1
|
Luo H, Liang H, Chen J, Xu Y, Chen Y, Xu L, Yun L, Liu J, Yang H, Liu L, Peng J, Liu Z, Tang L, Chen W, Tang H. Hydroquinone induces TK6 cell growth arrest and apoptosis through PARP-1/p53 regulatory pathway. ENVIRONMENTAL TOXICOLOGY 2017; 32:2163-2171. [PMID: 28444915 DOI: 10.1002/tox.22429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
Hydroquinone (HQ), one of the most important metabolites derived from benzene, induces cell cycle arrest and apoptosis. Poly(ADP-ribose) polymerase-1 (PARP-1) participates in various biological processes, including DNA repair and cell cycle regulation. To explore whether PARP-1 regulatory pathway mediated HQ-induced cell cycle arrest and apoptosis, we assessed the effect of PARP-1 suppression on induction of apoptosis analyzed by FACSCalibur flow cytometer in PARP-1 deficientTK6 cells (TK6-shPARP-1). We observed an increase in the fraction of cells in G1 phase by 7.6% and increased apoptosis by 4.5% in PARP-1-deficient TK6 cells (TK6-shPARP-1) compared to those negative control cells (TK6-shNC cells) in response to HQ treatment. Furthermore, HQ might activate the extrinsic pathways of apoptosis via up-regulation of Fas expression, followed by caspase-3 activation, apoptotic body, and sub G1 accumulation. Enhanced p53 expression was observed in TK6-shPARP-1 cells than in TK6-shNC cells after HQ treatment. In contrast, Fas expression was lower in TK6-shPARP-1 cells than in TK6-shNC cells. Therefore, we conclude that HQ may activate apoptotic signals via Fas up-regulation and p53-mediated apoptosis in TK6-shNC cells. The reduction of PARP-1 expression further intensified up-regulation of p53 in TK6-shPARP-1 cells, resulting in an increased G1→S phase cell arrest and apoptosis in TK6-shPARP-1 cells compared to TK6-shNC cells.
Collapse
Affiliation(s)
- Hao Luo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hairong Liang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jiajia Chen
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yongchun Xu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuting Chen
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Longmei Xu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Lin Yun
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jiaxian Liu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hui Yang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Linhua Liu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jianming Peng
- Huizhou Prevention and Treatment Centre for Occupational Disease, Huizhou, China
| | - Zhidong Liu
- Huizhou Prevention and Treatment Centre for Occupational Disease, Huizhou, China
| | - Lin Tang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
2
|
Ghorai A, Sarma A, Bhattacharyya NP, Ghosh U. Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis. Apoptosis 2016; 20:562-80. [PMID: 25670618 DOI: 10.1007/s10495-015-1107-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High linear energy transfer (LET) carbon ion beam (CIB) is becoming very promising tool for various cancer treatments and is more efficient than conventional low LET gamma or X-rays to kill malignant or radio-resistant cells, although detailed mechanism of cell death is still unknown. Poly (ADP-ribose) polymerase-1 (PARP-1) is a key player in DNA repair and its inhibitors are well-known as radio-sensitizer for low LET radiation. The objective of our study was to find mechanism(s) of induction of apoptosis by CIB and role of PARP-1 in CIB-induced apoptosis. We observed overall higher apoptosis in PARP-1 knocked down HeLa cells (HsiI) compared with negative control H-vector cells after irradiation with CIB (0-4 Gy). CIB activated both intrinsic and extrinsic pathways of apoptosis via caspase-9 and caspase-8 activation respectively, followed by caspase-3 activation, apoptotic body, nucleosomal ladder formation and sub-G1 accumulation. Apoptosis inducing factor translocation into nucleus in H-vector but not in HsiI cells after CIB irradiation contributed caspase-independent apoptosis. Higher p53 expression was observed in HsiI cells compared with H-vector after exposure with CIB. Notably, we observed about 37 % fall of mitochondrial membrane potential, activation of caspase-9 and caspase-3 and mild activation of caspase-8 without any detectable apoptotic body formation in un-irradiated HsiI cells. We conclude that reduction of PARP-1 expression activates apoptotic signals via intrinsic and extrinsic pathways in un-irradiated cells. CIB irradiation further intensified both intrinsic and extrinsic pathways of apoptosis synergistically along with up-regulation of p53 in HsiI cells resulting overall higher apoptosis in HsiI than H-vector.
Collapse
Affiliation(s)
- Atanu Ghorai
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, India
| | | | | | | |
Collapse
|
3
|
Rajiah IR, Skepper J. Differential localisation of PARP-1 N-terminal fragment in PARP-1(+/+) and PARP-1(-/-) murine cells. Mol Cells 2014; 37:526-31. [PMID: 25078451 PMCID: PMC4132304 DOI: 10.14348/molcells.2014.0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/27/2014] [Accepted: 07/07/2014] [Indexed: 11/27/2022] Open
Abstract
Human PARP family consists of 17 members of which PARP-1 is a prominent member and plays a key role in DNA repair pathways. It has an N-terminal DNA-binding domain (DBD) encompassing the nuclear localisation signal (NLS), central automodification domain and C-terminal catalytic domain. PARP-1 accounts for majority of poly-(ADP-ribose) polymer synthesis that upon binding to numerous proteins including PARP itself modulates their activity. Reduced PARP-1 activity in ageing human samples and its deficiency leading to telomere shortening has been reported. Hence for cell survival, maintenance of genomic integrity and longevity presence of intact PARP-1 in the nucleus is paramount. Although localisation of full-length and truncated PARP-1 in PARP-1 proficient cells is well documented, subcellular distribution of PARP-1 fragments in the absence of endogenous PARP-1 is not known. Here we report the differential localisation of PARP-1 N-terminal fragment encompassing NLS in PARP-1(+/+) and PARP-1(-/-) mouse embryo fibroblasts by live imaging of cells transiently expressing EGFP tagged fragment. In PARP-1(+/+) cells the fragment localises to the nuclei presenting a granular pattern. Furthermore, it is densely packaged in the midsections of the nucleus. In contrast, the fragment localises exclusively to the cytoplasm in PARP-1(-/-) cells. Flourescence intensity analysis further confirmed this observation indicating that the N-terminal fragment requires endogenous PARP-1 for its nuclear transport. Our study illustrates the trafficking role of PARP-1 independently of its enzymatic activity and highlights the possibility that full-length PARP-1 may play a key role in the nuclear transport of its siblings and other molecules.
Collapse
Affiliation(s)
- Ida Rachel Rajiah
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Jeremy Skepper
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| |
Collapse
|
4
|
Ghorai A, Bhattacharyya NP, Sarma A, Ghosh U. Radiosensitivity and Induction of Apoptosis by High LET Carbon Ion Beam and Low LET Gamma Radiation: A Comparative Study. SCIENTIFICA 2014; 2014:438030. [PMID: 25018892 PMCID: PMC4083825 DOI: 10.1155/2014/438030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/22/2014] [Indexed: 05/26/2023]
Abstract
Cancer treatment with high LET heavy ion beam, especially, carbon ion beam ((12)C), is becoming very popular over conventional radiotherapy like low LET gamma or X-ray. Combination of Poly(ADP-ribose) polymerase (PARP) inhibitor with xenotoxic drugs or conventional radiation (gamma or X-ray) is the newer approach for cancer therapy. The aim of our study was to compare the radiosensitivity and induction of apoptosis by high LET (12)C and low LET gamma radiation in HeLa and PARP-1 knocked down cells. We did comet assay to detect DNA breaks, clonogenic survival assay, and cell cycle analysis to measure recovery after DNA damage. We measured apoptotic parameters like nuclear fragmentation and caspase-3 activation. DNA damage, cell killing, and induction of apoptosis were significantly higher for (12)C than gamma radiation in HeLa. Cell killing and apoptosis were further elevated upon knocking down of PARP-1. Both (12)C and gamma induced G2/M arrest although the (12)C had greater effect. Unlike the gamma, (12)C irradiation affects DNA replication as detected by S-phase delay in cell cycle analysis. So, we conclude that high LET (12)C has greater potential over low LET gamma radiation in killing cells and radiosensitization upon PARP-1 inhibition was several folds greater for (12)C than gamma.
Collapse
Affiliation(s)
- Atanu Ghorai
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India
| | - Nitai P. Bhattacharyya
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, India
| | - Asitikantha Sarma
- Inter-University Accelerator Center (IUAC), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Utpal Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani 741235, India
| |
Collapse
|
5
|
Lin T, Wang G, Shan W, Zeng D, Ding R, Jiang X, Zhu D, Liu X, Yang S, Chen H. Myrotheciumones: bicyclic cytotoxic lactones isolated from an endophytic fungus of Ajuga decumbens. Bioorg Med Chem Lett 2014; 24:2504-7. [PMID: 24775302 DOI: 10.1016/j.bmcl.2014.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/17/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
Two new bicyclic lactones, myrotheciumones A (1) and B (2) which possessed a rare ring-fusion system were isolated from Myrothecium roridum (M. roridum), an endophytic fungus of the medicinal herb plant Ajuga decumbens (A. decumbens) via an in vitro cytotoxicity assay. Structures were deduced from 1D and 2D NMR (Nuclear magnetic resonance) data. Myrotheciumone A's in vitro cytotoxicity and apoptotic activity were evaluated and myrotheciumone A was shown to exert cytotoxicity via inducing apoptosis in cancer cell line.
Collapse
Affiliation(s)
- Ting Lin
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian 361102, China.
| | - Guanghui Wang
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian 361102, China
| | - Wenjun Shan
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian 361102, China
| | - Dequan Zeng
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian 361102, China
| | - Rong Ding
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian 361102, China
| | - Xin Jiang
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian 361102, China
| | - Dan Zhu
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian 361102, China
| | - Xiaoxuan Liu
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian 361102, China
| | - Shuiyuan Yang
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian 361102, China
| | - Haifeng Chen
- School of Pharmaceutical Sciences, Xiamen University, South Xiangan Road, Xiamen, Fujian 361102, China.
| |
Collapse
|
6
|
Disabling the mitotic spindle and tumor growth by targeting a cavity-induced allosteric site of survivin. Oncogene 2011; 31:1938-48. [PMID: 21892210 DOI: 10.1038/onc.2011.377] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Survivin is a member of the inhibitor of apoptosis protein family and has an essential role in mitosis. Survivin is overexpressed in a large variety of human cancers and represents an attractive target for cancer therapy. Epidermal growth factor receptor and Her/neu-transformed human tumors in particular exhibit high levels of survivin. The survivin protein forms dimers through a conserved region that is critical for subcellular localization and biological functions of the protein. We identified small molecules that target a specific cavity adjacent to the survivin dimerization surfaces. S12, a lead compound identified in the screen, can bind to the survivin protein at the intended target site. Moreover, S12 alters spindle formation, causing mitotic arrest and cell death, and inhibits tumor growth in vitro and in vivo. Cell death occurs in premetaphase stage following mitotic arrest and is not a consequence of general toxicity. Thus, the study validates a novel therapeutic target site in the survivin protein and provides a promising strategy to develop a new class of therapeutic small molecules for the treatment of human cancers.
Collapse
|
7
|
|
8
|
Plant PJ, Bain JR, Correa JE, Woo M, Batt J. Absence of caspase-3 protects against denervation-induced skeletal muscle atrophy. J Appl Physiol (1985) 2009; 107:224-34. [PMID: 19390003 DOI: 10.1152/japplphysiol.90932.2008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ubiquitin-proteasome system is a key proteolytic pathway activated during skeletal muscle atrophy. The proteasome, however, cannot degrade intact myofibrils or actinomyosin complexes. In rodent models of diabetes mellitus and uremia, caspase-3 is involved in actinomyosin cleavage, generating fragments that subsequently undergo ubiquitin-proteasome-mediated degradation. Here, we demonstrate that caspase-3 also mediates denervation-induced muscle atrophy. At 2 wk after tibial nerve transection, the denervated gastrocnemius of caspase-3-knockout mice weighed more and demonstrated larger fiber-type-specific cross-sectional area than the denervated gastrocnemius of wild-type mice. However, there was no difference between caspase-3-knockout and wild-type denervated muscles in the magnitude or pattern of actinomyosin degradation, as determined by Western blotting for actin and the 14-kDa actin fragment. Similarly, there was no difference between caspase-3-knockout and wild-type denervated muscles in the magnitude of increase in proteasome activity, total protein ubiquitination, or atrogin-1 and muscle-specific ring finger protein 1 transcript levels. In contrast, there was an increase in TdT-mediated dUTP nick end label-positive nuclei in the denervated muscle of wild-type compared with caspase-3-knockout mice. Apoptotic signaling upstream of caspase-3 remained intact, with equivalent mitochondrial Bax translocation and cytochrome c release and caspase-9 activation in the denervated gastrocnemius muscle of wild-type and caspase-3-knockout mice. In contrast, diminished poly(ADP-ribose) polymerase cleavage in the denervated muscle of caspase-3-knockout compared with wild-type mice revealed that apoptotic signaling downstream of caspase-3 was impaired, suggesting that the absence of caspase-3 protects against denervation-induced muscle atrophy by suppressing apoptosis as opposed to ubiquitin-proteasome-mediated protein degradation.
Collapse
|
9
|
George J, Gondi CS, Dinh DH, Gujrati M, Rao JS. Restoration of tissue factor pathway inhibitor-2 in a human glioblastoma cell line triggers caspase-mediated pathway and apoptosis. Clin Cancer Res 2007; 13:3507-17. [PMID: 17575213 PMCID: PMC1905856 DOI: 10.1158/1078-0432.ccr-06-3023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The induction of apoptotic pathways in cancer cells offers a novel and potentially useful approach to improve patient responses to conventional chemotherapy. Tissue factor pathway inhibitor-2 (TFPI-2) is a protease inhibitor that is abundant in the extracellular matrix and highly expressed in noninvasive cells but absent or undetectable in highly invasive human glioblastoma cells. EXPERIMENTAL DESIGN Using a recombinant adeno-associated viral vector carrying human TFPI-2 cDNA, we stably expressed TFPI-2 in U-251 cells, a highly invasive human glioblastoma cell line. Our previous studies showed that restoration of TFPI-2 in glioblastomas effectively prevents cell proliferation, angiogenesis, and tumor invasion. In this study, we determined whether TFPI-2 restoration could induce apoptosis through the caspase-mediated signaling pathway. RESULTS The results from nuclear chromatin staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and fluorescence-activated cell sorting analysis showed increased apoptosis in U-251 cells after restoration of TFPI-2. Caspase-9 and caspase-3 activity assays showed increased activity, indicating enhanced apoptosis. Immunofluorescence for cleaved caspase-9 and caspase-3 depicted increased expression and colocalization of both molecules. Western blot analysis showed increased transcriptional activities of Fas ligand, tumor necrosis factor-alpha, Bax, Fas-associated death domain, and tumor necrosis factor receptor 1-associated death domain as well as elevated levels of cleaved caspases and poly(ADP-ribose) polymerase. Semiquantitative reverse transcription-PCR depicted increased expression of tumor necrosis factor-alpha and Fas ligand and the related death domains tumor necrosis factor receptor 1-associated death domain and Fas-associated death domain. CONCLUSIONS Taken together, these results show that restoration of TFPI-2 activates both intrinsic and extrinsic caspase-mediated, proapoptotic signaling pathways and induces apoptosis in U-251 cells. Furthermore, our study suggests that recombinant adeno-associated viral vector-mediated gene expression offers a novel tool for cancer gene therapy.
Collapse
Affiliation(s)
- Joseph George
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Christopher S. Gondi
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Dzung H. Dinh
- Department of Neurosurgery, University of Illinois at Chicago, College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Meena Gujrati
- Department of Pathology, University of Illinois at Chicago, College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Jasti S. Rao
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
- Department of Neurosurgery, University of Illinois at Chicago, College of Medicine at Peoria, Peoria, IL 61605, USA
- *Address for correspondence: Jasti S. Rao, Ph.D., Department of Cancer Biology and Pharmacology, University of Illinois, College of Medicine at Peoria, Peoria, IL 61605, USA, Phone: 309-671-3445, Fax: 309-671-3442, E-mail:
| |
Collapse
|
10
|
Böhm I. [The apoptosis marker enzyme poly-(ADP-ribose) polymerase (PARP) in systemic lupus erythematosus]. Z Rheumatol 2007; 65:541-4. [PMID: 16541210 DOI: 10.1007/s00393-006-0045-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The enzyme poly-(ADP-ribose) polymerase (PARP) is localized within the cell nucleus and catalyzes DNA-repair. During programmed cell death (apoptosis), PARP is enzymatically cleaved. Detection of the cleavage products is characteristic for apoptosis. In patients with systemic lupus erythematosus (SLE), the highly ordered signal transduction cascade of apoptosis is disturbed. SLE patients show reduced PARP activity . PARP cleavage products are mainly found in association with either antinuclear and/or anti-dsDNA antibodies. In addition, serum samples from SLE patients and other autoimmune diseases display anti-PAR and anti-PARP autoantibodies.
Collapse
Affiliation(s)
- I Böhm
- Radiologische Universitätsklinik der Rheinischen Friedrich-Wilhelms Universität Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn.
| |
Collapse
|
11
|
Chasovskikh S, Dimtchev A, Smulson M, Dritschilo A. DNA transitions induced by binding of PARP-1 to cruciform structures in supercoiled plasmids. Cytometry A 2006; 68:21-7. [PMID: 16200639 DOI: 10.1002/cyto.a.20187] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Poly(ADP-ribose)polymerase-1 (PARP-1) binds to single and double-stranded breaks in DNA, but less well known is its affinity for undamaged DNA. Previously, we have shown that PARP-1 also binds to the hairpin structures in DNA models. The mechanism underlying these interactions remains to be defined. METHODS We analyzed atomic force microscopy (AFM) images of complex of PARP-1 proteins with supercoiled plasmids containing cruciform structures. Using volume measurement analysis of molecules of PARP-1, we determined the numbers of PARP-1 molecules interacting with supercoiled DNA plasmids containing one cruciform structure. We also determined the extent of supercoiling of plasmids. RESULTS Our observations show that PARP-1 binds to sequences that transition from B-DNA to cruciform structures. PARP-1 is present at the ends of hairpin arms, sites containing a 4-base single-stranded DNA. Furthermore, interaction of PARP-1 with supercoiled plasmids leads to a more relaxed plasmid-DNA conformation. CONCLUSIONS Binding of PARP-1 to cruciform DNA offers insight into possible mechanisms underlying with changes in DNA conformation. These observations may offer insight into mechanisms involving DNA conformation related to process such as DNA repair and transcription.
Collapse
Affiliation(s)
- Sergey Chasovskikh
- Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Apoptosis has been implicated in the regulation of denervation-induced muscle atrophy. However, the activation of apoptotic signal transduction during muscle denervation has not been fully elucidated. The present study examined the apoptotic responses to denervation in rat gastrocnemius muscle. Following 14 days of denervation, the extent of apoptotic DNA fragmentation as determined by a cytosolic nucleosome ELISA was increased by 100% in the gastrocnemius muscle. RT-PCR and immunoblot analyses indicated that Bax was dramatically upregulated while Bcl-2 was modestly increased; however, the Bax/Bcl-2 ratio was significantly increased in denervated muscles relative to control muscles. Analyses of ELISA and immunoblots from mitochondria-free cytosol extracts showed a significant increase in mitochondria-associated apoptotic factors, including cytochrome c, Smac/DIABLO and apoptosis-inducing factor (AIF). In addition to the upregulation of caspase-3 and -9 mRNA, pro-/cleaved caspase protein and proteolytic activity levels, the X-linked inhibitor of apoptosis (XIAP) protein level was downregulated. The cleaved product of poly(ADP-ribose) polymerase (PARP) was detected in muscle samples following denervation. Although we did not find a difference in the inhibitor of DNA binding/differentiation-2 (Id2) and c-Myc protein contents between the denervated and control muscles, the protein content of tumour suppressor p53 was significantly increased in both the nuclear and the cytosolic fractions with denervation. Moreover, denervation increased the protein content of HSP70, whereas the MnSOD (a mitochondrial isoform of superoxide dismutase) protein content was diminished, which indicated that denervation might have induced cellular and/or oxidative stress. Our data show that mitochondria-associated apoptotic signalling is upregulated during muscle denervation. We interpret these findings to indicate that apoptosis has a physiologically important role in regulating denervation-induced muscle atrophy.
Collapse
Affiliation(s)
- Parco M Siu
- Laboratory of Muscle Biology an Sarcopenia, Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown WV 26506-9227, USA
| | | |
Collapse
|
13
|
Zheng J, Devalaraja-Narashimha K, Singaravelu K, Padanilam BJ. Poly(ADP-ribose) polymerase-1 gene ablation protects mice from ischemic renal injury. Am J Physiol Renal Physiol 2004; 288:F387-98. [PMID: 15494543 DOI: 10.1152/ajprenal.00436.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased generation of reactive oxygen species (ROS) and the subsequent DNA damage and excessive activation of poly(ADP-ribose) polymerase-1 (PARP-1) have been implicated in the pathogenesis of ischemic injury. We previously demonstrated that pharmacological inhibition of PARP protects against ischemic renal injury (IRI) in rats (Martin DR, Lewington AJ, Hammerman MR, and Padanilam BJ. Am J Physiol Regul Integr Comp Physiol 279: R1834-R1840, 2000). To further define the role of PARP-1 in IRI, we tested whether genetic ablation of PARP-1 attenuates tissue injury after renal ischemia. Twenty-four hours after reperfusion following 37 min of bilateral renal pedicle occlusion, the effects of the injury on renal functions in PARP-/- and PARP+/+ mice were assessed by determining glomerular filtration rate (GFR) and the plasma levels of creatinine. The levels of plasma creatinine were decreased and GFR was augmented in PARP-/- mice. Morphological evaluation of the kidney tissues showed that the extent of damage due to the injury in PARP-/- mice was less compared with their wild-type counterparts. The levels of ROS and DNA damage were comparable in the injured kidneys of PARP+/+ and PARP-/- mice. PARP activity was induced in ischemic kidneys of PARP+/+ mice at 6-24 h postinjury. At 6, 12, and 24 h after injury, ATP levels in the PARP+/+ mice kidney declined to 28, 26, and 43%, respectively, whereas it was preserved close to normal levels in PARP-/- mice. The inflammatory cascade was attenuated in PARP-/- mice as evidenced by decreased neutrophil infiltration and attenuated expression of inflammatory molecules such as TNF-alpha, IL-1beta, and intercellular adhesion molecule-1. At 12 h postinjury, no apoptotic cell death was observed in PARP-/- mice kidneys. However, by 24 h postinjury, a comparable number of cells underwent apoptosis in both PARP-/- and PARP+/+ mice kidneys. Thus activation of PARP post-IRI contributes to cell death most likely by ATP depletion and augmentation of the inflammatory cascade in the mouse model. PARP ablation preserved ATP levels, renal functions, and attenuated inflammatory response in the setting of IRI in the mouse model. PARP inhibition may have clinical efficacy in preventing the progression of acute renal failure complications.
Collapse
Affiliation(s)
- Jianfeng Zheng
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | | | | | | |
Collapse
|
14
|
Ivana Scovassi A, Diederich M. Modulation of poly(ADP-ribosylation) in apoptotic cells. Biochem Pharmacol 2004; 68:1041-7. [PMID: 15313399 DOI: 10.1016/j.bcp.2004.04.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Accepted: 04/23/2004] [Indexed: 10/26/2022]
Abstract
Poly(ADP-ribosylation) is a post-translational modification of proteins playing a crucial role in DNA repair, replication, transcription and cell death. In this paper, the main features of this process have been reviewed, focusing on the best known poly(ADP-ribose) polymerizing enzyme, PARP-1, a DNA nick-sensor protein that uses beta-NAD+ to form polymers of ADP-ribose. The modulation of poly(ADP-ribosylation) during apoptosis and the possible effects of its inhibition on cell metabolism are discussed.
Collapse
Affiliation(s)
- A Ivana Scovassi
- Istituto di Genetica Molecolare CNR, Via Abbiategrasso 207, I-27100 Pavia, Italy.
| | | |
Collapse
|
15
|
Hatip-Al-Khatib I, Iwasaki K, Chung EH, Egashira N, Mishima K, Fujiwara M. Inhibition of poly (ADP-ribose) polymerase and caspase-3, but not caspase-1, prevents apoptosis and improves spatial memory of rats with twice-repeated cerebral ischemia. Life Sci 2004; 75:1967-78. [PMID: 15306164 DOI: 10.1016/j.lfs.2004.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Accepted: 05/05/2004] [Indexed: 11/23/2022]
Abstract
The effect of inhibition of PARP [(poly (ADP-ribose) polymerase], caspase-3 and caspase-1 on twice-repeated ischemia-induced apoptosis and memory impairment were examined. The twice repeated ischemia was induced by four-vessel occlusion method in which a 10 min ischemic episode was repeated once after 60 min. The spatial memory was assessed using 8-arm radial maze. The results of this study showed that the repeated ischemia impaired memory and induced apoptosis in hippocampus CA1 field after 7 days. Moreover, 3-aminobezamide (10 mg/kg i.v.), a PARP inhibitor, and Ac-DEVD-CHO (8.4 microg/5 microL i.c.v., bilaterally), a caspase-3 inhibitor, decreased apoptosis by 45% and 58% respectively. Both drugs reduced the error choices, but 3-aminobezamide additionally increased the correct choices and improved the memory when either drug was injected immediately after the ischemic insult. The results also showed that inhibition of interleukin-1beta-converting enzyme, ICE (caspase-1) by Z-ASP-DCB-CH2 (100 microg/kg i.c.v., bilaterally) neither decreased apoptosis (13% reduction) nor improved memory of the ischemic rats. These results suggest that direct inhibition of PARP and caspase-3, but not of caspase-1, prevents apoptosis and improves spatial memory impaired by repeated ischemia.
Collapse
Affiliation(s)
- Izzettin Hatip-Al-Khatib
- Department of Pharmacology, Division of Internal Medicine, Faculty of Medicine, Pamukkale, University, Denizli, Turkey.
| | | | | | | | | | | |
Collapse
|
16
|
Caccamo A, Scaltriti M, Caporali A, D'Arca D, Scorcioni F, Astancolle S, Mangiola M, Bettuzzi S. Cell detachment and apoptosis induction of immortalized human prostate epithelial cells are associated with early accumulation of a 45 kDa nuclear isoform of clusterin. Biochem J 2004; 382:157-68. [PMID: 15139853 PMCID: PMC1133926 DOI: 10.1042/bj20040158] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 04/15/2004] [Accepted: 05/12/2004] [Indexed: 12/21/2022]
Abstract
Clusterin, ubiquitously distributed in mammalians, was cloned and identified as the most potently induced gene during rat prostate involution following androgen deprivation. Also found to be involved in many other patho-physiological processes, its biological significance is still controversial, particularly with regard to apoptosis. We previously showed that transient over-expression of clusterin blocked cell cycle progression of simian-virus-40-immortalized human prostate epithelial cell lines PNT1A and PNT2. We show in the present study that the accumulation of an intracellular 45 kDa clusterin isoform was an early event closely associated with death of PNT1A cells caused by cell detachment followed by apoptosis induction (anoikis). Cell morphological changes, decreased proliferation rate and cell cycle arrest at G0/G1-S-phase checkpoint were all strictly associated with the production and early translocation to the nucleus of a 45 kDa clusterin isoform. Later, nuclear clusterin was found accumulated in detached cells and apoptotic bodies. These results suggest that a 45 kDa isoform of clusterin, when targeted to the nucleus, can decrease cell proliferation and promotes cell-detachment-induced apoptosis, suggesting a possible major role for clusterin as an anti-proliferative gene in human prostate epithelial cells.
Collapse
Key Words
- anoikis
- apoptosis
- caspase
- clusterin
- pnt1a cell
- prostate cancer
- dapi, 4,6-diamidino-2-phenylindole
- devd-pna, asp-glu-val-asp-p-nitroanilide
- fak, focal adhesion kinase
- fbs, foetal bovine serum
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- ksfm, keratinocyte serum-free complete medium
- p-fak-tyr397, phosphorylated fak
- par, poly(adp-ribose)
- parp, par polymerase
- pna, p-nitroanilide
- sv40, simian virus 40
- ttbs, tris-buffered saline/tween
Collapse
Affiliation(s)
- Alessandro E. Caccamo
- *Dipartimento di Medicina Sperimentale, University of Parma, Via Volturno 39, 43100 Parma, Italy
| | - Maurizio Scaltriti
- *Dipartimento di Medicina Sperimentale, University of Parma, Via Volturno 39, 43100 Parma, Italy
| | - Andrea Caporali
- *Dipartimento di Medicina Sperimentale, University of Parma, Via Volturno 39, 43100 Parma, Italy
| | - Domenico D'Arca
- †Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Modena, Italy
| | - Francesca Scorcioni
- †Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Modena, Italy
| | - Serenella Astancolle
- †Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Modena, Italy
| | - Massimo Mangiola
- ‡Dipartimento di Oncologia, Biologia e Genetica, Università di Genova, Genova, Italy
| | - Saverio Bettuzzi
- *Dipartimento di Medicina Sperimentale, University of Parma, Via Volturno 39, 43100 Parma, Italy
| |
Collapse
|
17
|
Drivdahl R, Haugk KH, Sprenger CC, Nelson PS, Tennant MK, Plymate SR. Suppression of growth and tumorigenicity in the prostate tumor cell line M12 by overexpression of the transcription factor SOX9. Oncogene 2004; 23:4584-93. [PMID: 15077158 DOI: 10.1038/sj.onc.1207603] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Overexpression of mac25 in the prostate cancer cell line M12 effects a dramatic reversal of the transformed phenotype. cDNA array analysis of RNA from cells overproducing the mac25 protein (M12/mac25) indicated upregulation of the sex determining transcription factor SOX9. In this study, we have confirmed increased expression of SOX9 in M12/mac25 cells and have further investigated the physiological effects of increased SOX9 production. Greatly increased levels of SOX9 RNA and mature protein were demonstrated in cells transfected with a SOX9 cDNA (M12/SOX9), and gel mobility shift assays confirmed binding of nuclear protein from these cells to an oligonucleotide containing the SOX9 consensus binding sequence. M12/SOX9 cells assumed the spindle-shaped morphology characteristic of M12/mac25 cells, suggesting that SOX9 mediates some effects of mac25. Elevated expression of SOX9 resulted in a decreased rate of cellular proliferation, cell cycle arrest in G0/G1, and increased sensitivity to apoptosis. Tumor development in athymic nude mice was inhibited by 80%. Finally, prostate-specific antigen and the androgen receptor, two genes whose expression is characteristic of differentiated cells, were both upregulated in M12/SOX9 cells. These data indicate that SOX9 contributes to growth regulation by mac25 via inhibition of cell growth and promotion of differentiation.
Collapse
Affiliation(s)
- Rolf Drivdahl
- Veterans Affairs Puget Sound Health Care System, Seattle, WA 98105, USA
| | | | | | | | | | | |
Collapse
|
18
|
Yau L, Zahradka P. ADP-Ribosylation and the Cardiovascular System. PATHOPHYSIOLOGY OF CARDIOVASCULAR DISEASE 2004. [DOI: 10.1007/978-1-4615-0453-5_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Quesada P, Malanga M, Di Meglio S, De Lorenzo S, Fabbrocini A, Garbi C, Bianco AR, Pepe S. Recombinant IFN-alpha2b treatment activates poly (ADPR) polymerase-1 (PARP-1) in KB cancer cells. Eur J Cancer 2003; 39:2103-9. [PMID: 12957467 DOI: 10.1016/s0959-8049(03)00433-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the present paper, we investigated the relationship between the growth inhibitory effects of recombinant interferon-alpha2b (rIFN-alpha2b) and poly (ADPR) polymerase-1 (PARP-1) activity in the human squamous KB cancer cell line. Growth inhibition of the KB cells mediated by 1000 IU/ml of rIFN-alpha2b was accompanied by a transient rise in PARP-1 specific activity 24 h after rIFN-alpha2b treatment, confirmed by both the increase of intracellular poly (ADP-ribose) content and the PARP-1 auto-modification level. At longer times of incubation, the onset of apoptosis accompanied KB cell growth inhibition, as demonstrated by both flow cytometry and western-blotting analysis showing an 89 kDa apoptotic fragment of PARP-1. Moreover, pretreatment of the cells with the PARP-1 inhibitor, 3-aminobenzamide (3-ABA), at non-cytotoxic concentrations (1 mM), reduced the cell-growth inhibition, cell-cycle perturbation and apoptosis caused by rIFN-alpha2b. Taken together, these results strongly suggest that PARP-1 may be directly involved in the effects of rIFN-alpha2b in the KB cancer cell line.
Collapse
Affiliation(s)
- P Quesada
- Department of Biological Chemistry, University Federico II, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Haas MJ, Parseghian SA, Sajid RM, Mooradian AD. Effect of thyroid hormone responsive protein (THRP) expression on PC12 cell survival. Exp Brain Res 2003; 150:75-84. [PMID: 12698219 DOI: 10.1007/s00221-003-1406-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2002] [Accepted: 01/22/2003] [Indexed: 10/20/2022]
Abstract
The thyroid hormone responsive protein (THRP) is a novel gene product that remains responsive to thyroid hormone in the cerebral cortex of adult rats. The biological effects of THRP are currently unknown. Since thyroid hormones (TH) are known to cause cell death in primary neuronal cultures, the effect of exogenous THRP expression on PC12 cell viability was investigated. Co-transfection of the THRP expression plasmid with the selectable marker pSV2neo resulted in a lower number of surviving PC12 cells compared to transfection with pSV2neo and the empty vector, pSVL. Similar results were observed when PC12 cells were transfected with the plasmid pCMV. SPORT beta-gal with and without pSVL-THRP. However, expression of exogenous THRP in the colonic epithelial cell line Caco-2 and the glial cell line U251 had no effect on cell viability. Coexpression of THRP with either the wild-type (WT)-c-Abl or a kinase-defective mutant c-Abl (K290R) did not alter the cell viability changes induced by THRP alone. Under these experimental conditions the predominant form of cell death was necrosis as evidenced by in situ analyses, such as terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) and staining with membrane permeating and non-permeating nuclear dyes, Hoechst 33342 and propidium iodide respectively. In addition cell cycle arrest induced by THRP was demonstrated by reduced (3)H-thymidine incorporation into cellular DNA. The number of PC12 cells treated with 10(-7) M of l-3, 5, 3'-triiodothyronine (T(3)) was significantly reduced after the fourth day of culture. Treatment of the cells with T(3 )resulted in a dose dependent induction of THRP mRNA. It is concluded that: (1). THRP expression induces PC12 cell death; (2). under these experimental conditions the form of cell death is predominantly necrosis although cell cycle arrest may also occur; (3). the effect of THRP on cell viability is not modulated by c-Abl tyrosine kinase; and (4). the effect of T(3 )treatment on PC12 cell survival may be mediated by THRP.
Collapse
Affiliation(s)
- Michael J Haas
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | | | | | | |
Collapse
|
21
|
Chang H, Sander CS, Müller CSL, Elsner P, Thiele JJ. Detection of poly(ADP-ribose) by immunocytochemistry: a sensitive new method for the early identification of UVB- and H2O2-induced apoptosis in keratinocytes. Biol Chem 2002; 383:703-8. [PMID: 12033459 DOI: 10.1515/bc.2002.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Apoptosis is an active form of cell death that is initiated by a variety of stimuli, including reactive oxygen species (ROS) and ultraviolet (UV) radiation. Poly (ADP-ribose) (PAR) is formed upon activation of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP), and therefore was suggested as a new marker of apoptosis. Since DNA of epidermal cells represents a well-known chromophore for UVB irradiation, and UVB is known to generate H2O2 in keratinocytes, we hypothesized that PAR is a very sensitive marker of UVB- and H2O2-induced apoptosis in keratinocytes. In order to test this hypothesis, human immortalized keratinocytes (HaCaT) were UVB-irradiated or treated with H2O2, and subsequently apoptosis was identified by comparing conventional parameters such as morphological analysis, DNA laddering, and TUNEL assay, with PAR formation. Both, UVB and H2O2 treatment induced PAR formation in HaCaT cells in a dose-dependent manner, and its formation was detected as early as 4 h after irradiation, and at lower UVB doses (10 mJ/cm2) than observed by DNA laddering and the TUNEL assay. In conclusion, the detection of PAR formation is a very sensitive and early method for the identification of apoptotic cells in UVB-induced apoptosis of human keratinocytes.
Collapse
Affiliation(s)
- Hong Chang
- Department of Dermatology, Friedrich-Schiller-University, Jena, Germany
| | | | | | | | | |
Collapse
|
22
|
Nargi-Aizenman JL, Simbulan-Rosenthal CM, Kelly TA, Smulson ME, Griffin DE. Rapid activation of poly(ADP-ribose) polymerase contributes to Sindbis virus and staurosporine-induced apoptotic cell death. Virology 2002; 293:164-71. [PMID: 11853409 DOI: 10.1006/viro.2001.1253] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a chromatin-associated enzyme that is activated by DNA strand breaks and catalyzes the transfer of ADP-ribose groups from NAD to itself and other nuclear proteins. Although caspase-mediated PARP-1 cleavage occurs during almost all forms of apoptosis, the contribution of PARP-1 activation and cleavage to this cell death process remains unclear. Using immortalized fibroblasts from wild-type (PARP-1(+/+)) and PARP-1 knockout (PARP-1(-/-)) mice, and a mouse neuroblastoma cell line (N18), the role that poly(ADP-ribosyl)ation plays in Sindbis virus (SV)-induced apoptosis was examined. Robust PARP-1 activation occurred in SV-infected cells prior to morphologic changes associated with apoptotic cell death and PARP-1 activity ceased simultaneously with caspase-3 activation and PARP-1 proteolysis. PARP-1 activity was maximal before detectable DNA fragmentation, but was absent when DNA damage was most intense. SV and staurosporine-induced cell death was delayed in fibroblasts lacking PARP-1 activity, suggesting that PARP-1 activation contributes to apoptotic cell death induced by these stimuli. SV replication was not affected by lack of PARP-1 activity, but DNA fragmentation and caspase-3 activation were delayed and occurred at lower levels in PARP-1-deficient fibroblasts. Early virus-induced PARP-1 activation may represent a novel way by which cells signal to the nucleus to regulate protein function by poly(ADP-ribosyl)ation in response to virus infection.
Collapse
Affiliation(s)
- Jennifer L Nargi-Aizenman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
23
|
Soldani C, Lazzè MC, Bottone MG, Tognon G, Biggiogera M, Pellicciari CE, Scovassi AI. Poly(ADP-ribose) polymerase cleavage during apoptosis: when and where? Exp Cell Res 2001; 269:193-201. [PMID: 11570811 DOI: 10.1006/excr.2001.5293] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) plays the active role of "nick sensor" during DNA repair and apoptosis, when it synthesizes ADP-ribose from NAD(+) in the presence of DNA strand breaks. Moreover, PARP-1 becomes a target of apoptotic caspases, which originate two proteolytic fragments of 89 and 24 kDa. The precise relationship between PARP-1 activation and degradation during apoptosis is still a matter of debate. In human Hep-2 cells driven to apoptosis by actinomycin D, we have monitored PARP-1 activity by the mAb 10H, which is specific for the ADP-ribose polymers, and we have observed that poly(ADP-ribose) synthesis is a very early response to the apoptotic stimulus. The analysis of the presence and fate of the p89 proteolytic fragment revealed that PARP-1 proteolysis by caspases is concomitant with poly(ADP-ribose) synthesis and that p89 migrates from the nucleus into the cytoplasm in late apoptotic cells with advanced nuclear fragmentation.
Collapse
Affiliation(s)
- C Soldani
- Dipartimento di Biologia Animale, Centro di Studio per I'Istochimica del CNR, Piazza Botta 10, Pavia, I-27100, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Herceg Z, Wang ZQ. Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat Res 2001; 477:97-110. [PMID: 11376691 DOI: 10.1016/s0027-5107(01)00111-7] [Citation(s) in RCA: 364] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) is responsible for post-translational modification of proteins in the response to numerous endogenous and environmental genotoxic agents. PARP and poly(ADP-ribosyl)ation are proposed to be important for the regulation of many cellular processes such as DNA repair, cell death, chromatin functions and genomic stability. Activation of PARP is one of the early DNA damage responses, among other DNA sensing molecules, such as DNA-PK, ATM and p53. The generation and characterization of PARP deficient mouse models have been instrumental in defining the biological role of the molecule and its involvement in the pathogenesis of various diseases including diabetes, stroke, Parkinson disease, general inflammation as well as tumorigenesis, and have, therefore, provided information for the development of pharmaceutical strategies for the treatment of diseases.
Collapse
Affiliation(s)
- Z Herceg
- International Agency for Research on Cancer, 150 cours Albert-Thomas, F-69008, Lyon, France
| | | |
Collapse
|
25
|
Drivdahl RH, Sprenger C, Trimm K, Plymate SR. Inhibition of growth and increased expression of insulin-like growth factor-binding protein-3 (IGFBP-3) and -6 in prostate cancer cells stably transfected with antisense IGFBP-4 complementary deoxyribonucleic acid. Endocrinology 2001; 142:1990-8. [PMID: 11316765 DOI: 10.1210/endo.142.5.8158] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-like growth factor-binding proteins (IGFBPs) both stimulate and inhibit IGF activity, and in the M12 prostate cancer cell line, overexpression of IGFBP-4 was shown to delay tumorigenesis while decreasing the production of IGFBP-2. We have performed the reverse experiment, inhibition of IGFBP-4 expression with antisense complementary DNA, in two prostate tumor cell lines, ALVA-31 and M12. Expression of antisense messenger RNA transcripts was verified by RNase protection assays, and inhibition of mature IGFBP-4 in cell medium was demonstrated by Western blotting. Both transfected lines (ALVA-31asBP4 and M12asBP4) proliferated more slowly in monolayer culture than parental controls. Colony formation in soft agar was strongly inhibited in both cases, and the rate of tumor formation and growth in male athymic nude mice injected with M12asBP4 was markedly reduced relative to that in mice receiving M12 control cells. Apoptosis induced by the topoisomerase inhibitor etoposide was also enhanced in transfected cells. The effects on colony formation in soft agar and tumor formation in mice were maintained for the duration of the experiments, in contrast to the delayed growth observed in the previous study of IGFBP-4 overexpression. A significant difference was found in the patterns of IGFBP expression; production of both messenger RNA and protein for IGFBP-3 and IGFBP-6 was greatly increased in the M12asBP4 and ALVA31asBP4 cell lines. Up-regulation of these binding proteins has been observed in association with actions of 1,25-dihydroxyvitamin D(3) in prostate cancer cells, and the data suggest a role for IGFBP-3 and IGFBP-6 in the suppression of prostate tumor cell growth.
Collapse
Affiliation(s)
- R H Drivdahl
- Research Service, Department of Veterans Affairs Puget Sound Health Care System, Tacoma, Washington 98493, USA
| | | | | | | |
Collapse
|
26
|
LaPlaca MC, Zhang J, Raghupathi R, Li JH, Smith F, Bareyre FM, Snyder SH, Graham DI, McIntosh TK. Pharmacologic inhibition of poly(ADP-ribose) polymerase is neuroprotective following traumatic brain injury in rats. J Neurotrauma 2001; 18:369-76. [PMID: 11336438 DOI: 10.1089/089771501750170912] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The nuclear enzyme poly(ADP-ribose) polymerase (PARP), which has been shown to be activated following experimental traumatic brain injury (TBI), binds to DNA strand breaks and utilizes nicotinamide adenine dinucleotide (NAD) as a substrate. Since consumption of NAD may be deleterious to recovery in the setting of CNS injury, we examined the effect of a potent PARP inhibitor, GPI 6150, on histological outcome following TBI in the rat. Rats (n = 16) were anesthetized, received a preinjury dose of GPI 6150 (30 min; 15 mg/kg, i.p.), subjected to lateral fluid percussion (FP) brain injury of moderate severity (2.5-2.8 atm), and then received a second dose 3 h postinjury (15 mg/kg, i.p.). Lesion area was examined using Nissl staining, while DNA fragmentation and apoptosis-associated cell death was assessed with terminal deoxynucleotidyl-transferase-mediated biotin-dUTP nick end labeling (TUNEL) with stringent morphological evaluation. Twenty-four hours after brain injury, a significant cortical lesion and number of TUNEL-positive/nonapoptotic cells and TUNEL-positive/apoptotic cells in the injured cortex of vehicle-treated animals were observed as compared to uninjured rats. The size of the trauma-induced lesion area was significantly attenuated in the GPI 6150-treated animals versus vehicle-treated animals (p < 0.05). Treatment of GPI 6150 did not significantly affect the number of TUNEL-positive apoptotic cells in the injured cortex. The observed neuroprotective effects on lesion size, however, offer a promising option for further evaluation of PARP inhibition as a means to reduce cellular damage associated with TBI.
Collapse
Affiliation(s)
- M C LaPlaca
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Simbulan-Rosenthal CM, Rosenthal DS, Luo R, Li JH, Zhang J, Smulson ME. Inhibition of poly(ADP-ribose) polymerase activity is insufficient to induce tetraploidy. Nucleic Acids Res 2001; 29:841-9. [PMID: 11160908 PMCID: PMC30380 DOI: 10.1093/nar/29.3.841] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) knockout mice are resistant to murine models of human diseases such as cerebral and myocardial ischemia, traumatic brain injury, diabetes, Parkinsonism, endotoxic shock and arthritis, implicating PARP in the pathogenesis of these diseases. Potent selective PARP inhibitors are therefore being evaluated as novel therapeutic agents in the treatment of these diseases. Inhibition or depletion of PARP, however, increases genomic instability in cells exposed to genotoxic agents. We recently demonstrated the presence of a genomically unstable tetraploid population in PARP(-/-) fibroblasts and its loss after stable transfection with PARP cDNA. To elucidate whether the genomic instability is attributable to PARP deficiency or lack of PARP activity, we investigated the effects of PARP inhibition on development of tetraploidy. Immortalized wild-type and PARP(-/-) fibroblasts were exposed for 3 weeks to 20 microM GPI 6150 (1,11b-dihydro-[2H:]benzopyrano[4,3,2-de]isoquinolin-3-one), a novel small molecule specific competitive inhibitor of PARP (K(i) = 60 nM) and one of the most potent PARP inhibitors to date (IC(50) = 0.15 microM). Although GPI 6150 initially decreased cell growth in wild-type cells, there was no effect on cell growth or viability after 24 h. GPI 6150 inhibited endogenous PARP activity in wild-type cells by approximately 91%, to about the residual levels in PARP(-/-) cells. Flow cytometric analysis of unsynchronized wild-type cells exposed for 3 weeks to GPI 6150 did not induce the development of tetraploidy, suggesting that, aside from its catalytic function, PARP may play other essential roles in the maintenance of genomic stability.
Collapse
Affiliation(s)
- C M Simbulan-Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
28
|
Rosenthal DS, Simbulan-Rosenthal CM, Iyer S, Smith WJ, Ray R, Smulson ME. Calmodulin, poly(ADP-ribose)polymerase and p53 are targets for modulating the effects of sulfur mustard. J Appl Toxicol 2000; 20 Suppl 1:S43-9. [PMID: 11428642 DOI: 10.1002/1099-1263(200012)20:1+<::aid-jat691>3.0.co;2-s] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe two pathways by which the vesicating agent sulfur mustard (HD) may cause basal cell death and detachment: induction of terminal differentiation and apoptosis. Following treatment of normal human epidermal keratinocytes (NHEK) with 10 or 100 microM HD, the differentiation-specific keratin pair K1/K10 was induced and the cornified envelope precursor protein, involucrin, was cross-linked by epidermal transglutaminase. Fibronectin levels were reduced in a time- and dose-dependent manner. The rapid increase in p53 and decrease in Bcl-2 levels was consistent not only with epidermal differentiation but with apoptosis as well. Further examination of biochemical markers of apoptosis following treatment of either NHEK or human papillomavirus (HPV)-immortalized keratinocytes revealed a burst of poly(ADP-ribose) synthesis, specific cleavage of poly(ADP-ribose)polymerase (PARP) in vivo and in vitro into characteristic 89 and 24 kDa fragments, processing of caspase-3 into its active form and the formation of DNA ladders. The intracellular calcium chelator BAPTA suppressed the differentiation markers, whereas antisense oligonucleotides and chemical inhibitors specific for calmodulin blocked both markers of differentiation and apoptosis. Modulation of p53 levels utilizing retroviral constructs expressing the E6, E7 or E6 + E7 genes of HPV-16 revealed that HD-induced apoptosis was partially p53-dependent. Finally, immortalized fibroblasts derived from PARP -/- 'knockout mice' were exquisitely sensitive to HD-induced apoptosis. These cells became HD resistant when wild-type PARP was stably expressed in these cells. These results indicate that HD exerts its effects via calmodulin, 3 and PARP-sensitive pathways.
Collapse
Affiliation(s)
- D S Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
29
|
Alexandre S, Rast C, Nguyen-Ba G, Poirier GG, Vasseur P. PARP degradation in apoptotic Syrian hamster embryo (SHE) cells compared to HL60 cell line. Biochimie 2000; 82:1115-22. [PMID: 11120353 DOI: 10.1016/s0300-9084(00)01194-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we attempted to identify apoptotic Syrian hamster embryo (SHE) cells by detecting the specific cleavage of poly(ADP-ribose)polymerase (PARP). Apoptosis was unequivocally identified in serum-deprived SHE cells. After protein electrophoresis and transfer, the anti-PARP antibody (C-2-10) was applied in order to visualize PARP degradation and the anti-polymer antibody (LP96-10) was used to identify PARP and its expected 89-kDa fragment on the membrane after renaturation and NAD+ addition. Results showed that PARP rapidly disappeared during apoptosis in SHE cells, but the resulting fragment remained undetectable with the anti-PARP antibody and no stable polymerase activity of this fragment was measured using anti-polymer antibody. Serum-starved SHE cells were compared to the etoposide-treated HL60 cell line as a control for typical apoptosis-related PARP cleavage. These results underline the fact that while PARP degradation is a criterion for apoptosis, the diagnosis of apoptosis can not rely exclusively on the appearance of its 89-kDa fragment as this signal may fail to appear in some cell systems.
Collapse
Affiliation(s)
- S Alexandre
- EBSE-Centre des Sciences de l'Environnement, Université de Metz, Faculté des Sciences, rue Delestraint, 57070, Metz, France
| | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- R. L. Thompson
- Department of Molecular Genetics
University of Cincinnati Medical Center
Cincinnati, OH 45267–0524, USA
| | - N. M. Sawtell
- Division of Infectious Diseases
Children's Hospital Medical Center
Cincinnati, OH 45229–3039, USA
| |
Collapse
|
31
|
Smulson ME, Simbulan-Rosenthal CM, Boulares AH, Yakovlev A, Stoica B, Iyer S, Luo R, Haddad B, Wang ZQ, Pang T, Jung M, Dritschilo A, Rosenthal DS. Roles of poly(ADP-ribosyl)ation and PARP in apoptosis, DNA repair, genomic stability and functions of p53 and E2F-1. ADVANCES IN ENZYME REGULATION 2000; 40:183-215. [PMID: 10828352 DOI: 10.1016/s0065-2571(99)00024-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- M E Smulson
- Georgetown University School of Medicine, Department of Biochemistry and Molecular Biology, 3900 Reservoir Rd, NW, Washington, DC 20007, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 2000; 68:383-424. [PMID: 10872455 DOI: 10.1146/annurev.biochem.68.1.383] [Citation(s) in RCA: 1995] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: (a) Zymogen gene transcription is regulated; (b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and (c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.
Collapse
Affiliation(s)
- W C Earnshaw
- Institute of Cell and Molecular Biology, University of Edinburgh, Scotland, United Kingdom.
| | | | | |
Collapse
|
33
|
Yakovlev AG, Wang G, Stoica BA, Boulares HA, Spoonde AY, Yoshihara K, Smulson ME. A role of the Ca2+/Mg2+-dependent endonuclease in apoptosis and its inhibition by Poly(ADP-ribose) polymerase. J Biol Chem 2000; 275:21302-8. [PMID: 10807908 DOI: 10.1074/jbc.m001087200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptosis is characterized by various cell morphological and biochemical features, one of which is the internucleosomal degradation of genomic DNA. The role of the human chromatin-bound Ca(2+)- and Mg(2+)-dependent endonuclease (CME) DNAS1L3 and its inhibition by poly(ADP-ribosyl)ation in the DNA degradation that accompanies apoptosis was investigated. The nuclear localization of this endonuclease is the unique feature that distinguishes it from other suggested apoptotic nucleases. Purified recombinant DNAS1L3 was shown to cleave nuclear DNA into both high molecular weight and oligonucleosomal fragments in vitro. Furthermore, exposure of mouse skin fibroblasts expressing DNAS1L3 to inducers of apoptosis resulted in oligonucleosomal DNA fragmentation, an effect not observed in cells not expressing this CME, as well as in a decrease in cell viability greater than that apparent in the control cells. Recombinant DNAS1L3 was modified by recombinant human poly(ADP-ribose) polymerase (PARP) in vitro, resulting in a loss of nuclease activity. The DNAS1L3 protein also underwent poly(ADP-ribosyl)ation in transfected mouse skin fibroblasts in response to inducers of apoptosis. The cleavage and inactivation of PARP by a caspase-3-like enzyme late in apoptosis were associated with a decrease in the extent of DNAS1L3 poly(ADP-ribosyl)ation, which likely releases DNAS1L3 from inhibition and allows it to catalyze the degradation of genomic DNA.
Collapse
Affiliation(s)
- A G Yakovlev
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, D.C. 20007, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Meng SZ, Itoh M, Obonai T, Takashima S. Roles of glutamate transporter and receptors, poly (ADPribose) polymerase, and transforming growth factor-beta1 in pontosubicular neuron necrosis. J Child Neurol 2000; 15:362-9. [PMID: 10868778 DOI: 10.1177/088307380001500602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The expression of neuron-type glutamate transporters (EAAC-1), AMPA glutamate receptor subunits (GluR1 and GluR2/3), polyadenosine (5'diphosphate-ribose) polymerase (PARP), and transforming growth factor-beta1 was investigated in 20 cases of neonatal pontosubicular neuron necrosis and 12 gestational-age matched controls. Developmental immunoreactivities of EAAC-1, GluR1, and GluR2/3 appeared in the neurons of the pontine nuclei at 29 to 30 weeks' gestation in controls, and then gradually increased with age. However, these activities were decreased in the pontine nucleus of patients with pontosubicular neuron necrosis. Decreases in these immunoreactivities might indicate early degeneration of neurons. Although PARP and transforming growth factor-beta1 immunoreactivity was insignificant or very weak in the pontine nuclei at any age in controls, PARP was markedly expressed in karyorrhectic neurons of the pontine nucleus in patients with pontosubicular neuron necrosis. Transforming growth factor-beta1 immunoreactivity was observed in nonkaryorrhectic neurons of the pontine nuclei. PARP could contribute to the pathogenesis of pontosubicular neuron necrosis more than EAAC-1 or GluR1 or GluR2/3. Transforming growth factor-beta1 could play a role in the protection and repair of damaged neurons.
Collapse
Affiliation(s)
- S Z Meng
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, Tokyo, Japan
| | | | | | | |
Collapse
|
35
|
Tian RH, Zhang GY, Yan CH, Dai YR. Involvement of poly(ADP-ribose) polymerase and activation of caspase-3-like protease in heat shock-induced apoptosis in tobacco suspension cells. FEBS Lett 2000; 474:11-5. [PMID: 10828442 DOI: 10.1016/s0014-5793(00)01561-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cleavage of poly(ADP-ribose) polymerase (PARP) by caspase (casp)-3 is an essential link in the apoptotic pathway in animal cells. In plant cells, however, there is no authentic evidence for the similar role that PARP may play during apoptosis. Using a heat shock (HS)-induced apoptosis system of tobacco cells, we found that immediately after a 4 h heat treatment, PARP was cleaved to form an 89 kDa signature fragment, while DNA laddering appeared only after a 20 h recovery following the HS. An activation of casp-3-like protease was also observed. The results suggest that apoptosis in plants and animals may share common mechanisms. On the other hand, when cells were preincubated with 4 mM 3-aminobenzamide or 2-8 mM nicotinamide, the specific inhibitors of PARP, before HS treatment, apoptotic cell death was reduced significantly. Our results thus imply that PARP may also be involved in apoptosis in a different way from the casp-related events.
Collapse
Affiliation(s)
- R h Tian
- Department of Biology, Tsinghua University, 100084, Beijing, China
| | | | | | | |
Collapse
|
36
|
Masdehors P, Glaisner S, Maciorowski Z, Magdelénat H, Delic J. Ubiquitin-dependent protein processing controls radiation-induced apoptosis through the N-end rule pathway. Exp Cell Res 2000; 257:48-57. [PMID: 10854053 DOI: 10.1006/excr.2000.4870] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ubiquitination of nuclear proteins activated in human lymphocytes undergoing radiation-induced apoptosis and the subsequent downstream proteasomal protein processing, shown to be involved in apoptotic death control, may be dependent on an amino-terminal sequence identity of ubiquitin target proteins, the "N-end rule" pathway. Here we report that this selective pathway controls radiation-induced apoptosis and that it is involved in the initiation of this type of cell death. Dipeptide competitors of protein ubiquitination/processing dependent solely on the basic amino-terminal residues (type I) efficiently inhibited the radiation-induced apoptotic death phenotype, indicating that only the substrates of ubiquitination with basic NH2-terminal amino acids are involved in apoptotic death control. This selective inhibition was followed by an early, overall but also target-specific inhibition of ubiquitination and by an activation and stabilization of poly(ADP-ribose) polymerase (PARP) that occurs through inhibition of ubiquitination of its cleaved form (85 kDa). Interestingly, caspases-3 and -7 were not activated following irradiation, further suggesting that PARP cleavage may be regulated by an N-end rule pathway in a caspase-independent manner. These results highly suggest involvement of this subset of the ubiquitin system in the apoptotic death control and in the specific regulation of PARP activity.
Collapse
Affiliation(s)
- P Masdehors
- Laboratoire de Recherche Correspondant No. 2 du CEA (DSV/DRR/Fontenay Aux Roses), Paris, France
| | | | | | | | | |
Collapse
|
37
|
Kim JW, Kim K, Kang K, Joe CO. Inhibition of homodimerization of poly(ADP-ribose) polymerase by its C-terminal cleavage products produced during apoptosis. J Biol Chem 2000; 275:8121-5. [PMID: 10713134 DOI: 10.1074/jbc.275.11.8121] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biochemical role of the C-terminal fragment of poly(ADP-ribose) polymerase (PARP) was investigated in HeLa cells undergoing UV-mediated apoptosis. During the course of apoptosis, the C-terminal cleavage product of PARP interacted with intact PARP and down-regulated PARP activity by blocking the homodimerization of PARP. The basic leucine zipper motif in the auto-modification domain of the C-terminal fragment of PARP represented the site of association, and Leu(405) was critical to the ability of the basic leucine zipper motif to associate with intact PARP. The expression of the C-terminal fragment of PARP stimulated UV-mediated apoptosis. These results suggest that the C-terminal cleavage product of PARP produced during apoptosis blocks the homodimerization of PARP and inhibits the cellular PARP activity. The inhibition of the cellular PARP activity might prevent cellular NAD(+) depletion and stimulate apoptosis by maintaining the basal cellular energy level required for the completion of apoptosis.
Collapse
Affiliation(s)
- J W Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon, 305-701, South Korea
| | | | | | | |
Collapse
|
38
|
Li X, Darzynkiewicz Z. Cleavage of Poly(ADP-ribose) polymerase measured in situ in individual cells: relationship to DNA fragmentation and cell cycle position during apoptosis. Exp Cell Res 2000; 255:125-32. [PMID: 10666341 DOI: 10.1006/excr.1999.4796] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP), a nuclear enzyme involved in DNA repair, is a target of caspases during apoptosis: its cleavage onto 89- and 24-kDa fragments is considered to be a hallmark of the apoptotic mode of cell death. Another hallmark is the activation of endonuclease which targets internucleosomal DNA. The aim of the present study was to reveal cell cycle phase specificity as well as the temporal and sequence relationships of PARP cleavage vis-à-vis DNA fragmentation in two model systems of apoptosis, one induced by DNA damage via cell treatment with camptothecin (CPT) (mitochondria-induced pathway) and another by the cytotoxic ligand tumor necrosis factor alpha (TNF-alpha) (cell surface death receptor pathway). PARP cleavage was detected immunocytochemically using antibody which recognizes its 89-kDa fragment (PARP p89) while DNA fragmentation was assayed by in situ labeling of DNA strand breaks. The frequency and extent of PARP cleavage as well as DNA fragmentation were measured by mutiparameter flow and laser scanning cytometry. PARP cleavage, selective to S phase cells, was detected 90 min after administration of CPT. PARP cleavage in the cells treated with TNF-alpha was not selective to any cell cycle phase and was seen already after 30 min. DNA fragmentation trailed PARP cleavage by about 30 min and showed a similar pattern of cell cycle specificity. PARP p89 was present in nuclear chromatin but at least in the early phase of apoptosis it did not colocalize with DNA strand breaks. The rate of cleavage of PARP molecules in individual cells whether induced by CPT or TNF-alpha was rapid as reflected by the paucity of cells with a mixture of cleaved and noncleaved PARP molecules. In contrast, DNA fragmentation proceeded stepwise before reaching the maximal number of DNA strand breaks. Although time windows for PARP cleavage vs DNA fragmentation were different at early stages of apoptosis, a good overall correlation between the cytometric assays of apoptotic cells identification based on these events was observed in both CPT- and TNF-alpha-treated cultures.
Collapse
Affiliation(s)
- X Li
- Brander Cancer Research Institute, New York Medical College, Valhalla, New York 10595, USA
| | | |
Collapse
|
39
|
Freude B, Masters TN, Robicsek F, Fokin A, Kostin S, Zimmermann R, Ullmann C, Lorenz-Meyer S, Schaper J. Apoptosis is initiated by myocardial ischemia and executed during reperfusion. J Mol Cell Cardiol 2000; 32:197-208. [PMID: 10722797 DOI: 10.1006/jmcc.1999.1066] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ischemia/reperfusion leading to myocyte cell death has been reported as either necrotic or apoptotic or a combination of both. The importance of necrosis is well established but the role of apoptosis and the time of initiation are still unknown. Normothermic global ischemia of either 45 or 90 min duration followed by 6 h of reperfusion were induced in isolated canine hearts. After 45 min of ischemia, left ventricular function and adenine nucleotide (AN) content had recovered during reperfusion indicating reversible injury. DNA fragmentation determined by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) was absent as was the 85 kDa fragment of poly-(ADP-ribose) polymerase (PARP). After 90 min of ischemia, electron microscopy indicated necrotic cell death in 90% of myocytes. Recovery of function and AN content during reperfusion was minimal. At the end of ischemia, caspase-3 was activated in 30% of all myocytes and PARP 85 kDa fragments were present by Western blot, indicating initiation of the apoptotic cascade. Lamin-B(1)labeling was significantly reduced from 90% in myocytes in control and ischemia to 30% in early reperfusion. Completion of apoptosis seen by TUNEL was evident in late reperfusion (7.6% of myocytes and 8.3% of non-myocytes). Experiments with 6 h ischemia without reperfusion showed absence of DNA fragmentation. We conclude that apoptotic cell death is initiated by ischemia but that reperfusion is needed for completion of the apoptotic cascade. Furthermore, it is concluded that cell death in acute global ischemia followed by reperfusion occurs predominantly by necrosis and that apoptosis is of minor importance in this pathophysiological situation.
Collapse
Affiliation(s)
- B Freude
- Dept. of Exp. Cardiology, Max Planck Institute, Bad Nauheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The mechanism of neuronal death in brain ischaemia remains unclear. Morphology, terminal transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) and immunohistochemistry for the pro-apoptotic enzyme caspase-3 (CASP3), for its substrates poly(ADP-ribose) polymerase (PARP) and the DNA-dependent protein kinase catalytic subunit (DNA-PKCS) and for poly(ADP-ribose) (PAR), an end-product of PARP activity, were used to investigate neuronal death in brain infarcts from 15 men and 20 women, aged 46-95 years. The infarcts varied in age from 18 h to several months. Neuronal death was characterized morphologically by cell shrinkage, cytoplasmic hypereosinophilia and moderate nuclear pyknosis with later chromatin dispersal and disintegration, but not features of apoptosis. Occasional apoptotic bodies were seen but these appeared to be related to inflammatory cells, endothelial cells and occasional glia, including satellite cells. Neurones within infarcts showed strong nuclear and cytoplasmic labelling for CASP3 during the first 2 days after infarction. Neuronal DNA-PKCS, PARP and poly(ADP-ribose) immunoreactivity was demonstrable in scattered neurones in and adjacent to infarcts for 18-24 h but thereafter declined to below detectable levels in most cases. TUNEL labelled cells towards the edge of the infarcts, particularly at 2-4 days, but most of the labelling could be prevented by preincubation of the sections in diethyl pyrocarbonate to inactivate endogenous nucleases. Between 3 days and 3 weeks, CASP3 and DNA-PKCS were detected in proliferating capillaries and CASP3, PARP and poly(ADP-ribose) in infiltrating macrophages. Our findings indicate that neuronal death in human brain infarcts has some of the early biochemical features of programmed cell death, with upregulation of CASP3 and rapid disappearance of DNA-PKCS and PARP. However, the morphological changes are not those of apoptosis, the DNA cleavage occurs relatively late, and some of the TUNEL is probably mediated by the release of endogenous endonucleases during protease or microwave pretreatment of the damaged tissue.
Collapse
Affiliation(s)
- S Love
- Departments of Neuropathology, Care of the Elderly, Frenchay Hospital, Bristol, UK.
| | | | | |
Collapse
|
41
|
Germain M, Affar EB, D'Amours D, Dixit VM, Salvesen GS, Poirier GG. Cleavage of automodified poly(ADP-ribose) polymerase during apoptosis. Evidence for involvement of caspase-7. J Biol Chem 1999; 274:28379-84. [PMID: 10497198 DOI: 10.1074/jbc.274.40.28379] [Citation(s) in RCA: 360] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The abundant nuclear enzyme poly(ADP-ribose) polymerase (PARP) synthesizes poly(ADP-ribose) in response to DNA strand breaks. During almost all forms of apoptosis, PARP is cleaved by caspases, suggesting the crucial role of its inactivation. A few studies have also reported a stimulation of PARP during apoptosis. However, the role of PARP stimulation and cleavage during this cell death process remains poorly understood. Here, we measured the stimulation of endogenous poly(ADP-ribose) synthesis during VP-16-induced apoptosis in HL60 cells and found that PARP was cleaved by caspases at the time of its poly(ADP-ribosyl)ation. In vitro experiments showed that PARP cleavage by caspase-7, but not by caspase-3, was stimulated by its automodification by long and branched poly(ADP-ribose). Consistently, caspase-7 exhibited an affinity for poly(ADP-ribose), whereas caspase-3 did not. In addition, caspase-7 was activated and accumulated in the nucleus of HL60 cells in response to the VP-16 treatment. Furthermore, caspase-7 activation was concommitant with PARP cleavage in the caspase-3-deficient cell line MCF-7 in response to staurosporine treatment. These results strongly suggest that, in vivo, it is caspase-7 that is responsible for PARP cleavage and that poly(ADP-ribosyl)ation of PARP accelerates its proteolysis. Cleavage of the active form of caspase substrates could be a general feature of the apoptotic process, ensuring the rapid inactivation of stress signaling proteins.
Collapse
Affiliation(s)
- M Germain
- Health and Environment Unit, Laval University Medical Research Center, Centre Hospitalier Universitaire de Québec, Ste-Foy, Québec G1V 4G2, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Didier C, Emonet-Piccardi N, Béani JC, Cadet J, Richard MJ. L-arginine increases UVA cytotoxicity in irradiated human keratinocyte cell line: potential role of nitric oxide. FASEB J 1999; 13:1817-24. [PMID: 10506585 DOI: 10.1096/fasebj.13.13.1817] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human fibroblasts and keratinocytes possess nitric oxide synthases (NOS), which metabolize L-arginine (L-Arg) for producing nitric oxide (NO*). This report delineates the relations between NO* and UVA in the human keratinocyte cell line HaCaT. NOS activity was stimulated by exposure of cells to L-Arg just after irradiation. L-Arg (5 mM) supply led to an increase in UVA (25.3 J/cm(2)) cytotoxicity (% of viability 18 +/- 3%) whereas neither L-Arg itself nor UVA irradiation induced cell death at the doses used in this study. Cells were also treated either with L-thiocitrulline (L-Thio), an irreversible inhibitor of NOS, or with exogenous superoxide dismutase (SOD) and catalase. L-Thio and SOD prevented L-Arg-mediated deleterious effects in irradiated cells, whereas catalase was ineffective. Intracellular antioxidant enzyme activities were also determined. UVA/L-Arg stress altered catalase (66% decrease) and glutathione peroxidase (83% decrease). DNA damage was evaluated using the 'comet assay' and quantified using the 'tail moment'. UVA alone was genotoxic (mean tail moment: 25.43 +/- 1.23, P<0.001 compared control cells). The addition of L-Arg potentiated DNA damage (mean tail moment: 41.05+/-3.9) whereas L-Thio prevented them (mean tail moment 9.86 +/- 0.98). We attempted to assess the effect of poly(ADP-ribose) polymerase (PARP) inhibition on cell death. Using the PARP inhibitor 3-aminobenzamide, we established that PARP determines both cell lysis and DNA damage induced by UVA and/or L-Arg. Our findings demonstrated that L-Arg was able to increase UVA-mediated deleterious effects in keratinocytes (both DNA damage and cytotoxicity) and that the ratio NO*/O2*- plays a key role in these processes.
Collapse
Affiliation(s)
- C Didier
- LBSO/LCR7 No. 8-Université Joseph Fourier, F-38043 Grenoble Cedex 03, France
| | | | | | | | | |
Collapse
|
43
|
Richardson DS, Allen PD, Kelsey SM, Newland AC. Effects of PARP inhibition on drug and Fas-induced apoptosis in leukaemic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 457:267-79. [PMID: 10500802 DOI: 10.1007/978-1-4615-4811-9_29] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Poly (ADP-ribose) polymerase (PARP) is activated following binding to DNA strand breaks and is cleaved in cells undergoing apoptosis. Work predominantly in murine systems has suggested that inhibitors of PARP might potentiate the effects of chemotherapeutic agents and be used as adjuncts to cancer therapy. Therefore, we studied the role of PARP in drug-induced apoptosis in HL-60, myeloid leukaemia cells and found that pre-treatment with 3-aminobenzamide (3AB) or 6(5H)-phenanthridinone, inhibitors of PARP, resulted in resistance to, rather than potentiation of apoptotic death induced by DNA-damaging agents, idarubicin, etoposide and fludarabine, as determined by flow cytometry, following propidium iodide staining. 3AB treated CEM/VLB100, mdr-expressing human lymphoblastic leukaemia cells were also found to be more resistant to idarubicin compared to cells treated with idarubicin alone, however, apoptosis was not reduced in parental CCRF-CEM cells under the same conditions. Similar results were obtained using agents with primary modes of action which do not involve DNA damage, vinblastine and a fas-ligating antibody (CH11). The precise role of PARP has yet to be defined but might involve effects on cell cycle progression. We conclude that PARP activation appears to be involved in apoptosis in certain leukaemic cell lines and that these effects are independent of lineage or p-glycoprotein. Constitutive failure to activate PARP might be responsible for conferring resistance to apoptosis.
Collapse
Affiliation(s)
- D S Richardson
- Department of Haematology, St. Bartholomew's and Royal London School of Medicine, United Kingdom.
| | | | | | | |
Collapse
|
44
|
Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S, Smulson M. Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem 1999; 274:22932-40. [PMID: 10438458 DOI: 10.1074/jbc.274.33.22932] [Citation(s) in RCA: 716] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An early transient burst of poly(ADP-ribosyl)ation of nuclear proteins was recently shown to be required for apoptosis to proceed in various cell lines (Simbulan-Rosenthal, C., Rosenthal, D., Iyer, S., Boulares, H., and Smulson, M. (1998) J. Biol. Chem. 273, 13703-13712) followed by cleavage of poly(ADP-ribose) polymerase (PARP), catalyzed by caspase-3. This inactivation of PARP has been proposed to prevent depletion of NAD (a PARP substrate) and ATP, which are thought to be required for later events in apoptosis. The role of PARP cleavage in apoptosis has now been investigated in human osteosarcoma cells and PARP -/- fibroblasts stably transfected with a vector encoding a caspase-3-resistant PARP mutant. Expression of this mutant PARP increased the rate of staurosporine and tumor necrosis factor-alpha-induced apoptosis, at least in part by reducing the time interval required for the onset of caspase-3 activation and internucleosomal DNA fragmentation, as well as the generation of 50-kilobase pair DNA breaks, thought to be associated with early chromatin unfolding. Overexpression of wild-type PARP in osteosarcoma cells also accelerated the apoptotic process, although not to the same extent as that apparent in cells expressing the mutant PARP. These effects of the mutant and wild-type enzymes might be due to the early and transient poly(ADP-ribose) synthesis in response to DNA breaks, and the accompanying depletion of NAD apparent in the transfected cells. The accelerated NAD depletion did not seem to interfere with the later stages of apoptosis. These results indicate that PARP activation and subsequent cleavage have active and complex roles in apoptosis.
Collapse
Affiliation(s)
- A H Boulares
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, D.C. 20007, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
LaPlaca MC, Raghupathi R, Verma A, Pieper AA, Saatman KE, Snyder SH, McIntosh TK. Temporal patterns of poly(ADP-ribose) polymerase activation in the cortex following experimental brain injury in the rat. J Neurochem 1999; 73:205-13. [PMID: 10386972 DOI: 10.1046/j.1471-4159.1999.0730205.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The activation of poly(ADP-ribose) polymerase, a DNA base excision repair enzyme, is indicative of DNA damage. This enzyme also undergoes site-specific proteolysis during apoptosis. Because both DNA fragmentation and apoptosis are known to occur following experimental brain injury, we investigated the effect of lateral fluid percussion brain injury on poly(ADP-ribose) polymerase activity and cleavage. Male Sprague-Dawley rats (n = 52) were anesthetized, subjected to fluid percussion brain injury of moderate severity (2.5-2.8 atm), and killed at 30 min, 2 h, 6 h, 24 h, 3 days, or 7 days postinjury. Genomic DNA from injured cortex at 24 h, but not at 30 min, was both fragmented and able to stimulate exogenous poly(ADP-ribose) polymerase. Endogenous poly(ADP-ribose) polymerase activity, however, was enhanced in the injured cortex at 30 min but subsequently returned to baseline levels. Slight fragmentation of poly(ADP-ribose) polymerase was detected in the injured cortex in the first 3 days following injury, but significant cleavage was detected at 7 days postinjury. Taken together, these data suggest that poly(ADP-ribose) polymerase-mediated DNA repair is initiated in the acute posttraumatic period but that subsequent poly(ADP-ribose) polymerase activation does not occur, possibly owing to delayed apoptosis-associated proteolysis, which may impair the repair of damaged DNA.
Collapse
Affiliation(s)
- M C LaPlaca
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Brain ischemia initiates a complex cascade of metabolic events, several of which involve the generation of nitrogen and oxygen free radicals. These free radicals and related reactive chemical species mediate much of damage that occurs after transient brain ischemia, and in the penumbral region of infarcts caused by permanent ischemia. Nitric oxide, a water- and lipid-soluble free radical, is generated by the action of nitric oxide synthases. Ischemia causes a surge in nitric oxide synthase 1 (NOS 1) activity in neurons and, possibly, glia, increased NOS 3 activity in vascular endothelium, and later an increase in NOS 2 activity in a range of cells including infiltrating neutrophils and macrophages, activated microglia and astrocytes. The effects of ischemia on the activity of NOS 1, a Ca2+-dependent enzyme, are thought to be secondary to reversal of glutamate reuptake at synapses, activation of NMDA receptors, and resulting elevation of intracellular Ca2+. The up-regulation of NOS 2 activity is mediated by transcriptional inducers. In the context of brain ischemia, the activity of NOS 1 and NOS 2 is broadly deleterious, and their inhibition or inactivation is neuroprotective. However, the production of nitric oxide in blood vessels by NOS 3, which, like NOS 1, is Ca2+-dependent, causes vasodilatation and improves blood flow in the penumbral region of brain infarcts. In addition to causing the synthesis of nitric oxide, brain ischemia leads to the generation of superoxide, through the action of nitric oxide synthases, xanthine oxidase, leakage from the mitochondrial electron transport chain, and other mechanisms. Nitric oxide and superoxide are themselves highly reactive but can also combine to form a highly toxic anion, peroxynitrite. The toxicity of the free radicals and peroxynitrite results from their modification of macromolecules, especially DNA, and from the resulting induction of apoptotic and necrotic pathways. The mode of cell death that prevails probably depends on the severity and precise nature of the ischemic injury. Recent studies have emphasized the role of peroxynitrite in causing single-strand breaks in DNA, which activate the DNA repair protein poly(ADP-ribose) polymerase (PARP). This catalyzes the cleavage and thereby the consumption of NAD+, the source of energy for many vital cellular processes. Over-activation of PARP, with resulting depletion of NAD+, has been shown to make a major contribution to brain damage after transient focal ischemia in experimental animals. Neuronal accumulation of poly(ADP-ribose), the end-product of PARP activity has been demonstrated after brain ischemia in man. Several therapeutic strategies have been used to try to prevent oxidative damage and its consequences after brain ischemia in man. Although some of the drugs used in early studies were ineffective or had unacceptable side effects, other trials with antioxidant drugs have proven highly encouraging. The findings in recent animal studies are likely to lead to a range of further pharmacological strategies to limit brain injury in stroke patients.
Collapse
Affiliation(s)
- S Love
- Department of Neuropathology, Frenchay Hospital, Bristol, UK.
| |
Collapse
|
47
|
Burkart V, Wang ZQ, Radons J, Heller B, Herceg Z, Stingl L, Wagner EF, Kolb H. Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin. Nat Med 1999; 5:314-9. [PMID: 10086388 DOI: 10.1038/6535] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human type 1 diabetes results from the selective destruction of insulin-producing pancreatic beta cells during islet inflammation. Cytokines and reactive radicals released during this process contribute to beta-cell death. Here we show that mice with a disrupted gene coding for poly (ADP-ribose) polymerase (PARP-/- mice) are completely resistant to the development of diabetes induced by the beta-cell toxin streptozocin. The mice remained normoglycemic and maintained normal levels of total pancreatic insulin content and normal islet ultrastructure. Cultivated PARP-/- islet cells resisted streptozocin-induced lysis and maintained intracellular NAD+ levels. Our results identify NAD+ depletion caused by PARP activation as the dominant metabolic event in islet-cell destruction, and provide information for the development of strategies to prevent the progression or manifestation of the disease in individuals at risk of developing type 1 diabetes.
Collapse
Affiliation(s)
- V Burkart
- Diabetes Research Institute at the Heinrich Heine University Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Prasad SC, Soldatenkov V, Notario V, Smulson M, Dritschilo A. Detection of heterogeneity of apoptotic fragments of poly (ADP-ribose) polymerase in MDA-MB-468 breast cancer cells: two-dimensional gel analysis. Electrophoresis 1999; 20:618-25. [PMID: 10217178 DOI: 10.1002/(sici)1522-2683(19990301)20:3<618::aid-elps618>3.0.co;2-b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Caspace-mediated proteolysis of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) (EC 2.4, 2.30) is a biochemical marker of cell death in response to various apoptotic stimuli. Anti-PARP antibodies identifying the 89 kDa polypeptide from the C-terminus as well as the 113 kDa native enzyme are often used to demonstrate evidence of apoptosis-associated, interleukin converting enzyme (ICE)-mediated limited cleavage. Recent evidence points to redundancy of caspases, heterogeneity of their cleavage sites, and a possibility of generating distinct context-specific, and cell-specific PARP fragments. In the present study, we employed antibodies directed to multiple sites in PARP and probed two-dimensionally resolved proteins of the estrogen receptor negative MDA-MB-468 breast tumor cells, induced to undergo apoptosis by ionizing radiation (IR). Our results revealed that the 24 kDa apoptotic fragment of PARP, from the N-terminus, consists of at least three isoforms, located at a p/more basic than the full length enzyme. We also report a hitherto unrecognized feature of an anti-PARP antiserum, VIC-5, detecting both the 89 kDa and the 24 kDa caspase-generated fragments of PARP. Thus, application of two-dimensional electrophoresis combined with antisera directed to multiple sites would be valuable in distinguishing PARP cleavage site- and inhibitor specificities of proteases during apoptosis.
Collapse
Affiliation(s)
- S C Prasad
- Department of Radiation Medicine, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | | | | | | | |
Collapse
|
49
|
Davis RE, Mysore V, Browning JC, Hsieh JC, Lu QA, Katsikis PD. In situ staining for poly(ADP-ribose) polymerase activity using an NAD analogue. J Histochem Cytochem 1998; 46:1279-89. [PMID: 9774627 DOI: 10.1177/002215549804601108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) is a highly abundant nuclear enzyme which metabolizes NAD, in response to DNA strand breakage, to produce chains of poly(ADP-ribose) attached to nuclear proteins. PARP activation has been implicated in ischemia/reperfusion injury, but its biological significance is not fully understood. We have modified an existing in situ method for detection of PARP activity by using an NAD analogue in which adenine is modified by an "etheno" (vinyl) bridge. Etheno-NAD serves as a PARP substrate in an initial enzymatic reaction; a specific antibody to ethenoadenosine is then used in an immunohistochemical reaction to detect the production of modified poly(ADP-ribose). The method produces strong and specific labeling of nuclei in which PARP has been activated, i.e., those in which DNA strand breaks have been produced, and the results can be analyzed by microscopy, flow cytometry, or colorimetry. The method is applicable to cultured cells in several formats and to frozen tissue sections. The particular characteristics of the new method may assist in future in situ studies of PARP activation.
Collapse
Affiliation(s)
- R E Davis
- Departments of Pathology, Stanford University Medical Center, Palo Alto, California, USA
| | | | | | | | | | | |
Collapse
|
50
|
Rosenthal DS, Simbulan-Rosenthal CM, Iyer S, Spoonde A, Smith W, Ray R, Smulson ME. Sulfur mustard induces markers of terminal differentiation and apoptosis in keratinocytes via a Ca2+-calmodulin and caspase-dependent pathway. J Invest Dermatol 1998; 111:64-71. [PMID: 9665388 DOI: 10.1046/j.1523-1747.1998.00250.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sulfur mustard (SM) induces vesication via poorly understood pathways. The blisters that are formed result primarily from the detachment of the epidermis from the dermis at the level of the basement membrane. In addition, there is toxicity to the basal cells, although no careful study has been performed to determine the precise mode of cell death biochemically. We describe here two potential mechanisms by which SM causes basal cell death and detachment: namely, induction of terminal differentiation and apoptosis. In the presence of 100 microM SM, terminal differentiation was rapidly induced in primary human keratinocytes that included the expression of the differentiation-specific markers K1 and K10 and the cross-linking of the cornified envelope precursor protein involucrin. The expression of the attachment protein, fibronectin, was also reduced in a time- and dose-dependent fashion. Features common to both differentiation and apoptosis were also induced in 100 microM SM, including the rapid induction of p53 and the reduction of Bcl-2. At higher concentrations of SM (i.e., 300 microM), formation of the characteristic nucleosome-sized DNA ladders, TUNEL-positive staining of cells, activation of the cysteine protease caspase-3/apopain, and cleavage of the death substrate poly(ADP-ribose) polymerase, were observed both in vivo and in vitro. Both the differentiation and the apoptotic processes appeared to be calmodulin dependent, because the calmodulin inhibitor W-7 blocked the expression of the differentiation-specific markers, as well as the apoptotic response, in a concentration-dependent fashion. In addition, the intracellular Ca2+ chelator, BAPTA-AM, blocked the differentiation response and attenuated the apoptotic response. These results suggest a strategy for designing inhibitors of SM vesication via the Ca2+-calmodulin or caspase-3/PARP pathway.
Collapse
Affiliation(s)
- D S Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | | | | | | | | | |
Collapse
|