1
|
Pauly M, Krumbiegel M, Trumpp S, Braig S, Rupprecht T, Kraus C, Uebe S, Reis A, Vasileiou G. Severe manifestation of Rauch-Azzarello syndrome associated with biallelic deletion of CTNND2. Clin Genet 2024; 106:180-186. [PMID: 38604781 DOI: 10.1111/cge.14532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
CTNND2 encodes δ-catenin, a component of an adherens junction complex, and plays an important role in neuronal structure and function. To date, only heterozygous loss-of-function CTNND2 variants have been associated with mild neurodevelopmental delay and behavioral anomalies, a condition, which we named Rauch-Azzarello syndrome. Here, we report three siblings of a consanguineous family of Syrian descent with a homozygous deletion encompassing the last 19 exons of CTNND2 predicted to disrupt the transcript. All presented with severe neurodevelopmental delay with absent speech, profound motor delay, stereotypic behavior, microcephaly, short stature, muscular hypotonia with lower limb hypertonia, and variable eye anomalies. The parents and the fourth sibling were heterozygous carriers of the deletion and exhibited mild neurodevelopmental impairment resembling that of the previously described heterozygous individuals. The present study unveils a severe manifestation of CTNND2-associated Rauch-Azzarello syndrome attributed to biallelic loss-of-function aberrations, clinically distinct from the already described mild presentation of heterozygous individuals. Furthermore, we demonstrate novel clinical features in homozygous individuals that have not been reported in heterozygous cases to date.
Collapse
Affiliation(s)
- Melissa Pauly
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mandy Krumbiegel
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sandra Trumpp
- Children's Clinic, Klinikum Bayreuth GmbH, Bayreuth, Germany
| | - Sonja Braig
- Children's Clinic, Klinikum Bayreuth GmbH, Bayreuth, Germany
| | - Thomas Rupprecht
- Children's Clinic, Klinikum Bayreuth GmbH, Bayreuth, Germany
- MCO, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Centre for Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georgia Vasileiou
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Centre for Rare Diseases Erlangen (ZSEER), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
2
|
Naser AN, Lu Q, Chen YH. Trans-Compartmental Regulation of Tight Junction Barrier Function. Tissue Barriers 2023; 11:2133880. [PMID: 36220768 PMCID: PMC10606786 DOI: 10.1080/21688370.2022.2133880] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 10/17/2022] Open
Abstract
Tight junctions (TJs) are the most apical components of junctional complexes in epithelial and endothelial cells. Barrier function is one of the major functions of TJ, which restricts the ions and small water-soluble molecules from passing through the paracellular pathway. Adherens junctions (AJs) play an important role in cell-cell adhesion and cell signaling. Gap junctions (GJs) are intercellular channels regulating electrical and metabolic signals between cells. It is well known that TJ integral membrane proteins, such as claudins and occludins, are the molecular building blocks responsible for TJ barrier function. However, recent studies demonstrate that proteins of other junctional complexes can influence and regulate TJ barrier function. Therefore, the crosstalk between different cell junctions represents a common means to modulate cellular activities. In this review, we will discuss the interactions among TJ, AJ, and GJ by focusing on how AJ and GJ proteins regulate TJ barrier function in different biological systems.
Collapse
Affiliation(s)
- Amna N. Naser
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University Greenville, Greenville, North Carolina, USA
| | - Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University Greenville, Greenville, North Carolina, USA
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University Greenville, Greenville, North Carolina, USA
| |
Collapse
|
3
|
Kang J, Lu N, Yang S, Guo B, Zhu Y, Wu S, Huang X, Wong-Riley MTT, Liu YY. Alterations in synapses and mitochondria induced by acute or chronic intermittent hypoxia in the pre-Bötzinger complex of rats: an ultrastructural triple-labeling study with immunocytochemistry and histochemistry. Front Cell Neurosci 2023; 17:1132241. [PMID: 37396926 PMCID: PMC10312010 DOI: 10.3389/fncel.2023.1132241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction The pre-Bötzinger complex (pre-BötC), a kernel of inspiratory rhythmogenesis, is a heterogeneous network with excitatory glutamatergic and inhibitory GABAergic and glycinergic neurons. Inspiratory rhythm generation relies on synchronous activation of glutamatergic neuron, whilst inhibitory neurons play a critical role in shaping the breathing pattern, endowing the rhythm with flexibility in adapting to environmental, metabolic, and behavioral needs. Here we report ultrastructural alterations in excitatory, asymmetric synapses (AS) and inhibitory, symmetric synapses (SS), especially perforated synapses with discontinuous postsynaptic densities (PSDs) in the pre-BötC in rats exposed to daily acute intermittent hypoxia (dAIH) or chronic (C) IH. Methods We utilized for the first time a combination of somatostatin (SST) and neurokinin 1 receptor (NK1R) double immunocytochemistry with cytochrome oxidase histochemistry, to reveal synaptic characteristics and mitochondrial dynamic in the pre-BötC. Results We found perforated synapses with synaptic vesicles accumulated in distinct pools in apposition to each discrete PSD segments. dAIH induced significant increases in the PSD size of macular AS, and the proportion of perforated synapses. AS were predominant in the dAIH group, whereas SS were in a high proportion in the CIH group. dAIH significantly increased SST and NK1R expressions, whereas CIH led to a decrease. Desmosome-like contacts (DLC) were characterized for the first time in the pre-BötC. They were distributed alongside of synapses, especially SS. Mitochondria appeared in more proximity to DLC than synapses, suggestive of a higher energy demand of the DLC. Findings of single spines with dual AS and SS innervation provide morphological evidence of excitation-inhibition interplay within a single spine in the pre-BötC. In particular, we characterized spine-shaft microdomains of concentrated synapses coupled with mitochondrial positioning that could serve as a structural basis for synchrony of spine-shaft communication. Mitochondria were found within spines and ultrastructural features of mitochondrial fusion and fission were depicted for the first time in the pre-BötC. Conclusion We provide ultrastructural evidence of excitation-inhibition synapses in shafts and spines, and DLC in association with synapses that coincide with mitochondrial dynamic in their contribution to respiratory plasticity in the pre-BötC.
Collapse
Affiliation(s)
- Junjun Kang
- Department of Neurobiology, The Fourth Military Medical University, Xi’an, China
| | - Naining Lu
- Department of Neurobiology, The Fourth Military Medical University, Xi’an, China
| | - Shoujing Yang
- Department of Pathology, The Fourth Military Medical University, Xi’an, China
| | - Baolin Guo
- Department of Neurobiology, The Fourth Military Medical University, Xi’an, China
| | - Yuanyuan Zhu
- Department of Neurobiology, The Fourth Military Medical University, Xi’an, China
| | - Shengxi Wu
- Department of Neurobiology, The Fourth Military Medical University, Xi’an, China
| | - Xiaofeng Huang
- Department of Pathology, Xi’an Gaoxin Hospital, Xi’an, China
| | - Margaret T. T. Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ying-Ying Liu
- Department of Neurobiology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
4
|
Yusuf IH, Garrett A, MacLaren RE, Issa PC. Retinal cadherins and the retinal cadherinopathies: Current concepts and future directions. Prog Retin Eye Res 2022; 90:101038. [DOI: 10.1016/j.preteyeres.2021.101038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022]
|
5
|
Andreazzoli M, Barravecchia I, De Cesari C, Angeloni D, Demontis GC. Inducible Pluripotent Stem Cells to Model and Treat Inherited Degenerative Diseases of the Outer Retina: 3D-Organoids Limitations and Bioengineering Solutions. Cells 2021; 10:cells10092489. [PMID: 34572137 PMCID: PMC8471616 DOI: 10.3390/cells10092489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degenerations (IRD) affecting either photoreceptors or pigment epithelial cells cause progressive visual loss and severe disability, up to complete blindness. Retinal organoids (ROs) technologies opened up the development of human inducible pluripotent stem cells (hiPSC) for disease modeling and replacement therapies. However, hiPSC-derived ROs applications to IRD presently display limited maturation and functionality, with most photoreceptors lacking well-developed outer segments (OS) and light responsiveness comparable to their adult retinal counterparts. In this review, we address for the first time the microenvironment where OS mature, i.e., the subretinal space (SRS), and discuss SRS role in photoreceptors metabolic reprogramming required for OS generation. We also address bioengineering issues to improve culture systems proficiency to promote OS maturation in hiPSC-derived ROs. This issue is crucial, as satisfying the demanding metabolic needs of photoreceptors may unleash hiPSC-derived ROs full potential for disease modeling, drug development, and replacement therapies.
Collapse
Affiliation(s)
| | - Ivana Barravecchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56124 Pisa, Italy;
| | | | - Debora Angeloni
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56124 Pisa, Italy;
| | - Gian Carlo Demontis
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
- Correspondence: (M.A.); (G.C.D.)
| |
Collapse
|
6
|
Yin H, Li D, Wang Y, Zhu Q. Whole-genome resequencing analysis of Pengxian Yellow Chicken to identify genome-wide SNPs and signatures of selection. 3 Biotech 2019; 9:383. [PMID: 31656721 DOI: 10.1007/s13205-019-1902-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022] Open
Abstract
Chinese indigenous chickens have experienced strong selective pressure in genes or genomic regions controlling critical agricultural traits. To exploit the genetic features that may be useful in agriculture and are caused by artificial selection, we performed whole-genome sequencing of six Pengxian Yellow Chickens and downloaded the sequence data of five Red Jungle fowls from the NCBI. Through selective sweep analysis, we detected several regions with strong selection signals, containing 497 protein-coding genes. These genes were involved in developmental processes, metabolic processes, the response to external stimuli and other biological processes including digestion (ABCG5, ABCG8 and ADRB1), muscle development and growth (SMPD3, NELL1, and BICC1) and reduced immune function (CD86 and MTA3). Interestingly, we identified several genes with extremely strong selection signals associated with the loss of visual capability of domestic chickens relative to their wild ancestors. Amongst them, we propose that CTNND2 is involved in the evolutionary changes of domestic chickens toward reduced visual ability through the diopter system. VAT1 was also likely to contribute to these processes through its regulation of mitochondrial fusion. In summary, these data illustrate the patterns of genetic changes in Pengxian yellow chickens during domestication and provide valuable genetic resources that facilitate the utilization of chickens in agricultural production.
Collapse
|
7
|
Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res 2018; 64:1-55. [PMID: 29229445 PMCID: PMC6404988 DOI: 10.1016/j.preteyeres.2017.11.003] [Citation(s) in RCA: 1111] [Impact Index Per Article: 158.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023]
Abstract
Optical coherence tomography (OCT) was one of the biggest advances in ophthalmic imaging. Building on that platform, OCT angiography (OCTA) provides depth resolved images of blood flow in the retina and choroid with levels of detail far exceeding that obtained with older forms of imaging. This new modality is challenging because of the need for new equipment and processing techniques, current limitations of imaging capability, and rapid advancements in both imaging and in our understanding of the imaging and applicable pathophysiology of the retina and choroid. These factors lead to a steep learning curve, even for those with a working understanding dye-based ocular angiography. All for a method of imaging that is a little more than 10 years old. This review begins with a historical account of the development of OCTA, and the methods used in OCTA, including signal processing, image generation, and display techniques. This forms the basis to understand what OCTA images show as well as how image artifacts arise. The anatomy and imaging of specific vascular layers of the eye are reviewed. The integration of OCTA in multimodal imaging in the evaluation of retinal vascular occlusive diseases, diabetic retinopathy, uveitis, inherited diseases, age-related macular degeneration, and disorders of the optic nerve is presented. OCTA is an exciting, disruptive technology. Its use is rapidly expanding in clinical practice as well as for research into the pathophysiology of diseases of the posterior pole.
Collapse
Affiliation(s)
- Richard F Spaide
- Vitreous, Retina, Macula Consultants of New York, New York, NY, United States.
| | - James G Fujimoto
- Department of Electrical Engineering & Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA, United States
| | - Nadia K Waheed
- The Department of Ophthalmology, Tufts University School of Medicine, Boston MA, United States
| | - Srinivas R Sadda
- Doheny Eye Institute, University of California - Los Angeles, Los Angeles, CA, United States
| | - Giovanni Staurenghi
- Eye Clinic, Department of Biomedical and Clinical Sciences "Luigi Sacco", Luigi Sacco Hospital, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Abstract
: Retinal vascular disease has the potential to affect hundreds of millions of people, with the inherent risk of vision loss related to cystoid macular edema. Although there have been histologic evaluation of eyes having cystoid macular edema, the most recent paper was published more than 30 years ago. In retinal vascular cystoid macular edema fluorescein angiography, a modality that images the superficial vascular plexus, shows increased leakage. Optical coherence tomography angiography has provided unprecedented resolution of retinal vascular flow in a depth resolved manner and demonstrates areas of decreased or absent flow in the deep vascular plexus colocalizing with the cystoid spaces. There has been a large amount of research on fluid management and edema in the brain, much of which may have analogues in the eye. Interstitial flow of fluid as managed by Müller cells may occur in the retina, comparable in some ways to the bulk flow in brain parenchyma, which is managed by astrocytes. Absent blood flow in the deep retinal plexus may restrict fluid management strategies in the retina, to include transport of excess fluid out of the retina into the blood by Müller cells. Application of this theory may help in increasing understanding of the pathophysiology of retinal vascular cystoid macular edema and may lead to new therapeutic approaches.
Collapse
|
9
|
Lu Q, Aguilar BJ, Li M, Jiang Y, Chen YH. Genetic alterations of δ-catenin/NPRAP/Neurojungin (CTNND2): functional implications in complex human diseases. Hum Genet 2016; 135:1107-16. [PMID: 27380241 PMCID: PMC5021578 DOI: 10.1007/s00439-016-1705-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023]
Abstract
Some genes involved in complex human diseases are particularly vulnerable to genetic variations such as single nucleotide polymorphism, copy number variations, and mutations. For example, Ras mutations account for over 30 % of all human cancers. Additionally, there are some genes that can display different variations with functional impact in different diseases that are unrelated. One such gene stands out: δ-catenin/NPRAP/Neurojungin with gene designation as CTNND2 on chromosome 5p15.2. Recent advances in genome wide association as well as molecular biology approaches have uncovered striking involvement of δ-catenin gene variations linked to complex human disorders. These disorders include cancer, bipolar disorder, schizophrenia, autism, Cri-du-chat syndrome, myopia, cortical cataract-linked Alzheimer's disease, and infectious diseases. This list has rapidly grown longer in recent years, underscoring the pivotal roles of δ-catenin in critical human diseases. δ-Catenin is an adhesive junction-associated protein in the delta subfamily of the β-catenin superfamily. δ-Catenin functions in Wnt signaling to regulate gene expression and modulate Rho GTPases of the Ras superfamily in cytoskeletal reorganization. δ-Catenin likely lies where Wnt signaling meets Rho GTPases and is a unique and vulnerable common target for mutagenesis in different human diseases.
Collapse
Affiliation(s)
- Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
- The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
- Department of Urological Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing, 100029, China.
| | - Byron J Aguilar
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Mingchuan Li
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
- Department of Urological Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing, 100029, China
| | - Yongguang Jiang
- Department of Urological Surgery, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing, 100029, China
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
- Department of Pediatrics, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| |
Collapse
|
10
|
Verma SS, Cooke Bailey JN, Lucas A, Bradford Y, Linneman JG, Hauser MA, Pasquale LR, Peissig PL, Brilliant MH, McCarty CA, Haines JL, Wiggs JL, Vrabec TR, Tromp G, Ritchie MD, eMERGE Network, NEIGHBOR Consortium. Epistatic Gene-Based Interaction Analyses for Glaucoma in eMERGE and NEIGHBOR Consortium. PLoS Genet 2016; 12:e1006186. [PMID: 27623284 PMCID: PMC5021356 DOI: 10.1371/journal.pgen.1006186] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/22/2016] [Indexed: 12/22/2022] Open
Abstract
Primary open angle glaucoma (POAG) is a complex disease and is one of the major leading causes of blindness worldwide. Genome-wide association studies have successfully identified several common variants associated with glaucoma; however, most of these variants only explain a small proportion of the genetic risk. Apart from the standard approach to identify main effects of variants across the genome, it is believed that gene-gene interactions can help elucidate part of the missing heritability by allowing for the test of interactions between genetic variants to mimic the complex nature of biology. To explain the etiology of glaucoma, we first performed a genome-wide association study (GWAS) on glaucoma case-control samples obtained from electronic medical records (EMR) to establish the utility of EMR data in detecting non-spurious and relevant associations; this analysis was aimed at confirming already known associations with glaucoma and validating the EMR derived glaucoma phenotype. Our findings from GWAS suggest consistent evidence of several known associations in POAG. We then performed an interaction analysis for variants found to be marginally associated with glaucoma (SNPs with main effect p-value <0.01) and observed interesting findings in the electronic MEdical Records and GEnomics Network (eMERGE) network dataset. Genes from the top epistatic interactions from eMERGE data (Likelihood Ratio Test i.e. LRT p-value <1e-05) were then tested for replication in the NEIGHBOR consortium dataset. To replicate our findings, we performed a gene-based SNP-SNP interaction analysis in NEIGHBOR and observed significant gene-gene interactions (p-value <0.001) among the top 17 gene-gene models identified in the discovery phase. Variants from gene-gene interaction analysis that we found to be associated with POAG explain 3.5% of additional genetic variance in eMERGE dataset above what is explained by the SNPs in genes that are replicated from previous GWAS studies (which was only 2.1% variance explained in eMERGE dataset); in the NEIGHBOR dataset, adding replicated SNPs from gene-gene interaction analysis explain 3.4% of total variance whereas GWAS SNPs alone explain only 2.8% of variance. Exploring gene-gene interactions may provide additional insights into many complex traits when explored in properly designed and powered association studies. The complex nature of primary-open angle glaucoma (POAG) has left researchers exploring the genetic architecture and searching for the missing heritability using a number of different study designs. Over the past decade, many studies have been conducted to explain the etiology of POAG; however, a high proportion of estimated heritability still remains unexplained. GWA studies for POAG have identified significant associations but these associations have only explained a small proportion of the genetic risk (odds ratios range between 1–3). In this paper, we sought to confirm the primary genome-wide significant associations that have been discovered so far for glaucoma in phenotypes developed from EMR data in an effort to show that EMR data can be a powerful resource for finding genetic variants influencing POAG susceptibility. Next, we tested for statistical interactions, which can be presented as an important tool in an attempt to explain POAG heritability. We used a reduced list of variants filtered by marginal main effect analysis to look for epistatic interactions. We present our results from replication of gene-based interaction analyses performed in eMERGE and the NEIGHBOR consortium data. Using expression data and annotations from various publicly available databases, the most significant genes that replicated in our analyses show expression in the eye and trabecular meshwork. Analysis for estimation of genetic variance explained by significant associations from previous GWAS and replicated variants from gene-based interactions suggest that these explain 5.6% of variance in eMERGE dataset and also explain 3.4% variance in NEIGHBOR dataset.
Collapse
Affiliation(s)
- Shefali Setia Verma
- Department of Biomedical and Translational Informatics, Geisinger Health System, Danville, Pennsylvania, United States of America
- The Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jessica N. Cooke Bailey
- Department of Epidemiology and Biostatistics, Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Anastasia Lucas
- Department of Biomedical and Translational Informatics, Geisinger Health System, Danville, Pennsylvania, United States of America
| | - Yuki Bradford
- Department of Biomedical and Translational Informatics, Geisinger Health System, Danville, Pennsylvania, United States of America
| | - James G. Linneman
- Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, Wisconsin, United States of America
| | - Michael A. Hauser
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Louis R. Pasquale
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peggy L. Peissig
- Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, Wisconsin, United States of America
| | - Murray H. Brilliant
- Center for Human Genetics, Marshfield Clinic Research Foundation, Marshfield, Wisconsin, United States of America
| | | | - Jonathan L. Haines
- Department of Epidemiology and Biostatistics, Institute for Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Janey L. Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Tamara R. Vrabec
- Department of Ophthalmology, Geisinger Health System, Danville, Pennsylvania, United States of America
| | - Gerard Tromp
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Marylyn D. Ritchie
- Department of Biomedical and Translational Informatics, Geisinger Health System, Danville, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| | | | | |
Collapse
|
11
|
Balasubramanian MN, Panserat S, Dupont-Nivet M, Quillet E, Montfort J, Le Cam A, Medale F, Kaushik SJ, Geurden I. Molecular pathways associated with the nutritional programming of plant-based diet acceptance in rainbow trout following an early feeding exposure. BMC Genomics 2016; 17:449. [PMID: 27296167 PMCID: PMC4907080 DOI: 10.1186/s12864-016-2804-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/27/2016] [Indexed: 01/12/2023] Open
Abstract
Background The achievement of sustainable feeding practices in aquaculture by reducing the reliance on wild-captured fish, via replacement of fish-based feed with plant-based feed, is impeded by the poor growth response seen in fish fed high levels of plant ingredients. Our recent strategy to nutritionally program rainbow trout by early short-term exposure to a plant-based (V) diet versus a control fish-based (M) diet at the first-feeding fry stage when the trout fry start to consume exogenous feed, resulted in remarkable improvements in feed intake, growth and feed utilization when the same fish were challenged with the diet V (V-challenge) at the juvenile stage, several months following initial exposure. We employed microarray expression analysis at the first-feeding and juvenile stages to deduce the mechanisms associated with the nutritional programming of plant-based feed acceptance in trout. Results Transcriptomic analysis was performed on rainbow trout whole fry after 3 weeks exposure to either diet V or diet M at the first feeding stage (3-week), and in the whole brain and liver of juvenile trout after a 25 day V-challenge, using a rainbow trout custom oligonucleotide microarray. Overall, 1787 (3-week + Brain) and 924 (3-week + Liver) mRNA probes were affected by the early-feeding exposure. Gene ontology and pathway analysis of the corresponding genes revealed that nutritional programming affects pathways of sensory perception, synaptic transmission, cognitive processes and neuroendocrine peptides in the brain; whereas in the liver, pathways mediating intermediary metabolism, xenobiotic metabolism, proteolysis, and cytoskeletal regulation of cell cycle are affected. These results suggest that the nutritionally programmed enhanced acceptance of a plant-based feed in rainbow trout is driven by probable acquisition of flavour and feed preferences, and reduced sensitivity to changes in hepatic metabolic and stress pathways. Conclusions This study outlines the molecular mechanisms in trout brain and liver that accompany the nutritional programming of plant-based diet acceptance in trout, reinforces the notion of the first-feeding stage in oviparous fish as a critical window for nutritional programming, and provides support for utilizing this strategy to achieve improvements in sustainability of feeding practices in aquaculture. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2804-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mukundh N Balasubramanian
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Stephane Panserat
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Mathilde Dupont-Nivet
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Edwige Quillet
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Jerome Montfort
- INRA, UR 1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Rennes, France
| | - Aurelie Le Cam
- INRA, UR 1037 Laboratoire de Physiologie et Génomique des Poissons (LPGP), Rennes, France
| | - Francoise Medale
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Sadasivam J Kaushik
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France
| | - Inge Geurden
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Pôle d'Hydrobiologie INRA, 64310, Saint Pée-sur-Nivelle, France.
| |
Collapse
|
12
|
Yu WQ, Eom YS, Shin JA, Nair D, Grzywacz SXZ, Grzywacz NM, Craft CM, Lee EJ. Reshaping the Cone-Mosaic in a Rat Model of Retinitis Pigmentosa: Modulatory Role of ZO-1 Expression in DL-Alpha-Aminoadipic Acid Reshaping. PLoS One 2016; 11:e0151668. [PMID: 26977812 PMCID: PMC4792433 DOI: 10.1371/journal.pone.0151668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/02/2016] [Indexed: 01/21/2023] Open
Abstract
In S334ter-line-3 rat model of Retinitis Pigmentosa (RP), rod cell death induces the rearrangement of cones into mosaics of rings while the fibrotic processes of Müller cells remodel to fill the center of the rings. In contrast, previous work established that DL-alpha-aminoadipic-acid (AAA), a compound that transiently blocks Müller cell metabolism, abolishes these highly structured cone rings. Simultaneously, adherens-junction associated protein, Zonula occludens-1 (ZO-1) expression forms in a network between the photoreceptor segments and Müller cells processes. Thus, we hypothesized that AAA treatment alters the cone mosaic rings by disrupting the distal sealing formed by these fibrotic processes, either directly or indirectly, by down regulating the expression of ZO-1. Therefore, we examined these processes and ZO-1 expression at the outer retina after intravitreal injection of AAA and observed that AAA treatment transiently disrupts the distal glial sealing in RP retina, plus induces cones in rings to become more homogeneous. Moreover, ZO-1 expression is actively suppressed after 3 days of AAA treatment, which coincided with cone ring disruption. Similar modifications of glial sealing and cone distribution were observed after injection of siRNA to inhibit ZO-1 expression. These findings support our hypothesis and provide additional information about the critical role played by ZO-1 in glial sealing and shaping the ring mosaic in RP retina. These studies represent important advancements in the understanding of retinal degeneration's etiology and pathophysiology.
Collapse
Affiliation(s)
- Wan-Qing Yu
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
- Department of Biological Structure, University of Washington, Seattle, United States of America
| | - Yun Sung Eom
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, University of Southern California, Los Angeles, California, United States of America
| | - Jung-A Shin
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, University of Southern California, Los Angeles, California, United States of America
- Department of Anatomy, School of Medicine, Ewha Womans University, Seoul, Korea
| | - Divya Nair
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Sara X. Z. Grzywacz
- Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Norberto M. Grzywacz
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
- Department of Neuroscience, Georgetown University, Washington D.C., United States of America
- Department of Physics, Georgetown University, Washington D.C., United States of America
| | - Cheryl Mae Craft
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, United States of America
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, University of Southern California, Los Angeles, California, United States of America
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Cell & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Eun-Jin Lee
- Mary D. Allen Laboratory for Vision Research, USC Eye Institute, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
13
|
Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity. Nat Genet 2015; 48:144-51. [PMID: 26691986 PMCID: PMC4787620 DOI: 10.1038/ng.3474] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 11/25/2015] [Indexed: 11/11/2022]
Abstract
Butterfly-shaped pigment dystrophy is an eye disease characterized by lesions in the macula that can resemble the wings of a butterfly. Here, we report the identification of heterozygous missense mutations in the α-catenin 1 (CTNNA1) gene in three families with butterfly-shaped pigment dystrophy. In addition, we identified a Ctnna1 missense mutation in a chemically induced mouse mutant, tvrm5. Parallel clinical phenotypes were observed in the retinal pigment epithelium (RPE) of individuals with butterfly-shaped pigment dystrophy and in tvrm5 mice, including pigmentary abnormalities, focal thickening and elevated lesions, and decreased light-activated responses. Morphological studies in tvrm5 mice revealed increased cell shedding and large multinucleated RPE cells, suggesting defects in intercellular adhesion and cytokinesis. This study identifies CTNNA1 gene variants as a cause of macular dystrophy, suggests that CTNNA1 is involved in maintaining RPE integrity, and suggests that other components that participate in intercellular adhesion may be implicated in macular disease.
Collapse
|
14
|
Zhang H, Dai SD, Liu SL, Zhang FY, Dai CL. Overexpression of δ-catenin is associated with a malignant phenotype and poor prognosis in colorectal cancer. Mol Med Rep 2015; 12:4259-4265. [PMID: 26062780 PMCID: PMC4526058 DOI: 10.3892/mmr.2015.3918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 05/08/2015] [Indexed: 12/17/2022] Open
Abstract
Little is known regarding the expression or clinical significance of δ-catenin, a member of the catenin family, in colorectal cancer (CRC). The present study examined the expression of δ-catenin using immunohistochemistry in 110 cases of CRC, including 70 cases with complete follow-up records and 40 cases with paired lymph node metastases. In addition, δ-catenin mRNA and protein expression were compared in 30 pairs of matched CRC and normal colorectal tissues by reverse transcription quantitative polymerase chain reaction and western blot analysis. δ-Catenin was weakly expressed or absent in the cytoplasm of normal intestinal epithelial cells, whereas positive δ-catenin expression local-ized to the cytoplasm was observed in CRC cells. The rate of positive δ-catenin expression in CRC (68.18%; 75/110) was significantly higher than that in normal colorectal tissues (36.7%; 11/30; P<0.001). In addition, δ-catenin mRNA and protein expression were significantly increased in CRC tissues compared to those in their matched normal tissues (all P<0.05). The expression of δ-catenin in stage III–IV CRC was higher than that in stage I–II CRC, and the expression of δ-catenin in the tumors of patients with lymph node metastases was higher than that in patients without lymph node metastases. Kaplan-Meier survival curves demonstrated that the survival time of patients with positive δ-catenin expression was shorter than that of patients with negative δ-catenin expression (P=0.005). Furthermore, Cox multivariate analysis indicated that the tumor, nodes and metastasis stage (P=0.02) and positive δ-catenin expression (P=0.033) were independent prognostic factors in CRC. The present study therefore indicated that δ-catenin may be a suitable independent prognostic factor for CRC.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Colorectal Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shun-Dong Dai
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shu-Li Liu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Fang-Yuan Zhang
- Department of Colorectal Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Chao-Liu Dai
- Department of Colorectal Surgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
15
|
Yuan L, Seong E, Beuscher JL, Arikkath J. δ-Catenin Regulates Spine Architecture via Cadherin and PDZ-dependent Interactions. J Biol Chem 2015; 290:10947-57. [PMID: 25724647 DOI: 10.1074/jbc.m114.632679] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 12/14/2022] Open
Abstract
The ability of neurons to maintain spine architecture and modulate it in response to synaptic activity is a crucial component of the cellular machinery that underlies information storage in pyramidal neurons of the hippocampus. Here we show a critical role for δ-catenin, a component of the cadherin-catenin cell adhesion complex, in regulating spine head width and length in pyramidal neurons of the hippocampus. The loss of Ctnnd2, the gene encoding δ-catenin, has been associated with the intellectual disability observed in the cri du chat syndrome, suggesting that the functional roles of δ-catenin are vital for neuronal integrity and higher order functions. We demonstrate that loss of δ-catenin in a mouse model or knockdown of δ-catenin in pyramidal neurons compromises spine head width and length, without altering spine dynamics. This is accompanied by a reduction in the levels of synaptic N-cadherin. The ability of δ-catenin to modulate spine architecture is critically dependent on its ability to interact with cadherin and PDZ domain-containing proteins. We propose that loss of δ-catenin during development perturbs synaptic architecture leading to developmental aberrations in neural circuit formation that contribute to the learning disabilities in a mouse model and humans with cri du chat syndrome.
Collapse
Affiliation(s)
- Li Yuan
- From the Department of Pharmacology and Experimental Neuroscience
| | - Eunju Seong
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - James L Beuscher
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jyothi Arikkath
- From the Department of Pharmacology and Experimental Neuroscience, Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
16
|
Hofmeister W, Nilsson D, Topa A, Anderlid BM, Darki F, Matsson H, Tapia Páez I, Klingberg T, Samuelsson L, Wirta V, Vezzi F, Kere J, Nordenskjöld M, Syk Lundberg E, Lindstrand A. CTNND2-a candidate gene for reading problems and mild intellectual disability. J Med Genet 2014; 52:111-22. [PMID: 25473103 DOI: 10.1136/jmedgenet-2014-102757] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Cytogenetically visible chromosomal translocations are highly informative as they can pinpoint strong effect genes even in complex genetic disorders. METHODS AND RESULTS Here, we report a mother and daughter, both with borderline intelligence and learning problems within the dyslexia spectrum, and two apparently balanced reciprocal translocations: t(1;8)(p22;q24) and t(5;18)(p15;q11). By low coverage mate-pair whole-genome sequencing, we were able to pinpoint the genomic breakpoints to 2 kb intervals. By direct sequencing, we then located the chromosome 5p breakpoint to intron 9 of CTNND2. An additional case with a 163 kb microdeletion exclusively involving CTNND2 was identified with genome-wide array comparative genomic hybridisation. This microdeletion at 5p15.2 is also present in mosaic state in the patient's mother but absent from the healthy siblings. We then investigated the effect of CTNND2 polymorphisms on normal variability and identified a polymorphism (rs2561622) with significant effect on phonological ability and white matter volume in the left frontal lobe, close to cortical regions previously associated with phonological processing. Finally, given the potential role of CTNND2 in neuron motility, we used morpholino knockdown in zebrafish embryos to assess its effects on neuronal migration in vivo. Analysis of the zebrafish forebrain revealed a subpopulation of neurons misplaced between the diencephalon and telencephalon. CONCLUSIONS Taken together, our human genetic and in vivo data suggest that defective migration of subpopulations of neuronal cells due to haploinsufficiency of CTNND2 contribute to the cognitive dysfunction in our patients.
Collapse
Affiliation(s)
- Wolfgang Hofmeister
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Alexandra Topa
- Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Fahimeh Darki
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Hans Matsson
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Isabel Tapia Páez
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Torkel Klingberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lena Samuelsson
- Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Valtteri Wirta
- SciLifeLab, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Francesco Vezzi
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden Molecular Neurology Research Program, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabeth Syk Lundberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Zhang JY, Bai CY, Bai YQ, Zhang JY, Wu ZY, Wang SH, Xu XE, Wu JY, Zhu Y, Rui Y, Li EM, Xu LY. The expression of δ-catenin in esophageal squamous cell carcinoma and its correlations with prognosis of patients. Hum Pathol 2014; 45:2014-22. [PMID: 25090917 DOI: 10.1016/j.humpath.2014.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/25/2014] [Accepted: 05/30/2014] [Indexed: 02/05/2023]
Abstract
As a member of the catenin family, expression of δ-catenin and its clinical implication in numerous tumors remain unclear. In the present study, expression of δ-catenin in esophageal squamous cell carcinoma (ESCC) and its correlations with patient prognosis were explored. We detected the expression of δ-catenin, by immunohistochemistry, in ESCC tissues from 299 cases and analyzed the correlation between δ-catenin expression and patient clinicopathological features. Compared with a lack of expression in adjacent normal esophageal epithelium (0%, 0/47), the frequency of δ-catenin protein was increased in ESCC tissues to 41.5% (124/299, P < .001) and expression correlated with TNM stage and lymph node metastasis (P = .025 and .019, respectively). Furthermore, Kaplan-Meier survival analysis revealed that patients with high δ-catenin expression had shorter survival than patients with low expression (P = .010), and multivariate Cox analysis revealed that high δ-catenin expression was also an independent prognostic factor (P = .001). In transwell assays, migration of ESCC cells was enhanced by δ-catenin overexpression, whereas proliferation of ESCC cells was unchanged. Together, our results suggest that δ-catenin acts as an oncoprotein when overexpressed in ESCC, and its expression is associated with poor prognosis and malignant cell behavior.
Collapse
Affiliation(s)
- Jun-Yi Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Pathology, Medical College of Chifeng University, Chifeng 024000, PR China
| | - Chun-Ying Bai
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Research Centre of Molecular Medicine, Medical College of Chifeng University, Chifeng 024000, PR China
| | - Yu-Qin Bai
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Pathology, Medical College of Chifeng University, Chifeng 024000, PR China
| | - Jing-Yi Zhang
- Department of Pathology, Medical College of Chifeng University, Chifeng 024000, PR China
| | - Zhi-Yong Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Oncology Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, 515041, Guangdong, PR China
| | - Shao-Hong Wang
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, 515041, Guangdong, PR China
| | - Xiu-E Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Jian-Yi Wu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Ying Zhu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Yun Rui
- Department of Physiology, Medical College of Chifeng University, Chifeng 024000, PR China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
18
|
Lee W, Nõupuu K, Oll M, Duncker T, Burke T, Zernant J, Bearelly S, Tsang SH, Sparrow JR, Allikmets R. The external limiting membrane in early-onset Stargardt disease. Invest Ophthalmol Vis Sci 2014; 55:6139-49. [PMID: 25139735 DOI: 10.1167/iovs.14-15126] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To describe pathologic changes of the external limiting membrane (ELM) in young patients with early-onset Stargardt (STGD1) disease. METHODS Twenty-six STGD1 patients aged younger than 20 years with confirmed disease-causing adenosine triphosphate-binding cassette, subfamily A, member 4 (ABCA4) alleles and 30 age-matched unaffected individuals were studied. Spectral-domain optical coherence tomography (SD-OCT), fundus autofluorescence (AF), and color fundus photography (CFP) images, as well as full-field electroretinograms were obtained and analyzed for one to four visits in each patient. RESULTS The ELM in all patients exhibited a distinct thickening that was not observed in unaffected individuals. In addition, accumulations of reflective deposits were noted in the outer nuclear layer in every patient. Four patients exhibited a concave protuberance or bulging of a thickened and hyperreflective ELM band within the fovea containing preserved photoreceptors. Longitudinal SD-OCT data in several patients revealed the persistence of this ELM abnormality over a period of time (1-4 years). Furthermore, the edges of the inner segment ellipsoid band appeared to recede earlier than the ELM band in active lesions. CONCLUSIONS Structural changes seen in the ELM of this cohort may reflect a gliotic response to cellular stress at the photoreceptor level in early-onset STGD1.
Collapse
Affiliation(s)
- Winston Lee
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Kalev Nõupuu
- Department of Ophthalmology, Columbia University, New York, New York, United States Eye Clinic, Tartu University Hospital, Tartu, Estonia
| | - Maris Oll
- Department of Ophthalmology, Columbia University, New York, New York, United States Eye Clinic, Tartu University Hospital, Tartu, Estonia
| | - Tobias Duncker
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Tomas Burke
- Department of Ophthalmology, Royal United Hospital, Bath, United Kingdom
| | - Jana Zernant
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Srilaxmi Bearelly
- Department of Ophthalmology, Columbia University, New York, New York, United States
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University, New York, New York, United States Department of Pathology & Cell Biology, Columbia University, New York, New York, United States
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, New York, United States Department of Pathology & Cell Biology, Columbia University, New York, New York, United States
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York, United States Department of Pathology & Cell Biology, Columbia University, New York, New York, United States
| |
Collapse
|
19
|
Charlesworth A, Meijer HA, de Moor CH. Specificity factors in cytoplasmic polyadenylation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 4:437-61. [PMID: 23776146 PMCID: PMC3736149 DOI: 10.1002/wrna.1171] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 12/12/2022]
Abstract
Poly(A) tail elongation after export of an messenger RNA (mRNA) to the cytoplasm is called cytoplasmic polyadenylation. It was first discovered in oocytes and embryos, where it has roles in meiosis and development. In recent years, however, has been implicated in many other processes, including synaptic plasticity and mitosis. This review aims to introduce cytoplasmic polyadenylation with an emphasis on the factors and elements mediating this process for different mRNAs and in different animal species. We will discuss the RNA sequence elements mediating cytoplasmic polyadenylation in the 3' untranslated regions of mRNAs, including the CPE, MBE, TCS, eCPE, and C-CPE. In addition to describing the role of general polyadenylation factors, we discuss the specific RNA binding protein families associated with cytoplasmic polyadenylation elements, including CPEB (CPEB1, CPEB2, CPEB3, and CPEB4), Pumilio (PUM2), Musashi (MSI1, MSI2), zygote arrest (ZAR2), ELAV like proteins (ELAVL1, HuR), poly(C) binding proteins (PCBP2, αCP2, hnRNP-E2), and Bicaudal C (BICC1). Some emerging themes in cytoplasmic polyadenylation will be highlighted. To facilitate understanding for those working in different organisms and fields, particularly those who are analyzing high throughput data, HUGO gene nomenclature for the human orthologs is used throughout. Where human orthologs have not been clearly identified, reference is made to protein families identified in man.
Collapse
Affiliation(s)
- Amanda Charlesworth
- Department of Integrative Biology, University of Colorado Denver, Denver, CO, USA
| | | | | |
Collapse
|
20
|
Heynen SR, Meneau I, Caprara C, Samardzija M, Imsand C, Levine EM, Grimm C. CDC42 is required for tissue lamination and cell survival in the mouse retina. PLoS One 2013; 8:e53806. [PMID: 23372671 PMCID: PMC3553133 DOI: 10.1371/journal.pone.0053806] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 12/05/2012] [Indexed: 11/28/2022] Open
Abstract
The small GTPase CDC42 has pleiotropic functions during development and in the adult. These functions include intra- as well as intercellular tasks such as organization of the cytoskeleton and, at least in epithelial cells, formation of adherens junctions. To investigate CDC42 in the neuronal retina, we generated retina-specific Cdc42-knockdown mice (Cdc42-KD) and analyzed the ensuing consequences for the developing and postnatal retina. Lack of CDC42 affected organization of the developing retina as early as E17.5, prevented correct tissue lamination, and resulted in progressive retinal degeneration and severely reduced retinal function of the postnatal retina. Despite the disorganization of the retina, formation of the primary vascular plexus was not strongly affected. However, both deeper vascular plexi developed abnormally with no clear layering of the vessels. Retinas of Cdc42-KD mice showed increased expression of pro-survival, but also of pro-apoptotic and pro-inflammatory genes and exhibited prolonged Müller glia hypertrophy. Thus, functional CDC42 is important for correct tissue organization already during retinal development. Its absence leads to severe destabilization of the postnatal retina with strong degeneration and loss of retinal function.
Collapse
Affiliation(s)
- Severin Reinhard Heynen
- Laboratory of Retinal Cell Biology, Ophthalmology Department, University of Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Isabelle Meneau
- Laboratory of Retinal Cell Biology, Ophthalmology Department, University of Zurich, Switzerland
| | - Christian Caprara
- Laboratory of Retinal Cell Biology, Ophthalmology Department, University of Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Marijana Samardzija
- Laboratory of Retinal Cell Biology, Ophthalmology Department, University of Zurich, Switzerland
| | - Cornelia Imsand
- Laboratory of Retinal Cell Biology, Ophthalmology Department, University of Zurich, Switzerland
| | - Edward M. Levine
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Christian Grimm
- Laboratory of Retinal Cell Biology, Ophthalmology Department, University of Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
- Center for Neuroscience, University of Zurich, Switzerland
- * E-mail:
| |
Collapse
|
21
|
Verhoeven VJM, Hysi PG, Saw SM, Vitart V, Mirshahi A, Guggenheim JA, Cotch MF, Yamashiro K, Baird PN, Mackey DA, Wojciechowski R, Ikram MK, Hewitt AW, Duggal P, Janmahasatian S, Khor CC, Fan Q, Zhou X, Young TL, Tai ES, Goh LK, Li YJ, Aung T, Vithana E, Teo YY, Tay W, Sim X, Rudan I, Hayward C, Wright AF, Polasek O, Campbell H, Wilson JF, Fleck BW, Nakata I, Yoshimura N, Yamada R, Matsuda F, Ohno-Matsui K, Nag A, McMahon G, Pourcain BS, Lu Y, Rahi JS, Cumberland PM, Bhattacharya S, Simpson CL, Atwood LD, Li X, Raffel LJ, Murgia F, Portas L, Despriet DDG, van Koolwijk LME, Wolfram C, Lackner KJ, Tönjes A, Mägi R, Lehtimäki T, Kähönen M, Esko T, Metspalu A, Rantanen T, Pärssinen O, Klein BE, Meitinger T, Spector TD, Oostra BA, Smith AV, de Jong PTVM, Hofman A, Amin N, Karssen LC, Rivadeneira F, Vingerling JR, Eiríksdóttir G, Gudnason V, Döring A, Bettecken T, Uitterlinden AG, Williams C, Zeller T, Castagné R, Oexle K, van Duijn CM, Iyengar SK, Mitchell P, Wang JJ, Höhn R, Pfeiffer N, Bailey-Wilson JE, Stambolian D, Wong TY, Hammond CJ, Klaver CCW. Large scale international replication and meta-analysis study confirms association of the 15q14 locus with myopia. The CREAM consortium. Hum Genet 2012; 131:1467-80. [PMID: 22665138 PMCID: PMC3418496 DOI: 10.1007/s00439-012-1176-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/27/2012] [Indexed: 12/14/2022]
Abstract
Myopia is a complex genetic disorder and a common cause of visual impairment among working age adults. Genome-wide association studies have identified susceptibility loci on chromosomes 15q14 and 15q25 in Caucasian populations of European ancestry. Here, we present a confirmation and meta-analysis study in which we assessed whether these two loci are also associated with myopia in other populations. The study population comprised 31 cohorts from the Consortium of Refractive Error and Myopia (CREAM) representing 4 different continents with 55,177 individuals; 42,845 Caucasians and 12,332 Asians. We performed a meta-analysis of 14 single nucleotide polymorphisms (SNPs) on 15q14 and 5 SNPs on 15q25 using linear regression analysis with spherical equivalent as a quantitative outcome, adjusted for age and sex. We calculated the odds ratio (OR) of myopia versus hyperopia for carriers of the top-SNP alleles using a fixed effects meta-analysis. At locus 15q14, all SNPs were significantly replicated, with the lowest P value 3.87 × 10(-12) for SNP rs634990 in Caucasians, and 9.65 × 10(-4) for rs8032019 in Asians. The overall meta-analysis provided P value 9.20 × 10(-23) for the top SNP rs634990. The risk of myopia versus hyperopia was OR 1.88 (95 % CI 1.64, 2.16, P < 0.001) for homozygous carriers of the risk allele at the top SNP rs634990, and OR 1.33 (95 % CI 1.19, 1.49, P < 0.001) for heterozygous carriers. SNPs at locus 15q25 did not replicate significantly (P value 5.81 × 10(-2) for top SNP rs939661). We conclude that common variants at chromosome 15q14 influence susceptibility for myopia in Caucasian and Asian populations world-wide.
Collapse
Affiliation(s)
- Virginie J. M. Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Pirro G. Hysi
- Department of Twin Research and Genetic Epidemiology, King’s College London, St. Thomas’ Hospital, London, UK
| | - Seang-Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Singapore
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alireza Mirshahi
- Department of Ophthalmology, J. Gutenberg University Medical Center, Mainz, Germany
| | | | - Mary Frances Cotch
- Division of Epidemiology and Clinical Applications, National Eye Institute, Intramural Research Program, National Institutes of Health, Bethesda, USA
| | - Kenji Yamashiro
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Paul N. Baird
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
| | - David A. Mackey
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia
| | - Robert Wojciechowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, USA
| | - M. Kamran Ikram
- Department of Ophthalmology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Department of Ophthalmology, National University Health System, National University of Singapore, Singapore, Singapore
| | - Alex W. Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Sarayut Janmahasatian
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, USA
| | - Chiea-Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Qiao Fan
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Xin Zhou
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Terri L. Young
- Center for Human Genetics, Duke University Medical Center, Durham, USA
| | - E-Shyong Tai
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Liang-Kee Goh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Yi-Ju Li
- Center for Human Genetics, Duke University Medical Center, Durham, USA
| | - Tin Aung
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Singapore
- Department of Ophthalmology, National University Health System, National University of Singapore, Singapore, Singapore
| | - Eranga Vithana
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Singapore
- Department of Ophthalmology, National University Health System, National University of Singapore, Singapore, Singapore
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
- Centre for Molecular Epidemiology, National University of Singapore, Singapore, Singapore
| | - Wanting Tay
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Singapore
| | - Xueling Sim
- Centre for Molecular Epidemiology, National University of Singapore, Singapore, Singapore
| | - Igor Rudan
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alan F. Wright
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
| | - Harry Campbell
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - James F. Wilson
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Isao Nakata
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nagahisa Yoshimura
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryo Yamada
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Abhishek Nag
- Department of Twin Research and Genetic Epidemiology, King’s College London, St. Thomas’ Hospital, London, UK
| | - George McMahon
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Beate St. Pourcain
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Yi Lu
- Department of Genetics and Population Health, Queensland Institute of Medical Research, Brisbane, Australia
| | - Jugnoo S. Rahi
- Medical Research Council Centre of Epidemiology for Child Health, Institute of Child Health, University College London, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Phillippa M. Cumberland
- Medical Research Council Centre of Epidemiology for Child Health, Institute of Child Health, University College London, London, UK
- Ulverscroft Vision Research Group, University College London, London, UK
| | | | - Claire L. Simpson
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, USA
| | - Larry D. Atwood
- Department of Neurology, Boston University School of Medicine, Boston, USA
| | - Xiaohui Li
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Leslie J. Raffel
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Federico Murgia
- Institute of Population Genetics, National Research Council, Sassari, Italy
| | - Laura Portas
- Institute of Population Genetics, National Research Council, Sassari, Italy
| | - Dominiek D. G. Despriet
- Department of Ophthalmology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Leonieke M. E. van Koolwijk
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Glaucoma Service, The Rotterdam Eye Hospital, Rotterdam, The Netherlands
| | - Christian Wolfram
- Department of Ophthalmology, J. Gutenberg University Medical Center, Mainz, Germany
| | - Karl J. Lackner
- Department of Ophthalmology, J. Gutenberg University Medical Center, Mainz, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, J. Gutenberg University Medical Center, Mainz, Germany
| | - Anke Tönjes
- Department of Medicine, University of Leipzig, Leipzig, Germany
- Integrated Research and Treatment Center (IFB) AdiposityDiseases, University of Leipzig, Leipzig, Germany
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
- University of Tampere School of Medicine, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, University of Tampere School of Medicine, Tampere, Finland
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | | | - Taina Rantanen
- Department of Health Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Olavi Pärssinen
- Department of Ophthalmology, Central Hospital of Central Finland, Jyväskylä, Finland
| | - Barbara E. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Thomas Meitinger
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology I, Neuherberg, Germany
- Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, St. Thomas’ Hospital, London, UK
| | - Ben A. Oostra
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert V. Smith
- Department of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Paulus T. V. M. de Jong
- Department of Clinical and Molecular Ophthalmogenetics, Netherlands Institute of Neurosciences (NIN), An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
- Department of Ophthalmology, Academic Medical Center, Amsterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Lennart C. Karssen
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johannes R. Vingerling
- Department of Ophthalmology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | - Vilmundur Gudnason
- Department of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Angela Döring
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Thomas Bettecken
- Center for Applied Genotyping, Max Planck Institute of Psychiatry, German Research Institute of Psychiatry, Munich, Germany
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Cathy Williams
- Centre for Child and Adolescent Health, University of Bristol, Bristol, UK
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
| | - Raphaële Castagné
- INSERM UMRS 937, Pierre and Marie Curie University (UPMC, Paris 6) and Medical School, Paris, France
| | - Konrad Oexle
- Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Sudha K. Iyengar
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, USA
| | - Paul Mitchell
- Department of Ophthalmology, Centre for Vision Research, Westmead Millennium Institute, University of Sydney, Sydney, Australia
| | - Jie Jin Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, Australia
- Department of Ophthalmology, Centre for Vision Research, Westmead Millennium Institute, University of Sydney, Sydney, Australia
| | - René Höhn
- Department of Ophthalmology, J. Gutenberg University Medical Center, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, J. Gutenberg University Medical Center, Mainz, Germany
| | - Joan E. Bailey-Wilson
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, USA
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, USA
| | - Tien-Yin Wong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Singapore
- Department of Ophthalmology, National University Health System, National University of Singapore, Singapore, Singapore
| | - Christopher J. Hammond
- Department of Twin Research and Genetic Epidemiology, King’s College London, St. Thomas’ Hospital, London, UK
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
22
|
Beyond Polarity: Functional Membrane Domains in Astrocytes and Müller Cells. Neurochem Res 2012; 37:2513-23. [DOI: 10.1007/s11064-012-0824-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 06/01/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
|
23
|
Crb apical polarity proteins maintain zebrafish retinal cone mosaics via intercellular binding of their extracellular domains. Dev Cell 2012; 22:1261-74. [PMID: 22579223 DOI: 10.1016/j.devcel.2012.03.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 01/16/2012] [Accepted: 03/16/2012] [Indexed: 12/21/2022]
Abstract
Cone photoreceptors are assembled by unknown mechanisms into geometrically regular mosaics in many vertebrate species. The formation and maintenance of photoreceptor mosaics are speculated to require differential cell-cell adhesion. However, the molecular basis for this theory has yet to be identified. The retina and many other tissues express Crumbs (Crb) polarity proteins. The functions of the extracellular domains of Crb proteins remain to be understood. Here we report cell-type-specific expression of the crb2a and crb2b genes at the cell membranes of photoreceptor inner segments and Müller cell apical processes in the zebrafish retina. We demonstrate that the extracellular domains of Crb2a and Crb2b mediate a cell-cell adhesion function, which plays an essential role in maintaining the integrity of photoreceptor layer and cone mosaics. Because Crb proteins are expressed in many types of epithelia, the Crb-based cell-cell adhesion may underlie cellular patterning in other epithelium-derived tissues as well.
Collapse
|
24
|
Yu Z, Zhou J, Chen X, Zhou X, Sun X, Chu R. Polymorphisms in theCTNND2Gene and 11q24.1 Genomic Region Are Associated with Pathological Myopia in a Chinese Population. Ophthalmologica 2012; 228:123-9. [DOI: 10.1159/000338188] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/22/2012] [Indexed: 02/04/2023]
|
25
|
Lee EJ, Ji Y, Zhu CL, Grzywacz NM. Role of Müller cells in cone mosaic rearrangement in a rat model of retinitis pigmentosa. Glia 2011; 59:1107-17. [DOI: 10.1002/glia.21183] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/04/2011] [Indexed: 01/15/2023]
|
26
|
Li YJ, Goh L, Khor CC, Fan Q, Yu M, Han S, Sim X, Ong RTH, Wong TY, Vithana EN, Yap E, Nakanishi H, Matsuda F, Ohno-Matsui K, Yoshimura N, Seielstad M, Tai ES, Young TL, Saw SM. Genome-wide association studies reveal genetic variants in CTNND2 for high myopia in Singapore Chinese. Ophthalmology 2011; 118:368-75. [PMID: 21095009 PMCID: PMC3052933 DOI: 10.1016/j.ophtha.2010.06.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/03/2010] [Accepted: 06/03/2010] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE To determine susceptibility genes for high myopia in Singaporean Chinese. DESIGN A meta-analysis of 2 genome-wide association (GWA) datasets in Chinese and a follow-up replication cohort in Japanese. PARTICIPANTS AND CONTROLS Two independent datasets of Singaporean Chinese individuals aged 10 to 12 years (Singapore Cohort Study of the Risk factors for Myopia [SCORM]: cases = 65, controls = 238) and more than 21 years (Singapore Prospective Study Program [SP2]: cases = 222, controls = 435) for GWA studies, and a Japanese dataset aged more than 20 years (cases = 959, controls = 2128) for replication. METHODS Genomic DNA samples from SCORM and SP2 were genotyped using various Illumina Beadarray platforms (>HumanHap 500). Single-locus association tests were conducted for each dataset with meta-analysis using pooled z-scores. The top-ranked genetic markers were examined for replication in the Japanese dataset. Fisher P was calculated for the combined analysis of all 3 cohorts. MAIN OUTCOME MEASURES High myopia, defined by spherical equivalent (SE) ≤ -6.00 diopters (D); controls defined by SE between -0.50 and +1.00 D. RESULTS Two SNPs (rs12716080 and rs6885224) in the gene CTNND2 on chromosome 5p15 ranked top in the meta-analysis of our Chinese datasets (meta P = 1.14 × 10(-5) and meta P = 1.51 × 10(-5), respectively) with strong supporting evidence in each individual dataset analysis (max P = 1.85 × 10(-4) in SCORM: max P = 8.8 × 10(-3) in SP2). Evidence of replication was observed in the Japanese dataset for rs6885224 (P = 0.035, meta P of 3 datasets: 7.84 × 10(-6)). CONCLUSIONS This study identified a strong association of CTNND2 for high myopia in Asian datasets. The CTNND2 gene maps to a known high myopia linkage region on chromosome 5p15.
Collapse
Affiliation(s)
- Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pieperhoff S, Barth M, Rickelt S, Franke WW. Desmosomal molecules in and out of adhering junctions: normal and diseased States of epidermal, cardiac and mesenchymally derived cells. Dermatol Res Pract 2010; 2010:139167. [PMID: 20671973 PMCID: PMC2909724 DOI: 10.1155/2010/139167] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/23/2010] [Indexed: 11/18/2022] Open
Abstract
Current cell biology textbooks mention only two kinds of cell-to-cell adhering junctions coated with the cytoplasmic plaques: the desmosomes (maculae adhaerentes), anchoring intermediate-sized filaments (IFs), and the actin microfilament-anchoring adherens junctions (AJs), including both punctate (puncta adhaerentia) and elongate (fasciae adhaerentes) structures. In addition, however, a series of other junction types has been identified and characterized which contain desmosomal molecules but do not fit the definition of desmosomes. Of these special cell-cell junctions containing desmosomal glycoproteins or proteins we review the composite junctions (areae compositae) connecting the cardiomyocytes of mature mammalian hearts and their importance in relation to human arrhythmogenic cardiomyopathies. We also emphasize the various plakophilin-2-positive plaques in AJs (coniunctiones adhaerentes) connecting proliferatively active mesenchymally-derived cells, including interstitial cells of the heart and several soft tissue tumor cell types. Moreover, desmoplakin has also been recognized as a constituent of the plaques of the complexus adhaerentes connecting certain lymphatic endothelial cells. Finally, we emphasize the occurrence of the desmosomal transmembrane glycoprotein, desmoglein Dsg2, out of the context of any junction as dispersed cell surface molecules in certain types of melanoma cells and melanocytes. This broadening of our knowledge on the diversity of AJ structures indicates that it may still be too premature to close the textbook chapters on cell-cell junctions.
Collapse
Affiliation(s)
- Sebastian Pieperhoff
- Helmholtz Group for Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, Canada V6T 1Z4
| | - Mareike Barth
- Helmholtz Group for Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Steffen Rickelt
- Helmholtz Group for Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Werner W. Franke
- Helmholtz Group for Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Progen Biotechnik GmbH, Maaßstraße 30, 69123 Heidelberg, Germany
| |
Collapse
|
28
|
Omri S, Omri B, Savoldelli M, Jonet L, Thillaye-Goldenberg B, Thuret G, Gain P, Jeanny JC, Crisanti P, Behar-Cohen F. The outer limiting membrane (OLM) revisited: clinical implications. Clin Ophthalmol 2010; 4:183-95. [PMID: 20463783 PMCID: PMC2861922 DOI: 10.2147/opth.s5901] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose The outer limiting membrane (OLM) is considered to play a role in maintaining the structure of the retina through mechanical strength. However, the observation of junction proteins located at the OLM and its barrier permeability properties may suggest that the OLM may be part of the retinal barrier. Material and methods Normal and diabetic rat, monkey, and human retinas were used to analyze junction proteins at the OLM. Proteome analyses were performed using immunohistochemistry on sections and flat-mounted retinas and western blotting on protein extracts obtained from laser microdissection of the photoreceptor layers. Semi-thin and ultrastructure analyses were also reported. Results In the rat retina, in the subapical region zonula occludens-1 (ZO-1), junction adhesion molecule (JAM), an atypical protein kinase C, is present and the OLM shows dense labeling of occludin, JAM, and ZO-1. The presence of occludin has been confirmed using western blot analysis of the microdissected OLM region. In diabetic rats, occludin expression is decreased and glial cells junctions are dissociated. In the monkey retina, occludin, JAM, and ZO-1 are also found in the OLM. Junction proteins have a specific distribution around cone photoreceptors and Müller glia. Ultrastructural analyses suggest that structures like tight junctions may exist between retinal glial Müller cells and photoreceptors. Conclusions In the OLM, heterotypic junctions contain proteins from both adherent and tight junctions. Their structure suggests that tight junctions may exist in the OLM. Occludin is present in the OLM of the rat and monkey retina and it is decreased in diabetes. The OLM should be considered as part of the retinal barrier that can be disrupted in pathological conditions contributing to fluid accumulation in the macula.
Collapse
Affiliation(s)
- S Omri
- INSERM, U872 Physiopathology of ocular diseases: Therapeutic innovations, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Breuninger S, Reidenbach S, Sauer CG, Ströbel P, Pfitzenmaier J, Trojan L, Hofmann I. Desmosomal plakophilins in the prostate and prostatic adenocarcinomas: implications for diagnosis and tumor progression. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2509-19. [PMID: 20348237 DOI: 10.2353/ajpath.2010.090737] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plakophilins, members of the armadillo-repeat family, consist of three different proteins (PKP1-3) that are specifically recruited to desmosomal plaques in a highly cell type-specific manner. Using immunofluorescence, immunoelectron microscopy, and immunoblot, we found that all three plakophilins occurred in luminal and basal cells of the pseudostratified prostate epithelium. The analysis of 135 cases of prostatic adenocarcinomas grouped into tumors with low (Gleason score < or = 6), intermediate (Gleason score 7), and high Gleason score (8 < or = Gleason score < or = 10) showed that the expression of PKP1 was reduced or lost in adenocarcinomas with high Gleason scores. The expression of PKP2 was unchanged in all prostatic adenocarcinomas analyzed. In contrast, PKP3 expression was increased in carcinomas with high Gleason scores in comparison with carcinomas with low Gleason scores. In DU 145 cell lines with either overexpression or knockdown of PKP3, both imbalances resulted in fewer desmosomal cell contacts. In addition, overexpression of PKP3 in DU 145 cells led to an augmentation in proliferation rate. Our data imply that both loss of PKP1 and up-regulation of PKP3 expression are biologically important events in prostate cancer and are associated with a more aggressive phenotype.
Collapse
Affiliation(s)
- Sonja Breuninger
- Joint Research Division Vascular Biology of the Medical Faculty Mannheim, Heidelberg University, and the German Cancer Research Center (DKFZ-ZMBH-Alliance), Center for Biomedicine and Medical Technology Mannheim (CBTM), Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Isoform- and dose-sensitive feedback interactions between paired box 6 gene and delta-catenin in cell differentiation and death. Exp Cell Res 2010; 316:1070-81. [PMID: 20074565 DOI: 10.1016/j.yexcr.2010.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/17/2009] [Accepted: 01/04/2010] [Indexed: 12/11/2022]
Abstract
Pax6, a mammalian homolog of the Drosophila paired box gene family member expressed in stem and progenitor cells, resides at the top of the genetic hierarchy in controlling cell fates and morphogenesis. While Pax6 activation can lead to mitotic arrest, premature neurogenesis, and apoptosis, the underlying molecular mechanisms have not been resolved. Here we report that either Pax6(+5a) or Pax6(-5a) was sufficient to promote, whereas their knockdown reduced the expression of delta-catenin (CTNND2), a neural specific member of the armadillo/beta-catenin superfamily. Pax6(+5a) elicited stronger effects on delta-catenin than Pax6(-5a). Inducible Pax6(+5a) expression demonstrated a biphasic and dose-dependent regulation of delta-catenin expression and cell fates. A moderate upregulation of Pax6(+5a) promoted delta-catenin expression and induced neurite-like cellular protrusions, but increasing expression of Pax6(+5a) reversed these processes. Furthermore, sustained high expression of Pax6(+5a) triggered apoptosis as determined by the reduction of phospho-Bad, Bcl-2, survivin and procaspases, as well as the increases in Bax and cleaved poly(ADP-ribose) polymerase. Importantly, re-introducing delta-catenin by ectopic expression elicited a feedback suppression on Pax6(+5a) expression and reduced Pax6(+5a) induced apoptosis. Therefore, delta-catenin expression is not only controlled by Pax6, but it also provides a feedback suppression mechanism for their functional interactions with important implications in cellular morphogenesis, apoptosis, and cancer.
Collapse
|
31
|
Dianat SS, Margreiter M, Eckersberger E, Finkelstein J, Kuehas F, Herwig R, Ayati M, Lepor H, Djavan B. Gene polymorphisms and prostate cancer: the evidence. BJU Int 2009; 104:1560-72. [DOI: 10.1111/j.1464-410x.2009.08973.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
Zou J, Yang X, Wei X. Restricted localization of ponli, a novel zebrafish MAGUK-family protein, to the inner segment interface areas between green, red, and blue cones. Invest Ophthalmol Vis Sci 2009; 51:1738-46. [PMID: 19834027 DOI: 10.1167/iovs.09-4520] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The inner segments (IS) of the photoreceptors in vertebrates are enriched with polarity scaffold proteins, which maintain the integrity of many tissues by mediating cell-cell adhesion either directly or indirectly. The formation of photoreceptor mosaics may require differential adhesion among different types of photoreceptors. It is unknown whether any polarity proteins are selectively expressed in certain photoreceptors to mediate differential intercellular adhesion, which may be important for photoreceptor patterning. This study was undertaken to identify such polarity proteins. METHODS To identify novel MAGUK-family (membrane-associated guanylate kinase) proteins that are similar to Nagie oko (Nok), the authors performed BLAST searches of the zebrafish genome with the Nok amino acid sequence as the query. The coding sequence of one of the identified genes was obtained and verified through RT-PCR and RACE (rapid amplification of cDNA ends). Its protein expression patterns were examined by immunomicroscopy and Western blot analysis. Morpholino knockdown technology was used for loss-of-function analyses. RESULTS The authors cloned a novel nok homolog and designated it photoreceptor-layer-nok-like (ponli). Unlike Nok, which is expressed broadly, Ponli is only expressed at the interface areas between the IS of the green, red, and blue cones in differentiated zebrafish retina. CONCLUSIONS Ponli is the first identified polarity protein that is not expressed in all types of photoreceptors. Ponli's selective distribution stimulates future investigations on its functions for photoreceptor mosaic formation.
Collapse
Affiliation(s)
- Jian Zou
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
33
|
Kennedy SA, Frazier ML, Steiniger M, Mast AM, Marzluff WF, Redinbo MR. Crystal structure of the HEAT domain from the Pre-mRNA processing factor Symplekin. J Mol Biol 2009; 392:115-28. [PMID: 19576221 PMCID: PMC2748850 DOI: 10.1016/j.jmb.2009.06.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 06/15/2009] [Accepted: 06/25/2009] [Indexed: 11/20/2022]
Abstract
The majority of eukaryotic pre-mRNAs are processed by 3'-end cleavage and polyadenylation, although in metazoa the replication-dependent histone mRNAs are processed by 3'-end cleavage but not polyadenylation. The macromolecular complex responsible for processing both canonical and histone pre-mRNAs contains the approximately 1160-residue protein Symplekin. Secondary-structural prediction algorithms identified putative HEAT domains in the 300 N-terminal residues of all Symplekins of known sequence. The structure and dynamics of this domain were investigated to begin elucidating the role Symplekin plays in mRNA maturation. The crystal structure of the Drosophila melanogaster Symplekin HEAT domain was determined to 2.4 A resolution with single-wavelength anomalous dispersion phasing methods. The structure exhibits five canonical HEAT repeats along with an extended 31-amino-acid loop (loop 8) between the fourth and fifth repeat that is conserved within closely related Symplekin sequences. Molecular dynamics simulations of this domain show that the presence of loop 8 dampens correlated and anticorrelated motion in the HEAT domain, therefore providing a neutral surface for potential protein-protein interactions. HEAT domains are often employed for such macromolecular contacts. The Symplekin HEAT region not only structurally aligns with several established scaffolding proteins, but also has been reported to contact proteins essential for regulating 3'-end processing. Together, these data support the conclusion that the Symplekin HEAT domain serves as a scaffold for protein-protein interactions essential to the mRNA maturation process.
Collapse
Affiliation(s)
- Sarah A. Kennedy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Monica L. Frazier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Mindy Steiniger
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Ann M. Mast
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - William F. Marzluff
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Matthew R. Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
34
|
Franke WW. Discovering the molecular components of intercellular junctions--a historical view. Cold Spring Harb Perspect Biol 2009; 1:a003061. [PMID: 20066111 PMCID: PMC2773636 DOI: 10.1101/cshperspect.a003061] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The organization of metazoa is based on the formation of tissues and on tissue-typical functions and these in turn are based on cell-cell connecting structures. In vertebrates, four major forms of cell junctions have been classified and the molecular composition of which has been elucidated in the past three decades: Desmosomes, which connect epithelial and some other cell types, and the almost ubiquitous adherens junctions are based on closely cis-packed glycoproteins, cadherins, which are associated head-to-head with those of the hemi-junction domain of an adjacent cell, whereas their cytoplasmic regions assemble sizable plaques of special proteins anchoring cytoskeletal filaments. In contrast, the tight junctions (TJs) and gap junctions (GJs) are formed by tetraspan proteins (claudins and occludins, or connexins) arranged head-to-head as TJ seal bands or as paracrystalline connexin channels, allowing intercellular exchange of small molecules. The by and large parallel discoveries of the junction protein families are reported.
Collapse
Affiliation(s)
- Werner W Franke
- Helmholtz Group for Cell Biology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| |
Collapse
|
35
|
Barth M, Schumacher H, Kuhn C, Akhyari P, Lichtenberg A, Franke WW. Cordial connections: molecular ensembles and structures of adhering junctions connecting interstitial cells of cardiac valves in situ and in cell culture. Cell Tissue Res 2009; 337:63-77. [PMID: 19475424 DOI: 10.1007/s00441-009-0806-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 04/06/2009] [Indexed: 01/19/2023]
Abstract
Remarkable efforts have recently been made in the tissue engineering of heart valves to improve the results of valve transplantations and replacements, including the design of artificial valves. However, knowledge of the cell and molecular biology of valves and, specifically, of valvular interstitial cells (VICs) remains limited. Therefore, our aim has been to determine and localize the molecules forming the adhering junctions (AJs) that connect VICs in situ and in cell culture. Using biochemical and immunolocalization methods at the light- and electron-microscopic levels, we have identified, in man, cow, sheep and rat, the components of VIC-connecting AJs in situ and in cell culture. These AJs contain, in addition to the transmembrane glycoproteins N-cadherin and cadherin-11, the typical plaque proteins alpha- and beta-catenin as well as plakoglobin and p120, together with minor amounts of protein p0071, i.e. a total of five plaque proteins of the armadillo family. While we can exclude the occurrence of desmogleins, desmocollins and desmoplakin, we have noted with surprise that AJs of VICs in cell cultures, but not those growing in the valve tissue, contain substantial amounts of the desmosomal plaque protein, plakophilin-2. Clusters of AJs occur not only on the main VIC cell bodies but are also found widely dispersed on their long filopodia thus forming, in the tissue, a meshwork that, together with filopodial attachments to paracrystalline collagen fiber bundles, establishes a three-dimensional suprastructure, the role of which is discussed with respect to valve formation, regeneration and function.
Collapse
Affiliation(s)
- Mareike Barth
- Helmholtz Group/Cell Biology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Arikkath J. Regulation of dendrite and spine morphogenesis and plasticity by catenins. Mol Neurobiol 2009; 40:46-54. [PMID: 19401831 DOI: 10.1007/s12035-009-8068-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
Abstract
The appropriate regulation of dendrite, spine, and synapse morphogenesis in neurons both during and after development is critical for the formation and maintenance of neural circuits. It is becomingly increasingly clear that the cadherin-catenin cell adhesion complex, a complex that has been widely studied in epithelia, regulates neuronal morphogenesis. More interestingly, the catenins, cytosolic proteins that bind to cadherins, regulate multiple aspects of neuronal morphogenesis including dendrite, spine, and synapse morphogenesis and plasticity, both independent of and dependent on their ability to bind cadherins. In this review, we examine some of the more recent and exciting studies that implicate individual catenins in various aspects of neuronal morphogenesis and plasticity.
Collapse
Affiliation(s)
- Jyothi Arikkath
- University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
37
|
Wang T, Chen YH, Hong H, Zeng Y, Zhang J, Lu JP, Jeansonne B, Lu Q. Increased nucleotide polymorphic changes in the 5'-untranslated region of delta-catenin (CTNND2) gene in prostate cancer. Oncogene 2009; 28:555-64. [PMID: 18978817 PMCID: PMC2678952 DOI: 10.1038/onc.2008.399] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/04/2008] [Accepted: 09/16/2008] [Indexed: 11/29/2022]
Abstract
Cancer pathogenesis involves multiple genetic and epigenetic alterations, which result in oncogenic changes in gene expression. delta-Catenin (CTNND2) is overexpressed in cancer, although the mechanisms of its upregulation are highly variable. Here we report that in prostate cancer, the methylation of CpG islands in the delta-catenin promoter was not a primary regulatory event. There was also no delta-catenin gene amplification. However, using the single-strand conformation polymorphism analysis, we observed the increased nucleotide changes in the 5'-untranslated region of delta-catenin gene in human prostate cancer. At least one such change (-9 G>A) is a true somatic point mutation associated with a high Gleason's score, poorly differentiated prostatic adenocarcinoma. Laser capture microdissection coupled with PCR analyses detected the mutation only in cancerous but not in the adjacent benign prostatic tissues. Using chimeric genes encoding the luciferase reporter, we found that this mutation, but not a random mutation or a mutation that disrupts an upstream open reading frame, resulted in a remarkably higher expression and enzyme activity. This mutation did not affect transcriptional efficiency, suggesting that it promotes delta-catenin translation. This is the first report of delta-catenin gene mutation in cancer and supports the notion that multiple mechanisms contribute to its increased expression in carcinogenesis.
Collapse
Affiliation(s)
- Tao Wang
- Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, Greenville, NC 27834 U.S.A
- Department of Oncology, Capital Medical University, Beijing, 100038 China
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, Greenville, NC 27834 U.S.A
| | - Heng Hong
- Department of Pathology and Laboratory Medicine, East Carolina University, Brody School of Medicine, Greenville, NC 27834 U.S.A
| | - Yan Zeng
- Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, Greenville, NC 27834 U.S.A
| | - Jiao Zhang
- Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, Greenville, NC 27834 U.S.A
| | - Jian-Ping Lu
- Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, Greenville, NC 27834 U.S.A
| | - Beverly Jeansonne
- Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, Greenville, NC 27834 U.S.A
| | - Qun Lu
- Department of Anatomy and Cell Biology, East Carolina University, Brody School of Medicine, Greenville, NC 27834 U.S.A
- Leo Jenkins Cancer Center, East Carolina University, Brody School of Medicine, Greenville, NC 27834 U.S.A
| |
Collapse
|
38
|
Hofmann I, Kuhn C, Franke WW. Protein p0071, a major plaque protein of non-desmosomal adhering junctions, is a selective cell-type marker. Cell Tissue Res 2008; 334:381-99. [PMID: 19005682 DOI: 10.1007/s00441-008-0725-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 10/14/2008] [Indexed: 12/01/2022]
Abstract
Protein p0071, which originally was introduced as a member of the p120-subfamily of armadillo proteins, common to desmosomes and adhaerens junctions (AJs) and to several other cell structures (centrosomes, midbodies), has been localized by using a series of novel mono- and polyclonal antibodies generated against various domains of the molecule. By protein analysis and immunolocalization techniques, protein p0071 has been localized as a plaque protein in AJs of diverse epithelia and certain vascular endothelia, in the composite junctions (areal compositae) of the intercalated disks of cardiomyocytes, and in the punctate or more extended AJs of the vast majority of cell culture types examined, including mitotic states. Using these antibodies, we have also shown that this AJ protein occurs only rarely or is even absent in tissues such as skeletal and smooth muscles, in a series of mesenchymal tissue cells, and in specific desmosome-rich cells such as those of the upper layers of the epidermis and certain other stratified epithelia and Hassall corpuscles of the thymus. We have also demonstrated that p0071 is absent from desmosomes. The occurrence of two major subtypes of lymphatic endothelial cells, one with AJs containing p0071 and one without detectable p0071, is emphasized. Possible structural and functional roles of p0071 are discussed in light of these new findings regarding its localization, and the addition of p0071 to the armamentarium of cytodiagnostic cell-type markers is recommended.
Collapse
Affiliation(s)
- Ilse Hofmann
- Joint Research Division Vascular Biology of the Medical Faculty Mannheim, University of Heidelberg, German Cancer Research Center (DKFZ) at Mannheim, CBTM, Ludolf-Krehl-Strasse 13-17, 68167 Mannheim, Germany.
| | | | | |
Collapse
|
39
|
Beyond vessels: occurrence and regional clustering of vascular endothelial (VE-)cadherin-containing junctions in non-endothelial cells. Cell Tissue Res 2008; 335:49-65. [DOI: 10.1007/s00441-008-0718-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
|
40
|
Rickelt S, Franke WW, Doerflinger Y, Goerdt S, Brandner JM, Peitsch WK. Subtypes of melanocytes and melanoma cells distinguished by their intercellular contacts: heterotypic adherens junctions, adhesive associations, and dispersed desmoglein 2 glycoproteins. Cell Tissue Res 2008; 334:401-22. [PMID: 18975006 DOI: 10.1007/s00441-008-0704-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 09/17/2008] [Indexed: 12/11/2022]
Abstract
In the tissue integration of melanocytes and melanoma cells, an important role is attributed to cell adhesion molecules, notably the cadherins. In cultured melanoma cells, we have previously described a more heterogeneous repertoire of cadherins than normal, including some melanoma subtypes synthesizing the desmosomal cadherin, desmoglein 2, out of the desmosomal context. Using biochemical and immunological characterization of junctional molecules, confocal laser scanning, and electron and immunoelectron microscopy, we now demonstrate homo- and heterotypic cell-cell adhesions of normal epidermal melanocytes. In human epidermis, both in situ and in cell culture, melanocytes and keratinocytes are connected by closely aligned membranes that are interspersed by small puncta adhaerentia containing heterotypic complexes of E- and P-cadherin. Moreover, melanocytes growing in culture often begin to synthesize desmoglein 2, which is dispersed over extended areas of intimate adhesive cell-cell associations. As desmoglein 2 is not found in melanocytes in situ, we hypothesize that its synthesis is correlated with cell proliferation. Indeed, in tissue microarrays, desmoglein 2 has been demonstrated in a sizable subset of nevi and primary melanomas. The biological meanings of these cell-cell adhesion molecule arrangements, the possible diagnostic and prognostic significance of these findings, and the implications of the heterogeneity types of melanomas are discussed.
Collapse
Affiliation(s)
- Steffen Rickelt
- Helmholtz Group for Cell Biology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Differential expression pattern of protein ARVCF in nephron segments of human and mouse kidney. Histochem Cell Biol 2008; 130:943-56. [PMID: 18600340 DOI: 10.1007/s00418-008-0456-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2008] [Indexed: 10/21/2022]
Abstract
The protein ARVCF is a member of the p120 subfamily of armadillo proteins whose members have been described to occur in junction-bound and non-junction-bound forms. Studies on ARVCF were constrained because the endogenous protein was difficult to detect with the available reagents. We have generated novel monoclonal and polyclonal antibodies usable for biochemical and localization studies. By systematic immunohistochemical analysis of various tissues protein ARVCF is prominently detected in mouse, bovine and human kidney. Using antibodies against specific markers of nephron segments protein ARVCF is localized in proximal tubules according to double label immunofluorescence. Besides its occurrence in proximal tubules of adult kidney and in renal cell carcinoma derived from proximal tubules ARVCF is also detected in maturing nephrons in early mouse developmental stages such as, for example, 15 days of gestation (E15). Immunoblotting of total extracts of cultured cells of renal origin showed that ARVCF is detected in all human and murine cultured cells analyzed. Upon immunolocalization ARVCF is mostly detected in the cytoplasm occurring in a fine granular form. This prominent cytoplasmic localization of ARVCF in cultured cells and its occurrence in proximal tubules implies an involvement of ARVCF in specific functional processes of proximal tubules of kidney.
Collapse
|
42
|
West E, Pearson R, Tschernutter M, Sowden J, MacLaren R, Ali R. Pharmacological disruption of the outer limiting membrane leads to increased retinal integration of transplanted photoreceptor precursors. Exp Eye Res 2008; 86:601-11. [PMID: 18294631 PMCID: PMC2394572 DOI: 10.1016/j.exer.2008.01.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 12/21/2007] [Accepted: 01/03/2008] [Indexed: 11/27/2022]
Abstract
Retinal degeneration is the leading cause of untreatable blindness in the developed world. Cell transplantation strategies provide a novel therapeutic approach to repair the retina and restore sight. Previously, we have shown that photoreceptor precursor cells can integrate and form functional photoreceptors after transplantation into the subretinal space of the adult mouse. In a clinical setting, however, it is likely that far greater numbers of integrated photoreceptors would be required to restore visual function. We therefore sought to assess whether the outer limiting membrane (OLM), a natural barrier between the subretinal space and the outer nuclear layer (ONL), could be reversibly disrupted and if disruption of this barrier could lead to enhanced numbers of transplanted photoreceptors integrating into the ONL. Transient chemical disruption of the OLM was induced in adult mice using the glial toxin, dl-alpha-aminoadipic acid (AAA). Dissociated early post-natal neural retinal cells were transplanted via subretinal injection at various time-points after AAA administration. At 3 weeks post-injection, the number of integrated, differentiated photoreceptor cells was assessed and compared with those found in the PBS-treated contralateral eye. We demonstrate for the first time that the OLM can be reversibly disrupted in adult mice, using a specific dose of AAA administered by intravitreal injection. In this model, OLM disruption is maximal at 72 h, and recovers by 2 weeks. When combined with cell transplantation, disruption of the OLM leads to a significant increase in the number of photoreceptors integrated within the ONL compared with PBS-treated controls. This effect was only seen in animals in which AAA had been administered 72 h prior to transplantation, i.e. when precursor cells were delivered into the subretinal space at a time coincident with maximal OLM disruption. These findings suggest that the OLM presents a physical barrier to photoreceptor integration following transplantation into the subretinal space in the adult mouse. Reversible disruption of the OLM may provide a strategy for increasing cell integration in future therapeutic applications.
Collapse
Affiliation(s)
- E.L. West
- Division of Molecular Therapy, University College London, Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - R.A. Pearson
- Division of Molecular Therapy, University College London, Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - M. Tschernutter
- Division of Molecular Therapy, University College London, Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - J.C. Sowden
- Developmental Biology Unit, University College London, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - R.E. MacLaren
- Division of Molecular Therapy, University College London, Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
- Vitreoretinal Service, Moorfields Eye Hospital, 162 City Road, London EC1V 2PD, UK
| | - R.R. Ali
- Division of Molecular Therapy, University College London, Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
- Molecular Immunology Unit, University College London, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
43
|
Holthöfer B, Windoffer R, Troyanovsky S, Leube RE. Structure and function of desmosomes. ACTA ACUST UNITED AC 2007; 264:65-163. [PMID: 17964922 DOI: 10.1016/s0074-7696(07)64003-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Desmosomes are prominent adhesion sites that are tightly associated with the cytoplasmic intermediate filament cytoskeleton providing mechanical stability in epithelia and also in several nonepithelial tissues such as cardiac muscle and meninges. They are unique in terms of ultrastructural appearance and molecular composition with cell type-specific variations. The dynamic assembly properties of desmosomes are important prerequisites for the acquisition and maintenance of tissue homeostasis. Disturbance of this equilibrium therefore not only compromises mechanical resilience but also affects many other tissue functions as becomes evident in various experimental scenarios and multiple diseases.
Collapse
Affiliation(s)
- Bastian Holthöfer
- Department of Anatomy and Cell Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
44
|
DANIELE LAURENL, ADAMS RALFH, DURANTE DIANEE, PUGH EDWARDN, PHILP NANCYJ. Novel distribution of junctional adhesion molecule-C in the neural retina and retinal pigment epithelium. J Comp Neurol 2007; 505:166-76. [PMID: 17853450 PMCID: PMC3144860 DOI: 10.1002/cne.21489] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Junction adhesion molecules-A, -B, and -C (Jams) are cell surface glycoproteins that have been shown to play an important role in the assembly and maintenance of tight junctions and in the establishment of epithelial cell polarity. Recent studies reported that Jam-C mRNA was increased threefold in the all-cone retina of the Nrl(-/-) mouse, suggesting that Jam-C is required for maturation and polarization of cone photoreceptors cells. We examined the expression of Jams in the mouse retina by using confocal immunofluorescence localization. Jam-C was detected in tight junctions of retinal pigment epithelium (RPE) and at the outer limiting membrane (OLM) in the specialized adherens junctions between Müller and photoreceptor cells. Additionally, Jam-C labeling was observed in the long apical processes of Müller and RPE cells that extend between the inner segments and outer segments of photoreceptors, respectively. Jam-B was also detected at the OLM. In the developing retina, Jam-B and -C were detected at the apical junctions of embryonic retinal neuroepithelia, suggesting a role for Jams in retinogenesis. In eyes from Jam-C(-/-) mice, retinal lamination, polarity, and photoreceptor morphology appeared normal. Although Jam-A was not detected at the OLM in wild-type retinas, it was present at the OLM in retinas of Jam-C(-/-) mice. These findings indicate that up-regulation of Jam-A in the retina compensates for the loss of Jam-C. The nonclassical distribution of Jam-C in the apical membranes of Müller cells and RPE suggests that Jam-C has a novel function in the retina.
Collapse
Affiliation(s)
- LAUREN L. DANIELE
- F.M. Kirby Center for Molecular Ophthalmology, Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - RALF H. ADAMS
- Vascular Development Laboratory, Cancer Research UK London Research Institute, London WC2A3PX, United Kingdom
| | - DIANE E. DURANTE
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - EDWARD N. PUGH
- F.M. Kirby Center for Molecular Ophthalmology, Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - NANCY J. PHILP
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
45
|
Campbell M, Humphries M, Kenna P, Humphries P, Brankin B. Altered expression and interaction of adherens junction proteins in the developing OLM of the Rho(−/−) mouse. Exp Eye Res 2007; 85:714-20. [PMID: 17888904 DOI: 10.1016/j.exer.2007.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/30/2007] [Accepted: 08/03/2007] [Indexed: 12/26/2022]
Abstract
Retinitis Pigmentosa (RP) represents a major cause of progressive retinal disease worldwide and comprises a heterogeneous group of inherited diseases that are characterised by primary degeneration of rod photoreceptors and secondary degeneration of cone photoreceptors in the retina. The outer limiting membrane (OLM) which allows for the interaction of photoreceptors with surrounding photoreceptors and Müller cells is compromised in many degenerative retinal diseases. Using indirect immunostaining of retinal cryosections from C-129 Wild Type (WT) and C-129 Rho(-/-) mice, we have determined levels of expression of the adherens junction associated proteins ZO-1, beta-catenin and p120-catenin at the OLM from newborn and 1, 2, 3, 4 and 5-week old animals. We have also used immunoprecipitation analysis to determine changes in the association of E-cadherin with ZO-1, beta-catenin and p120-catenin and the association of alpha-catenin with ZO-1 and beta-catenin at these time points in WT and Rho(-/-) mice. We have found that ZO-1 expression at the OLM is present in WT and Rho(-/-) mice after 2weeks, but that levels of expression at the OLM decrease after this time point in the Rho(-/-) mice. beta-catenin expression in the Rho(-/-) mice became compromised at the OLM after 3 weeks, showing a distinct change in staining pattern after 4 weeks and no staining at the OLM after 5 weeks. Moreover, we have shown that p120-catenin expression is not evident at the OLM of the Rho(-/-) mice at the 4 or 5 week time point. To complement this data, we have performed immunoprecipitation analysis on neural retinal lysates from WT and Rho(-/-) mice and herein report fluctuations in the association of E-cadherin with ZO-1, and beta-catenin, while showing that the interaction of E-cadherin with p120-catenin is not established in the retina of C-129 WT and Rho(-/-) mice until 4 weeks after birth and remains un-changed up to and including 5 weeks after birth. Meanwhile, we report that the association of alpha-catenin with ZO-1 is decreased in retinas of the Rho(-/-) from newborn animals up to and including 5 weeks after birth. We have also shown that the association of alpha-catenin and beta-catenin is not well established in WT and Rho(-/-) mice until at least 5 weeks after birth. We hypothesize that these retinal changes at the OLM may contribute significantly to the pathogenesis of retinal degenerations and may represent a unique therapeutic target for intervention in conditions involving rapid photoreceptor cell death.
Collapse
Affiliation(s)
- Matthew Campbell
- Ocular Genetics Unit, Department of Genetics, Trinity College Dublin, Ireland
| | | | | | | | | |
Collapse
|
46
|
Akat K, Bleck CKE, Lee YMA, Haselmann-Weiss U, Kartenbeck J. Characterization of a novel type of adherens junction in meningiomas and the derived cell line HBL-52. Cell Tissue Res 2007; 331:401-12. [PMID: 17965884 DOI: 10.1007/s00441-007-0512-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 09/03/2007] [Indexed: 12/22/2022]
Abstract
Adhering junctions are generally grouped into desmosomes and adherens junctions based on their ultrastructural appearance and molecular composition. The armadillo-protein plakoglobin is common to both types of junctions, which are otherwise composed of mutually exclusive proteins. This view is based on observations in epithelial tissues but cannot easily be transferred to other cell types and tissues, as has become apparent during the last decade with the identification of new junctional proteins and the investigation of further non-epithelial junctions. Using a broad array of well-characterized specific antibodies against key junctional proteins in immunoblot reactions, high-resolution double-label laser scanning confocal microscopy, and immunoelectron microscopy, we describe a new type of adherens junction in human meningiomas and the human meningioma cell line HBL-52. This novel junction has a unique composition of proteins not found in any other tissue; it contains the desmosomal armadillo-protein plakophilin 2 together with the classic proteins of "epithelial" adherens junctions, i.e., E-cadherin (in some instances replaced by N-cadherin), alpha-catenin, beta-catenin, plakoglobin, and p120(ctn). Ultrastructurally, it is formed between two or three neighboring cells. For pragmatic reasons, we suggest the name "meningeal junction" for this new structure.
Collapse
Affiliation(s)
- Kemal Akat
- Division of Cell Biology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
47
|
Silverman JB, Restituito S, Lu W, Lee-Edwards L, Khatri L, Ziff EB. Synaptic anchorage of AMPA receptors by cadherins through neural plakophilin-related arm protein AMPA receptor-binding protein complexes. J Neurosci 2007; 27:8505-16. [PMID: 17687028 PMCID: PMC6672939 DOI: 10.1523/jneurosci.1395-07.2007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cadherins function in the adhesion of presynaptic and postsynaptic membranes at excitatory synapses. Here we show that the cadherin-associated protein neural plakophilin-related arm protein (NPRAP; also called delta-catenin) binds via a postsynaptic density-95 (PSD-95)/discs large/zona occludens-1 (PDZ) interaction to AMPA receptor (AMPAR)-binding protein (ABP) and the related glutamate receptor (GluR)-interacting protein (GRIP), two multi-PDZ proteins that bind the GluR2 and GluR3 AMPAR subunits. The resulting cadherin-NPRAP-ABP/GRIP complexes serve as anchorages for AMPARs. Exogenous NPRAP that was bound to cadherins at adherens junctions of Madin-Darby canine kidney cells recruited ABP from the cytosol to form cadherin-NPRAP-ABP complexes, dependent on NPRAP interaction with the ABP PDZ domain 2. The cadherin-NPRAP-ABP complexes also bound GluR2. In cultured hippocampal neurons, dominant-negative mutants of NPRAP designed to disrupt tethering of ABP to NPRAP-cadherin complexes reduced surface levels of endogenous GluR2, indicating that interaction with cadherin-NPRAP-ABP complexes stabilized GluR2 at the neuronal plasma membrane. Cadherins, NPRAP, GRIP, and GluR2 copurified in the fractionation of synaptosomes and the postsynaptic density, two fractions enriched in synaptic proteins. Furthermore, synaptosomes contain NPRAP-GRIP complexes, and NPRAP localizes with the postsynaptic marker PSD-95 and with AMPARs and GRIP at spines of hippocampal neurons. Thus, tethering is likely to take place at synaptic or perisynaptic sites. NPRAP also binds PSD-95, which is a scaffold for NMDA receptors, for AMPARs in complexes with auxiliary subunits, the TARPs (transmembrane AMPA receptor regulator proteins), and for adhesion molecules. Thus, the interaction of scaffolding proteins with cadherin-NPRAP complexes may anchor diverse signaling and adhesion molecules at cadherins.
Collapse
Affiliation(s)
| | | | - Wei Lu
- Program in Neuroscience and Physiology, New York University School of Medicine, New York, New York 10016
| | | | | | | |
Collapse
|
48
|
Schmitt CJ, Franke WW, Goerdt S, Falkowska-Hansen B, Rickelt S, Peitsch WK. Homo- and heterotypic cell contacts in malignant melanoma cells and desmoglein 2 as a novel solitary surface glycoprotein. J Invest Dermatol 2007; 127:2191-206. [PMID: 17495963 DOI: 10.1038/sj.jid.5700849] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During progression of melanomas, a crucial role has been attributed to alterations of cell-cell adhesions, specifically, to a "cadherin switch" from E- to N-cadherin (cad). We have examined the adhesion of melanoma cells to each other and to keratinocytes. When different human melanoma cell lines were studied by protein analysis and immunofluorescence microscopy, six of eight lines contained N-cad, three E-cad, and five P-cad, and some lines had more than one cad. Surprisingly, two N-cad-positive lines, MeWo and C32, also contained desmoglein 2 (Dsg2), a desmosomal cad previously not reported for melanomas, whereas other desmosome-specific proteins were absent. This finding was confirmed by reverse transcriptase-PCR, immunoprecipitation, and matrix-assisted laser desorption ionization-time of flight analyses. Double-label confocal and immunoelectron microscopy showed N-cad, alpha- and beta-catenin in plaque-bearing puncta adhaerentia, whereas Dsg2 was distributed rather diffusely over the cell surface. In cocultures with HaCaT keratinocytes Dsg2 was found in heterotypic cell contact regions. Correspondingly, immunohistochemistry revealed Dsg2 in five of 10 melanoma metastases. Together, we show that melanoma cell adhesions are more heterogeneous than expected and that certain cells devoid of desmosomes contain Dsg2 in a non-junction-restricted form. Future studies will have to clarify the diagnostic and prognostic significance of these different adhesion protein subtypes.
Collapse
Affiliation(s)
- Christian J Schmitt
- Department of Dermatology, Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Wuchter P, Boda-Heggemann J, Straub BK, Grund C, Kuhn C, Krause U, Seckinger A, Peitsch WK, Spring H, Ho AD, Franke WW. Processus and recessus adhaerentes: giant adherens cell junction systems connect and attract human mesenchymal stem cells. Cell Tissue Res 2007; 328:499-514. [PMID: 17372769 DOI: 10.1007/s00441-007-0379-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Accepted: 01/10/2007] [Indexed: 01/07/2023]
Abstract
Substrate-adherent cultured cells derived from human bone marrow or umbilical cord blood ("mesenchymal stem cells") are of special interest for regenerative medicine. We report that such cells, which can display considerable heterogeneity with respect to their cytoskeletal protein complement, are often interconnected by special tentacle-like cell processes contacting one or several other cells. These processus adhaerentes, studded with many (usually small) puncta adhaerentia and varying greatly in length (up to more than 400 microm long), either contact each other in the intercellular space ("ET touches") or insert in a tight-fitting manner into deep plasma membrane invaginations (recessus adhaerentes), thus forming a novel kind of long (up to 50 microm) continuous cuff-like junction (manubria adhaerentia). The cell processes contain an actin microfilament core that is stabilized with ezrin, alpha-actinin, and myosin and accompanied by microtubules, and their adhering junctions are characterized by a molecular complement comprising the transmembrane glycoproteins N-cadherin and cadherin-11, in combination with the cytoplasmic plaque proteins alpha- and beta-catenin, together with p120(ctn), plakoglobin, and afadin. The processes are also highly dynamic and rapidly foreshorten as cell colonies approach a denser state of cell packing. These structures are obviously able to establish cell-cell connections, even over long distances, and can form deep-rooted and tight cell-cell adhesions. The possible relationship to similar cell processes in the embryonic primary mesenchyme and their potential in cell sorting and tissue formation processes in the body are discussed.
Collapse
Affiliation(s)
- Patrick Wuchter
- Department of Internal Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
van Hengel J, van Roy F. Diverse functions of p120ctn in tumors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:78-88. [PMID: 17030444 DOI: 10.1016/j.bbamcr.2006.08.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/22/2006] [Accepted: 08/23/2006] [Indexed: 01/11/2023]
Abstract
p120ctn is a member of the Armadillo protein family. It stabilizes the cadherin-catenin adhesion complex at the plasma membrane, but also has additional roles in the cytoplasm and nucleus. Extensive alternative mRNA splicing and multiple phosphorylation sites generate additional complexity. Evidence is emerging that complete loss, downregulation or mislocalization of p120ctn correlates with progression of different types of human tumors. It remains to be determined whether a causal relationship exists between specific isoform expression, subcellular localization or selective phosphorylation of p120ctn on the one hand and tumor prognosis on the other.
Collapse
Affiliation(s)
- Jolanda van Hengel
- Molecular Cell Biology Unit, Department for Molecular Biomedical Research, VIB-Ghent University, Technologiepark 927, B-9052 Gent (Zwijnaarde), Belgium
| | | |
Collapse
|