1
|
Grobbelaar S, Mercier AE, van den Bout I, Durandt C, Pepper MS. Considerations for enhanced mesenchymal stromal/stem cell myogenic commitment in vitro. Clin Transl Sci 2024; 17:e13703. [PMID: 38098144 PMCID: PMC10787211 DOI: 10.1111/cts.13703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/16/2023] [Accepted: 12/09/2023] [Indexed: 01/15/2024] Open
Abstract
The generation of tissue from stem cells is an alluring concept as it holds a number of potential applications in clinical therapeutics and regenerative medicine. Mesenchymal stromal/stem cells (MSCs) can be isolated from a number of different somatic sources, and have the capacity to differentiate into adipogenic, osteogenic, chondrogenic, and myogenic lineages. Although the first three have been extensively investigated, there remains a paucity of literature on the latter. This review looks at the various strategies available in vitro to enhance harvested MSC commitment and differentiation into the myogenic pathway. These include chemical inducers, myogenic-enhancing cell culture substrates, and mechanical and dynamic culturing conditions. Drawing on information from embryonic and postnatal myogenesis from somites, satellite, and myogenic progenitor cells, the mechanisms behind the chemical and mechanical induction strategies can be studied, and the sequential gene and signaling cascades can be used to monitor the progression of myogenic differentiation in the laboratory. Increased understanding of the stimuli and signaling mechanisms in the initial stages of MSC myogenic commitment will provide tools with which we can enhance their differentiation efficacy and advance the process to clinical translation.
Collapse
Affiliation(s)
- Simone Grobbelaar
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Anne E. Mercier
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Iman van den Bout
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Centre for Neuroendocrinology, Department of Immunology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
2
|
Koike H, Manabe I, Oishi Y. Mechanisms of cooperative cell-cell interactions in skeletal muscle regeneration. Inflamm Regen 2022; 42:48. [DOI: 10.1186/s41232-022-00234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractSkeletal muscles have an extraordinary capacity to regenerate themselves when injured. Skeletal muscle stem cells, called satellite cells, play a central role in muscle regeneration via three major steps: activation, proliferation, and differentiation. These steps are affected by multiple types of cells, such as immune cells, fibro-adipogenic progenitor cells, and vascular endothelial cells. The widespread use of single-cell sequencing technologies has enabled the identification of novel cell subpopulations associated with muscle regeneration and their regulatory mechanisms. This review summarizes the dynamism of the cellular community that controls and promotes muscle regeneration, with a particular focus on skeletal muscle stem cells.
Collapse
|
3
|
Todaka H, Arikawa M, Noguchi T, Ichikawa A, Sato T. Donepezil, an anti-Alzheimer's disease drug, promotes differentiation and regeneration in injured skeletal muscle through the elevation of the expression of myogenic regulatory factors. Eur J Pharmacol 2021; 911:174528. [PMID: 34582845 DOI: 10.1016/j.ejphar.2021.174528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
We previously demonstrated that donepezil, an anti-Alzheimer's disease drug, improved skeletal muscle atrophy by enhancing the angiogenesis of endothelial cells and activating the proliferation of satellite cells in a mouse model of peripheral arterial disease. However, the effect of donepezil on muscle differentiation during regeneration remains unclear. Therefore, we measured the expressions of myogenic regulatory factors and late muscle differentiation markers in donepezil-treated C2C12 myoblast cells before and after the induction of cell differentiation. The results indicate that the expressions of myogenin, troponin T (TnT) and myosin heavy chain (MyHC) were significantly increased and myotube formation was accelerated in donepezil-treated cells under the differentiation condition. However, the promotive effect of donepezil on muscle differentiation could not be reproduced by the addition of acetylcholine (ACh) and was not disrupted after treatment with ACh receptor blockers. Moreover, other kinds of acetylcholinesterase inhibitors failed to promote muscle differentiation in C2C12 cells. These results indicate that the specific characteristics of donepezil in the promotion of muscle differentiation are independent of its acetylcholinesterase-inhibitory action. We further found that donepezil induced an incremental shift of the cross-sectional area of myofibers and elevated the expressions of myogenin, TnT and MyHC in a mouse model of cardiotoxin injury. These results suggest that donepezil promotes the differentiation of muscle regeneration upon injury via the elevation of the expressions of myogenic regulatory factors and late muscle differentiation markers. Our findings suggest that donepezil can be a useful therapeutic agent for injured skeletal muscle treatment.
Collapse
Affiliation(s)
- Hiroshi Todaka
- Department of Cardiovascular Control, Kochi Medical School, Nankoku, Kochi, Japan.
| | - Mikihiko Arikawa
- Department of Biological Sciences, Faculty of Science and Technology, Kochi University, Akebono, Kochi, Japan
| | - Tatsuya Noguchi
- Department of Cardiology and Geriatrics, Kochi Medical School, Nankoku, Kochi, Japan
| | - Atsushi Ichikawa
- Department of Cardiovascular Control, Kochi Medical School, Nankoku, Kochi, Japan
| | - Takayuki Sato
- Department of Cardiovascular Control, Kochi Medical School, Nankoku, Kochi, Japan
| |
Collapse
|
4
|
An Evaluation of Muscle Repair Techniques: Implications in Musculoskeletal Healing and Corollaries in Oral-Facial Clefting. J Clin Med 2021; 10:jcm10214803. [PMID: 34768323 PMCID: PMC8584801 DOI: 10.3390/jcm10214803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
We performed an animal study to identify the techniques associated with the best muscle healing outcomes in cleft lip/palate surgery. The right triceps of thirty adult male Sprague-Dawley rats were cut and repaired by three different suture techniques: simple (n = 10), overlapping (n = 10), and splitting sutures (n = 10). Muscle tissues were isolated from 5 rats per group 1 and 8 weeks postoperation. The inflammatory response and muscle fiber healing were evaluated by hematoxylin and eosin (H&E) staining, Western blotting, immunohistochemistry for TNF-α and IL-1β, and immunofluorescence for laminin and MyoD. Grip strength (N/100 g) and spatial gait symmetry were evaluated before surgery and 1, 2, 4 and 8 weeks postoperation. Eight weeks postoperation, grip force per weight was significantly higher in the simple suture (median, 3.49; IQR, 3.28-3.66) and overlapping groups (median, 3.3; IQR, 3.17-3.47) than the splitting group (median, 2.91; IQR, 2.76-3.05). There was no significant difference in range of motion between groups. The simple group exhibited significant remission of inflammation by H&E staining and lower expression of TNF-α and IL-1β than the other groups by Western blotting and immunohistochemistry. Immunofluorescence revealed stronger expression of MyoD and weaker expression of laminin in the splitting group than in the other groups at week 8, indicating prolonged inflammation and healing followed by poor muscle fiber remodeling. Simple and overlapping sutures demonstrated similar functional healing, although greater inflammation and failure to maintain a thicker muscle belly were observed in the overlapping suture group compared with the simple suture group. Therefore, reconstruction of the philtral column with overlapping sutures alone may result in limited long-term fullness, and additional procedures may be needed.
Collapse
|
5
|
Wang Y, Wang Q, Luo S, Chen Z, Zheng X, Kankala RK, Chen A, Wang S. 3D bioprinting of conductive hydrogel for enhanced myogenic differentiation. Regen Biomater 2021; 8:rbab035. [PMID: 34408909 PMCID: PMC8363764 DOI: 10.1093/rb/rbab035] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, hydrogels have gained enormous interest in three-dimensional (3D) bioprinting toward developing functional substitutes for tissue remolding. However, it is highly challenging to transmit electrical signals to cells due to the limited electrical conductivity of the bioprinted hydrogels. Herein, we demonstrate the 3D bioprinting-assisted fabrication of a conductive hydrogel scaffold based on poly-3,4-ethylene dioxythiophene (PEDOT) nanoparticles (NPs) deposited in gelatin methacryloyl (GelMA) for enhanced myogenic differentiation of mouse myoblasts (C2C12 cells). Initially, PEDOT NPs are dispersed in the hydrogel uniformly to enhance the conductive property of the hydrogel scaffold. Notably, the incorporated PEDOT NPs showed minimal influence on the printing ability of GelMA. Then, C2C12 cells are successfully encapsulated within GelMA/PEDOT conductive hydrogels using 3D extrusion bioprinting. Furthermore, the proliferation, migration and differentiation efficacies of C2C12 cells in the highly conductive GelMA/PEDOT composite scaffolds are demonstrated using various in vitro investigations of live/dead staining, F-actin staining, desmin and myogenin immunofluorescence staining. Finally, the effects of electrical signals on the stimulation of the scaffolds are investigated toward the myogenic differentiation of C2C12 cells and the formation of myotubes in vitro. Collectively, our findings demonstrate that the fabrication of the conductive hydrogels provides a feasible approach for the encapsulation of cells and the regeneration of the muscle tissue.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, P. R. China
| | - Qingshuai Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Shengchang Luo
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Zhoujiang Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, P. R. China
| | - Xiang Zheng
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, P. R. China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, P. R. China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, P. R. China
| | - Shibin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen 361021, P. R. China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen 361021, P. R. China
| |
Collapse
|
6
|
Tidball JG, Flores I, Welc SS, Wehling-Henricks M, Ochi E. Aging of the immune system and impaired muscle regeneration: A failure of immunomodulation of adult myogenesis. Exp Gerontol 2020; 145:111200. [PMID: 33359378 DOI: 10.1016/j.exger.2020.111200] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/17/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022]
Abstract
Skeletal muscle regeneration that follows acute injury is strongly influenced by interactions with immune cells that invade and proliferate in the damaged tissue. Discoveries over the past 20 years have identified many of the key mechanisms through which myeloid cells, especially macrophages, regulate muscle regeneration. In addition, lymphoid cells that include CD8+ T-cells and regulatory T-cells also significantly affect the course of muscle regeneration. During aging, the regenerative capacity of skeletal muscle declines, which can contribute to progressive loss of muscle mass and function. Those age-related reductions in muscle regeneration are accompanied by systemic, age-related changes in the immune system, that affect many of the myeloid and lymphoid cell populations that can influence muscle regeneration. In this review, we present recent discoveries that indicate that aging of the immune system contributes to the diminished regenerative capacity of aging muscle. Intrinsic, age-related changes in immune cells modify their expression of factors that affect the function of a population of muscle stem cells, called satellite cells, that are necessary for normal muscle regeneration. For example, age-related reductions in the expression of growth differentiation factor-3 (GDF3) or CXCL10 by macrophages negatively affect adult myogenesis, by disrupting regulatory interactions between macrophages and satellite cells. Those changes contribute to a reduction in the numbers and myogenic capacity of satellite cells in old muscle, which reduces their ability to restore damaged muscle. In addition, aging produces changes in the expression of molecules that regulate the inflammatory response to injured muscle, which also contributes to age-related defects in muscle regeneration. For example, age-related increases in the production of osteopontin by macrophages disrupts the normal inflammatory response to muscle injury, resulting in regenerative defects. These nascent findings represent the beginning of a newly-developing field of investigation into mechanisms through which aging of the immune system affects muscle regeneration.
Collapse
Affiliation(s)
- James G Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA, United States of America; Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, United States of America; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, United States of America.
| | - Ivan Flores
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA, United States of America
| | - Steven S Welc
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, United States of America
| | - Eisuke Ochi
- Hosei University, Faculty of Bioscience and Applied Chemistry, 3-7-2, Kajino, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
7
|
Forcina L, Cosentino M, Musarò A. Mechanisms Regulating Muscle Regeneration: Insights into the Interrelated and Time-Dependent Phases of Tissue Healing. Cells 2020; 9:E1297. [PMID: 32456017 PMCID: PMC7290814 DOI: 10.3390/cells9051297] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Despite a massive body of knowledge which has been produced related to the mechanisms guiding muscle regeneration, great interest still moves the scientific community toward the study of different aspects of skeletal muscle homeostasis, plasticity, and regeneration. Indeed, the lack of effective therapies for several physiopathologic conditions suggests that a comprehensive knowledge of the different aspects of cellular behavior and molecular pathways, regulating each regenerative stage, has to be still devised. Hence, it is important to perform even more focused studies, taking the advantage of robust markers, reliable techniques, and reproducible protocols. Here, we provide an overview about the general aspects of muscle regeneration and discuss the different approaches to study the interrelated and time-dependent phases of muscle healing.
Collapse
Affiliation(s)
| | | | - Antonio Musarò
- Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via Antonio Scarpa, 14, 00161 Rome, Italy; (L.F.); (M.C.)
| |
Collapse
|
8
|
Mierzejewski B, Archacka K, Grabowska I, Florkowska A, Ciemerych MA, Brzoska E. Human and mouse skeletal muscle stem and progenitor cells in health and disease. Semin Cell Dev Biol 2020; 104:93-104. [PMID: 32005567 DOI: 10.1016/j.semcdb.2020.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/25/2022]
Abstract
The proper functioning of tissues and organs depends on their ability to self-renew and repair. Some of the tissues, like epithelia, renew almost constantly while in the others this process is induced by injury or diseases. The stem or progenitor cells responsible for tissue homeostasis have been identified in many organs. Some of them, such as hematopoietic or intestinal epithelium stem cells, are multipotent and can differentiate into various cell types. Others are unipotent. The skeletal muscle tissue does not self-renew spontaneously, however, it presents unique ability to regenerate in response to the injury or disease. Its repair almost exclusively relies on unipotent satellite cells. However, multiple lines of evidence document that some progenitor cells present in the muscle can be supportive for skeletal muscle regeneration. Here, we summarize the current knowledge on the complicated landscape of stem and progenitor cells that exist in skeletal muscle and support its regeneration. We compare the cells from two model organisms, i.e., mouse and human, documenting their similarities and differences and indicating methods to test their ability to undergo myogenic differentiation.
Collapse
Affiliation(s)
- Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Karolina Archacka
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Anita Florkowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland.
| |
Collapse
|
9
|
Forcina L, Miano C, Pelosi L, Musarò A. An Overview about the Biology of Skeletal Muscle Satellite Cells. Curr Genomics 2019; 20:24-37. [PMID: 31015789 PMCID: PMC6446479 DOI: 10.2174/1389202920666190116094736] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022] Open
Abstract
The peculiar ability of skeletal muscle tissue to operate adaptive changes during post-natal de-velopment and adulthood has been associated with the existence of adult somatic stem cells. Satellite cells, occupying an exclusive niche within the adult muscle tissue, are considered bona fide stem cells with both stem-like properties and myogenic activities. Indeed, satellite cells retain the capability to both maintain the quiescence in uninjured muscles and to be promptly activated in response to growth or re-generative signals, re-engaging the cell cycle. Activated cells can undergo myogenic differentiation or self-renewal moving back to the quiescent state. Satellite cells behavior and their fate decision are finely controlled by mechanisms involving both cell-autonomous and external stimuli. Alterations in these regu-latory networks profoundly affect muscle homeostasis and the dynamic response to tissue damage, con-tributing to the decline of skeletal muscle that occurs under physio-pathologic conditions. Although the clear myogenic activity of satellite cells has been described and their pivotal role in muscle growth and regeneration has been reported, a comprehensive picture of inter-related mechanisms guiding muscle stem cell activity has still to be defined. Here, we reviewed the main regulatory networks determining satellite cell behavior. In particular, we focused on genetic and epigenetic mechanisms underlining satel-lite cell maintenance and commitment. Besides intrinsic regulations, we reported current evidences about the influence of environmental stimuli, derived from other cell populations within muscle tissue, on satel-lite cell biology.
Collapse
Affiliation(s)
- Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Via A. Scarpa, 14 Rome 00161, Italy
| | - Carmen Miano
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Via A. Scarpa, 14 Rome 00161, Italy
| | - Laura Pelosi
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Via A. Scarpa, 14 Rome 00161, Italy
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Via A. Scarpa, 14 Rome 00161, Italy
| |
Collapse
|
10
|
Gatta L, Vitiello L, Gorini S, Chiandotto S, Costelli P, Giammarioli AM, Malorni W, Rosano G, Ferraro E. Modulating the metabolism by trimetazidine enhances myoblast differentiation and promotes myogenesis in cachectic tumor-bearing c26 mice. Oncotarget 2017; 8:113938-113956. [PMID: 29371959 PMCID: PMC5768376 DOI: 10.18632/oncotarget.23044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022] Open
Abstract
Trimetazidine (TMZ) is a metabolic reprogramming agent able to partially inhibit mitochondrial free fatty acid β-oxidation while enhancing glucose oxidation. Here we have found that the metabolic shift driven by TMZ enhances the myogenic potential of skeletal muscle progenitor cells leading to MyoD, Myogenin, Desmin and the slow isoforms of troponin C and I over-expression. Moreover, similarly to exercise, TMZ stimulates the phosphorylation of the AMP-activated protein kinase (AMPK) and up-regulates the peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α), both of which are known to enhance the mitochondrial biogenesis necessary for myoblast differentiation. TMZ also induces autophagy which is required during myoblast differentiation and promotes myoblast alignment which allows cell fusion and myofiber formation. Finally, we found that intraperitoneally administered TMZ (5mg/kg) is able to stimulate myogenesis in vivo both in a mice model of cancer cachexia (C26 mice) and upon cardiotoxin damage. Collectively, our work demonstrates that TMZ enhances myoblast differentiation and promotes myogenesis, which might contribute recovering stem cell blunted regenerative capacity and counteracting muscle wasting, thanks to the formation of new myofibers; TMZ is already in use in humans as an anti-anginal drug and its repositioning might impact significantly on aging and regeneration-impaired disorders, including cancer cachexia, as well as have implications in regenerative medicine.
Collapse
Affiliation(s)
- Lucia Gatta
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| | - Laura Vitiello
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| | - Stefania Gorini
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| | - Sergio Chiandotto
- Department of Molecular and Clinical Medicine (DMCM), C/o Department of Surgery "Pietro Valdoni", Sapienza University of Rome, Rome, Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.,Interuniversity Institute of Myology-IIM, Chieti, Italy
| | - Anna Maria Giammarioli
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanita, Rome, Italy
| | - Walter Malorni
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanita, Rome, Italy
| | - Giuseppe Rosano
- Cardiovascular and Cell Sciences Institute, St George's University of London, Cranmer Terrace, London, UK
| | - Elisabetta Ferraro
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
11
|
Pertille A, Moura KF, Matsumura CY, Ferretti R, Ramos DM, Petrini AC, Oliveira PC, Silva CA. Evaluation of skeletal muscle regeneration in experimental model after malnutrition. BRAZ J BIOL 2016; 77:83-91. [PMID: 27382997 DOI: 10.1590/1519-6984.10415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/20/2015] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to analyze muscle regeneration after cryoinjury in the tibialis anterior muscle of young rats that were malnourished and then recovered. Forty Wistar rats were divided into a nourished group that received a normal protein diet (14% casein) for 90 days and a malnourished and recovered rats group (MR) that was submitted to 45 days of malnutrition with a hypoproteic diet (6% casein) followed by 45 days of a normal protein diet (14% casein). After the recovery period, all of the animals underwent cryoinjury in the right tibialis anterior muscle and euthanasia after 7, 14 and 21 days. The amount of connective tissue and the inflammation area was higher in the malnutrition recovered injury MR group (MRI) at 14 days post-injury (p < 0.05). Additionally, the cross-sectional area (CSA) of the regenerated fibers was decreased in the MRI (p < 0.05). The MyoD and myogenin protein levels were higher in the nourished injury group. Similar levels of TGF-β1 were found between groups. The proposed malnutrition protocol was effective in showing delayed changes in the regeneration process of the tibialis anterior muscle of young rats. Furthermore, we observed a delay in muscle repair even after nutritional recovery.
Collapse
Affiliation(s)
- A Pertille
- Graduate Program in Science of Human Movement, Universidade Metodista de Piracicaba, Piracicaba, SP, Brazil
| | - K F Moura
- Graduate Program in Science of Human Movement, Universidade Metodista de Piracicaba, Piracicaba, SP, Brazil
| | - C Y Matsumura
- Biosciences Institute of Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - R Ferretti
- Biosciences Institute of Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - D M Ramos
- Graduate Program in Science of Human Movement, Universidade Metodista de Piracicaba, Piracicaba, SP, Brazil
| | - A C Petrini
- Graduate Program in Science of Human Movement, Universidade Metodista de Piracicaba, Piracicaba, SP, Brazil
| | - P C Oliveira
- Graduate Program in Science of Human Movement, Universidade Metodista de Piracicaba, Piracicaba, SP, Brazil
| | - C A Silva
- Graduate Program in Science of Human Movement, Universidade Metodista de Piracicaba, Piracicaba, SP, Brazil
| |
Collapse
|
12
|
Zou X, Meng J, Li L, Han W, Li C, Zhong R, Miao X, Cai J, Zhang Y, Zhu D. Acetoacetate Accelerates Muscle Regeneration and Ameliorates Muscular Dystrophy in Mice. J Biol Chem 2015; 291:2181-95. [PMID: 26645687 DOI: 10.1074/jbc.m115.676510] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 11/06/2022] Open
Abstract
Acetoacetate (AA) is a ketone body and acts as a fuel to supply energy for cellular activity of various tissues. Here, we uncovered a novel function of AA in promoting muscle cell proliferation. Notably, the functional role of AA in regulating muscle cell function is further evidenced by its capability to accelerate muscle regeneration in normal mice, and it ameliorates muscular dystrophy in mdx mice. Mechanistically, our data from multiparameter analyses consistently support the notion that AA plays a non-metabolic role in regulating muscle cell function. Finally, we show that AA exerts its function through activation of the MEK1-ERK1/2-cyclin D1 pathway, revealing a novel mechanism in which AA serves as a signaling metabolite in mediating muscle cell function. Our findings highlight the profound functions of a small metabolite as signaling molecule in mammalian cells.
Collapse
Affiliation(s)
- Xiaoting Zou
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Jiao Meng
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Li Li
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Wanhong Han
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Changyin Li
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Ran Zhong
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Xuexia Miao
- the Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Cai
- the Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Zhang
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Dahai Zhu
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| |
Collapse
|
13
|
Tian ZL, Jiang SK, Zhang M, Wang M, Li JY, Zhao R, Wang LL, Liu M, Li SS, Zhang MZ, Guan DW. α7nAChR is expressed in satellite cells at different myogenic status during skeletal muscle wound healing in rats. J Mol Histol 2015; 46:499-509. [PMID: 26498641 DOI: 10.1007/s10735-015-9641-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Recent study has reported that α7 nicotine acetylcholine receptor (α7nAChR) is expressed in regenerated multinucleated myotubes. But the distribution of α7nAChR in satellite cells in different myogenic status is unknown. A preliminary study on the dynamic distribution of α7nAChR in satellite cells was performed by double indirect immunofluorescent procedures during skeletal muscle wound healing in rats. An animal model of skeletal muscle contusion was established in 40 Sprague-Dawley male rats. Samples were taken at 1, 3, 5, 7, 9, 13, 17 and 21 days after injury, respectively (five rats in each posttraumatic interval). Five rats were employed as control. In normal muscle specimens, weak immunoreactivity for α7nAChR was detected in a few satellite cells (considered as quiescent). α7nAChR-positive signals were observed in proliferated and differentiated satellite cells and regenerated multinucleated myotubes in the wounded areas. By morphometric analysis, the average number of α7nAChR+/Pax7+ and α7nAChR+/MyoD+ cells climaxed at 5 days post-injury. The average number of α7nAChR+/myogenin+ cells was significantly increased from 3 to 9 days post-injury as compared with other posttraumatic intervals. The protein level of α7nAChR maximized at 9 days post-injury, which implies that α7nAChR was associated with the satellite cells status. Our observations on expression of α7nAChR in satellite cells from quiescence to myotube formation suggest that α7nAChR may be involved in muscle regeneration by regulating satellite cell status.
Collapse
|
14
|
Pelosi L, Berardinelli MG, Forcina L, Spelta E, Rizzuto E, Nicoletti C, Camilli C, Testa E, Catizone A, De Benedetti F, Musarò A. Increased levels of interleukin-6 exacerbate the dystrophic phenotype in mdx mice. Hum Mol Genet 2015; 24:6041-53. [PMID: 26251044 PMCID: PMC4599671 DOI: 10.1093/hmg/ddv323] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive lethal muscle degeneration and chronic inflammatory response. The mdx mouse strain has served as the animal model for human DMD. However, while DMD patients undergo extensive necrosis, the affected muscles of adult mdx mice rapidly regenerates and regains structural and functional integrity. The basis for the mild effects observed in mice compared with the lethal consequences in humans remains unknown. In this study, we provide evidence that interleukin-6 (IL-6) is causally linked to the pathogenesis of muscular dystrophy. We report that forced expression of IL-6, in the adult mdx mice, recapitulates the severe phenotypic characteristics of DMD in humans. Increased levels of IL-6 exacerbate the dystrophic muscle phenotype, sustaining inflammatory response and repeated cycles of muscle degeneration and regeneration, leading to exhaustion of satellite cells. The mdx/IL6 mouse closely approximates the human disease and more faithfully recapitulates the disease progression in humans. This study promises to significantly advance our understanding of the pathogenic mechanisms that lead to DMD.
Collapse
Affiliation(s)
- Laura Pelosi
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and
| | | | - Laura Forcina
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and
| | - Elisa Spelta
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and
| | - Emanuele Rizzuto
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome 00184, Italy
| | - Carmine Nicoletti
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and
| | - Carlotta Camilli
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and
| | - Erika Testa
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and
| | - Angela Catizone
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome 00161, Italy
| | | | - Antonio Musarò
- Institute Pasteur Cenci-Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, IIM and Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome 00161, Italy
| |
Collapse
|
15
|
MicroRNA-431 accelerates muscle regeneration and ameliorates muscular dystrophy by targeting Pax7 in mice. Nat Commun 2015; 6:7713. [PMID: 26151913 DOI: 10.1038/ncomms8713] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 06/02/2015] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle stem cells, called satellite cells, are a quiescent heterogeneous population. Their heterogeneity is influenced by Pax7, a well-defined transcriptional regulator of satellite cell functions that defines two subpopulations: Pax7(Hi) and Pax7(Lo). However, the mechanisms by which these subpopulations are established and maintained during myogenesis are not completely understood. Here we show that miR-431, which is predominantly expressed in the skeletal muscle, mediates satellite cell heterogeneity by fine-tuning Pax7 levels during muscle development and regeneration. In miR-431 transgenic mice, the Pax7(Lo) subpopulation is enriched, enhances myogenic differentiation and accelerates muscle regeneration. Notably, miR-431 attenuates the muscular dystrophic phenotype in mdx mice and may be a potential therapeutic target in muscular diseases. miR-431 transgenic mice are a unique genetic model for investigating the cellular features and biological functions of Pax7(Lo) satellite cells during muscle development and regeneration.
Collapse
|
16
|
George C, Smith C, Isaacs AW, Huisamen B. Chronic Prosopis glandulosa treatment blunts neutrophil infiltration and enhances muscle repair after contusion injury. Nutrients 2015; 7:815-30. [PMID: 25625816 PMCID: PMC4344562 DOI: 10.3390/nu7020815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/09/2015] [Indexed: 12/31/2022] Open
Abstract
The current treatment options for soft tissue injuries remain suboptimal and often result in delayed/incomplete recovery of damaged muscle. The current study aimed to evaluate the effects of oral Prosopis glandulosa treatment on inflammation and regeneration in skeletal muscle after contusion injury, in comparison to a conventional treatment. The gastrocnemius muscle of rats was subjected to mass-drop injury and muscle samples collected after 1-, 3 h, 1- and 7 days post-injury. Rats were treated with P. glandulosa (100 mg/kg/day) either for 8 weeks prior to injury (up until day 7 post-injury), only post-injury, or with topically applied diclofenac post-injury (0.57 mg/kg). Neutrophil (His48-positive) and macrophage (F4/80-positive) infiltration was assessed by means of immunohistochemistry. Indicators of muscle satellite cell proliferation (ADAM12) and regeneration (desmin) were used to evaluate muscle repair. Chronic P. glandulosa and diclofenac treatment (p < 0.0001) was associated with suppression of the neutrophil response to contusion injury, however only chronic P. glandulosa treatment facilitated more effective muscle recovery (increased ADAM12 (p < 0.05) and desmin (p < 0.001) expression), while diclofenac treatment had inhibitory effects on repair, despite effective inhibition of neutrophil response. Data indicates that P. glandulosa treatment results in more effective muscle repair after contusion.
Collapse
Affiliation(s)
- Cindy George
- Department of Biomedical Sciences, Faculty of Health Science, Stellenbosch University, Tygerberg 7505, South Africa.
| | - Carine Smith
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa.
| | - Ashwin W Isaacs
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa.
| | - Barbara Huisamen
- Department of Biomedical Sciences, Faculty of Health Science, Stellenbosch University, Tygerberg 7505, South Africa.
| |
Collapse
|
17
|
Abstract
Muscle regeneration recapitulates many aspects of embryonic myogenesis and is an important homeostatic process of the adult skeletal muscle, which, after development, retains the capacity to regenerate in response to appropriate stimuli, activating the muscle compartment of stem cells, namely, satellite cells, as well as other precursor cells. Moreover, significant evidence suggests that while stem cells represent an important determinant for tissue regeneration, a “qualified” environment is necessary to guarantee and achieve functional results. It is therefore plausible that the loss of control over these cell fate decisions could lead to a pathological transdifferentiation, leading to pathologic defects in the regenerative process. This review provides an overview about the general aspects of muscle development and discusses the cellular and molecular aspects that characterize the five interrelated and time-dependent phases of muscle regeneration, namely, degeneration, inflammation, regeneration, remodeling, and maturation/functional repair.
Collapse
|
18
|
Hart CA, Tsui J, Khanna A, Abraham DJ, Baker DM. Stem cells of the lower limb: Their role and potential in management of critical limb ischemia. Exp Biol Med (Maywood) 2013; 238:1118-26. [DOI: 10.1177/1535370213503275] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Peripheral arterial occlusive disease (PAOD) contributes to decreased exercise tolerance, poor balance, impaired proprioception, muscle atrophy and weakness, with advanced cases resulting in critical limb ischemia (CLI) where the viability of the limb is threatened. Patients with a diagnosis of CLI have a poor life expectancy due to concomitant cardio and cerebrovascular diseases. The current treatment options to avoid major amputation by re-establishing a blood supply to the limb generally have poor outcomes. Human skeletal muscle contains both multipotent stem cells and progenitor cells and thus has a capacity for regeneration. Phase I and II studies involving transplantation of bone marrow-derived progenitor cells into CLI limbs show positive effects on wound healing and angiogenesis; the increase in quiescent satellite cell numbers observed in CLI muscle may also provide a sufficient in vivo source of resident stem cells. These indigenous cells have been shown to be capable of forming multiple mesodermal cell lineages aiding the repair and regeneration of chronically ischemic muscle. They may also serve as a repository for autologous transplantation. The behavior and responses of the stem cell population in CLI is poorly understood and this review tries to elucidate the potential of these cells and their future role in the management of CLI.
Collapse
Affiliation(s)
- Colin A Hart
- Royal Free Vascular Unit, Division of Surgery & Interventional Science, UCL, Royal Free Campus, London NW3 2QG, UK
| | - Janice Tsui
- Royal Free Vascular Unit, Division of Surgery & Interventional Science, UCL, Royal Free Campus, London NW3 2QG, UK
| | - Achal Khanna
- Department of Surgery, Leicester Royal Infirmary, Leicester LE1 6WW, UK
| | - David J Abraham
- Department of Rheumatology, Royal Free Hospital, London NW3 2QG, UK
| | - Daryll M Baker
- Royal Free Vascular Unit, Division of Surgery & Interventional Science, UCL, Royal Free Campus, London NW3 2QG, UK
| |
Collapse
|
19
|
Carvajal Monroy PL, Grefte S, Kuijpers-Jagtman AM, Wagener FADTG, Von den Hoff JW. Strategies to improve regeneration of the soft palate muscles after cleft palate repair. TISSUE ENGINEERING. PART B, REVIEWS 2012; 18:468-77. [PMID: 22697475 PMCID: PMC3696944 DOI: 10.1089/ten.teb.2012.0049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 06/12/2012] [Indexed: 12/13/2022]
Abstract
Children with a cleft in the soft palate have difficulties with speech, swallowing, and sucking. These patients are unable to separate the nasal from the oral cavity leading to air loss during speech. Although surgical repair ameliorates soft palate function by joining the clefted muscles of the soft palate, optimal function is often not achieved. The regeneration of muscles in the soft palate after surgery is hampered because of (1) their low intrinsic regenerative capacity, (2) the muscle properties related to clefting, and (3) the development of fibrosis. Adjuvant strategies based on tissue engineering may improve the outcome after surgery by approaching these specific issues. Therefore, this review will discuss myogenesis in the noncleft and cleft palate, the characteristics of soft palate muscles, and the process of muscle regeneration. Finally, novel therapeutic strategies based on tissue engineering to improve soft palate function after surgical repair are presented.
Collapse
Affiliation(s)
- Paola L Carvajal Monroy
- Department of Orthodontics and Craniofacial Biology, at the Nijmegen Centre for Molecular Life Sciences of the Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Maciotta S, Meregalli M, Cassinelli L, Parolini D, Farini A, Fraro GD, Gandolfi F, Forcato M, Ferrari S, Gabellini D, Bicciato S, Cossu G, Torrente Y. Hmgb3 is regulated by microRNA-206 during muscle regeneration. PLoS One 2012; 7:e43464. [PMID: 22912879 PMCID: PMC3422271 DOI: 10.1371/journal.pone.0043464] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/20/2012] [Indexed: 12/26/2022] Open
Abstract
Background MicroRNAs (miRNAs) have been recently involved in most of human diseases as targets for potential strategies to rescue the pathological phenotype. Since the skeletal muscle is a spread-wide highly differentiated and organized tissue, rescue of severely compromised muscle still remains distant from nowadays. For this reason, we aimed to identify a subset of miRNAs major involved in muscle remodelling and regeneration by analysing the miRNA-profile of single fibres isolated from dystrophic muscle, which was here considered as a model of chronic damage. Methodology/Principal Findings The miRNA-signature associated to regenerating (newly formed) and remodelling (resting) fibres was investigated in animal models of muscular dystrophies and acute damage, in order to distinguish which miRNAs are primary related to muscle regeneration. In this study we identify fourteen miRNAs associated to dystrophic fibres responsible for muscle regeneration and remodelling, and confirm over-expression of the previously identified regeneration-associated myomiR-206. In particular, a functional binding site for myomiR-206 was identified and validated in the 3′untranslated region (3′UTR) of an X-linked member of a family of sequence independent chromatin-binding proteins (Hmgb3) that is preferentially expressed in hematopoietic stem cells. During regeneration of single muscle fibres, Hmgb3 messenger RNA (mRNA) and protein expression was gradually reduced, concurrent with the up-regulation of miR-206. Conclusion/Significance Our results elucidate a negative feedback circuit in which myomiR-206 represses Hmgb3 expression to modulate the regeneration of single muscle fibres after acute and chronic muscle damage. These findings suggest that myomiR-206 may be a potential therapeutic target in muscle diseases.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Adolescent
- Animals
- Animals, Newborn
- Binding Sites/genetics
- Blotting, Western
- Child
- Child, Preschool
- Gene Expression Profiling
- HEK293 Cells
- HMGB3 Protein/genetics
- HMGB3 Protein/metabolism
- Humans
- Infant
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Dystrophies/genetics
- Muscular Dystrophies/metabolism
- Muscular Dystrophies/physiopathology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/physiopathology
- NIH 3T3 Cells
- Oligonucleotide Array Sequence Analysis
- Regeneration/genetics
Collapse
Affiliation(s)
- Simona Maciotta
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milano, Italy
| | - Mirella Meregalli
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milano, Italy
| | - Letizia Cassinelli
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milano, Italy
| | - Daniele Parolini
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milano, Italy
| | - Andrea Farini
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milano, Italy
| | - Giulia Del Fraro
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milano, Italy
| | - Francesco Gandolfi
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Modena, Italy
| | - Mattia Forcato
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Modena, Italy
| | - Sergio Ferrari
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Modena, Italy
| | - Davide Gabellini
- Dulbecco Telethon Institute and Division of Regenerative Medicine, San Raffaele Scientific Institute, Milano, Italy
| | - Silvio Bicciato
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Modena, Italy
| | - Giulio Cossu
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milano, Italy
- * E-mail:
| |
Collapse
|
21
|
Xiong WM, Huang JH, Xie L, Qiao Y, Lu XM, Peng JC, Hu JJ. Overexpression of MyoD Attenuates Denervated Rat Skeletal Muscle Atrophy and Dysfunction. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/nm.2012.34048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Srikuea R, Pholpramool C, Kitiyanant Y, Yimlamai T. Satellite cell activity in muscle regeneration after contusion in rats. Clin Exp Pharmacol Physiol 2011; 37:1078-86. [PMID: 20726992 DOI: 10.1111/j.1440-1681.2010.05439.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. The role of satellite cells in muscle growth during development is well documented, but the involvement of these cells in muscle repair after contusion is less well known. In the present study, we investigated the time-course of satellite cell activity (from 3h to 7days) after contusion of rat gastrocnemius muscle using specific molecular markers for immunofluorescence and real-time polymerase chain reaction (PCR). 2. Inflammation of the injured muscle occurred within 6h, followed by disintegration of the damaged myofibres within 12h. Newly formed myofibres appeared by Day 7. 3. The number of MyoD-positive nuclei (activated satellite cells) in the injured muscle was significantly increased by 6h, reaching a maximum by 12h after contusion. However, the number of MyoD-positive nuclei decreased towards control levels by Day 7. Changes in the number of bromodeoxyuridine-labelled nuclei (proliferating satellite cells) paralleled the changes seen in the number of MyoD-positive nuclei. Conversely, expression of myogenin protein was not apparent until Day 3 and increased further by Day 7. Colabelling of MyoD and myogenin was seen in only a few cells. 4. The time-course of MyoD mRNA expression corresponded with MyoD protein expression. However, there were two peaks in myogenin mRNA expression: 6h and Day 7 after contusion. The second peak coincided with upregulation of myostatin mRNA levels. 5. The results of the present study suggest that contusion activates a homogeneous population of satellite cells to proliferate within 3days, followed by differentiation to form new myofibres. The latter may be regulated, in part, by myostatin.
Collapse
Affiliation(s)
- Ratchakrit Srikuea
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | |
Collapse
|
23
|
Carosio S, Berardinelli MG, Aucello M, Musarò A. Impact of ageing on muscle cell regeneration. Ageing Res Rev 2011; 10:35-42. [PMID: 19683075 DOI: 10.1016/j.arr.2009.08.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/04/2009] [Accepted: 08/06/2009] [Indexed: 11/29/2022]
Abstract
Skeletal muscle regeneration is a coordinate process in which several factors are sequentially activated to maintain and preserve muscle structure and function. The major role in the growth, remodeling and regeneration is played by satellite cells, a quiescent population of myogenic cells that reside between the basal lamina and plasmalemma and are rapidly activated in response to appropriate stimuli. However, in several muscle conditions, including aging, the capacity of skeletal muscle to sustain an efficient regenerative pathway is severely compromised. Nevertheless, if skeletal muscle possesses a stem cell compartment it is not clear why the muscle fails to regenerate under pathological conditions. Either the resident muscle stem cells are too rare or intrinsically incapable of repairing major damage, or perhaps the injured/pathological muscle is a prohibitive environment for stem cell activation and function. Although we lack definitive answers, recent experimental evidences suggest that the mere presence of endogenous stem cells may not be sufficient to guarantee muscle regeneration, and that the presence of appropriate stimuli and factors are necessary to provide a permissive environment that permits stem cell mediated muscle regeneration and repair. In this review we discuss the molecular basis of muscle regeneration and how aging impacts stem cell mediated muscle regeneration and repair.
Collapse
Affiliation(s)
- Silvia Carosio
- Institute Pasteur Cenci-Bolognetti, Department of Histology and Medical Embryology, IIM, Sapienza University of Rome, Via A. Scarpa, 14, Rome 00161, Italy
| | | | | | | |
Collapse
|
24
|
Shi S, Hoogaars WMH, de Gorter DJJ, van Heiningen SH, Lin HY, Hong CC, Kemaladewi DU, Aartsma-Rus A, ten Dijke P, 't Hoen PAC. BMP antagonists enhance myogenic differentiation and ameliorate the dystrophic phenotype in a DMD mouse model. Neurobiol Dis 2010; 41:353-60. [PMID: 20940052 DOI: 10.1016/j.nbd.2010.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/23/2010] [Accepted: 10/01/2010] [Indexed: 12/29/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is an X-linked lethal muscle wasting disease characterized by muscle fiber degeneration and necrosis. The progressive pathology of DMD can be explained by an insufficient regenerative response resulting in fibrosis and adipose tissue formation. BMPs are known to inhibit myogenic differentiation and in a previous study we found an increased expression of a BMP family member BMP4 in DMD myoblasts. The aim of the current study was therefore to investigate whether inhibition of BMP signaling could be beneficial for myoblast differentiation and muscle regeneration processes in a DMD context. All tested BMP inhibitors, Noggin, dorsomorphin and LDN-193189, were able to accelerate and enhance myogenic differentiation. However, dorsomorphin repressed both BMP and TGFβ signaling and was found to be toxic to primary myoblast cell cultures. In contrast, Noggin was found to be a potent and selective BMP inhibitor and was therefore tested in vivo in a DMD mouse model. Local adenoviral-mediated overexpression of Noggin in muscle resulted in an increased expression of the myogenic regulatory genes Myog and Myod1 and improved muscle histology. In conclusion, our results suggest that repression of BMP signaling may constitute an attractive adjunctive therapy for DMD patients.
Collapse
Affiliation(s)
- SongTing Shi
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Biressi S, Rando TA. Heterogeneity in the muscle satellite cell population. Semin Cell Dev Biol 2010; 21:845-54. [PMID: 20849971 DOI: 10.1016/j.semcdb.2010.09.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/11/2010] [Accepted: 09/06/2010] [Indexed: 02/07/2023]
Abstract
Satellite cells, the adult stem cells responsible for skeletal muscle regeneration, are defined by their location between the basal lamina and the fiber sarcolemma. Increasing evidence suggests that satellite cells represent a heterogeneous population of cells with distinct embryological origin and multiple levels of biochemical and functional diversity. This review focuses on the rich diversity of the satellite cell population based on studies across species. Ultimately, a more complete characterization of the heterogeneity of satellite cells will be essential to understand the functional significance in terms of muscle growth, homeostasis, tissue repair, and aging.
Collapse
Affiliation(s)
- Stefano Biressi
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, Stanford, CA 94305-5235, USA
| | | |
Collapse
|
26
|
Kawakami K, Kuroda M, Nishikawa A. Regulation of desmin expression in adult-type myogenesis and muscle maturation during Xenopus laevis metamorphosis. Zoolog Sci 2009; 26:389-97. [PMID: 19583497 DOI: 10.2108/zsj.26.389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Isoforms of myosin heavy chain and tropomyosin convert during metamorphosis of Xenopus laevis with larval-to-adult remodeling of dorsal muscle (Nishikawa and Hayashi, 1994 , Dev. Biol. 165: 86-94). In the present study, other markers for muscle remodeling during metamorphosis were determined by SDS-PAGE analysis. The amounts of twelve muscle proteins changed remarkably during metamorphosis. Among these, a 54-kDa molecule was found to be desmin, and the relative content/total proteins decreased dramatically through metamorphosis. In hindlimb muscle, desmin content increased fourfold during prometamorphosis, when myoblast proliferation and fusion occurred. With further myotube maturation, this content decreased by 1/2 while that of muscle actin continued to increase. Thus, desmin up- and down-regulation in hindlimbs mark early and late phases of myogenesis, respectively. In tall muscle, the desmin content decreased continuously to (1/8) before and during metamorphosis, due to tall muscle growth and maturation. In dorsal muscle, three desmin changes occurred: a pre-metamorphic decrease, a transient increase at prometamorphosis, and a rapid decrease at the climax stage. Immunohistochemical analysis showed desmin+ cells to be present between young (adult-type) myotubes and replicating (PCNA+) cells in dorsal muscles, correlating the transient desmin upregulation in dorsal muscle with the initiation of adult-type myogenesis. After the upregulation, dorsal muscle desmin decreased to (1/8). This rapid down-regulation was replicated by administration of triiodothyronine (T3) to tadpoles, suggesting a significant role for T3 in dorsal muscle remodeling during metamorphosis. Collectively, these results show that analysis of desmin expression and PCNA-immunohistochemistry are good tools for determining the sites and timing of larval-to-adult muscle remodeling during Xenopus laevis metamorphosis.
Collapse
Affiliation(s)
- Kiyoshi Kawakami
- Department of Biological Science, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | | | | |
Collapse
|
27
|
Trovato-Salinaro A, Belluardo N, Frinchi M, von Maltzahn J, Willecke K, Condorelli DF, Mudò G. Regulation of connexin gene expression during skeletal muscle regeneration in the adult rat. Am J Physiol Cell Physiol 2009; 296:C593-606. [PMID: 19129462 DOI: 10.1152/ajpcell.00458.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the adult skeletal muscle, various kinds of trauma promote proliferation of satellite cells that differentiate into myoblasts forming new myofibers or to repair the damaged one. The aim of present work was to perform a comparative spatial and temporal analysis of connexin (Cx) 37, Cx39, Cx40, Cx43, and Cx45 expression in the adult regenerating skeletal muscle in response to crush injury. Within 24 h from injury, Cx37 expression was upregulated in the endothelial cells of blood vessels, and, 5 days after injury, Cx37-expressing cells were found inside the area of lesion and formed clusters generating new blood vessels with endothelial cells expressing Cx37. Three days after injury, Cx39 mRNA was selectively expressed in myogenin-positive cells, forming rows of closely apposed cell nuclei fusing in myotubes. Cx40 mRNA-labeled cells were observed within 24 h from injury in the endothelium of blood vessels, and, 5 days after lesion, Cx40-labeled cells were found inside the area of lesion-forming rows of myogenin-positive, closely apposed cells coexpressing Cx39. Within 24 h from lesion, both Cx43 and Cx45 mRNAs were upregulated in individual cells, and some of them were positive for M-cadherin. Three days after injury, a large number of both Cx43 and Cx45 mRNA-labeled and myogenin-positive cells were found inside the area of lesion. Taken together, these results show that at least four Cxs, out of five expressed in regenerating skeletal muscle, can be differentially involved in communication of myogenic cells during the process of cell proliferation, aggregation, and fusion to form new myotubes or to repair damaged myofibers.
Collapse
Affiliation(s)
- A Trovato-Salinaro
- Dept. of Experimental Medicine, Section of Human Physiology, Univ. of Palermo, corso Tukory 129, 90134 Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Jørgensen LH, Petersson SJ, Sellathurai J, Andersen DC, Thayssen S, Sant DJ, Jensen CH, Schrøder HD. Secreted protein acidic and rich in cysteine (SPARC) in human skeletal muscle. J Histochem Cytochem 2008; 57:29-39. [PMID: 18796407 DOI: 10.1369/jhc.2008.951954] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC)/osteonectin is expressed in different tissues during remodeling and repair, suggesting a function in regeneration. Several gene expression studies indicated that SPARC was expressed in response to muscle damage. Studies on myoblasts further indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis, and polymyositis patients to analyze SPARC expression in a selected range of inherited and idiopathic muscle wasting diseases. SPARC-positive cells were observed both in fetal and neonatal muscle, and in addition, fetal myofibers were observed to express SPARC at the age of 15-16 weeks. SPARC protein was detected in the majority of analyzed muscle biopsies (23 of 24), mainly in mononuclear cells of which few were pax7 positive. Myotubes and regenerating myofibers also expressed SPARC. The expression-degree seemed to reflect the severity of the lesion. In accordance with these in vivo findings, primary human-derived satellite cells were found to express SPARC both during proliferation and differentiation in vitro. In conclusion, this study shows SPARC expression both during muscle development and in regenerating muscle. The expression is detected both in satellite cells/myoblasts and in myotubes and muscle fibers, indicating a role for SPARC in the skeletal muscle compartment.
Collapse
|
29
|
Kin S, Hagiwara A, Nakase Y, Kuriu Y, Nakashima S, Yoshikawa T, Sakakura C, Otsuji E, Nakamura T, Yamagishi H. Regeneration of skeletal muscle using in situ tissue engineering on an acellular collagen sponge scaffold in a rabbit model. ASAIO J 2007; 53:506-13. [PMID: 17667240 DOI: 10.1097/mat.0b013e3180d09d81] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Because of the limited ability of skeletal muscle to regenerate, resection of a large amount of muscle mass often results in incomplete recovery due to nonfunctional scar tissue. The aim of this study was to regenerate skeletal muscle using in situ tissue engineering in a rabbit model. In 18 male rabbits, a muscle defect (1.0 x ~1.0 x ~0.5 cm) was created in the vastus lateralis of both legs. A piece of cross-linked atelocollagen sponge was then inserted into the defect in one leg, whereas the defect in the other leg was left untreated. Both defects were finally covered with fascia. Twenty-four weeks after surgery, the defect that had been filled with the cross-linked atelocollagen sponge scaffold showed mild concavity and slight adhesion to the fascia, while the control side showed severe scar formation and shrinkage. Histologically, the regenerating myofibers at the site containing the collagen sponge were greater in number, diameter, and length than those at the control site. These results indicate that cross-linked atelocollagen sponge has the potential to act as a scaffold for muscle tissue regeneration.
Collapse
Affiliation(s)
- Shuichi Kin
- Department of Surgery for Functional Regulation of the Digestive System, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kajii-cho, Kawaramachi-Hrokoji, Kamigyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lovering RM, Roche JA, Bloch RJ, De Deyne PG. Recovery of Function in Skeletal Muscle Following 2 Different Contraction-Induced Injuries. Arch Phys Med Rehabil 2007; 88:617-25. [PMID: 17466731 DOI: 10.1016/j.apmr.2007.02.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To determine if the proliferation of myogenic cells is equally important to recovery of contractile function after 2 different types of contraction-induced muscle injuries. DESIGN Randomized trial. SETTING Muscle biology laboratory. ANIMALS Adult male Sprague-Dawley rats. INTERVENTIONS Tibialis anterior muscles were injured by a single lengthening contraction with large strain (1R) or multiple lengthening contractions with small strain (MR). The hindlimbs of some animals in each group were irradiated before injury to prevent proliferation of myogenic cells during recovery. MAIN OUTCOME MEASURES Contractile tension was measured immediately after injury and 3, 7, 14, and 21 days after injury. Permeation to Evans blue dye was used to assay membrane damage. Centrally nucleated fibers and reverse transcriptase-polymerase chain reaction of myoD and myogenin were used as measures of myogenesis. RESULTS Inhibiting myogenesis prevented the recovery of contractile function after MR, but not after 1R. Both protocols caused Evans blue dye uptake immediately after injury, but Evans blue dye was only retained in fibers for several days after 1R. This suggests that membranes reseal after 1R, but not after MR. CONCLUSIONS The mechanisms that underlie recovery after injuries caused by repeated lengthening contractions and injuries caused by a single lengthening contraction are different. The differences may be important when planning targeted rehabilitation strategies for each type of injury.
Collapse
Affiliation(s)
- Richard M Lovering
- Department of Physiology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
31
|
|
32
|
Pelletier M, Rossignol J, Oliver L, Zampieri M, Fontaine-Pérus J, Vallette FM, Lescaudron L. Soluble factors from neuronal cultures induce a specific proliferation and resistance to apoptosis of cognate mouse skeletal muscle precursor cells. Neurosci Lett 2006; 407:20-5. [PMID: 16959418 DOI: 10.1016/j.neulet.2006.06.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/07/2006] [Accepted: 06/07/2006] [Indexed: 12/13/2022]
Abstract
The mechanisms or the physiological events, which control the regeneration of skeletal muscle through muscle precursor cell multiplication and differentiation, are still largely unknown. To address the question of the involvement of neurons in this process, skeletal muscle progenitors were grown in the presence of conditioned media obtained from 3-day-old cultures of embryonic neurons (derived from either the dorsal or the ventral region of 11-day-old mouse embryos) or media conditioned with satellite cells. Strikingly, only satellite cells cultured in medium conditioned from ventral embryonic neurons exhibited increased proliferation, as well as resistance to staurosporine (STS)-induced apoptosis. Our results suggest the existence of specific anti-apoptogenic neural soluble signals, which could be involved in skeletal muscle regeneration pathways.
Collapse
|
33
|
Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, Mansouri A, Cumano A, Buckingham M. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. ACTA ACUST UNITED AC 2005; 172:91-102. [PMID: 16380438 PMCID: PMC2063537 DOI: 10.1083/jcb.200508044] [Citation(s) in RCA: 509] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The growth and repair of skeletal muscle after birth depends on satellite cells that are characterized by the expression of Pax7. We show that Pax3, the paralogue of Pax7, is also present in both quiescent and activated satellite cells in many skeletal muscles. Dominant-negative forms of both Pax3 and -7 repress MyoD, but do not interfere with the expression of the other myogenic determination factor, Myf5, which, together with Pax3/7, regulates the myogenic differentiation of these cells. In Pax7 mutants, satellite cells are progressively lost in both Pax3-expressing and -nonexpressing muscles. We show that this is caused by satellite cell death, with effects on the cell cycle. Manipulation of the dominant-negative forms of these factors in satellite cell cultures demonstrates that Pax3 cannot replace the antiapoptotic function of Pax7. These findings underline the importance of cell survival in controlling the stem cell populations of adult tissues and demonstrate a role for upstream factors in this context.
Collapse
Affiliation(s)
- Frédéric Relaix
- Unité de Génétique Moléculaire du Développement, Centre National de la Recherche Scientifique URA 2578, Département de Biologie du Développement
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Belluardo N, Trovato-Salinaro A, Mudò G, Condorelli DF. Expression of the rat connexin 39 (rCx39) gene in myoblasts and myotubes in developing and regenerating skeletal muscles: an in situ hybridization study. Cell Tissue Res 2005; 320:299-310. [PMID: 15778849 DOI: 10.1007/s00441-005-1087-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 01/21/2005] [Indexed: 11/26/2022]
Abstract
We report a detailed analysis of the expression pattern of the recently identified rat connexin gene, named rat connexin 39 (rCx39), both during embryonic development and in adult life. Qualitative and quantitative reverse transcription/polymerase chain reaction analysis showed intense expression of rCx39 restricted to differentiating skeletal muscles, with a peak of expression detected at 18 days of embryonic life, followed by a rapid decline to undetectable levels within the first week of postnatal life. A combination of the in situ hybridization technique for the detection of rCx39 mRNA and immunohistochemistry for myogenin, a myoblast-specific marker, allowed us to establish that the mRNA for this connexin was expressed in myogenin-positive myoblasts and early myotubes but disappeared in mature myotubes. Moreover, in adult animals, rCx39 mRNA was expressed in myogenic cells involved in skeletal myofiber regeneration following a crush injury. This is the first case of a connexin being mainly expressed in the myogenic cell lineage. The information presented should pave the way to novel molecular approaches in studies on the role of connexin-based gap-junctional communication in skeletal muscle differentiation and regeneration.
Collapse
Affiliation(s)
- N Belluardo
- Department of Experimental Medicine, Section of Human Physiology, Laboratory of Neurobiology, University of Palermo, Italy.
| | | | | | | |
Collapse
|
35
|
Fukada SI, Higuchi S, Segawa M, Koda KI, Yamamoto Y, Tsujikawa K, Kohama Y, Uezumi A, Imamura M, Miyagoe-Suzuki Y, Takeda S, Yamamoto H. Purification and cell-surface marker characterization of quiescent satellite cells from murine skeletal muscle by a novel monoclonal antibody. Exp Cell Res 2004; 296:245-55. [PMID: 15149854 DOI: 10.1016/j.yexcr.2004.02.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 02/16/2004] [Indexed: 11/27/2022]
Abstract
A novel monoclonal antibody, SM/C-2.6, specific for mouse muscle satellite cells was established. SM/C-2.6 detects mononucleated cells beneath the basal lamina of skeletal muscle, and the cells co-express M-cadherin. Single fiber analyses revealed that M-cadherin+ mononucleated cells attaching to muscle fibers are stained with SM/C-2.6. SM/C-2.6+ cells, which were freshly purified by FACS from mouse skeletal muscle, became MyoD+ in vitro in proliferating medium, and the cells differentiated into desmin+ and nuclear-MyoD+ myofibers in vitro when placed under differentiation conditions. When the sorted cells were injected into mdx mouse muscles, donor cells differentiated into muscle fibers. Flow cytometric analyses of SM/C-2.6+ cells showed that the quiescent satellite cells were c-kit-, Sca-1-, CD34+, and CD45-. More, SM/C-2.6+ cells were barely included in the side population but in the main population of cells in Hoechst dye efflux assay. These results suggest that SM/C-2.6 identifies and enriches quiescent satellite cells from adult mouse muscle, and that the antibody will be useful as a powerful tool for the characterization of cellular and molecular mechanisms of satellite cell activation and proliferation.
Collapse
Affiliation(s)
- So-ichiro Fukada
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dedkov EI, Kostrominova TY, Borisov AB, Carlson BM. MyoD and myogenin protein expression in skeletal muscles of senile rats. Cell Tissue Res 2003; 311:401-16. [PMID: 12658448 DOI: 10.1007/s00441-002-0686-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2002] [Accepted: 11/26/2002] [Indexed: 01/26/2023]
Abstract
We analyzed the level of protein expression of two myogenic regulatory factors (MRFs), MyoD and myogenin, in senile skeletal muscles and determined the cellular source of their production in young adult (4 months old), old (24, 26, and 28 months old), and senile (32 months old) male rats. Immunoblotting demonstrated levels of myogenin approximately 3.2, approximately 4.0, and approximately 5.5 times higher in gastrocnemius muscles of 24-, 26-, and 32-month-old animals, respectively, than in those of young adult rats. Anti-MyoD antibody recognized two major areas of immunoreactivity in Western blots: a single MyoD-specific band (approximately 43-45 kDa) and a double (or triple) MyoD-like band (approximately 55-65 kDa). Whereas the level of MyoD-specific protein in the 43- to 45-kDa band remained relatively unchanged during aging compared with that of young adult rats, the total level of MyoD-like immunoreactivity within the 55- to 65-kDa bands was approximately 3.4, approximately 4.7, approximately 9.1, and approximately 11.7 times higher in muscles of 24-, 26-, 28-, and 32-month-old rats, respectively. The pattern of MRF protein expression in intact senile muscles was similar to that recorded in young adult denervated muscles. Ultrastructural analysis of extensor digitorum longus muscle from senile rats showed that, occasionally, the area of the nerve-muscle junction was partially or completely devoid of axons, and satellite cells with the features of activated cells were found on the surface of living fibers. Immunohistochemistry detected accumulated MyoD and myogenin proteins in the nuclei of both fibers and satellite cells in 32-month-old muscles. We suggest that the up-regulated production of MyoD and myogenin proteins in the nuclei of both fibers and satellite cells could account for the high level of MRF expression in muscles of senile rats.
Collapse
MESH Headings
- Aging/metabolism
- Animals
- Immunohistochemistry
- Male
- Microscopy, Electron
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/ultrastructure
- MyoD Protein/biosynthesis
- MyoD Protein/metabolism
- Myogenin/biosynthesis
- Myogenin/metabolism
- Neuromuscular Junction/metabolism
- Neuromuscular Junction/pathology
- Neuromuscular Junction/ultrastructure
- Rats
- Rats, Wistar
- Regeneration/physiology
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/pathology
- Satellite Cells, Skeletal Muscle/ultrastructure
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Eduard I Dedkov
- Department of Cell and Developmental Biology, 4643 Medical Sciences II Building, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|
37
|
Zammit PS, Heslop L, Hudon V, Rosenblatt JD, Tajbakhsh S, Buckingham ME, Beauchamp JR, Partridge TA. Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers. Exp Cell Res 2002; 281:39-49. [PMID: 12441128 DOI: 10.1006/excr.2002.5653] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The satellite cell compartment provides skeletal muscle with a remarkable capacity for regeneration. Here, we have used isolated myofibers to investigate the activation and proliferative potential of satellite cells. We have previously shown that satellite cells are heterogeneous: the majority express Myf5 and M-cadherin protein, presumably reflecting commitment to myogenesis, while a minority is negative for both. Although MyoD is rarely detected in quiescent satellite cells, over 98% of satellite cells contain MyoD within 24 h of stimulation. Significantly, MyoD is only observed in cells that are already expressing Myf5. In contrast, a minority population does not activate by the criteria of Myf5 or MyoD expression. Following the synchronous activation of the myogenic regulatory factor+ve satellite cells, their daughter myoblasts proliferate with a doubling time of approximately 17 h, irrespective of the fiber type (type I, IIa, or IIb) from which they originate. Although fast myofibers have fewer associated satellite cells than slow, and accordingly produce fewer myoblasts, each myofiber phenotype is associated with a complement of satellite cells that has sufficient proliferative potential to fully regenerate the parent myofiber within 4 days. This time course is similar to that observed in vivo following acute injury and indicates that cells other than satellite cells are not required for complete myofiber regeneration.
Collapse
Affiliation(s)
- Peter S Zammit
- Muscle Cell Biology Group, Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Similar to bone, skeletal muscle responds and adapts to changes in loading state via mechanisms that appear to be intrinsic to the muscle. One of the mechanisms modulating skeletal muscle adaptation it thought to involve the autocrine and/or paracrine production of insulinlike growth factor-I. This brief review outlines components of the insulinlike growth factor-I system as it relates to skeletal muscle and provides the rationale for the theory that insulinlike growth factor-I is involved with muscle adaptation.
Collapse
Affiliation(s)
- Gregory R Adams
- Department of Physiology and Bioiphysics, C308 Medical Sciences I, University of California-Irvine, Irvine, CA 92697-4560, USA
| |
Collapse
|
39
|
Conboy IM, Rando TA. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 2002; 3:397-409. [PMID: 12361602 DOI: 10.1016/s1534-5807(02)00254-x] [Citation(s) in RCA: 621] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have studied the role of Notch-1 and its antagonist Numb in the activation of satellite cells during postnatal myogenesis. Activation of Notch-1 promoted the proliferation of myogenic precursor cells expressing the premyoblast marker Pax3. Attenuation of Notch signaling by increases in Numb expression led to the commitment of progenitor cells to the myoblast cell fate and the expression of myogenic regulatory factors, desmin, and Pax7. In many intermediate progenitor cells, Numb was localized asymmetrically in actively dividing cells, suggesting an asymmetric cell division and divergent cell fates of daughter cells. The results indicate that satellite cell activation results in a heterogeneous population of precursor cells with respect to Notch-1 activity and that the balance between Notch-1 and Numb controls cellular homeostasis and cell fate determination.
Collapse
Affiliation(s)
- Irina M Conboy
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
40
|
Abstract
This brief review presents the basic premises suggesting that insulin-like growth factor I (IGF-I), functioning in an autocrine/paracrine mode, is an important mediator of skeletal muscle adaptation. Key intracellular signaling mechanisms associated with ligation of the primary IGF-I receptor are highlighted to illustrate the mechanisms by which IGF-I may promote muscle hypertrophy. In addition, a number of recent findings are presented that highlight the potential for interactions between IGF-I-related signaling pathways and intracellular signaling mechanisms activated by cytokines or hormonal systems.
Collapse
Affiliation(s)
- Gregory R Adams
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA.
| |
Collapse
|
41
|
Yeow K, Cabane C, Turchi L, Ponzio G, Dérijard B. Increased MAPK signaling during in vitro muscle wounding. Biochem Biophys Res Commun 2002; 293:112-9. [PMID: 12054571 DOI: 10.1016/s0006-291x(02)00190-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Regeneration of skeletal muscle upon injury is a complex process, involving activation of satellite cells, followed by migration, fusion, and regeneration of damaged myofibers. Previous work concerning the role of the mitogen activated protein (MAP) kinase signaling pathways in muscle injury comes primarily from studies using chemically induced wounding. The purpose of this study was to test the hypothesis that physical injury to skeletal muscle cells in vitro activates the MAP kinase signaling pathways. We demonstrate that extracellular signal regulated kinases (ERKs) 1, 2, and p38 are rapidly and transiently activated in response to injury in C2C12 cells, and are primarily localized to cells adjacent to the wound bed. Culture medium from wounded cells is able to stimulate activation of p38 but not ERK in unwounded cells. These results suggest that both ERK and p38 are involved in the response of muscle cells to physical injury in culture, and reflect what is seen in whole tissues in vivo.
Collapse
Affiliation(s)
- K Yeow
- CNRS UMR 6548, Laboratoire de Physiologie Cellulaire et Moléculaire, Faculté des Sciences, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | | | | | | | | |
Collapse
|
42
|
Fukada SI, Miyagoe-Suzuki Y, Tsukihara H, Yuasa K, Higuchi S, Ono S, Tsujikawa K, Takeda S, Yamamoto H. Muscle regeneration by reconstitution with bone marrow or fetal liver cells from green fluorescent protein-gene transgenic mice. J Cell Sci 2002; 115:1285-93. [PMID: 11884527 DOI: 10.1242/jcs.115.6.1285] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The myogenic potential of bone marrow and fetal liver cells was examined using donor cells from green fluorescent protein (GFP)-gene transgenic mice transferred into chimeric mice. Lethally irradiated X-chromosome-linked muscular dystrophy (mdx) mice receiving bone marrow cells from the transgenic mice exhibited significant numbers of fluorescence+ and dystrophin+ muscle fibres. In order to compare the generating capacity of fetal liver cells with bone marrow cells in neonatal chimeras,these two cell types from the transgenic mice were injected into busulfantreated normal or mdx neonatal mice, and muscular generation in the chimeras was examined. Cardiotoxin-induced (or -uninduced, for mdx recipients) muscle regeneration in chimeras also produced fluorescence+ muscle fibres. The muscle reconstitution efficiency of the bone marrow cells was almost equal to that of fetal liver cells. However, the myogenic cell frequency was higher in fetal livers than in bone marrow. Among the neonatal chimeras of normal recipients, several fibres expressed the fluorescence in the cardiotoxin-untreated muscle. Moreover,fluorescence+ mononuclear cells were observed beneath the basal lamina of the cardiotoxin-untreated muscle of chimeras, a position where satellite cells are localizing. It was also found that mononuclear fluorescence+ and desmin+ cells were observed in the explantation cultures of untreated muscles of neonatal chimeras. The fluorescence+ muscle fibres were generated in the second recipient mice receiving muscle single cells from the cardiotoxin-untreated neonatal chimeras. The results suggest that both bone marrow and fetal liver cells may have the potential to differentiate into muscle satellite cells and participate in muscle regeneration after muscle damage as well as in physiological muscle generation.
Collapse
Affiliation(s)
- So-ichiro Fukada
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Chapter 1 The myogenic regulatory factors. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1569-1799(02)11001-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Abstract
Adult skeletal muscle has a remarkable ability to regenerate following myotrauma. Because adult myofibers are terminally differentiated, the regeneration of skeletal muscle is largely dependent on a small population of resident cells termed satellite cells. Although this population of cells was identified 40 years ago, little is known regarding the molecular phenotype or regulation of the satellite cell. The use of cell culture techniques and transgenic animal models has improved our understanding of this unique cell population; however, the capacity and potential of these cells remain ill-defined. This review will highlight the origin and unique markers of the satellite cell population, the regulation by growth factors, and the response to physiological and pathological stimuli. We conclude by highlighting the potential therapeutic uses of satellite cells and identifying future research goals for the study of satellite cell biology.
Collapse
Affiliation(s)
- T J Hawke
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
45
|
Shimizu-Nishikawa K, Tsuji S, Yoshizato K. Identification and characterization of newt rad (ras associated with diabetes), a gene specifically expressed in regenerating limb muscle. Dev Dyn 2001; 220:74-86. [PMID: 11146509 DOI: 10.1002/1097-0177(20010101)220:1<74::aid-dvdy1090>3.0.co;2-q] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Formation of the blastema is a key event for limb regeneration in urodele amphibians, and skeletal muscle has been thought to be a major origin of the multipotent blastemal mesenchyme. In the present study, we used differential display to identify the genes expressed differentially in the muscle at the amputation site. We have isolated a cDNA clone that was upregulated during limb regeneration of the Japanese newt, Cynops pyrrhogaster. Deduced amino acid sequence revealed that the cloned cDNA was a newt homolog of rad (ras associated with diabetes), a gene overexpressed in skeletal muscle of Type II diabetic patients. Expression of newt rad (nrad) was not observed in unamputated normal limb muscle, increased within 4 hr after amputation, and then decreased to the level of normal muscle between 11 and 21 days after amputation. In situ hybridization showed that the transcripts of nrad were localized around most of the nuclei of skeletal muscle near the amputation site, indicating the expression of nrad in the multinucleate myotubes. This expression gradually decreased along the distal to proximal axis. No signals were observed in apical epidermal cap or blastemal mesenchyme. However, reverse transcription-PCR analysis detected a very low level of nrad expression in blastema, suggesting the carry-over of nrad expression in blastema from muscle. Administration of retinoic acid, which has been shown to cause an enhanced dedifferentiation in the regenerating limbs, increased nrad expression in more proximally located limb muscle tissues and prolonged the expression period. Thus, it was strongly suggested that the nrad expression is correlated with the dedifferentiation of myotubes of regenerating limbs. We also analyzed the expression of nrad during development. Transcripts were observed in immature oocytes, seen faintly or not seen thereafter until stage 57 when its expression increased again. These results indicated that nrad may play a role(s) in the developmental process as well as limb regeneration.
Collapse
Affiliation(s)
- K Shimizu-Nishikawa
- Regenerative Biology Laboratory, Department of Biological Science, Graduate School of Science, Hiroshima University, Higashihiroshima, Japan
| | | | | |
Collapse
|
46
|
Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 2000; 151:1221-34. [PMID: 11121437 PMCID: PMC2190588 DOI: 10.1083/jcb.151.6.1221] [Citation(s) in RCA: 652] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is one of a several adult post-mitotic tissues that retain the capacity to regenerate. This relies on a population of quiescent precursors, termed satellite cells. Here we describe two novel markers of quiescent satellite cells: CD34, an established marker of hematopoietic stem cells, and Myf5, the earliest marker of myogenic commitment. CD34(+ve) myoblasts can be detected in proliferating C2C12 cultures. In differentiating cultures, CD34(+ve) cells do not fuse into myotubes, nor express MyoD. Using isolated myofibers as a model of synchronous precursor cell activation, we show that quiescent satellite cells express CD34. An early feature of their activation is alternate splicing followed by complete transcriptional shutdown of CD34. This data implicates CD34 in the maintenance of satellite cell quiescence. In heterozygous Myf5(nlacZ/+) mice, all CD34(+ve) satellite cells also express beta-galactosidase, a marker of activation of Myf5, showing that quiescent satellite cells are committed to myogenesis. All such cells are positive for the accepted satellite cell marker, M-cadherin. We also show that satellite cells can be identified on isolated myofibers of the myosin light chain 3F-nlacZ-2E mouse as those that do not express the transgene. The numbers of satellite cells detected in this way are significantly greater than those identified by the other three markers. We conclude that the expression of CD34, Myf5, and M-cadherin defines quiescent, committed precursors and speculate that the CD34(-ve), Myf5(-ve) minority may be involved in maintaining the lineage-committed majority.
Collapse
Affiliation(s)
- J R Beauchamp
- Muscle Cell Biology Group, Medical Research Council Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, W12 ONN United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Merly F, Lescaudron L, Rouaud T, Crossin F, Gardahaut MF. Macrophages enhance muscle satellite cell proliferation and delay their differentiation. Muscle Nerve 1999; 22:724-32. [PMID: 10366226 DOI: 10.1002/(sici)1097-4598(199906)22:6<724::aid-mus9>3.0.co;2-o] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study investigated the effect of macrophages on in vitro satellite cell myogenesis in the turkey and mouse. Macrophages are considered to act as scavengers of tissue debris during the muscle degeneration-regeneration process. The number of dividing cells and of myoblasts expressing the myogenic regulatory factor MyoD indicated that macrophages enhanced satellite cell proliferation in both species. This was confirmed by observations with cultures treated for bromodeoxyuridine (BrdU) incorporation. In mouse and turkey macrophage-satellite cell cocultures, the number of differentiated myoblasts, the frequency of myogenin-positive cells, and the expression of developmental myosin isoforms were reduced as compared with control cultures, indicating that macrophages delayed satellite cell differentiation. The possibility that macrophages facilitate muscle fiber reconstitution by enhancing satellite cell proliferation should be taken into consideration in designing future strategies of satellite cell transplantation as a treatment for muscular dystrophies.
Collapse
Affiliation(s)
- F Merly
- Centre National de la Recherche Scientifique, EP 1593, Faculté des Sciences et des Techniques, Université de Nantes, France
| | | | | | | | | |
Collapse
|
48
|
Zádor E, Dux L, Wuytack F. Prolonged passive stretch of rat soleus muscle provokes an increase in the mRNA levels of the muscle regulatory factors distributed along the entire length of the fibers. J Muscle Res Cell Motil 1999; 20:395-402. [PMID: 10531620 DOI: 10.1023/a:1005541522599] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mRNA levels of the adult and the neonatal sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases (SERCA1a and SERCA1b, respectively) and those of the muscle regulatory factors (MRFs: myoD, myf-5, myogenin, MRF4) have been assessed by RT PCR in rat soleus muscles immobilized for 3 days in an extended position (passive stretch). The transcript level of the fast type SERCA1a Ca(2+)-transport ATPase decreased to half of its normal value, whereas that of neonatal SERCA1b isoform increased 5-fold above control in stretched muscles. Immunostaining of muscle cross sections showed that the fraction of fibers expressing the SERCA1a protein was decreased evenly along the length of the stretched muscles indicating that a transformation occurred of fast fibers to slow ones. The mRNA levels of MRFs were elevated 3- to 6-fold above the normal level and were distributed evenly along the length of the stretched muscles. However in the controls these transcripts were more abundant at both ends of the muscle. The stretch increased the level of myoD and immunocytochemistry showed the expression of myoD protein in a number of nuclei of the stretched muscles whereas it was practically undetectable by this method in the control muscles. Western blotting did not indicate a significant stretch-induced increase in the level of the myogenin protein, in spite of the fact that immunocytochemistry tended to show more myogenin-positive nuclei in stretched muscles as compared to the controls. These data indicate that after 3 days of passive stretch the central and the terminal parts of the soleus muscle adapt similarly by increasing the levels of the MRFs, by decreasing the overall levels of the fast SERCA1-type of ATPase and by partially re-establishing a neonatal mode of alternative SERCA1 transcript splicing resulting in an increased SERCA1b/1a ratio.
Collapse
Affiliation(s)
- E Zádor
- Inst. Biochem., Albert Szent-Gyorgyi Med. Univ., Szeged, Hungary.
| | | | | |
Collapse
|
49
|
Lescaudron L, Peltékian E, Fontaine-Pérus J, Paulin D, Zampieri M, Garcia L, Parrish E. Blood borne macrophages are essential for the triggering of muscle regeneration following muscle transplant. Neuromuscul Disord 1999; 9:72-80. [PMID: 10220861 DOI: 10.1016/s0960-8966(98)00111-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The transplantation of satellite cells may constitute a strategy for rebuilding muscle fibres in inherited myopathies. However, its development requires a great understanding of the role of environmental signals in the regenerative process. It is therefore essential to identify the key events triggering and controlling this process in vivo. We investigated whether macrophages play a key role in the course of the regenerative process using skeletal muscle transplants from transgenic pHuDes-nls-LacZ mice. Before grafting, transplants were conditioned with macrophage inflammatory protein 1-beta (MIP 1-beta; stimulating the macrophages infiltration or vascular endothelial growth factor (VEGF) stimulating angiogenesis). Treatment of transplants with MIP 1-beta and VEGF both accelerated and augmented monocyte-macrophage infiltration and satellite cell differentiation and/or proliferation, as compared to controls. In addition, VEGF treatment enhanced the number of newly formed myotubes. When a complete depletion of host monocyte-macrophages was experimentally induced, no regeneration occurred in transplants. Our data suggest that the presence of blood borne macrophages is required for triggering the earliest events of skeletal muscle regeneration. The understanding of macrophage behaviour after muscle injury should allow us to develop future strategies of satellite cell transplantation as a treatment for muscular dystrophies.
Collapse
Affiliation(s)
- L Lescaudron
- CNRS EP 1593, Faculté des Sciences et des Techniques, Nantes, France.
| | | | | | | | | | | | | |
Collapse
|