels. However, the expression of tinman (tin), which normally occurs in four out of six cardioblasts in each hemisegment of the dorsal vessel, is almost abolished. Conversely, the expression of the Dorsocross (Doc) T-box genes, which is normally restricted to the two Tin-negative cardioblasts in each hemisegment, is strongly expanded into the majority of cardioblasts in mid mutant and mid+H15-deficient embryos. Altogether, the data from the loss-of-function phenotypes demonstrate that mid, and to a lesser degree H15, have important roles in establishing the metameric patterning of cardioblast identities, but not in specifying cardioblasts as such. Ectopic expression of mid causes ectopic tin expression and, less efficiently, produces extra cardioblasts. We propose that one of the major functions of mid and H15 during cardioblast development is the re-activation of tin expression at a stage when the induction of tin by Dpp in the dorsal mesoderm has ceased. Through this activity, mid and H15 are required for the normal functional diversification of cardioblasts and the expression of tin-dependent terminal differentiation genes within the dorsal vessel.
Collapse
Affiliation(s)
- Ingolf Reim
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, Box 1020, One Gustave L. Levy Pl., New York, NY 10029, USA
| | | | | |
Collapse
|
48
|
Ryan KM, Hoshizaki DK, Cripps RM. Homeotic selector genes control the patterning of seven-up expressing cells in the Drosophila dorsal vessel. Mech Dev 2005; 122:1023-33. [PMID: 15922572 DOI: 10.1016/j.mod.2005.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 04/22/2005] [Accepted: 04/22/2005] [Indexed: 11/23/2022]
Abstract
The linear cardiac tube of Drosophila, the dorsal vessel, is an important model organ for the study of cardiac specification and patterning in vertebrates. In Drosophila, the Hox segmentation gene abdominal-A (abd-A) is required for the specification of a functionally distinct heart region at the posterior of the dorsal vessel, from which blood is pumped anteriorly through a tube termed the aorta. Since we have previously shown that the posterior part of the aorta is specified during embryogenesis to form the adult heart during metamorphosis, we determined if the embryonic aorta is also patterned by the function of Hox segmentation genes. Using gain- and loss-of-function experiments, we demonstrate that the three Hox genes expressed in the posterior aorta and heart are sufficient to confer heart or posterior aorta fate throughout the dorsal vessel. Additionally, we demonstrate that Ultrabithorax and abd-A, but not Antennapedia, function to control cell number in the dorsal vessel. These studies add robustness to the model that homeotic selector genes pattern the Drosophila dorsal vessel, and further extend our understanding of how the cardiac tube is patterned in animal models.
Collapse
Affiliation(s)
- Kathryn M Ryan
- Department of Biology, University of New Mexico, Albuquerque, NM 87131-1091, USA
| | | | | |
Collapse
|
49
|
Reim I, Frasch M. The Dorsocross T-box genes are key components of the regulatory network controlling early cardiogenesis in Drosophila. Development 2005; 132:4911-25. [PMID: 16221729 DOI: 10.1242/dev.02077] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiac induction in Drosophila relies on combinatorial Dpp and Wg signaling activities that are derived from the ectoderm. Although some of the actions of Dpp during this process have been clarified, the exact roles of Wg, particularly with respect to myocardial cell specification, have not been well defined. Our present study identifies the Dorsocross T-box genes as key mediators of combined Dpp and Wg signals during this process. The Dorsocross genes are induced within the segmental areas of the dorsal mesoderm that receive intersecting Dpp and Wg inputs. Dorsocross activity is required for the formation of all myocardial and pericardial cell types, with the exception of the Eve-positive pericardial cells. In an early step, the Dorsocross genes act in parallel with tinman to activate the expression of pannier, a cardiogenic gene encoding a Gata factor. Our loss- and gain-of-function studies, as well as the observed genetic interactions among Dorsocross, tinman and pannier, suggest that co-expression of these three genes in the cardiac mesoderm, which also involves cross-regulation, plays a major role in the specification of cardiac progenitors. After cardioblast specification, the Dorsocross genes are re-expressed in a segmental subset of cardioblasts, which in the heart region develop into inflow valves (ostia). The integration of this new information with previous findings has allowed us to draw a more complete pathway of regulatory events during cardiac induction and differentiation in Drosophila.
Collapse
Affiliation(s)
- Ingolf Reim
- Brookdale Department of Molecular, Cell and Developmental Biology, Box 1020, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
50
|
Venturin M, Bentivegna A, Moroni R, Larizza L, Riva P. Evidence by expression analysis of candidate genes for congenital heart defects in the NF1 microdeletion interval. Ann Hum Genet 2005; 69:508-16. [PMID: 16138909 DOI: 10.1111/j.1529-8817.2005.00203.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It was recently reported that congenital heart disease is significantly more frequent in patients with NF1 microdeletion syndrome than in those with classical NF1. The outcome of congenital heart disease in this subset of patients is likely caused by the haploinsufficiency of gene/s in the deletion interval. Following in silico analysis of the deleted region, we found two genes known to be expressed in adult heart, the Joined to JAZF1 (SUZ12) and the Centaurin-alpha 2 (CENTA2) genes, and seven other genes with poorly defined patterns of expression and function. With the aim of defining their expression profiles in human fetal tissues (15th-21st weeks of gestation), expression analysis by RT-PCR and Northern blotting was performed. C17orf40, SUZ12 and CENTA2 were found to be mainly expressed in fetal heart, and following RT-PCR on mouse embryos and embryonic heart and brain at different stages of development, we found that the orthologous genes C17orf40, Suz12 and Centa2 are also expressed in early stages of development, before and during the formation of the four heart chambers. The presence of binding sites for Nkx2-5, a transcription factor expressed early in heart development, in all three mouse orthologous genes was predicted by bioinformatics, thus reinforcing the hypothesis that these genes might be involved in heart development and may be plausible candidates for congenital heart disease.
Collapse
Affiliation(s)
- M Venturin
- Department of Biology and Genetics, Medical Faculty--University of Milan, Italy
| | | | | | | | | |
Collapse
|