1
|
Formstone C, Aldeiri B, Davenport M, Francis‐West P. Ventral body wall closure: Mechanistic insights from mouse models and translation to human pathology. Dev Dyn 2025; 254:102-141. [PMID: 39319771 PMCID: PMC11809137 DOI: 10.1002/dvdy.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
The ventral body wall (VBW) that encloses the thoracic and abdominal cavities arises by extensive cell movements and morphogenetic changes during embryonic development. These morphogenetic processes include embryonic folding generating the primary body wall; the initial ventral cover of the embryo, followed by directed mesodermal cell migrations, contributing to the secondary body wall. Clinical anomalies in VBW development affect approximately 1 in 3000 live births. However, the cell interactions and critical cellular behaviors that control VBW development remain little understood. Here, we describe the embryonic origins of the VBW, the cellular and morphogenetic processes, and key genes, that are essential for VBW development. We also provide a clinical overview of VBW anomalies, together with environmental and genetic influences, and discuss the insight gained from over 70 mouse models that exhibit VBW defects, and their relevance, with respect to human pathology. In doing so we propose a phenotypic framework for researchers in the field which takes into account the clinical picture. We also highlight cases where there is a current paucity of mouse models for particular clinical defects and key gaps in knowledge about embryonic VBW development that need to be addressed to further understand mechanisms of human VBW pathologies.
Collapse
Affiliation(s)
- Caroline Formstone
- Department of Clinical, Pharmaceutical and Biological SciencesUniversity of HertfordshireHatfieldUK
| | - Bashar Aldeiri
- Department of Paediatric SurgeryChelsea and Westminster HospitalLondonUK
| | - Mark Davenport
- Department of Paediatric SurgeryKing's College HospitalLondonUK
| | | |
Collapse
|
2
|
Okura GC, Bharadwaj AG, Waisman DM. Calreticulin-From the Endoplasmic Reticulum to the Plasma Membrane-Adventures of a Wandering Protein. Cancers (Basel) 2025; 17:288. [PMID: 39858072 PMCID: PMC11764459 DOI: 10.3390/cancers17020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Calreticulin (CRT) is a 46 kDa highly conserved protein initially identified as calregulin, a prominent Ca2+-binding protein of the endoplasmic reticulum (ER). Subsequent studies have established that CRT functions in the ER's protein folding response and Ca2+ homeostatic mechanisms. An ER retention signal on the carboxyl terminus of CRT suggested that CRT was restricted to the ER. However, the identification of CRT in the nucleus and cytosol has established that CRT is a multi-compartmental, multifunctional protein. CRT also plays an important role in cancer progression. Most recently, CRT was identified on the cell surface and shown to be a potent 'eat-me' signal that plays a key role in the uptake of apoptotic and viable cancer cells by phagocytes. Elevated CRT exposure on the outer leaflet of cancer cells has been linked with anticancer immunity and superior therapeutic outcomes in patients with non-small cell lung carcinoma, colorectal carcinoma, acute myeloid leukemia, ovarian cancer, and high-grade serous carcinomas. Mutations in the CRT gene have been identified in a subset of patients with myeloproliferative neoplasms. The most recent studies from our laboratory have revealed a new and significant function for extracellular CRT as a plasminogen receptor. This discovery has profound implications for our understanding of the role of CRT in myeloproliferative neoplasms, specifically, essential thrombocythemia.
Collapse
Affiliation(s)
- Gillian C. Okura
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - Alamelu G. Bharadwaj
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - David M. Waisman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| |
Collapse
|
3
|
Michalak M. Calreticulin: Endoplasmic reticulum Ca 2+ gatekeeper. J Cell Mol Med 2024; 28:e17839. [PMID: 37424156 PMCID: PMC10902585 DOI: 10.1111/jcmm.17839] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
Endoplasmic reticulum (ER) luminal Ca2+ is vital for the function of the ER and regulates many cellular processes. Calreticulin is a highly conserved, ER-resident Ca2+ binding protein and lectin-like chaperone. Over four decades of studying calreticulin demonstrate that this protein plays a crucial role in maintaining Ca2+ supply under different physiological conditions, in managing access to Ca2+ and how Ca2+ is used depending on the environmental events and in making sure that Ca2+ is not misused. Calreticulin plays a role of ER luminal Ca2+ sensor to manage Ca2+-dependent ER luminal events including maintaining interaction with its partners, Ca2+ handling molecules, substrates and stress sensors. The protein is strategically positioned in the lumen of the ER from where the protein manages access to and distribution of Ca2+ for many cellular Ca2+-signalling events. The importance of calreticulin Ca2+ pool extends beyond the ER and includes influence of cellular processes involved in many aspects of cellular pathophysiology. Abnormal handling of the ER Ca2+ contributes to many pathologies from heart failure to neurodegeneration and metabolic diseases.
Collapse
Affiliation(s)
- Marek Michalak
- Department of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
4
|
Melnikova A, Ishii H, Tamatani T, Hattori T, Takarada-Iemata M, Hori O. Neuroprotective role of calreticulin after spinal cord injury in mice. Neurosci Res 2023; 195:29-36. [PMID: 37295503 DOI: 10.1016/j.neures.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Accumulating evidence suggests that endoplasmic reticulum (ER) stress and unfolded protein response (UPR) are involved in the pathology of spinal cord injury (SCI). To determine the role of the UPR-target molecule in the pathophysiology of SCI, we analyzed the expression and the possible function of calreticulin (CRT), a molecular chaperone in the ER with high Ca2+ binding capacity, in a mouse SCI model. Spinal cord contusion was induced in T9 by using the Infinite Horizon impactor. Quantitative real-time polymerase chain reaction confirmed increase of Calr mRNA after SCI. Immunohistochemistry revealed that CRT expression was observed mainly in neurons in the control (sham operated) condition, while it was strongly observed in microglia/macrophages after SCI. Comparative analysis between wild-type (WT) and Calr+/- mice revealed that the recovery of hindlimb locomotion was reduced in Calr+/- mice, based on the evaluation using the Basso Mouse Scale and inclined-plane test. Immunohistochemistry also revealed more accumulation of immune cells in Calr+/- mice than in WT mice, at the epicenter 3 days and at the caudal region 7 days after SCI. Consistently, the number of damaged neuron was higher in Calr+/- mice at the caudal region 7 days after SCI. These results suggest a regulatory role of CRT in the neuroinflammation and neurodegeneration after SCI.
Collapse
Affiliation(s)
- Anastasiia Melnikova
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Hiroshi Ishii
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Tamatani
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Mika Takarada-Iemata
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
5
|
Sun H, Wu M, Wang M, Zhang X, Zhu J. The regulatory role of endoplasmic reticulum chaperone proteins in neurodevelopment. Front Neurosci 2022; 16:1032607. [DOI: 10.3389/fnins.2022.1032607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
The endoplasmic reticulum (ER) is the largest tubular reticular organelle spanning the cell. As the main site of protein synthesis, Ca2+ homeostasis maintenance and lipid metabolism, the ER plays a variety of essential roles in eukaryotic cells, with ER molecular chaperones participate in all these processes. In recent years, it has been reported that the abnormal expression of ER chaperones often leads to a variety of neurodevelopmental disorders (NDDs), including abnormal neuronal migration, neuronal morphogenesis, and synaptic function. Neuronal development is a complex and precisely regulated process. Currently, the mechanism by which neural development is regulated at the ER level remains under investigation. Therefore, in this work, we reviewed the recent advances in the roles of ER chaperones in neural development and developmental disorders caused by the deficiency of these molecular chaperones.
Collapse
|
6
|
Agellon LB, Michalak M. A View of the Endoplasmic Reticulum Through the Calreticulin Lens. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:1-11. [PMID: 34050859 DOI: 10.1007/978-3-030-67696-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Calreticulin is well known as an ER-resident protein that serves as the major endoplasmic reticulum (ER) Ca2+ binding protein. This protein has been the major topic of discussion in an international workshop that has been meeting for a quarter of a century. In sharing information about this protein, the field also witnessed remarkable insights into the importance of the ER as an organelle and the role of ER Ca2+ in coordinating ER and cellular functions. Recent technological advances have helped to uncover the contributions of calreticulin in maintaining Ca2+ homeostasis in the ER and to unravel its involvement in a multitude of cellular processes as highlighted in this collection of articles. The continuing revelations of unexpected involvement of calreticulin and Ca2+ in many critical aspects of cellular function promises to further improve insights into the significance of this protein in the promotion of physiology as well as prevention of pathology.
Collapse
Affiliation(s)
- Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, Canada.
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Díaz Del Moral S, Barrena S, Hernández-Torres F, Aránega A, Villaescusa JM, Gómez Doblas JJ, Franco D, Jiménez-Navarro M, Muñoz-Chápuli R, Carmona R. Deletion of the Wilms' Tumor Suppressor Gene in the Cardiac Troponin-T Lineage Reveals Novel Functions of WT1 in Heart Development. Front Cell Dev Biol 2021; 9:683861. [PMID: 34368133 PMCID: PMC8339973 DOI: 10.3389/fcell.2021.683861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Expression of Wilms’ tumor suppressor transcription factor (WT1) in the embryonic epicardium is essential for cardiac development, but its myocardial expression is little known. We have found that WT1 is expressed at low levels in 20–25% of the embryonic cardiomyocytes. Conditional ablation of WT1 using a cardiac troponin T driver (Tnnt2Cre) caused abnormal sinus venosus and atrium development, lack of pectinate muscles, thin ventricular myocardium and, in some cases, interventricular septum and cardiac wall defects, ventricular diverticula and aneurisms. Coronary development was normal and there was not embryonic lethality, although survival of adult mutant mice was reduced probably due to perinatal mortality. Adult mutant mice showed electrocardiographic anomalies, including increased RR and QRS intervals, and decreased PR intervals. RNASeq analysis identified differential expression of 137 genes in the E13.5 mutant heart as compared to controls. GO functional enrichment analysis suggested that both calcium ion regulation and modulation of potassium channels are deeply altered in the mutant myocardium. In summary, together with its essential function in the embryonic epicardium, myocardial WT1 expression is also required for normal cardiac development.
Collapse
Affiliation(s)
| | - Silvia Barrena
- Department of Animal Biology, University of Málaga, Málaga, Spain
| | - Francisco Hernández-Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain.,Medina Foundation, Technology Park of Health Sciences, Granada, Spain
| | - Amelia Aránega
- Medina Foundation, Technology Park of Health Sciences, Granada, Spain.,Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - José Manuel Villaescusa
- Heart Area Clinical Management Unit, University Hosp tal Virgen de la Victoria, CIBERCV Enfermedades Cardiovasculares Health Institute Carlos III, Biomedical Research Institute of Malaga (IBIMA), University of Málaga, Málaga, Spain
| | - Juan José Gómez Doblas
- Heart Area Clinical Management Unit, University Hosp tal Virgen de la Victoria, CIBERCV Enfermedades Cardiovasculares Health Institute Carlos III, Biomedical Research Institute of Malaga (IBIMA), University of Málaga, Málaga, Spain
| | - Diego Franco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Manuel Jiménez-Navarro
- Heart Area Clinical Management Unit, University Hosp tal Virgen de la Victoria, CIBERCV Enfermedades Cardiovasculares Health Institute Carlos III, Biomedical Research Institute of Malaga (IBIMA), University of Málaga, Málaga, Spain
| | | | - Rita Carmona
- Department of Animal Biology, University of Málaga, Málaga, Spain
| |
Collapse
|
8
|
Nguyen DT, Le TM, Hattori T, Takarada-Iemata M, Ishii H, Roboon J, Tamatani T, Kannon T, Hosomichi K, Tajima A, Taniuchi S, Miyake M, Oyadomari S, Tanaka T, Kato N, Saito S, Mori K, Hori O. The ATF6β-calreticulin axis promotes neuronal survival under endoplasmic reticulum stress and excitotoxicity. Sci Rep 2021; 11:13086. [PMID: 34158584 PMCID: PMC8219835 DOI: 10.1038/s41598-021-92529-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
While ATF6α plays a central role in the endoplasmic reticulum (ER) stress response, the function of its paralogue ATF6β remains elusive, especially in the central nervous system (CNS). Here, we demonstrate that ATF6β is highly expressed in the hippocampus of the brain, and specifically regulates the expression of calreticulin (CRT), a molecular chaperone in the ER with a high Ca2+-binding capacity. CRT expression was reduced to ~ 50% in the CNS of Atf6b−/− mice under both normal and ER stress conditions. Analysis using cultured hippocampal neurons revealed that ATF6β deficiency reduced Ca2+ stores in the ER and enhanced ER stress-induced death. The higher levels of death in Atf6b−/− neurons were recovered by ATF6β and CRT overexpressions, or by treatment with Ca2+-modulating reagents such as BAPTA-AM and 2-APB, and with an ER stress inhibitor salubrinal. In vivo, kainate-induced neuronal death was enhanced in the hippocampi of Atf6b−/− and Calr+/− mice, and restored by administration of 2-APB and salubrinal. These results suggest that the ATF6β-CRT axis promotes neuronal survival under ER stress and excitotoxity by improving intracellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- Dinh Thi Nguyen
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Thuong Manh Le
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan.,Department of Human Anatomy, Hanoi Medical University, Hanoi, Vietnam
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Mika Takarada-Iemata
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Hiroshi Ishii
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Jureepon Roboon
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Takashi Tamatani
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shusuke Taniuchi
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Masato Miyake
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Seiichi Oyadomari
- Division of Molecular Biology, Institute for Genome Research, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Takashi Tanaka
- Department of Anatomy II, Kanazawa Medical University, Kahoku, Japan
| | - Nobuo Kato
- Department of Physiology I, Kanazawa Medical University, Kahoku, Japan
| | - Shunsuke Saito
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa City, Ishikawa, 920-8640, Japan.
| |
Collapse
|
9
|
Roles of Calreticulin in Protein Folding, Immunity, Calcium Signaling and Cell Transformation. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:145-162. [PMID: 34050865 DOI: 10.1007/978-3-030-67696-4_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The endoplasmic reticulum (ER) is an organelle that mediates the proper folding and assembly of proteins destined for the cell surface, the extracellular space and subcellular compartments such as the lysosomes. The ER contains a wide range of molecular chaperones to handle the folding requirements of a diverse set of proteins that traffic through this compartment. The lectin-like chaperones calreticulin and calnexin are an important class of structurally-related chaperones relevant for the folding and assembly of many N-linked glycoproteins. Despite the conserved mechanism of action of these two chaperones in nascent protein recognition and folding, calreticulin has unique functions in cellular calcium signaling and in the immune response. The ER-related functions of calreticulin in the assembly of major histocompatibility complex (MHC) class I molecules are well-studied and provide many insights into the modes of substrate and co-chaperone recognition by calreticulin. Calreticulin is also detectable on the cell surface under some conditions, where it induces the phagocytosis of apoptotic cells. Furthermore, mutations of calreticulin induce cell transformation in myeloproliferative neoplasms (MPN). Studies of the functions of the mutant calreticulin in cell transformation and immunity have provided many insights into the normal biology of calreticulin, which are discussed.
Collapse
|
10
|
Pandya UM, Manzanares MA, Tellechea A, Egbuta C, Daubriac J, Jimenez-Jaramillo C, Samra F, Fredston-Hermann A, Saadipour K, Gold LI. Calreticulin exploits TGF-β for extracellular matrix induction engineering a tissue regenerative process. FASEB J 2020; 34:15849-15874. [PMID: 33015849 DOI: 10.1096/fj.202001161r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022]
Abstract
Topical application of extracellular calreticulin (eCRT), an ER chaperone protein, in animal models enhances wound healing and induces tissue regeneration evidenced by epidermal appendage neogenesis and lack of scarring. In addition to chemoattraction of cells critical to the wound healing process, eCRT induces abundant neo-dermal extracellular matrix (ECM) formation by 3 days post-wounding. The purpose of this study was to determine the mechanisms involved in eCRT induction of ECM. In vitro, eCRT strongly induces collagen I, fibronectin, elastin, α-smooth muscle actin in human adult dermal (HDFs) and neonatal fibroblasts (HFFs) mainly via TGF-β canonical signaling and Smad2/3 activation; RAP, an inhibitor of LRP1 blocked eCRT ECM induction. Conversely, eCRT induction of α5 and β1 integrins was not mediated by TGF-β signaling nor inhibited by RAP. Whereas eCRT strongly induces ECM and integrin α5 proteins in K41 wild-type mouse embryo fibroblasts (MEFs), CRT null MEFs were unresponsive. The data show that eCRT induces the synthesis and release of TGF-β3 first via LRP1 or other receptor signaling and later induces ECM proteins via LRP1 signaling subsequently initiating TGF-β receptor signaling for intracellular CRT (iCRT)-dependent induction of TGF-β1 and ECM proteins. In addition, TGF-β1 induces 2-3-fold higher level of ECM proteins than eCRT. Whereas eCRT and iCRT converge for ECM induction, we propose that eCRT attenuates TGF-β-mediated fibrosis/scarring to achieve tissue regeneration.
Collapse
Affiliation(s)
- Unnati M Pandya
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Miguel A Manzanares
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Ana Tellechea
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Chinaza Egbuta
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Julien Daubriac
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Couger Jimenez-Jaramillo
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Fares Samra
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Alexa Fredston-Hermann
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Khalil Saadipour
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Leslie I Gold
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA.,Pathology Department, New York University School of Medicine-Langone Health, New York, NY, USA
| |
Collapse
|
11
|
Passemard S, Perez F, Gressens P, El Ghouzzi V. Endoplasmic reticulum and Golgi stress in microcephaly. Cell Stress 2019; 3:369-384. [PMID: 31832602 PMCID: PMC6883743 DOI: 10.15698/cst2019.12.206] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Microcephaly is a neurodevelopmental condition characterized by a small brain size associated with intellectual deficiency in most cases and is one of the most frequent clinical sign encountered in neurodevelopmental disorders. It can result from a wide range of environmental insults occurring during pregnancy or postnatally, as well as from various genetic causes and represents a highly heterogeneous condition. However, several lines of evidence highlight a compromised mode of division of the cortical precursor cells during neurogenesis, affecting neural commitment or survival as one of the common mechanisms leading to a limited production of neurons and associated with the most severe forms of congenital microcephaly. In this context, the emergence of the endoplasmic reticulum (ER) and the Golgi apparatus as key guardians of cellular homeostasis, especially through the regulation of proteostasis, has raised the hypothesis that pathological ER and/or Golgi stress could contribute significantly to cortical impairments eliciting microcephaly. In this review, we discuss recent findings implicating ER and Golgi stress responses in early brain development and provide an overview of microcephaly-associated genes involved in these pathways.
Collapse
Affiliation(s)
- Sandrine Passemard
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,Service de Génétique Clinique, AP-HP, Hôpital Robert Debré, F-75019 Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, France
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas'Hospital, London, United Kingdom
| | | |
Collapse
|
12
|
Calreticulin is a Critical Cell Survival Factor in Malignant Neoplasms. PLoS Biol 2019; 17:e3000402. [PMID: 31568485 PMCID: PMC6768457 DOI: 10.1371/journal.pbio.3000402] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/22/2019] [Indexed: 01/05/2023] Open
Abstract
Calreticulin (CRT) is a high-capacity Ca2+ protein whose expression is up-regulated during cellular transformation and is associated with disease progression in multiple types of malignancies. At the same time, CRT has been characterized as an important stress-response protein capable of inducing immunogenic cell death (ICD) when translocated to the cell surface. It remains unclear why CRT expression is preserved by malignant cells during the course of transformation despite its immunogenic properties. In this study, we identify a novel, critical function of CRT as a cell survival factor in multiple types of human solid-tissue malignancies. CRT knockdown activates p53, which mediates cell-death response independent of executioner caspase activity and accompanied full-length poly ADP ribose polymerase (PARP) cleavage. Mechanistically, we show that down-regulation of CRT results in mitochondrial Ca2+ overload and induction of mitochondria permeability transition pore (mPTP)-dependent cell death, which can be significantly rescued by the mPTP inhibitor, Cyclosporin A (CsA). The clinical importance of CRT expression was revealed in the analysis of the large cohort of cancer patients (N = 2,058) to demonstrate that high levels of CRT inversely correlates with patient survival. Our study identifies intracellular CRT as an important therapeutic target for tumors whose survival relies on its expression. This study reveals a novel role for the calcium-binding protein calreticulin in the survival of cancer cells; downregulation of calreticulin leads to mitochondrial calcium overload and an induction of non-apoptotic cell death. Calreticulin levels inversely correlate with the survival of patients diagnosed with various types of solid cancers.
Collapse
|
13
|
Knock-in of murine Calr del52 induces essential thrombocythemia with slow-rising dominance in mice and reveals key role of Calr exon 9 in cardiac development. Leukemia 2019; 34:510-521. [PMID: 31471561 DOI: 10.1038/s41375-019-0538-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022]
Abstract
Frameshifting mutations (-1/+2) of the calreticulin (CALR) gene are responsible for the development of essential thrombocythemia (ET) and primary myelofibrosis (PMF). The mutant CALR proteins activate the thrombopoietin receptor (TpoR) inducing cytokine-independent megakaryocyte progenitor proliferation. Here, we generated via CRISPR/Cas9 technology two knock-in mouse models that are heterozygous for a type-I murine Calr mutation. These mice exhibit an ET phenotype with elevated circulating platelets compared with wild-type controls, consistent with our previous results showing that murine CALR mutants activate TpoR. We also show that the mutant CALR proteins can be detected in plasma. The phenotype of Calr del52 is transplantable, and the Calr mutated hematopoietic cells have a slow-rising advantage over wild-type hematopoiesis. Importantly, a homozygous state of a type-1 Calr mutation is lethal at a late embryonic development stage, showing narrowed ventricular myocardium walls, similar to the murine Calr knockout phenotype, pointing to the C terminus of CALR as crucial for heart development.
Collapse
|
14
|
Kotian V, Sarmah D, Kaur H, Kesharwani R, Verma G, Mounica L, Veeresh P, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Evolving Evidence of Calreticulin as a Pharmacological Target in Neurological Disorders. ACS Chem Neurosci 2019; 10:2629-2646. [PMID: 31017385 DOI: 10.1021/acschemneuro.9b00158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Calreticulin (CALR), a lectin-like ER chaperone, was initially known only for its housekeeping function, but today it is recognized for many versatile roles in different compartments of a cell. Apart from canonical roles in protein folding and calcium homeostasis, it performs a variety of noncanonical roles, mostly in CNS development. In the past, studies have linked Calreticulin with various other biological components which are detrimental in deciding the fate of neurons. Many neurological disorders that differ in their etiology are commonly associated with aberrant levels of Calreticulin, that lead to modulation of apoptosis and phagocytosis, and impact on transcriptional pathways, impairment in proteostatis, and calcium imbalances. Such multifaceted properties of Calreticulin are the reason why it has been implicated in vital roles of the nervous system in recent years. Hence, understanding its role in the physiology of neurons would help to unearth its involvement in the spectrum of neurological disorders. This Review aims toward exploring the interplay of Calreticulin in neurological disorders which would aid in targeting Calreticulin for developing novel neurotherapeutics.
Collapse
Affiliation(s)
- Vignesh Kotian
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Radhika Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Geetesh Verma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Leela Mounica
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Pabbala Veeresh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
15
|
The Best for the Most Important: Maintaining a Pristine Proteome in Stem and Progenitor Cells. Stem Cells Int 2019; 2019:1608787. [PMID: 31191665 PMCID: PMC6525796 DOI: 10.1155/2019/1608787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells give rise to reproductively enabled offsprings by generating progressively lineage-restricted multipotent stem cells that would differentiate into lineage-committed stem and progenitor cells. These lineage-committed stem and progenitor cells give rise to all adult tissues and organs. Adult stem and progenitor cells are generated as part of the developmental program and play critical roles in tissue and organ maintenance and/or regeneration. The ability of pluripotent stem cells to self-renew, maintain pluripotency, and differentiate into a multicellular organism is highly dependent on sensing and integrating extracellular and extraorganismal cues. Proteins perform and integrate almost all cellular functions including signal transduction, regulation of gene expression, metabolism, and cell division and death. Therefore, maintenance of an appropriate mix of correctly folded proteins, a pristine proteome, is essential for proper stem cell function. The stem cells' proteome must be pristine because unfolded, misfolded, or otherwise damaged proteins would interfere with unlimited self-renewal, maintenance of pluripotency, differentiation into downstream lineages, and consequently with the development of properly functioning tissue and organs. Understanding how various stem cells generate and maintain a pristine proteome is therefore essential for exploiting their potential in regenerative medicine and possibly for the discovery of novel approaches for maintaining, propagating, and differentiating pluripotent, multipotent, and adult stem cells as well as induced pluripotent stem cells. In this review, we will summarize cellular networks used by various stem cells for generation and maintenance of a pristine proteome. We will also explore the coordination of these networks with one another and their integration with the gene regulatory and signaling networks.
Collapse
|
16
|
Wasąg P, Grajkowski T, Suwińska A, Lenartowska M, Lenartowski R. Phylogenetic analysis of plant calreticulin homologs. Mol Phylogenet Evol 2019; 134:99-110. [PMID: 30711535 DOI: 10.1016/j.ympev.2019.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
Abstract
Calreticulin (CRT) is an multifunctional resident endoplasmic reticulum (ER) luminal protein implicated in regulating a variety of cellular processes, including Ca2+ storage/mobilization and protein folding. These multiple functions may be carried out by different CRT genes and protein isoforms. The plant CRT family consist of three genes: CRT1 and CRT2 classified in the common subclass (CRT1/2), and CRT3. These genes are highly conserved during evolution and encode three different protein products (CRT1, 2 and 3). The aim of the current study was to conduct a comparative analysis and sequence-based classification of the plant CRT genes. We used nucleotide and amino acid sequences to phylogenetically cluster the genes and examine potential glycosylation patterns. Additionally, we analyzed phylogenetic relationships within the CRT subclasses. Finally, we analyzed intraspecific CRT duplication events among mono- and dicotyledon species. Our results confirm that each of the CRT genes exist in multiple copies in plant genomes, and that CRT gene duplication is a widespread process in plants.
Collapse
Affiliation(s)
- Piotr Wasąg
- Laboratory of Developmental Biology, Department of Cellular and Molecular Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Tomasz Grajkowski
- Laboratory of Molecular and Isotope Methods, Department of Cellular and Molecular Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Anna Suwińska
- Laboratory of Developmental Biology, Department of Cellular and Molecular Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Marta Lenartowska
- Laboratory of Developmental Biology, Department of Cellular and Molecular Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Robert Lenartowski
- Laboratory of Molecular and Isotope Methods, Department of Cellular and Molecular Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| |
Collapse
|
17
|
Takahashi M, Tamura M, Sato S, Kawakami K. Mice doubly deficient in Six4 and Six5 show ventral body wall defects reproducing human omphalocele. Dis Model Mech 2018; 11:dmm.034611. [PMID: 30237319 PMCID: PMC6215434 DOI: 10.1242/dmm.034611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/05/2018] [Indexed: 01/11/2023] Open
Abstract
Omphalocele is a human congenital anomaly in ventral body wall closure and may be caused by impaired formation of the primary abdominal wall (PAW) and/or defects in abdominal muscle development. Here, we report that mice doubly deficient in homeobox genes Six4 and Six5 showed the same ventral body wall closure defects as those seen in human omphalocele. SIX4 and SIX5 were localized in surface ectodermal cells and somatic mesoderm-derived mesenchymal and coelomic epithelial cells (CECs) in the PAW. Six4-/-;Six5-/- fetuses exhibited a large omphalocele with protrusion of both the liver and intestine, or a small omphalocele with protrusion of the intestine, with complete penetrance. The umbilical ring of Six4-/-;Six5-/- embryos was shifted anteriorly and its lateral size was larger than that of normal embryos at the E11.5 stage, before the onset of myoblast migration into the PAW. The proliferation rates of surface ectodermal cells in the left and right PAW and somatic mesoderm-derived cells in the right PAW were lower in Six4-/-;Six5-/- embryos than those of wild-type embryos at E10.5. The transition from CECs of the PAW to rounded mesothelial progenitor cells was impaired and the inner coelomic surface of the PAW was relatively smooth in Six4-/-;Six5-/- embryos at E11.25. Furthermore, Six4 overexpression in CECs of the PAW promoted ingression of CECs. Taken together, our results suggest that Six4 and Six5 are required for growth and morphological change of the PAW, and the impairment of these processes is linked to the abnormal positioning and expansion of the umbilical ring, which results in omphalocele.
Collapse
Affiliation(s)
- Masanori Takahashi
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Center, 3-1-1, Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
18
|
Biwer LA, Good ME, Hong K, Patel RK, Agrawal N, Looft-Wilson R, Sonkusare SK, Isakson BE. Non-Endoplasmic Reticulum-Based Calr (Calreticulin) Can Coordinate Heterocellular Calcium Signaling and Vascular Function. Arterioscler Thromb Vasc Biol 2018; 38:120-130. [PMID: 29122814 PMCID: PMC5746467 DOI: 10.1161/atvbaha.117.309886] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/25/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE In resistance arteries, endothelial cell (EC) extensions can make contact with smooth muscle cells, forming myoendothelial junction at holes in the internal elastic lamina (HIEL). At these HIEL, calcium signaling is tightly regulated. Because Calr (calreticulin) can buffer ≈50% of endoplasmic reticulum calcium and is expressed throughout IEL holes in small arteries, the only place where myoendothelial junctions form, we investigated the effect of EC-specific Calr deletion on calcium signaling and vascular function. APPROACH AND RESULTS We found Calr expressed in nearly every IEL hole in third-order mesenteric arteries, but not other ER markers. Because of this, we generated an EC-specific, tamoxifen inducible, Calr knockout mouse (EC Calr Δ/Δ). Using this mouse, we tested third-order mesenteric arteries for changes in calcium events at HIEL and vascular reactivity after application of CCh (carbachol) or PE (phenylephrine). We found that arteries from EC Calr Δ/Δ mice stimulated with CCh had unchanged activity of calcium signals and vasodilation; however, the same arteries were unable to increase calcium events at HIEL in response to PE. This resulted in significantly increased vasoconstriction to PE, presumably because of inhibited negative feedback. In line with these observations, the EC Calr Δ/Δ had increased blood pressure. Comparison of ER calcium in arteries and use of an ER-specific GCaMP indicator in vitro revealed no observable difference in ER calcium with Calr knockout. Using selective detergent permeabilization of the artery and inhibition of Calr translocation, we found that the observed Calr at HIEL may not be within the ER. CONCLUSIONS Our data suggest that Calr specifically at HIEL may act in a non-ER dependent manner to regulate arteriolar heterocellular communication and blood pressure.
Collapse
Affiliation(s)
- Lauren A Biwer
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Miranda E Good
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Kwangseok Hong
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Rahul K Patel
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Neha Agrawal
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Robin Looft-Wilson
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Swapnil K Sonkusare
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.)
| | - Brant E Isakson
- From the Robert M. Berne Cardiovascular Research Center (L.A.B., M.E.G., K.H., R.K.P., S.K.S., B.E.I.) and Department of Molecular Physiology and Biophysics (L.A.B., S.K.S., B.E.I.), University of Virginia School of Medicine, Charlottesville; and Department of Kinesiology, College of William and Mary, Williamsburg, VA (N.A., R.L.-W.).
| |
Collapse
|
19
|
Agoglia AE, Holstein SE, Small AT, Spanos M, Burrus BM, Hodge CW. Comparison of the adolescent and adult mouse prefrontal cortex proteome. PLoS One 2017; 12:e0178391. [PMID: 28570644 PMCID: PMC5453624 DOI: 10.1371/journal.pone.0178391] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/14/2017] [Indexed: 12/28/2022] Open
Abstract
Adolescence is a developmental period characterized by unique behavioral phenotypes (increased novelty seeking, risk taking, sociability and impulsivity) and increased risk for destructive behaviors, impaired decision making and psychiatric illness. Adaptive and maladaptive adolescent traits have been associated with development of the medial prefrontal cortex (mPFC), a brain region that mediates regulatory control of behavior. However, the molecular changes that underlie brain development and behavioral vulnerability have not been fully characterized. Using high-throughput 2D DIGE spot profiling with identification by MALDI-TOF mass spectrometry, we identified 62 spots in the PFC that exhibited age-dependent differences in expression. Identified proteins were associated with diverse cellular functions, including intracellular signaling, synaptic plasticity, cellular organization and metabolism. Separate Western blot analyses confirmed age-related changes in DPYSL2, DNM1, STXBP1 and CFL1 in the mPFC and expanded these findings to the dorsal striatum, nucleus accumbens, motor cortex, amygdala and ventral tegmental area. Ingenuity Pathway Analysis (IPA) identified functional interaction networks enriched with proteins identified in the proteomics screen, linking age-related alterations in protein expression to cellular assembly and development, cell signaling and behavior, and psychiatric illness. These results provide insight into potential molecular components of adolescent cortical development, implicating structural processes that begin during embryonic development as well as plastic adaptations in signaling that may work in concert to bring the cortex, and other brain regions, into maturity.
Collapse
Affiliation(s)
- Abigail E. Agoglia
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah E. Holstein
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Amanda T. Small
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Marina Spanos
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brainard M. Burrus
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Clyde W. Hodge
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
20
|
Karimzadeh F, Opas M. Calreticulin Is Required for TGF-β-Induced Epithelial-to-Mesenchymal Transition during Cardiogenesis in Mouse Embryonic Stem Cells. Stem Cell Reports 2017; 8:1299-1311. [PMID: 28434939 PMCID: PMC5425659 DOI: 10.1016/j.stemcr.2017.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 02/07/2023] Open
Abstract
Calreticulin, a multifunctional endoplasmic reticulum resident protein, is required for TGF-β-induced epithelial-to-mesenchymal transition (EMT) and subsequent cardiomyogenesis. Using embryoid bodies (EBs) derived from calreticulin-null and wild-type (WT) embryonic stem cells (ESCs), we show that expression of EMT and cardiac differentiation markers is induced during differentiation of WT EBs. This induction is inhibited in the absence of calreticulin and can be mimicked by inhibiting TGF-β signaling in WT cells. The presence of calreticulin in WT cells permits TGF-β-mediated signaling via AKT/GSK3β and promotes repression of E-cadherin by SNAIL2/SLUG. This is paralleled by induction of N-cadherin in a process known as the cadherin switch. We show that regulated Ca2+ signaling between calreticulin and calcineurin is critical for the unabated TGF-β signaling that is necessary for the exit from pluripotency and the cadherin switch during EMT. Calreticulin is thus a key mediator of TGF-β-induced commencement of cardiomyogenesis in mouse ESCs.
Collapse
Affiliation(s)
- Fereshteh Karimzadeh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michal Opas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
21
|
De Almeida I, Oliveira NMM, Randall RA, Hill CS, McCoy JM, Stern CD. Calreticulin is a secreted BMP antagonist, expressed in Hensen's node during neural induction. Dev Biol 2017; 421:161-170. [PMID: 27919666 PMCID: PMC5231319 DOI: 10.1016/j.ydbio.2016.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 11/27/2022]
Abstract
Hensen's node is the "organizer" of the avian and mammalian early embryo. It has many functions, including neural induction and patterning of the ectoderm and mesoderm. Some of the signals responsible for these activities are known but these do not explain the full complexity of organizer activity. Here we undertake a functional screen to discover new secreted factors expressed by the node at this time of development. Using a Signal Sequence Trap in yeast, we identify several candidates. Here we focus on Calreticulin. We show that in addition to its known functions in intracellular Calcium regulation and protein folding, Calreticulin is secreted, it can bind to BMP4 and act as a BMP antagonist in vivo and in vitro. Calreticulin is not sufficient to account for all organizer functions but may contribute to the complexity of its activity.
Collapse
Affiliation(s)
- Irene De Almeida
- Department of Cell & Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Nidia M M Oliveira
- Department of Cell & Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | - Claudio D Stern
- Department of Cell & Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
22
|
Huang G, Sun Z, Wu J, Shui S, Han X, Guo D, Li T. Calreticulin Promotes Proliferation and Migration But Inhibits Apoptosis in Schwann Cells. Med Sci Monit 2016; 22:4516-4522. [PMID: 27876711 PMCID: PMC5132423 DOI: 10.12659/msm.900956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Previous studies indicated that calreticulin (CRT) regulated various biological processes. This study was aimed to investigate the function of CRT in Schwann cells (SCs). Material/Methods SCs were separated from sciatic nerves of mice and were transfected with pcDNA3.1-CRT (pc-CRT), small interfering RNA targets CRT (siCRT), or their corresponding negative controls. The expression of CRT was determined by quantitative reverse transcription PCR (qRT-PCR) and Western blot analysis. Then, cell proliferation, migration, and apoptosis were measured by 3-(4, 5-dimethylhiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, modified 2-chamber migration assay, and flow cytometry, respectively. Finally, the phosphorylation levels of key kinases in the phosphatidylinositol-3-kinase (PI3K)/AKT and the extracellular signal-regulated kinase/ribosomal S6 kinase 2 (ERK/S6) pathways were detected by Western blot analysis. Results Overexpression of CRT remarkably increased viability (P<0.05, P<0.01 or P<0.001) and migration (P<0.001), but inhibited apoptosis (P<0.05). The CRT-knockdown showed the inverse impacts on viability (P<0.05 or P<0.001), migration (P<0.001), and apoptosis (P<0.001). Additionally, the phosphorylation levels of AKT (Thr308 and Ser473), ERK, and S6 were all up-regulated in CRT-overexpressed cells (P<0.001), and were down-regulated in CRT-knockdown cells (P<0.05, P<0.01 or P<0.001). Conclusions Overexpression of CRT in SCs promoted cell proliferation and migration but suppressed cell apoptosis. The PI3K/AKT and ERK/S6 pathways might be involved in the functional effects of CRT on SCs.
Collapse
Affiliation(s)
- Gui Huang
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, Henan, China (mainland)
| | - Zhulei Sun
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, Henan, China (mainland)
| | - Jiang Wu
- Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, Henan, China (mainland)
| | - Shaofeng Shui
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Dong Guo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Tengfei Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
23
|
Stoll G, Iribarren K, Michels J, Leary A, Zitvogel L, Cremer I, Kroemer G. Calreticulin expression: Interaction with the immune infiltrate and impact on survival in patients with ovarian and non-small cell lung cancer. Oncoimmunology 2016; 5:e1177692. [PMID: 27622029 DOI: 10.1080/2162402x.2016.1177692] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 10/21/2022] Open
Abstract
Loss of expression of calreticulin (CALR) has been detected by immunohistochemistry in a fraction of non-small cell lung cancers (NSCLC) and has been demonstrated to have a major negative prognostic impact on overall patient survival. Here, we analyzed the impact of CALR expression levels detected by microarray finding a positive correlation between CALR and the expression of a metagene indicating the presence of cytotoxic T lymphocytes (CTL) in NSCLC and ovarian cancer. In addition, we detected a positive correlation with a metagene suggestive of activated dendritic cell (aDC) infiltration in ovarian cancer. Combination of two parameters (CALR + DC (dendritic cell) in NSCL and CALR + aDC in ovarian cancer) or three parameters (CALR + CTL + DC in NSCL and CALR + CTL + aDC in ovarian cancer) had a significant impact on overall patient survival in NSCL (Adenoconsortium) and ovarian cancer (TCGA collection), allowing the stratification of patients in high-risk and low-risk groups. In addition, CALR and aDC alone have a significant impact on overall survival in ovarian cancer. In contrast, in mammary, colorectal and prostate cancer, CALR had no impact on patient survival if analyzed alone or in combination with the immune infiltrate. In addition, CALR correlates with CTL infiltrate in three cancer types (colorectal, breast, ovarian). Altogether, these results support the contention that, at least in some cancers, loss of CALR expression may negatively affect immunosurveillance, thereby reducing patient survival.
Collapse
Affiliation(s)
- Gautier Stoll
- Equipe 11 labellisée Ligue contre le Cancer, Center de Recherche des Cordeliers, INSERM U 1138, 15 rue de l'Ecole de Médecine, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 15 rue de l'Ecole de Médecine, Paris, France; Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, Paris, France
| | - Kristina Iribarren
- Université Paris Descartes, Sorbonne Paris Cité, 15 rue de l'Ecole de Médecine, Paris, France; Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, Paris, France; Laboratory "Cancer, Immune control and escape," Center de Recherche des Cordeliers, INSERM U 1138, 15 rue de l'Ecole de Médecine, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Judith Michels
- Department of Medical Oncology, Gustave Roussy Cancer Campus (GRCC) , 114 rue Edouard Vaillant , Villejuif, France
| | - Alexandra Leary
- Department of Medical Oncology, Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, France; Laboratory 'Predictive Biomarkers and New Therapeutic Strategies in Oncology' INSERM U981, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, France
| | - Laurence Zitvogel
- Université Paris Sud, Université Paris Saclay, Kremlin Bicêtre, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 507, Villejuif, France
| | - Isabelle Cremer
- Université Paris Descartes, Sorbonne Paris Cité, 15 rue de l'Ecole de Médecine, Paris, France; Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, Paris, France; Laboratory "Cancer, Immune control and escape," Center de Recherche des Cordeliers, INSERM U 1138, 15 rue de l'Ecole de Médecine, Paris, France
| | - Guido Kroemer
- Université Paris Descartes, Sorbonne Paris Cité, 15 rue de l'Ecole de Médecine, Paris, France; Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
Faustino RS, Wyles SP, Groenendyk J, Michalak M, Terzic A, Perez-Terzic C. Systems biology surveillance decrypts pathological transcriptome remodeling. BMC SYSTEMS BIOLOGY 2015; 9:36. [PMID: 26179794 PMCID: PMC4504166 DOI: 10.1186/s12918-015-0177-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 06/05/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Pathological cardiac development is precipitated by dysregulation of calreticulin, an endoplasmic reticulum (ER)-resident calcium binding chaperone and critical contributor to cardiogenesis and embryonic viability. However, pleiotropic phenotype derangements induced by calreticulin deficiency challenge the identification of specific downstream transcriptome elements that direct proper cardiac formation. Here, differential transcriptome navigation was used to diagnose high priority calreticulin domain-specific gene expression changes and decrypt complex cardiac-specific molecular responses elicited by discrete functional regions of calreticulin. METHODS Wild type (WT), calreticulin-deficient (CALR(-/-)), and calreticulin truncation variant (CALR(-/-)-NP and CALR(-/-)-PC) pluripotent stem cells were used to investigate molecular remodeling underlying a model of cardiopathology. Bioinformatic deconvolution of isolated transcriptomes was performed to identify predominant expression trends, gene ontology prioritizations, and molecular network features characteristic of discrete cell types. RESULTS Stem cell lines with wild type (WT), calreticulin-deficient (CALR(-/-)) genomes, as well as calreticulin truncation variants exclusively expressing either the chaperoning (CALR(-/-)-NP) or the calcium binding (CALR(-/-)-PC) domain exhibited characteristic molecular signatures determined by unsupervised agglomerative clustering. Kohonen mapping of RNA expression changes identified transcriptome dynamics that segregated into 12 discrete gene expression meta-profiles which were enriched for regulation of Eukaryotic Initiation Factor 2 (EIF2) signaling. Focused examination of domain-specific gene ontology remodeling revealed a general enrichment of Cardiovascular Development in the truncation variants, with unique prioritization of "Cardiovascular Disease" exclusive to the cohort of down regulated genes of the PC truncation variant. Molecular cartography of genes that comprised this cardiopathological category revealed uncharacterized and novel gene relationships, with identification of Pitx2 as a critical hub within the topology of a CALR(-/-) compromised network. CONCLUSIONS Diagnostic surveillance, through an algorithm that integrates pluripotent stem cell transcriptomes with advanced high throughput assays and computational bioinformatics, revealed collective gene expression network changes that underlie differential phenotype development. Stem cell transcriptomes provide a deep collective molecular index that reflects ad hoc robustness of the pluripotent gene network. Remodeling events such as monogenic lesions provide a background by which high priority candidate disease effectors and regulators can be identified, demonstrated here by a molecular profiling algorithm that decrypts pluripotent wild type versus disrupted genomes.
Collapse
Affiliation(s)
- Randolph S Faustino
- Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Saranya P Wyles
- Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| | - Andre Terzic
- Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Carmen Perez-Terzic
- Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine, Rochester, MN, USA.
- Rehabilitation Medicine Research Center, Rochester, MN, USA.
| |
Collapse
|
25
|
LIU MIHUA, ZHANG YUAN, LIN XIAOLONG, HE JUN, TAN TIANPING, WU SHAOJIAN, YU SHAN, CHEN LI, CHEN YUDAN, FU HONGYUN, YUAN CONG, LI JIAN. Hydrogen sulfide attenuates doxorubicin-induced cardiotoxicity by inhibiting calreticulin expression in H9c2 cells. Mol Med Rep 2015; 12:5197-202. [DOI: 10.3892/mmr.2015.4020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/11/2015] [Indexed: 11/06/2022] Open
|
26
|
Functional roles of calreticulin in cancer biology. BIOMED RESEARCH INTERNATIONAL 2015; 2015:526524. [PMID: 25918716 PMCID: PMC4396016 DOI: 10.1155/2015/526524] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 11/17/2022]
Abstract
Calreticulin is a highly conserved endoplasmic reticulum chaperone protein which participates in various cellular processes. It was first identified as a Ca2+-binding protein in 1974. Accumulated evidences indicate that calreticulin has great impacts for the development of different cancers and the effect of calreticulin on tumor formation and progression may depend on cell types and clinical stages. Cell surface calreticulin is considered as an “eat-me” signal and promotes phagocytic uptake of cancer cells by immune system. Moreover, several reports reveal that manipulation of calreticulin levels profoundly affects cancer cell proliferation and angiogenesis as well as differentiation. In addition to immunogenicity and tumorigenesis, interactions between calreticulin and integrins have been described during cell adhesion, which is an essential process for cancer metastasis. Integrins are heterodimeric transmembrane receptors which connect extracellular matrix and intracellular cytoskeleton and trigger inside-out or outside-in signaling transduction. More and more evidences reveal that proteins binding to integrins might affect integrin-cytoskeleton interaction and therefore influence ability of cell adhesion. Here, we reviewed the biological roles of calreticulin and summarized the potential mechanisms of calreticulin in regulating mRNA stability and therefore contributed to cancer metastasis.
Collapse
|
27
|
Ishii K, Hamamoto H, Sekimizu K. Paralytic peptide: an insect cytokine that mediates innate immunity. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 88:18-30. [PMID: 25521626 DOI: 10.1002/arch.21215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Host animals combat invading pathogens by activating various immune responses. Modulation of the immune pathways by cytokines is critical for efficient pathogen elimination. Insects and mammals possess common innate immune systems, and individual immune pathways have been intensively studied over the last two decades. Relatively less attention, however, has been focused on the functions of cytokines in insect innate immunity. Here, we summarize our recent findings from studies of the insect cytokine, paralytic peptide, in the silkworm Bombyx mori. The content of this report was presented at the First Asian Invertebrate Immunity Symposium. Acute activation of paralytic peptide occurs via proteolysis after stimulation with the cell wall components of pathogens, leading to the induction of a wide range of cellular and humoral immune responses. The pathogenic bacterium Serratia marcescens suppresses paralytic peptide-dependent immune activation, which impairs host resistance. Studies of insect cytokines will broaden our understanding of the basic mechanisms underlying the interaction between host innate immunity and pathogenic agents.
Collapse
Affiliation(s)
- Kenichi Ishii
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
28
|
Dar MA, Wahiduzzaman, Islam A, Hassan MI, Ahmad F. Purification and characterization of calreticulin: a Ca²⁺-binding chaperone from sheep kidney. Appl Biochem Biotechnol 2014; 174:1771-83. [PMID: 25149453 DOI: 10.1007/s12010-014-1150-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/14/2014] [Indexed: 01/02/2023]
Abstract
Calreticulin (CRT) is a molecular chaperone with a molecular mass of 46 kDa present in the endoplasmic reticulum (ER). This protein is primarily involved in the regulation of intracellular Ca(2+) homeostasis and Ca(2+) storage in the ER. CRT also plays a significant role in autoimmunity and cancer. This protein contains three distinct structural domains with specialized functions. Here, we are reporting a simple procedure for the purification of CRT from mammalian kidney. To isolate CRT, sheep kidney was crushed and kept for 12 h in the extraction buffer. The lysate was centrifuged, and supernatant was precipitated by ammonium sulphate. The precipitate of 90 % ammonium sulphate was extensively dialyzed and loaded on DEAE-Hi-Trap FF and Mono Q chromatography columns. The purity of CRT was confirmed by SDS-PAGE. Finally, the protein was identified by matrix-assisted laser desorption/ionization time of flight. The purified protein was further characterized for secondary structural elements using the far-UV circular dichroism measurements. Our purification procedure is fast and simple with high yield.
Collapse
Affiliation(s)
- Mohammad Aasif Dar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | | | | | | | | |
Collapse
|
29
|
Borhani Dizaji N, Basseri HR, Naddaf SR, Heidari M. Molecular characterization of calreticulin from Anopheles stephensi midgut cells and functional assay of the recombinant calreticulin with Plasmodium berghei ookinetes. Gene 2014; 550:245-52. [PMID: 25150160 DOI: 10.1016/j.gene.2014.08.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 06/02/2014] [Accepted: 08/19/2014] [Indexed: 11/24/2022]
Abstract
Transmission blocking vaccines (TBVs) that target the antigens on the midgut epithelium of Anopheles mosquitoes are among the promising tools for the elimination of the malaria parasite. Characterization and analysis of effective antigens is the first step to design TBVs. Calreticulin (CRT), a lectin-like protein, from Anopheles albimanus midgut, has shown antigenic features, suggesting a promising and novel TBV target. CRT is a highly conserved protein with similar features in vertebrates and invertebrates including anopheline. We cloned the full-length crt gene from malaria vector, Anopheles stephensi (AsCrt) and explored the interaction of recombinant AsCrt protein, expressed in a prokaryotic system (pGEX-6p-1), with surface proteins of Plasmodium berghei ookinetes by immunofluorescence assay. The cellular localization of AsCrt was determined using the baculovirus expression system. Sequence analysis of the whole cDNA of AsCrt revealed that AsCrt contains an ORF of 1221 bp. The amino acid sequence of AsCrt protein obtained in this study showed 64% homology with similar protein in human. The AsCrt shares the most common features of CRTs from other species. This gene encodes a 406 amino-acid protein with a molecular mass of 46 kDa, which contains a predicted 16 amino-acid signal peptides, conserved cysteine residues, a proline-rich region, and highly acidic C-terminal domain with endoplasmic reticulum retrieval sequence HDEL. The production of GST-AsCrt recombinant protein was confirmed by Western blot analysis using an antibody against the GST protein. The FITC-labeled GST-AsCrt exhibited a significant interaction with P. berghei ookinete surface proteins. Purified recombinant GST-AsCrt, labeled with FITC, displayed specific binding to the surface of P. berghei ookinetes in comparison with control. Moreover, the expression of AsCrt in baculovirus expression system indicated that AsCrt was localized on the surface of Sf9 cells. Our results suggest that AsCrt could be utilized as a potential target for future studies in TBV area for malaria control.
Collapse
Affiliation(s)
- Nahid Borhani Dizaji
- Department of Medical Entomology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Reza Basseri
- Department of Medical Entomology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mansour Heidari
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran; Stem Cell Preparation Unit, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Shan H, Wei J, Zhang M, Lin L, Yan R, Zhu Y, Zhang R. Calreticulin is localized at mitochondria of rat cardiomyocytes and affected by furazolidone. Mol Cell Biochem 2014; 397:125-30. [PMID: 25087122 DOI: 10.1007/s11010-014-2179-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/24/2014] [Indexed: 11/29/2022]
Abstract
Calreticulin (CRT) is a calcium-buffering protein which is predominantly located in endoplasmic reticulum. In the previous mitochondria proteome analysis, we accidentally found that CRT may be also localized at myocardial mitochondria and was upregulated in a rat model of furazolidone-induced dilated cardiomyopathy. To our knowledge, there has not yet been any report of its presence in mitochondria of any cell types. The present study aimed to determine whether CRT was located at the mitochondria of rat cardiomyocytes and whether the mitochondrial CRT was affected by furazolidone. Mitochondrial preparations were isolated from primary cultured neonatal rat cardiomyocytes and purified by differential centrifugation. The purity of mitochondria was assessed by the reduction or elimination of the immunoreactivities of markers for cytosol, nucleus, sarcolemma, and endoplasmic reticulum. Western blot analysis demonstrated the presence of CRT in purified mitochondria of rat cardiomyocytes. The distribution of CRT to mitochondria was further confirmed by immuno-electron microscopy, flow cytometry, and laser scanning confocal microscopy (double staining with MitoTracker Red and CRT-Alexa Fluor 488). Western blot analysis also demonstrated that the mitochondrial content of CRT was significantly enhanced by furazolidone treatment by 2.73 ± 0.13 fold (P < 0.05) in rat cardiomyocytes, which was verified by immuno-electron microscopy. In summary, the present results suggest that CRT is localized at mitochondria of rat cardiomyocytes and such localization is affected by furazolidone.
Collapse
Affiliation(s)
- Hu Shan
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, 157 Xiwu Road, Xi'an, 710004, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Koenig PA, Ploegh HL. Protein quality control in the endoplasmic reticulum. F1000PRIME REPORTS 2014; 6:49. [PMID: 25184039 PMCID: PMC4108957 DOI: 10.12703/p6-49] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
THE TOPOLOGICAL BARRIERS DEFINED BY BIOLOGICAL MEMBRANES ARE NOT IMPERMEABLE: from small solutes to intact proteins, specialized transport and translocation mechanisms adjust to the cell's needs. Here, we review the removal of unwanted proteins from the endoplasmic reticulum (ER) and emphasize the need to extend observations from tissue culture models and simple eukaryotes to studies in whole animals. The variation in protein production and composition that characterizes different cell types and tissues requires tailor-made solutions to exert proper control over both protein synthesis and breakdown. The ER is an organelle essential to achieve and maintain such homeostasis.
Collapse
Affiliation(s)
- Paul-Albert Koenig
- Klinikum rechts der Isar, Technische Universität München, Institut für Klinische Chemie und Pathobiochemie, Ismaninger Straße22, 81675 MünchenGermany
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research9 Cambridge Center, Cambridge, 02142 MAUSA
| |
Collapse
|
32
|
Kuang XL, Liu F, Chen H, Li Y, Liu Y, Xiao J, Shan G, Li M, Snider BJ, Qu J, Barger SW, Wu S. Reductions of the components of the calreticulin/calnexin quality-control system by proteasome inhibitors and their relevance in a rodent model of Parkinson's disease. J Neurosci Res 2014; 92:1319-29. [PMID: 24860980 DOI: 10.1002/jnr.23413] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/16/2014] [Accepted: 04/19/2014] [Indexed: 12/14/2022]
Abstract
Evidence indicates that the ubiquitin-proteasome system and the endoplasmic retculum (ER) quality-control system work in concert to ensure that proteins are correctly folded in the ER and that misfolded proteins are retrotransported to the cytosol for degradation by proteasomes. Dysfunction of either system results in developmental abnormalities and even death in animals. This study investigates whether and how proteasome inhibition impacts the components of the calreticulin (CRT)/calnexin (CNX) glycoprotein folding machinery, a typical ER protein quality-control system, in the context of early neuronal injury. Here we report that proteasome inhibitor treatments, at nonlethal levels, reduced protein levels of CRT and ERp57 but not of CNX. These treatments increased protein levels of CRT in culture media, an effect blocked by brefeldin A, an inhibitor of protein trafficking; by contrast, ERp57 was not detected in culture media. Knockdown of CRT levels alone increased the vulnerability of SH-SY5Y, a neuronal cell line, to 6-hydroxydopamine (6-OHDA) toxicity. In a rat model of Parkinson's disease, intrastriatal 6-OHDA lesions resulted in decreased levels of CRT and ERp57 in the midbrain. These findings suggest that reduction of the components of CRT/CNX glycoprotein quality-control system may play a role in neuronal injury in Parkinson's disease and other neurodegenerative disorders associated with dysfunction of the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Xiu-Li Kuang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ishii K, Adachi T, Hamamoto H, Sekimizu K. Serratia marcescens suppresses host cellular immunity via the production of an adhesion-inhibitory factor against immunosurveillance cells. J Biol Chem 2014; 289:5876-88. [PMID: 24398686 DOI: 10.1074/jbc.m113.544536] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis.
Collapse
Affiliation(s)
- Kenichi Ishii
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
34
|
Jain K, Suryakumar G, Prasad R, Ganju L. Differential activation of myocardial ER stress response: A possible role in hypoxic tolerance. Int J Cardiol 2013; 168:4667-77. [DOI: 10.1016/j.ijcard.2013.07.180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/09/2013] [Accepted: 07/20/2013] [Indexed: 10/26/2022]
|
35
|
Stemmer N, Strekalova E, Djogo N, Plöger F, Loers G, Lutz D, Buck F, Michalak M, Schachner M, Kleene R. Generation of amyloid-β is reduced by the interaction of calreticulin with amyloid precursor protein, presenilin and nicastrin. PLoS One 2013; 8:e61299. [PMID: 23585889 PMCID: PMC3621835 DOI: 10.1371/journal.pone.0061299] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 03/11/2013] [Indexed: 12/28/2022] Open
Abstract
Dysregulation of the proteolytic processing of amyloid precursor protein by γ-secretase and the ensuing generation of amyloid-β is associated with the pathogenesis of Alzheimer's disease. Thus, the identification of amyloid precursor protein binding proteins involved in regulating processing of amyloid precursor protein by the γ-secretase complex is essential for understanding the mechanisms underlying the molecular pathology of the disease. We identified calreticulin as novel amyloid precursor protein interaction partner that binds to the γ-secretase cleavage site within amyloid precursor protein and showed that this Ca2+- and N-glycan-independent interaction is mediated by amino acids 330–344 in the C-terminal C-domain of calreticulin. Co-immunoprecipitation confirmed that calreticulin is not only associated with amyloid precursor protein but also with the γ-secretase complex members presenilin and nicastrin. Calreticulin was detected at the cell surface by surface biotinylation of cells overexpressing amyloid precursor protein and was co-localized by immunostaining with amyloid precursor protein and presenilin at the cell surface of hippocampal neurons. The P-domain of calreticulin located between the N-terminal N-domain and the C-domain interacts with presenilin, the catalytic subunit of the γ-secretase complex. The P- and C-domains also interact with nicastrin, another functionally important subunit of this complex. Transfection of amyloid precursor protein overexpressing cells with full-length calreticulin leads to a decrease in amyloid-β42 levels in culture supernatants, while transfection with the P-domain increases amyloid-β40 levels. Similarly, application of the recombinant P- or C-domains and of a synthetic calreticulin peptide comprising amino acid 330–344 to amyloid precursor protein overexpressing cells result in elevated amyloid-β40 and amyloid-β42 levels, respectively. These findings indicate that the interaction of calreticulin with amyloid precursor protein and the γ-secretase complex regulates the proteolytic processing of amyloid precursor protein by the γ-secretase complex, pointing to calreticulin as a potential target for therapy in Alzheimer's disease.
Collapse
Affiliation(s)
- Nina Stemmer
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Strekalova
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Nevena Djogo
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Plöger
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - David Lutz
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Buck
- Institut für Klinische Chemie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- * E-mail:
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
36
|
Lee D, Oka T, Hunter B, Robinson A, Papp S, Nakamura K, Srisakuldee W, Nickel BE, Light PE, Dyck JRB, Lopaschuk GD, Kardami E, Opas M, Michalak M. Calreticulin induces dilated cardiomyopathy. PLoS One 2013; 8:e56387. [PMID: 23437120 PMCID: PMC3577809 DOI: 10.1371/journal.pone.0056387] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/08/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Calreticulin, a Ca(2+)-buffering chaperone of the endoplasmic reticulum, is highly expressed in the embryonic heart and is essential for cardiac development. After birth, the calreticulin gene is sharply down regulated in the heart, and thus, adult hearts have negligible levels of calreticulin. In this study we tested the role of calreticulin in the adult heart. METHODOLOGY/PRINCIPAL FINDINGS We generated an inducible transgenic mouse in which calreticulin is targeted to the cardiac tissue using a Cre/loxP system and can be up-regulated in adult hearts. Echocardiography analysis of hearts from transgenic mice expressing calreticulin revealed impaired left ventricular systolic and diastolic function and impaired mitral valve function. There was altered expression of Ca(2+) signaling molecules and the gap junction proteins, Connexin 43 and 45. Sarcoplasmic reticulum associated Ca(2+)-handling proteins (including the cardiac ryanodine receptor, sarco/endoplasmic reticulum Ca(2+)-ATPase, and cardiac calsequestrin) were down-regulated in the transgenic hearts with increased expression of calreticulin. CONCLUSIONS/SIGNIFICANCE We show that in adult heart, up-regulated expression of calreticulin induces cardiomyopathy in vivo leading to heart failure. This is due to an alternation in changes in a subset of Ca(2+) handling genes, gap junction components and left ventricle remodeling.
Collapse
Affiliation(s)
- Dukgyu Lee
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tatsujiro Oka
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Beth Hunter
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Alison Robinson
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sylvia Papp
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Kimitoshi Nakamura
- Department of Pediatrics, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Wattamon Srisakuldee
- Department of Human Anatomy and Cell Sciences, and Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada
| | - Barbara E. Nickel
- Department of Human Anatomy and Cell Sciences, and Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada
| | - Peter E. Light
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R. B. Dyck
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D. Lopaschuk
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Elissavet Kardami
- Department of Human Anatomy and Cell Sciences, and Physiology and Institute of Cardiovascular Sciences, St. Boniface Research Centre, University of Manitoba, Winnipeg, Canada
| | - Michal Opas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
37
|
Fricker M, Oliva-Martín MJ, Brown GC. Primary phagocytosis of viable neurons by microglia activated with LPS or Aβ is dependent on calreticulin/LRP phagocytic signalling. J Neuroinflammation 2012; 9:196. [PMID: 22889139 PMCID: PMC3481398 DOI: 10.1186/1742-2094-9-196] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/11/2012] [Indexed: 01/07/2023] Open
Abstract
Background Microglia are resident brain macrophages that can phagocytose dead, dying or viable neurons, which may be beneficial or detrimental in inflammatory, ischaemic and neurodegenerative brain pathologies. Cell death caused by phagocytosis of an otherwise viable cell is called ‘primary phagocytosis’ or ‘phagoptosis’. Calreticulin (CRT) exposure on the surface of cancer cells can promote their phagocytosis via LRP (low-density lipoprotein receptor-related protein) on macrophages, but it is not known whether this occurs with neurons and microglia. Methods We used primary cultures of cerebellar neurons, astrocytes and microglia to investigate the potential role of CRT/LRP phagocytic signalling in the phagocytosis of viable neurons by microglia stimulated with lipopolysaccharide (LPS) or nanomolar concentrations of amyloid-β peptide1-42 (Aβ). Exposure of CRT on the neuronal surface was investigated using surface biotinylation and western blotting. A phagocytosis assay was also developed using BV2 and PC12 cell lines to investigate CRT/LRP signalling in microglial phagocytosis of apoptotic cells. Results We found that BV2 microglia readily phagocytosed apoptotic PC12 cells, but this was inhibited by a CRT-blocking antibody or LRP-blocking protein (receptor-associated protein: RAP). Activation of primary rat microglia with LPS or Aβ resulted in loss of co-cultured cerebellar granule neurons, and this was blocked by RAP or antibodies against CRT or against LRP, preventing all neuronal loss and death. CRT was present on the surface of viable neurons, and this exposure did not change in inflammatory conditions. CRT antibodies prevented microglia-induced neuronal loss when added to neurons, while LRP antibodies prevented neuronal loss when added to the microglia. Pre-binding of CRT to neurons promoted neuronal loss if activated microglia were added, but pre-binding of CRT to microglia or both cell types prevented microglia-induced neuronal loss. Conclusions CRT exposure on the surface of viable or apoptotic neurons appears to be required for their phagocytosis via LRP receptors on activated microglia, but free CRT can block microglial phagocytosis of neurons by acting on microglia. Phagocytosis of CRT-exposing neurons by microglia can be a direct cause of neuronal death during inflammation, and might therefore contribute to neurodegeneration and be prevented by blocking the CRT/LRP pathway.
Collapse
Affiliation(s)
- Michael Fricker
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| | | | | |
Collapse
|
38
|
Overexpression of Calreticulin in Pre-eclamptic Placentas: Effect on Apoptosis, Cell Invasion and Severity of Pre-eclampsia. Cell Biochem Biophys 2012; 63:183-9. [DOI: 10.1007/s12013-012-9350-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Shih YY, Nakagawara A, Lee H, Juan HF, Jeng YM, Lin DT, Yang YL, Tsay YG, Huang MC, Pan CY, Hsu WM, Liao YF. Calreticulin Mediates Nerve Growth Factor-Induced Neuronal Differentiation. J Mol Neurosci 2011; 47:571-81. [DOI: 10.1007/s12031-011-9683-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 11/20/2011] [Indexed: 10/14/2022]
|
40
|
Satb1 ablation alters temporal expression of immediate early genes and reduces dendritic spine density during postnatal brain development. Mol Cell Biol 2011; 32:333-47. [PMID: 22064485 DOI: 10.1128/mcb.05917-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Complex behaviors, such as learning and memory, are associated with rapid changes in gene expression of neurons and subsequent formation of new synaptic connections. However, how external signals are processed to drive specific changes in gene expression is largely unknown. We found that the genome organizer protein Satb1 is highly expressed in mature neurons, primarily in the cerebral cortex, dentate hilus, and amygdala. In Satb1-null mice, cortical layer morphology was normal. However, in postnatal Satb1-null cortical pyramidal neurons, we found a substantial decrease in the density of dendritic spines, which play critical roles in synaptic transmission and plasticity. Further, we found that in the cerebral cortex, Satb1 binds to genomic loci of multiple immediate early genes (IEGs) (Fos, Fosb, Egr1, Egr2, Arc, and Bdnf) and other key neuronal genes, many of which have been implicated in synaptic plasticity. Loss of Satb1 resulted in greatly alters timing and expression levels of these IEGs during early postnatal cerebral cortical development and also upon stimulation in cortical organotypic cultures. These data indicate that Satb1 is required for proper temporal dynamics of IEG expression. Based on these findings, we propose that Satb1 plays a critical role in cortical neurons to facilitate neuronal plasticity.
Collapse
|
41
|
Buzzi LI, Simonetta SH, Parodi AJ, Castro OA. The two Caenorhabditis elegans UDP-glucose:glycoprotein glucosyltransferase homologues have distinct biological functions. PLoS One 2011; 6:e27025. [PMID: 22073243 PMCID: PMC3206904 DOI: 10.1371/journal.pone.0027025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 10/09/2011] [Indexed: 11/19/2022] Open
Abstract
The UDP-Glc:glycoprotein glucosyltransferase (UGGT) is the sensor of glycoprotein conformations in the glycoprotein folding quality control as it exclusively glucosylates glycoproteins not displaying their native conformations. Monoglucosylated glycoproteins thus formed may interact with the lectin-chaperones calnexin (CNX) and calreticulin (CRT). This interaction prevents premature exit of folding intermediates to the Golgi and enhances folding efficiency. Bioinformatic analysis showed that in C. elegans there are two open reading frames (F48E3.3 and F26H9.8 to be referred as uggt-1 and uggt-2, respectively) coding for UGGT homologues. Expression of both genes in Schizosaccharomyces pombe mutants devoid of UGGT activity showed that uggt-1 codes for an active UGGT protein (CeUGGT-1). On the other hand, uggt-2 coded for a protein (CeUGGT-2) apparently not displaying a canonical UGGT activity. This protein was essential for viability, although cnx/crt null worms were viable. We constructed transgenic worms carrying the uggt-1 promoter linked to the green fluorescent protein (GFP) coding sequence and found that CeUGGT-1 is expressed in cells of the nervous system. uggt-1 is upregulated under ER stress through the ire-1 arm of the unfolded protein response (UPR). Real-time PCR analysis showed that both uggt-1 and uggt-2 genes are expressed during the entire C. elegans life cycle. RNAi-mediated depletion of CeUGGT-1 but not of CeUGGT-2 resulted in a reduced lifespan and that of CeUGGT-1 and CeUGGT-2 in a developmental delay. We found that both CeUGGT1 and CeUGGT2 play a protective role under ER stress conditions, since 10 µg/ml tunicamycin arrested development at the L2/L3 stage of both uggt-1(RNAi) and uggt-2(RNAi) but not of control worms. Furthermore, we found that the role of CeUGGT-2 but not CeUGGT-1 is significant in relieving low ER stress levels in the absence of the ire-1 unfolding protein response signaling pathway. Our results indicate that both C. elegans UGGT homologues have distinct biological functions.
Collapse
Affiliation(s)
- Lucila I. Buzzi
- Laboratory of Glycobiology, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Sergio H. Simonetta
- Laboratory of Genetics and Molecular Physiology, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Armando J. Parodi
- Laboratory of Glycobiology, Fundación Instituto Leloir, Buenos Aires, Argentina
- Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Olga A. Castro
- Laboratory of Glycobiology, Fundación Instituto Leloir, Buenos Aires, Argentina
- Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
42
|
Moore CM, Dick EJ, Hubbard GB, Gardner SM, Dunn BG, Brothman AR, Williams V, Prajapati SI, Keller C, Davis MD. Craniorachischisis and omphalocele in a stillborn cynomolgus monkey (Macaca fascicularis). Am J Med Genet A 2011; 155A:1367-73. [PMID: 21567905 DOI: 10.1002/ajmg.a.33627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 07/01/2010] [Indexed: 01/13/2023]
Abstract
Nonhuman primates have been a common animal model to evaluate experimentally induced malformations. Reports on spontaneous malformations are important in determining the background incidence of congenital anomalies in specific species and in evaluating experimental results. Here we report on a stillborn cynomolgus monkey (Macaca fascicularis) with multiple congenital anomalies from the colony maintained at the Southwest National Primate Research Center at the Texas Biomedical Research Institute, San Antonio, Texas. Physical findings included low birth weight, craniorachischisis, facial abnormalities, omphalocele, malrotation of the gut with areas of atresia and intussusception, a Meckel diverticulum, arthrogryposis, patent ductus arteriosus, and patent foramen ovale. The macaque had normal male external genitalia, but undescended testes. Gestational age was unknown but was estimated from measurements of the limbs and other developmental criteria. Although cytogenetic analysis was not possible due to the tissues being in an advanced state of decomposition, array Comparative Genomic Hybridization analysis using human bacterial artificial chromosome clones was successful in effectively eliminating aneuploidy or any copy number changes greater than approximately 3-5 Mb as a cause of the malformations. Further evaluation of the animal included extensive imaging of the skeletal and neural tissue defects. The animal's congenital anomalies are discussed in relation to the current hypotheses attempting to explain the frequent association of neural tube defects with other abnormalities.
Collapse
Affiliation(s)
- Charleen M Moore
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abd Alla J, Pohl A, Reeck K, Streichert T, Quitterer U. Establishment of an in vivo model facilitates B2 receptor protein maturation and heterodimerization. Integr Biol (Camb) 2010; 2:209-17. [PMID: 20473401 DOI: 10.1039/b922592g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In individuals with diverse cardiovascular risk factors, signalling stimulated by the AT(1) receptor for the vasopressor angiotensin II is sensitized by heterodimerization with the receptor for the vasodepressor bradykinin, B(2). Signal sensitization and receptor heterodimerization rely on efficient maturation of the B(2) receptor protein. To assess functional features of that important cardiovascular receptor system, we established an in vivo model by using immunodeficient NOD.Scid mice for the expansion of transfected cells under physiological conditions. Compared to cultivated cells, the in vivo model strongly facilitated B(2) receptor maturation and heterodimerization. To elucidate the mechanisms underlying the enhancement of B(2) receptor protein maturation under in vivo conditions, we performed microarray gene expression profiling. Microarray analysis revealed a more than 1.7-fold up-regulation of the chaperone calreticulin upon in vivo cell expansion whereas other important members of the general chaperone system were only marginally altered. Down regulation of calreticulin expression by RNA interference confirmed the importance of calreticulin for efficient B(2) receptor maturation under in vivo conditions. Receptor proteins synthesized in the Nod.Scid cell expansion model were functionally active and sensitive to drug treatment as exemplified by treatment with the AT(1)-specific antagonist losartan. Thus, we established a model system that can be used to analyze functional features of proteins in vivo by expanding transfected cells in immunodeficient NOD.Scid mice.
Collapse
Affiliation(s)
- Joshua Abd Alla
- Molecular Pharmacology Unit, Swiss Federal Institute of Technology and University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Prins D, Michalak M. Endoplasmic reticulum proteins in cardiac development and dysfunction. Can J Physiol Pharmacol 2010; 87:419-25. [PMID: 19526035 DOI: 10.1139/y09-032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An understanding of cardiac pathologies and the molecular mechanisms thereof is essential for the development of therapies for cardiovascular disease, a common cause of death in Western societies. Investigations into heart diseases have shown that the endoplasmic reticulum and its diverse functions may lie at the center of many cardiac pathologies. Animal models have demonstrated that in numerous cases, faulty endoplasmic reticulum activity is manifested in defective cardiogenesis or impaired heart function. These findings suggest that the endoplasmic and sarcoplasmic reticulum membranes may represent functionally independent organelles responsible for specialized functions in the heart. This review addresses the molecular pathways linking endoplasmic reticulum function and malfunction with impaired cardiac phenotypes. The endoplasmic reticulum affects cardiac development and function through Ca2+-dependent pathways, its catalytic role in the proper folding and targeting of membrane-bound and secretory proteins, and its response to cellular stress events, particularly hypoxic conditions. These pathways present potential novel targets for treatment of cardiac disease.
Collapse
Affiliation(s)
- Daniel Prins
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S7, Canada
| | | |
Collapse
|
45
|
Disruption of calreticulin-mediated cellular adhesion signaling in the cadmium-induced omphalocele in the chick model. Pediatr Surg Int 2010; 26:91-5. [PMID: 19865819 DOI: 10.1007/s00383-009-2505-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Administration of cadmium (Cd) causes omphalocele in the chick embryo. The earliest histological changes in the chick Cd model are the breakdown of adherens junctions (AJs). Calreticulin (CRT) plays a key role in Ca(2+) signaling and cell adhesion. Ca(2+) signaling in the Cd chick model is known to be altered. The calcium-dependent adhesion molecule, E-cadherin, and its associate, beta-catenin, are key components of AJs regulated by CRT. CRT knockouts display omphalocele. We hypothesized that CRT, E-cadherin and beta-catenin are downregulated during early embryogenesis in the Cd chick model. METHODS After 60 h (H) incubation, chicks were harvested 1H, 4H, and 8H post treatment with saline or Cd and divided into controls and Cd. RT-PCR was performed to evaluate mRNA levels of CRT, E-cadherin and beta-catenin in the Cd chick model. RESULTS The mRNA levels of CRT were significantly decreased in the Cd group at 1H compared to controls (p < 0.05). The mRNA levels of E-cadherin and beta-catenin were significantly decreased at 4H in the Cd group compared to controls (p < 0.05). There were no significant differences at 8H. CONCLUSION Downregulation of CRT, E-cadherin and beta-catenin genes may cause omphalocele in the Cd chick model by disrupting CRT-mediated Ca(2+) signaling and AJs.
Collapse
|
46
|
Gold LI, Eggleton P, Sweetwyne MT, Van Duyn LB, Greives MR, Naylor SM, Michalak M, Murphy-Ullrich JE. Calreticulin: non-endoplasmic reticulum functions in physiology and disease. FASEB J 2009; 24:665-83. [PMID: 19940256 DOI: 10.1096/fj.09-145482] [Citation(s) in RCA: 311] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Calreticulin (CRT), when localized to the endoplasmic reticulum (ER), has important functions in directing proper conformation of proteins and glycoproteins, as well as in homeostatic control of cytosolic and ER calcium levels. There is also steadily accumulating evidence for diverse roles for CRT localized outside the ER, including data suggesting important roles for CRT localized to the outer cell surface of a variety of cell types, in the cytosol, and in the extracellular matrix (ECM). Furthermore, the addition of exogenous CRT rescues numerous CRT-driven functions, such as adhesion, migration, phagocytosis, and immunoregulatory functions of CRT-null cells. Recent studies show that topically applied CRT has diverse and profound biological effects that enhance cutaneous wound healing in animal models. This evidence for extracellular bioactivities of CRT has provided new insights into this classically ER-resident protein, despite a lack of knowledge of how CRT exits from the ER to the cell surface or how it is released into the extracellular milieu. Nonetheless, it has become clear that CRT is a multicompartmental protein that regulates a wide array of cellular responses important in physiological and pathological processes, such as wound healing, the immune response, fibrosis, and cancer.-Gold, L. I., Eggleton, P., Sweetwyne, M. T., Van Duyn, L. B., Greives, M. R., Naylor, S.-M., Michalak, M., Murphy-Ullrich, J. E. Calreticulin: non-endoplamic reticulum functions in physiology and disease.
Collapse
Affiliation(s)
- Leslie I Gold
- Departments of Medicine and Pathology, New York, University School of Medicine, 550 First Ave., NB16S13 New York, NY 10016 USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Du XL, Yang H, Liu SG, Luo ML, Hao JJ, Zhang Y, Lin DC, Xu X, Cai Y, Zhan QM, Wang MR. Calreticulin promotes cell motility and enhances resistance to anoikis through STAT3-CTTN-Akt pathway in esophageal squamous cell carcinoma. Oncogene 2009; 28:3714-22. [PMID: 19684620 DOI: 10.1038/onc.2009.237] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 05/22/2009] [Accepted: 06/28/2009] [Indexed: 12/27/2022]
Abstract
We have shown earlier that overexpression of Calreticulin (CRT) contributed to a poor prognosis for patients with esophageal squamous cell carcinoma (ESCC). Here, we have shown an important role of CRT in tumorigenesis through enhancing cell motility and anoikis resistance. SiRNA-mediated knockdown of CRT caused impaired cell migration, invasion and resistance to anoikis. Notably, CRT downregulation decreased the expression of Cortactin (CTTN), which has been previously reported as a candidate oncogene associated with anoikis through the PI3K-Akt pathway. In addition, Akt phosphorylation was abolished after CRT downregulation and its activation can be refreshed by CRT upregulation, suggesting that CRT-enhanced cell resistance to anoikis through the CRT-CTTN-PI3K-Akt pathway. Moreover, the CTTN mRNA level was decreased in CRT-siRNA cells, coupled with the inactivation of STAT3. Expression of both CTTN and p-STAT3 was reduced in tumor cells following incubation with the JAK-specific inhibitor, AG490. Chromatin immunoprecipitation assay showed direct binding of p-STAT3 to the conservative STAT3-binding sequences in CTTN promoter. Furthermore, overexpression of CTTN in CRT-downregulated ESCC cells restored its motility and resistance to anoikis. This study not only reveals a role of CRT in motility promotion and anoikis resistance in ESCC cells, but also identifies CRT as an upstream regulator in the CRT-STAT3-CTTN-Akt pathway.
Collapse
Affiliation(s)
- X-L Du
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kemeny-Suss N, Kasneci A, Rivas D, Afilalo J, Komarova SV, Chalifour LE, Duque G. Alendronate affects calcium dynamics in cardiomyocytes in vitro. Vascul Pharmacol 2009; 51:350-8. [PMID: 19815094 DOI: 10.1016/j.vph.2009.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 08/24/2009] [Accepted: 09/28/2009] [Indexed: 10/20/2022]
Abstract
Therapy with bisphosphonates, including alendronate (ALN), is considered a safe and effective treatment for osteoporosis. However, recent studies have reported an unexpected increase in serious atrial fibrillation (AF) in patients treated with bisphosphonates. The mechanism that explains this side effect remains unknown. Since AF is associated with an altered sarcoendoplasmic reticulum calcium load, we studied how ALN affects cardiomyocyte calcium homeostasis and protein isoprenylation in vitro. Acute and long-term (48h) treatment of atrial and ventricular cardiomyocytes with ALN (10(-8)-10(-6)M) was performed. Changes in calcium dynamics were determined by both fluorescence measurement of cytosolic free Ca(2+) concentration and western blot analysis of calcium-regulating proteins. Finally, effect of ALN on protein farnesylation was also identified. In both atrial and ventricular cardiomyocytes, ALN treatment delayed and diminished calcium responses to caffeine. Only in atrial cells, long-term exposure to ALN-induced transitory calcium oscillations and led to the development of oscillatory component in calcium responses to caffeine. Changes in calcium dynamics were accompanied by changes in expression of proteins controlling sarcoendoplasmic reticulum calcium. In contrast, ALN minimally affected protein isoprenylation in these cells. In summary, treatment of atrial cardiomyocytes with ALN-induced abnormalities in calcium dynamics consistent with induction of a self-stimulatory, pacemaker-like behavior, which may contribute to the development of cardiac side effects associated with these drugs.
Collapse
Affiliation(s)
- Naomi Kemeny-Suss
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada H3A 2B2
| | | | | | | | | | | | | |
Collapse
|
49
|
Mohapatra B, Vick GW, Fraser CD, Clunie SK, Towbin JA, Sinagra G, Vatta M. Short-term mechanical unloading and reverse remodeling of failing hearts in children. J Heart Lung Transplant 2009; 29:98-104. [PMID: 19783184 DOI: 10.1016/j.healun.2009.06.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 06/13/2009] [Accepted: 06/20/2009] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Mechanical support using a left ventricular assist device (LVAD) can lead to functional recovery of the myocardium in patients with end-stage heart failure (HF). Molecular remodeling, cytoskeletal disruption, and apoptosis activation are associated with abnormal gene expression in the failing ventricular myocardium of HF subjects and can normalize in response to medium- and long-term mechanical unloading in adults. However, there is little knowledge of the changes in gene expression after short-term mechanical support in children with HF. METHODS We evaluated left ventricular biopsies from 4 children with HF. The children had implantation of a continuous- or a pulsatile-flow LVAD for 8 to 16 days before undergoing heart transplantation. At the time of LVAD insertion and removal, we performed quantitative real-time polymerase chain reaction (QPCR) to study the expression of 326 genes encoding for structural, transcriptional, and signaling pathways proteins, and immunoblot analysis on dystrophin and apoptotic factors. RESULTS Short-term LVAD therapy significantly decreased brain natriuretic peptide (BNP) levels from pre-LVAD (3,584.5 +/- 378.3 pg/ml [95% CI]) to post-LVAD (447.5 +/- 52.7 pg/ml [95% CI]) in 2 patients in whom comparative BNP measurements were available. In addition, short-term LVAD therapy reduced HF and apoptosis markers, whereas it upregulated structural proteins, including dystrophin, as well as pro-hypertrophic and pro-inotropic markers. Furthermore, LVAD therapy normalized expression of genes involved in calcium homeostasis, cell growth, and differentiation. CONCLUSIONS Our pilot study suggests that even short-term LVAD therapy in children with severe HF can reverse molecular remodeling. This favorable effect should be taken into consideration in eligible children with significant ventricular dysfunction.
Collapse
Affiliation(s)
- Bhagyalaxmi Mohapatra
- Department of Pediatric Cardiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Transcriptional control of the calreticulin gene in health and disease. Int J Biochem Cell Biol 2009; 41:531-8. [DOI: 10.1016/j.biocel.2008.06.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/10/2008] [Accepted: 06/13/2008] [Indexed: 11/22/2022]
|