1
|
Su W, Nie Y, Zheng S, Yao Y. Recent Research on Chondrocyte Dedifferentiation and Insights for Regenerative Medicine. Biotechnol Bioeng 2025; 122:749-760. [PMID: 39716991 DOI: 10.1002/bit.28915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Chondrocytes maintain the balance of the extracellular matrix by synthesizing glycoproteins, collagen, proteoglycans and hyaluronic acid. Chondrocyte dedifferentiation refers to a process in which chondrocytes lose their mature differentiated phenotype and transform into a fibroblast-like morphology with fewer differentiated stages and inferior function under external stimulation. The important mechanism of homeostasis loss in osteoarthritis (OA) is a change in the chondrocyte phenotype. The dedifferentiation markers of chondrocytes are upregulated in OA, and the pathogenic factors related to OA have also been shown to enhance chondrocyte dedifferentiation. In this review, we compile recent studies on chondrocyte dedifferentiation, with an emphasis on potential markers and the underlying mechanisms of dedifferentiation, as well as the current research progress in inhibiting dedifferentiation or achieving redifferentiation. A deep understanding of chondrocyte dedifferentiation would not only support the pathogenesis of OA theoretically but also provide insightful ideas for regenerative medicine to manipulate the functional phenotype of cells.
Collapse
Affiliation(s)
- Weixian Su
- Department of Joint Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou Medical University, Guangzhou, China
| | - Yupeng Nie
- Department of Joint Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou Medical University, Guangzhou, China
| | - Shicong Zheng
- Department of Joint Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongchang Yao
- Department of Joint Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Liu A, Wang C, Zhao Z, Zhu R, Deng S, Zhang S, Ghorbani F, Ying T, Yi C, Li D. Progress of porous tantalum surface-modified biomaterial coatings in bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:26. [PMID: 40042692 PMCID: PMC11882692 DOI: 10.1007/s10856-025-06871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025]
Abstract
Tantalum (Ta) metal has emerged as a prominent material within the realm of bone tissue engineering, owing to its favorable biocompatibility, commendable mechanical attributes, and notable biological properties such as osteoconductivity, osteoinductivity, and angiogenic potential. However, as clinical applications have expanded, Ta implants have unveiled a spectrum of limitations. Consequently, porous tantalum (PTa) has garnered escalating interest, attributable to its unique microstructural attributes, tunable mechanical characteristics, and inherent biocompatibility. Various methodologies have been proposed to modify the surface of PTa, with the aim of accelerating and enhancing osseous integration while fostering more robust osseointegration. Strategic surface modifications have the potential to augment the inherent advantages of PTa, thereby offering diverse avenues for exploration within the realm of surface effects on PTa. This review elucidates the ongoing research endeavors concerning diverse biomaterial coatings applied to PTa surfaces in the context of bone tissue engineering.
Collapse
Affiliation(s)
- Aiguo Liu
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng, China
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Chenxu Wang
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng, China
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Ziwen Zhao
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Zhu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Shuang Deng
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Sitong Zhang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Farnaz Ghorbani
- Department of Translational Health Sciences, University of Bristol, Bristol, UK
| | - Ting Ying
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China.
| | - Chengqing Yi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| |
Collapse
|
3
|
Velot É, Guibert M, Koufany M, Bianchi A. Intra-articular injection of inorganic pyrophosphate improves IL-1β-induced cartilage damage in rat model of knee osteoarthritis in vivo. OSTEOARTHRITIS AND CARTILAGE OPEN 2025; 7:100560. [PMID: 39816851 PMCID: PMC11733043 DOI: 10.1016/j.ocarto.2024.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025] Open
Abstract
Objective Osteoarthritis (OA) is the most common form of chronic joint disease, affecting mainly the elderly population. This disorder is caused by cartilage degeneration with complex changes in the chondrocyte phenotype. Inorganic pyrophosphate (PPi) was shown to counteract the detrimental effect of interleukin (IL)-1β challenging in an in vitro OA model based on rat articular chondrocytes. It also maintained the differentiated articular phenotype, mostly by down regulating wingless-related integration site (Wnt)-5a secretion. These observations suggest a PPi protective role for chondrocyte in vitro. Methods To address this hypothesis in vivo, we investigated the impact on knee joint of three intra-articular injection (IAI) of PPi in a rat model of cartilage damage induced by IAI of IL-1β, where cartilage degradation and synovial inflammation are similar to that observed in OA. Cartilage and synovial membrane were collected after 7 days of challenge by IL-1β. Results PPi was able to reduce the deleterious effect of IL-1β. This effect was observable on the expression of cartilage extracellular matrix metabolism markers and confirmed by histology with safranin O and hematoxylin-eosin-saffron (HES) staining. Inorganic pyrophosphate also repressed the Wnt5a expression induced by IL-1β. No effect was observed on the inflammatory response of the synovial membrane. Conclusion These results demonstrate that PPi improves IL-1β-induced cartilage damage in rat but not the associated inflammation of synovial membrane. Thus, PPi could become a molecule of interest to restrict the progression of this disorder.
Collapse
Affiliation(s)
- Émilie Velot
- Université de Lorraine, CNRS (French National Centre for Scientific Research), IMoPA (Molecular Engineering and Articular Physiopathology), F-54000, Nancy, France
| | - Mathilde Guibert
- Université de Lorraine, CNRS (French National Centre for Scientific Research), IMoPA (Molecular Engineering and Articular Physiopathology), F-54000, Nancy, France
| | - Meriem Koufany
- Université de Lorraine, CNRS (French National Centre for Scientific Research), IMoPA (Molecular Engineering and Articular Physiopathology), F-54000, Nancy, France
| | - Arnaud Bianchi
- Université de Lorraine, CNRS (French National Centre for Scientific Research), IMoPA (Molecular Engineering and Articular Physiopathology), F-54000, Nancy, France
| |
Collapse
|
4
|
Mendoza-Torreblanca JG, Cárdenas-Rodríguez N, Carro-Rodríguez J, Contreras-García IJ, Garciadiego-Cázares D, Ortega-Cuellar D, Martínez-López V, Alfaro-Rodríguez A, Evia-Ramírez AN, Ignacio-Mejía I, Vargas-Hernández MA, Bandala C. Antiangiogenic Effect of Dopamine and Dopaminergic Agonists as an Adjuvant Therapeutic Option in the Treatment of Cancer, Endometriosis, and Osteoarthritis. Int J Mol Sci 2023; 24:10199. [PMID: 37373348 DOI: 10.3390/ijms241210199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Dopamine (DA) and dopamine agonists (DA-Ag) have shown antiangiogenic potential through the vascular endothelial growth factor (VEGF) pathway. They inhibit VEGF and VEGF receptor 2 (VEGFR 2) functions through the dopamine receptor D2 (D2R), preventing important angiogenesis-related processes such as proliferation, migration, and vascular permeability. However, few studies have demonstrated the antiangiogenic mechanism and efficacy of DA and DA-Ag in diseases such as cancer, endometriosis, and osteoarthritis (OA). Therefore, the objective of this review was to describe the mechanisms of the antiangiogenic action of the DA-D2R/VEGF-VEGFR 2 system and to compile related findings from experimental studies and clinical trials on cancer, endometriosis, and OA. Advanced searches were performed in PubMed, Web of Science, SciFinder, ProQuest, EBSCO, Scopus, Science Direct, Google Scholar, PubChem, NCBI Bookshelf, DrugBank, livertox, and Clinical Trials. Articles explaining the antiangiogenic effect of DA and DA-Ag in research articles, meta-analyses, books, reviews, databases, and clinical trials were considered. DA and DA-Ag have an antiangiogenic effect that could reinforce the treatment of diseases that do not yet have a fully curative treatment, such as cancer, endometriosis, and OA. In addition, DA and DA-Ag could present advantages over other angiogenic inhibitors, such as monoclonal antibodies.
Collapse
Affiliation(s)
| | - Noemi Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Jazmín Carro-Rodríguez
- Laboratorio de Medicina Traslacional Aplicada a Neurociencias, Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Itzel Jatziri Contreras-García
- Laboratorio de Biología de la Reproducción, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - David Garciadiego-Cázares
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
| | - Daniel Ortega-Cuellar
- Laboratorio Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Valentín Martínez-López
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
| | - Alfonso Alfaro-Rodríguez
- Neurociencias Básicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City 14389, Mexico
| | - Alberto Nayib Evia-Ramírez
- Servicio de Reconstrucción Articular, Cadera y Rodilla, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico
| | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, Mexico City 11200, Mexico
| | | | - Cindy Bandala
- Laboratorio de Medicina Traslacional Aplicada a Neurociencias, Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| |
Collapse
|
5
|
Nagayama K, Kodama F, Wataya N, Sato A, Matsumoto T. Changes in the intra- and extra-mechanical environment of the nucleus in Saos-2 osteoblastic cells during bone differentiation process: Nuclear shrinkage and stiffening in cell differentiation. J Mech Behav Biomed Mater 2023; 138:105630. [PMID: 36565693 DOI: 10.1016/j.jmbbm.2022.105630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Osteogenic differentiation has been reportedly regulated by various mechanical stresses, including fluid shear stress and tensile and compressive loading. The promotion of osteoblastic differentiation by these mechanical stresses is accompanied by reorganization of the F-actin cytoskeleton, which is deeply involved in intracellular forces and the mechanical environment. However, there is limited information about the effect on the mechanical environment of the intracellular nucleus, such as the mechanical properties of the nucleus and intracellular forces exerted on the nucleus, which have recently been found to be directly involved in various cellular functions. Here, we investigated the changes in the intracellular force applied to the nucleus and the effect on nuclear morphology and mechanical properties during osteogenic differentiation in human osteoblast-like cells (Saos-2). We carried out cell morphological analyses with confocal fluorescence microscopy, nuclear indentation test with atomic force microscopy (AFM), and fluorescence recovery after photobleaching (FRAP) for intranuclear DNA. The results revealed that a significant reorganization of the F-actin cytoskeleton from the nuclear surfaces to the cell periphery occurred in the osteogenic differentiation processes, simultaneously with the reduction of compressive forces to the nucleus. Such changes also facilitated nuclear shrinkage and stiffening, and further intranuclear chromatin compaction. The results indicate that the reduction of the intracellular compressive force due to reorganization of the F-actin cytoskeleton affects the intra- and extra-mechanical environment of the nucleus, and this change may affect gene expression and DNA replication in the osteogenic differentiation process.
Collapse
Affiliation(s)
- Kazuaki Nagayama
- Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan; Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi, Ibaraki, 316-8511, Japan.
| | - Fumiki Kodama
- Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Naoki Wataya
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi, Ibaraki, 316-8511, Japan
| | - Akiko Sato
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi, Ibaraki, 316-8511, Japan
| | - Takeo Matsumoto
- Biomechanics Laboratory, Department of Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan; Biomechanics Laboratory, Department of Mechanical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| |
Collapse
|
6
|
Huang G, Pan ST, Qiu JX. The Clinical Application of Porous Tantalum and Its New Development for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2647. [PMID: 34070153 PMCID: PMC8158527 DOI: 10.3390/ma14102647] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Porous tantalum (Ta) is a promising biomaterial and has been applied in orthopedics and dentistry for nearly two decades. The high porosity and interconnected pore structure of porous Ta promise fine bone ingrowth and new bone formation within the inner space, which further guarantee rapid osteointegration and bone-implant stability in the long term. Porous Ta has high wettability and surface energy that can facilitate adherence, proliferation and mineralization of osteoblasts. Meanwhile, the low elastic modulus and high friction coefficient of porous Ta allow it to effectively avoid the stress shield effect, minimize marginal bone loss and ensure primary stability. Accordingly, the satisfactory clinical application of porous Ta-based implants or prostheses is mainly derived from its excellent biological and mechanical properties. With the advent of additive manufacturing, personalized porous Ta-based implants or prostheses have shown their clinical value in the treatment of individual patients who need specially designed implants or prosthesis. In addition, many modification methods have been introduced to enhance the bioactivity and antibacterial property of porous Ta with promising in vitro and in vivo research results. In any case, choosing suitable patients is of great importance to guarantee surgical success after porous Ta insertion.
Collapse
Affiliation(s)
| | | | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; (G.H.); (S.-T.P.)
| |
Collapse
|
7
|
Articular Chondrocyte Phenotype Regulation through the Cytoskeleton and the Signaling Processes That Originate from or Converge on the Cytoskeleton: Towards a Novel Understanding of the Intersection between Actin Dynamics and Chondrogenic Function. Int J Mol Sci 2021; 22:ijms22063279. [PMID: 33807043 PMCID: PMC8004672 DOI: 10.3390/ijms22063279] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
Numerous studies have assembled a complex picture, in which extracellular stimuli and intracellular signaling pathways modulate the chondrocyte phenotype. Because many diseases are mechanobiology-related, this review asked to what extent phenotype regulators control chondrocyte function through the cytoskeleton and cytoskeleton-regulating signaling processes. Such information would generate leverage for advanced articular cartilage repair. Serial passaging, pro-inflammatory cytokine signaling (TNF-α, IL-1α, IL-1β, IL-6, and IL-8), growth factors (TGF-α), and osteoarthritis not only induce dedifferentiation but also converge on RhoA/ROCK/Rac1/mDia1/mDia2/Cdc42 to promote actin polymerization/crosslinking for stress fiber (SF) formation. SF formation takes center stage in phenotype control, as both SF formation and SOX9 phosphorylation for COL2 expression are ROCK activity-dependent. Explaining how it is molecularly possible that dedifferentiation induces low COL2 expression but high SF formation, this review theorized that, in chondrocyte SOX9, phosphorylation by ROCK might effectively be sidelined in favor of other SF-promoting ROCK substrates, based on a differential ROCK affinity. In turn, actin depolymerization for redifferentiation would “free-up” ROCK to increase COL2 expression. Moreover, the actin cytoskeleton regulates COL1 expression, modulates COL2/aggrecan fragment generation, and mediates a fibrogenic/catabolic expression profile, highlighting that actin dynamics-regulating processes decisively control the chondrocyte phenotype. This suggests modulating the balance between actin polymerization/depolymerization for therapeutically controlling the chondrocyte phenotype.
Collapse
|
8
|
Hua L, Lei T, Qian H, Zhang Y, Hu Y, Lei P. 3D-printed porous tantalum: recent application in various drug delivery systems to repair hard tissue defects. Expert Opin Drug Deliv 2021; 18:625-634. [PMID: 33270470 DOI: 10.1080/17425247.2021.1860015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The treatment of hard tissue defects, especially those of bone and cartilage, induced by infections or tumors remains challenging. Traditional methods, including debridement with systematic chemotherapy, have shortcomings owing to their inability to eliminate infections and high systematic toxicity. AREA COVERED This review comprehensively summarizes and discusses the current applications of 3D-printed porous tantalum (3D-P-p-Ta), a novel drug delivery strategy, in drug delivery systems to repair hard tissue defects, as well as the limitations of existing data and potential future research directions. EXPERT OPINION Drug delivery systems have advanced medical treatments, with the advantages of high local drug concentration, long drug-release period, and minimal systematic toxicity. Due to its excellent biocompatibility, ideal mechanical property, and anti-corrosion ability, porous tantalum is one of the most preferable loading scaffolds. 3D printing allows for freedom of design and facilitates the production of regular porous implants with high repeatability. There are several reports on the application of 3D-P-p-Ta in drug delivery systems for the management of infection- or tumor-associated bone defects, yet, to the best of our knowledge, no reviews have summarized the current research progress.
Collapse
Affiliation(s)
- Long Hua
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha Hunan, China.,Department of Orthopedics, No.6 Affiliated Hospital Xinjiang Medical University, Urumqi Xinjiang, China
| | - Ting Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha Hunan, China
| | - Hu Qian
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha Hunan, China
| | - Yu Zhang
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha Hunan, China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha Hunan, China
| | - Pengfei Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha Hunan, China.,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, China
| |
Collapse
|
9
|
Natural and Synthetic Polymeric Scaffolds. Biomed Mater 2021. [DOI: 10.1007/978-3-030-49206-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Selig M, Lauer JC, Hart ML, Rolauffs B. Mechanotransduction and Stiffness-Sensing: Mechanisms and Opportunities to Control Multiple Molecular Aspects of Cell Phenotype as a Design Cornerstone of Cell-Instructive Biomaterials for Articular Cartilage Repair. Int J Mol Sci 2020; 21:E5399. [PMID: 32751354 PMCID: PMC7432012 DOI: 10.3390/ijms21155399] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/23/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Since material stiffness controls many cell functions, we reviewed the currently available knowledge on stiffness sensing and elucidated what is known in the context of clinical and experimental articular cartilage (AC) repair. Remarkably, no stiffness information on the various biomaterials for clinical AC repair was accessible. Using mRNA expression profiles and morphology as surrogate markers of stiffness-related effects, we deduced that the various clinically available biomaterials control chondrocyte (CH) phenotype well, but not to equal extents, and only in non-degenerative settings. Ample evidence demonstrates that multiple molecular aspects of CH and mesenchymal stromal cell (MSC) phenotype are susceptible to material stiffness, because proliferation, migration, lineage determination, shape, cytoskeletal properties, expression profiles, cell surface receptor composition, integrin subunit expression, and nuclear shape and composition of CHs and/or MSCs are stiffness-regulated. Moreover, material stiffness modulates MSC immuno-modulatory and angiogenic properties, transforming growth factor beta 1 (TGF-β1)-induced lineage determination, and CH re-differentiation/de-differentiation, collagen type II fragment production, and TGF-β1- and interleukin 1 beta (IL-1β)-induced changes in cell stiffness and traction force. We then integrated the available molecular signaling data into a stiffness-regulated CH phenotype model. Overall, we recommend using material stiffness for controlling cell phenotype, as this would be a promising design cornerstone for novel future-oriented, cell-instructive biomaterials for clinical high-quality AC repair tissue.
Collapse
Affiliation(s)
- Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Jasmin C. Lauer
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Melanie L. Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
| |
Collapse
|
11
|
Charlier E, Deroyer C, Ciregia F, Malaise O, Neuville S, Plener Z, Malaise M, de Seny D. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol 2019; 165:49-65. [PMID: 30853397 DOI: 10.1016/j.bcp.2019.02.036] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 02/08/2023]
|
12
|
Barua E, Deoghare AB, Deb P, Lala SD. Naturally derived biomaterials for development of composite bone scaffold: A review. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1757-899x/377/1/012013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Wang Q, Zhang H, Gan H, Wang H, Li Q, Wang Z. Application of combined porous tantalum scaffolds loaded with bone morphogenetic protein 7 to repair of osteochondral defect in rabbits<sup/>. INTERNATIONAL ORTHOPAEDICS 2018; 42:1437-1448. [PMID: 29445961 DOI: 10.1007/s00264-018-3800-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/23/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE Porous tantalum (PT) has been widely used in orthopaedic applications for low modulus of elasticity, excellent biocompatibility, and the microstructures similar to cancellous bone. In order to improve the biological activity of PT, biologically active factors can be combined with the material. The purpose of this study was to investigate if bone morphogenetic protein 7 (BMP-7) modifications could enhance the repairing of cartilage of PT in osteochondral defect in medial femoral condyle of rabbits. METHODS A cylindrical osteochondral defect model was created on the animal medial femoral condyle of and filled as follows: PT modified with BMP-7 for MPT group, non-modified PT for the PT group, while no implants were used for the blank group. The regenerated osteochondral tissue was assessed and analyzed by histological observations at four, eight and 16 weeks post-operation and evaluated in an independent and blinded manner by five different observers using a histological score. Osteochondral and subchondral bone defect repair was assessed by micro-CT scan at 16 weeks post-operation, while the biomechanical test was performed at 16 weeks post-operation. RESULTS Briefly, higher overall histological score was observed in the MPT group compared to PT group. Furthermore, more new osteochondral tissue and bone formed at the interface and inside the inner pores of scaffolds of the MPT group compared to PT group. Additionally, the micro-CT data suggested that the new bone volume fractions and the quantity and quality of trabecular bone, as well as the maximum release force of the bone, were higher in the MPT group compared to PT group. CONCLUSIONS We demonstrated that the applied modified PT with BMP-7 promotes excellent subchondral bone regeneration and may serve as a novel approach for osteochondral defects repair.
Collapse
Affiliation(s)
- Qian Wang
- Experimental Center, North China University of Science and Technology, Tangshan, 063000, China
| | - Hui Zhang
- Department of Joint Surgery 1, The Second Hospital of Tangshan, Tangshan, 063000, China
| | - Hongquan Gan
- Department of Orthopaedics, Affiliated Hospital, North China University of Science and Technology, No. 73 Jianshe Road, Tangshan, 063000, China
| | - Hui Wang
- Hand Surgery Department, The Second Hospital of Tangshan, Tangshan, 063000, China
| | - Qijia Li
- Experimental Center, North China University of Science and Technology, Tangshan, 063000, China
| | - Zhiqiang Wang
- Department of Orthopaedics, Affiliated Hospital, North China University of Science and Technology, No. 73 Jianshe Road, Tangshan, 063000, China.
| |
Collapse
|
14
|
Zhang Y, Guo W, Wang M, Hao C, Lu L, Gao S, Zhang X, Li X, Chen M, Li P, Jiang P, Lu S, Liu S, Guo Q. Co-culture systems-based strategies for articular cartilage tissue engineering. J Cell Physiol 2017; 233:1940-1951. [PMID: 28548713 DOI: 10.1002/jcp.26020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 01/01/2023]
Abstract
Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering.
Collapse
Affiliation(s)
- Yu Zhang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Weimin Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Mingjie Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Chunxiang Hao
- Institute of Anesthesia, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Liang Lu
- Anhui Provincial Hospital, Hefei, People's Republic of China
| | - Shuang Gao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Xueliang Zhang
- Shanxi Traditional Chinese, Taiyuan, People's Republic of China
| | - Xu Li
- School of Medicine, Naikai University, Tianjin, People's Republic of China
| | - Mingxue Chen
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Penghao Li
- School of Medicine, Naikai University, Tianjin, People's Republic of China
| | - Peng Jiang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Shibi Lu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, People's Republic of China
| |
Collapse
|
15
|
Yuan X, Zhou M, Gough J, Glidle A, Yin H. A novel culture system for modulating single cell geometry in 3D. Acta Biomater 2015; 24:228-240. [PMID: 26086694 DOI: 10.1016/j.actbio.2015.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 05/14/2015] [Accepted: 06/09/2015] [Indexed: 01/27/2023]
Abstract
Dedifferentiation of chondrocytes during in vitro expansion remains an unsolved challenge for repairing serious articular cartilage defects. In this study, a novel culture system was developed to modulate single cell geometry in 3D and investigate its effects on the chondrocyte phenotype. The approach uses 2D micropatterns followed by in situ hydrogel formation to constrain single cell shape and spreading. This enables independent control of cell geometry and extracellular matrix. Using collagen I matrix, we demonstrated the formation of a biomimetic collagenous "basket" enveloping individual chondrocytes cells. By quantitatively monitoring the production by single cells of chondrogenic matrix (e.g. collagen II and aggrecan) during 21-day cultures, we found that if the cell's volume decreases, then so does its cell resistance to dedifferentiation (even if the cells remain spherical). Conversely, if the volume of spherical cells remains constant (after an initial decrease), then not only do the cells retain their differentiated status, but previously de-differentiated redifferentiate and regain a chondrocyte phenotype. The approach described here can be readily applied to pluripotent cells, offering a versatile platform in the search for niches toward either self-renewal or targeted differentiation.
Collapse
|
16
|
Tharp KM, Stahl A. Bioengineering Beige Adipose Tissue Therapeutics. Front Endocrinol (Lausanne) 2015; 6:164. [PMID: 26539163 PMCID: PMC4611961 DOI: 10.3389/fendo.2015.00164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023] Open
Abstract
Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and their potential for the metabolic therapies.
Collapse
Affiliation(s)
- Kevin M. Tharp
- Program in Metabolic Biology, Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Andreas Stahl
- Program in Metabolic Biology, Department of Nutritional Science and Toxicology, University of California Berkeley, Berkeley, CA, USA
- *Correspondence: Andreas Stahl,
| |
Collapse
|
17
|
Li S, Blain EJ, Cao J, Caterson B, Duance VC. Effects of the mycotoxin nivalenol on bovine articular chondrocyte metabolism in vitro. PLoS One 2014; 9:e109536. [PMID: 25329658 PMCID: PMC4198117 DOI: 10.1371/journal.pone.0109536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/10/2014] [Indexed: 11/21/2022] Open
Abstract
Objective Kashin-Beck Disease (KBD) is an endemic, age-related degenerative osteoarthropathy and its cause is hypothesised to involve Fusarium mycotoxins. This study investigated the Fusarium mycotoxin Nivalenol (NIV) on the metabolism of bovine articular chondrocytes in vitro. Design The effect 0.0–0.5 µg/ml NIV on transcript levels of types I and II collagen, aggrecan, matrix metalloproteinases (MMPs), a disintegrin and metalloproteinase with thrombospondin motif (ADAMTS) and the tissue inhibitors of MMPs (TIMPs) was investigated using quantitative PCR. Amounts of sulphated glycosaminoglycans, MMPs and TIMPs were assessed using the Dimethylmethylene Blue assay, gelatin zymography and reverse gelatin zymography respectively. Cytoskeletal organisation was analysed using confocal microscopy and cytoskeletal gene and protein levels were measured by quantitative PCR and Western blot analysis, respectively. Results NIV caused a dose-dependent increase in aggrecan transcription with a concomitant retention of sGAG in the cell lysate. Furthermore, NIV significantly increased MMPs-2, -3 & -9, ADAMTS-4 and -5, and TIMP-2 and -3 transcript levels but inhibited type I collagen, MMP 1 and TIMP 1 mRNA levels. NIV promoted extensive cytoskeletal network remodelling, particularly with vimentin where a dose-dependent peri-nuclear aggregation occurred. Conclusion NIV exposure to chondrocytes decreased matrix deposition, whilst enhancing selective catabolic enzyme production, suggesting its potential for induction of cellular catabolism. This NIV-induced extracellular matrix remodelling may be due to extensive remodelling/disassembly of the cytoskeletal elements. Collectively, these findings support the hypothesis that trichothecene mycotoxins, and in particular NIV, have the potential to induce matrix catabolism and propagate the pathogenesis of KBD.
Collapse
Affiliation(s)
- Siyuan Li
- Department of Anesthesiology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Emma J. Blain
- Arthritis Research UK Biomechanics and Bioengineering Centre, Cardiff University, Cardiff, United Kingdom
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Junling Cao
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
| | - Bruce Caterson
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Victor C. Duance
- Arthritis Research UK Biomechanics and Bioengineering Centre, Cardiff University, Cardiff, United Kingdom
- Division of Pathophysiology and Repair, School of Biosciences, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Combined effects of dentin sialoprotein and bone morphogenetic protein-2 on differentiation in human cementoblasts. Cell Tissue Res 2014; 357:119-32. [DOI: 10.1007/s00441-014-1831-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
|
19
|
Jang KW, Buckwalter JA, Martin JA. Inhibition of cell-matrix adhesions prevents cartilage chondrocyte death following impact injury. J Orthop Res 2014; 32:448-54. [PMID: 24249698 PMCID: PMC4034578 DOI: 10.1002/jor.22523] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/21/2013] [Indexed: 02/04/2023]
Abstract
Focal adhesions are transmembrane protein complexes that attach chondrocytes to the pericellular cartilage matrix and in turn, are linked to intracellular organelles via cytoskeleton. We previously found that excessive compression of articular cartilage leads to cytoskeleton-dependent chondrocyte death. Here we tested the hypothesis that this process also requires integrin activation and signaling via focal adhesion kinase (FAK) and Src family kinase (SFK). Osteochondral explants were treated with FAK and SFK inhibitors (FAKi, SFKi, respectively) for 2 h and then subjected to a death-inducing impact load. Chondrocyte viability was assessed by confocal microscopy immediately and at 24 h post-impact. With no treatment immediate post-impact viability was 59%. Treatment with 10 µM SFKi, 10 μM, or 100 µM FAKi improved viability to 80%, 77%, and 82%, respectively (p < 0.05). After 24 h viability declined to 34% in controls, 48% with 10 µM SFKi, 45% with 10 µM FAKi, and 56% with 100 µM FAKi (p < 0.01) treatment. These results confirmed that most of the acute chondrocyte mortality was FAK- and SFK-dependent, which implicates integrin-cytoskeleton interactions in the death signaling pathway. Together with previous findings, these data support the hypothesis that the excessive tissue strains accompanying impact loading induce death via a pathway initiated by strain on cell adhesion receptors.
Collapse
Affiliation(s)
- Kee W. Jang
- Department of Orthopaedics and Rehabilitation, The University of Iowa, Iowa City, IA,Department of Biomedical Engineering, The University of Iowa, Iowa City, IA
| | - Joseph A. Buckwalter
- Department of Orthopaedics and Rehabilitation, The University of Iowa, Iowa City, IA,Veterans Affairs Medical Center, Iowa City, IA
| | - James A. Martin
- Department of Orthopaedics and Rehabilitation, The University of Iowa, Iowa City, IA
| |
Collapse
|
20
|
McNary SM, Athanasiou KA, Reddi AH. Transforming growth factor β-induced superficial zone protein accumulation in the surface zone of articular cartilage is dependent on the cytoskeleton. Tissue Eng Part A 2013; 20:921-9. [PMID: 24116978 DOI: 10.1089/ten.tea.2013.0043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The phenotype of articular chondrocytes is dependent on the cytoskeleton, specifically the actin microfilament architecture. Articular chondrocytes in monolayer culture undergo dedifferentiation and assume a fibroblastic phenotype. This process can be reversed by altering the actin cytoskeleton by treatment with cytochalasin. Whereas dedifferentiation has been studied on chondrocytes isolated from the whole cartilage, the effects of cytoskeletal alteration on specific zones of cells such as superficial zone chondrocytes are not known. Chondrocytes from the superficial zone secrete superficial zone protein (SZP), a lubricating proteoglycan that reduces the coefficient of friction of articular cartilage. A better understanding of this phenomenon may be useful in elucidating chondrocyte dedifferentiation in monolayer and accumulation of the cartilage lubricant SZP, with an eye toward tissue engineering functional articular cartilage. In this investigation, the effects of cytoskeletal modulation on the ability of superficial zone chondrocytes to secrete SZP were examined. Primary superficial zone chondrocytes were cultured in monolayer and treated with a combination of cytoskeleton modifying reagents and transforming growth factor β (TGFβ) 1, a critical regulator of SZP production. Whereas cytochalasin D maintains the articular chondrocyte phenotype, the hallmark of the superficial zone chondrocyte, SZP, was inhibited in the presence of TGFβ1. A decrease in TGFβ1-induced SZP accumulation was also observed when the microtubule cytoskeleton was modified using paclitaxel. These effects of actin and microtubule alteration were confirmed through the application of jasplakinolide and colchicine, respectively. As Rho GTPases regulate actin organization and microtubule polymerization, we hypothesized that the cytoskeleton is critical for TGFβ-induced SZP accumulation. TGFβ-mediated SZP accumulation was inhibited by small molecule inhibitors ML141 (Cdc42), NSC23766 (Rac1), and Y27632 (Rho effector Rho Kinase). On the other hand, lysophosphatidic acid, an upstream activator of Rho, increased SZP synthesis in response to TGFβ1. These results suggest that SZP production is dependent on the functional cytoskeleton, and Rho GTPases contribute to SZP accumulation by modulating the actions of TGFβ.
Collapse
Affiliation(s)
- Sean M McNary
- 1 Department of Orthopaedic Surgery, Lawrence Ellison Center for Tissue Regeneration and Repair, School of Medicine, University of California , Davis, Sacramento, California
| | | | | |
Collapse
|
21
|
Krug D, Klinger M, Haller R, Hargus G, Büning J, Rohwedel J, Kramer J. Minor cartilage collagens type IX and XI are expressed during embryonic stem cell-derived in vitro chondrogenesis. Ann Anat 2013; 195:88-97. [DOI: 10.1016/j.aanat.2012.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 06/12/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
|
22
|
Regulation of chondrocyte gene expression by osteogenic protein-1. Arthritis Res Ther 2011; 13:R55. [PMID: 21447156 PMCID: PMC3132046 DOI: 10.1186/ar3300] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/15/2011] [Accepted: 03/29/2011] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION The objective of this study was to investigate which genes are regulated by osteogenic protein-1 (OP-1) in human articular chondrocytes using Affimetrix gene array, in order to understand the role of OP-1 in cartilage homeostasis. METHODS Chondrocytes enzymatically isolated from 12 normal ankle cartilage samples were cultured in high-density monolayers and either transfected with OP-1 antisense oligonucleotide in the presence of lipofectin or treated with recombinant OP-1 (100 ng/ml) for 48 hours followed by RNA isolation. Gene expression profiles were analyzed by HG-U133A gene chips from Affimetrix. A cut-off was chosen at 1.5-fold difference from controls. Selected gene array results were verified by real-time PCR and by in vitro measures of proteoglycan synthesis and signal transduction. RESULTS OP-1 controls cartilage homeostasis on multiple levels including regulation of genes responsible for chondrocyte cytoskeleton (cyclin D, Talin1, and Cyclin M1), matrix production, and other anabolic pathways (transforming growth factor-beta (TGF-β)/ bone morphogenetic protein (BMP), insulin-like growth factor (IGF), vascular endothelial growth factor (VEGF), genes responsible for bone formation, and so on) as well as regulation of cytokines, neuromediators, and various catabolic pathways responsible for matrix degradation and cell death. In many of these cases, OP-1 modulated the expression of not only the ligands, but also their receptors, mediators of downstream signaling, kinases responsible for an activation of the pathways, binding proteins responsible for the inhibition of the pathways, and transcription factors that induce transcriptional responses. CONCLUSIONS Gene array data strongly suggest a critical role of OP-1 in human cartilage homeostasis. OP-1 regulates numerous metabolic pathways that are not only limited to its well-documented anabolic function, but also to its anti-catabolic activity. An understanding of OP-1 function in cartilage will provide strong justification for the application of OP-1 protein as a therapeutic treatment for cartilage regeneration and repair.
Collapse
|
23
|
Kim HA, Jung HA, Kim TY. Identification of Genes Regulated by IL-1β Using Integrative microRNA and mRNA Genomic Analysis in Human Articular Chondrocytes. JOURNAL OF RHEUMATIC DISEASES 2011. [DOI: 10.4078/jrd.2011.18.4.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hyun Ah Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Hyun A Jung
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Tae Young Kim
- Department of Orthopedic Surgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| |
Collapse
|
24
|
Che JH, Zhang ZR, Li GZ, Tan WH, Bai XD, Qu FJ. Application of tissue-engineered cartilage with BMP-7 gene to repair knee joint cartilage injury in rabbits. Knee Surg Sports Traumatol Arthrosc 2010; 18:496-503. [PMID: 19855958 DOI: 10.1007/s00167-009-0962-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 10/05/2009] [Indexed: 01/24/2023]
Abstract
Injured articular cartilage has a poor capacity for spontaneous healing. So far, satisfactory solution to this subsistent problem has not been found, but transgenic therapy may be a promising way. This study aims to evaluate the effectiveness of a tissue-engineered cartilage that was transfected with morphogenetic protein 7 (BMP 7) in repairing the cartilaginous defects of rabbit knee joints. Chondrocytes were transfected with BMP-7 gene (5 x 10(6) cells/ml), inoculated into the collagen-fibrin gel scaffolds, and cultured for 14 days. Then, the scaffolds were implanted onto the created defects (5.0 mm in diameter) in rabbits' knee joints. After 12 weeks, the rabbits were sacrificed and histological sections were evaluated using modified O'Driscoll cartilage scores; In situ hybridization and immunohistochemistry were performed to detect the expression of BMP-7 mRNA and BMP-7 at the implanted site while the content of DNA and GAG was determined as well. A better quality of repairs was observed at the 12th week after implantation when compared to the control group using histological analyses. The content of DNA and specific secretion of GAG in the treatment group is statistically significant different compared with the control group. Gene therapy may be a promising treatment method, but the novel therapy approach needs further studies with respect to a longer follow-up period.
Collapse
Affiliation(s)
- J H Che
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | | | | | | | | | | |
Collapse
|
25
|
Tew SR, Peffers MJ, McKay TR, Lowe ET, Khan WS, Hardingham TE, Clegg PD. Hyperosmolarity regulates SOX9 mRNA posttranscriptionally in human articular chondrocytes. Am J Physiol Cell Physiol 2009; 297:C898-C906. [PMID: 19657054 PMCID: PMC2770738 DOI: 10.1152/ajpcell.00571.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 08/04/2009] [Indexed: 12/31/2022]
Abstract
The transcription factor SOX9 regulates cartilage extracellular matrix gene expression and is essential for chondrocyte differentiation. We previously showed that activation of p38 MAPK by cycloheximide in human chondrocytes leads to stabilization of SOX9 mRNA (Tew SR and Hardingham TE. J Biol Chem 281: 39471-39479, 2006). In this study we investigated whether regulation of p38 MAPK caused by changes in osmotic pressure could control SOX9 mRNA levels expression by a similar mechanism. Primary human articular chondrocytes isolated from osteoarthritic cartilage at passage 2-4 showed significantly raised SOX9 mRNA levels when exposed to hyperosmotic conditions for 5 h. The effect was strongest and most reproducible when actin stress fibers were disrupted by the Rho effector kinase inhibitor Y27632, or by culturing the cells within alginate beads. Freshly isolated chondrocytes, used within 24-48 h of isolation, did not contain actin stress fibers and upregulated SOX9 mRNA in response to hyperosmolarity in the presence and absence of Y27632. In these freshly isolated chondrocytes, hyperosmolarity led to an increase in the half-life of SOX9 mRNA, which was sensitive to the p38 MAPK inhibitor SB202190. SOX9 protein levels were increased by hyperosmotic culture over 24 h, and, in passaged chondrocytes, the activity of a COL2A1 enhancer driven luciferase assay was upregulated. However, in freshly isolated chondrocytes, COL2A1 mRNA levels were reduced by hyperosmotic conditions and the half-life was decreased. The results showed that the osmotic environment regulated both SOX9 and COL2A1 mRNA posttranscriptionally, but in fresh cells resulted in increased SOX9, but decreased COL2A1.
Collapse
Affiliation(s)
- Simon R Tew
- Veterinary Clinical Sciences, University of Liverpool Veterinary Teaching Hospital, Leahurst, Neston, Cheshire, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
26
|
Schulze-Tanzil G. Activation and dedifferentiation of chondrocytes: implications in cartilage injury and repair. Ann Anat 2009; 191:325-38. [PMID: 19541465 DOI: 10.1016/j.aanat.2009.05.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 01/12/2023]
Abstract
Cartilage injury remains a major challenge in orthopedic surgery due to the fact that articular cartilage has only a limited capacity for intrinsic healing. Cartilage impaction is followed by a post-traumatic inflammatory response. Chondrocytes and synoviocytes are activated to produce inflammatory mediators and degradative enzymes which can induce a progradient cartilage self-destruction finally leading to secondary osteoarthritis (OA). However, an anti-inflammatory compensatory response is also detectable in cartilage by up-regulation of anti-inflammatory cytokines, probably a temporary attempt by chondrocytes to restore cartilage homeostasis. Matrix-assisted autologous chondrocyte transplantation (MACT) is a suitable technique for improving the rate of repair of larger articular cartilage defects. For MACT, autologous chondrocytes were isolated from a cartilage biopsy of a non-load bearing joint area. This technique requires sufficient expansion of differentiated autologous chondrocytes, which were then seeded on suitable biodegradable three-dimensional (3D) matrices to preform an extracellular cartilage matrix (ECM) before implantation into the defect. Cell expansion is accompanied by chondrocyte dedifferentiation, whereby substantial changes occur at multiple levels of chondrocyte synthetic profiles: including the ECM, cell surface receptors and cytoskeletal proteins. Since these dedifferentiated chondrocytes produce a non-specific mechanically inferior ECM, they are not suitable for MACT. 3D cultures are means of inducing and maintaining chondrocyte (re)differentiation and to preform ECM. The combination of MACT with anabolic growth factors and anti-inflammatory strategies using anti-inflammatory mediators might be useful for stabilizing the differentiated chondrocyte phenotype, to support neocartilage formation and inhibit post-traumatic cartilage inflammation and hence, the development of secondary OA.
Collapse
Affiliation(s)
- Gundula Schulze-Tanzil
- Department of Trauma and Reconstructive Surgery, Charité-University of Medicine, Campus Benjamin Franklin, FEM, Krahmerstrasse 6-10, Berlin, Germany
| |
Collapse
|
27
|
Ofek G, Willard VP, Koay EJ, Hu JC, Lin P, Athanasiou KA. Mechanical characterization of differentiated human embryonic stem cells. J Biomech Eng 2009; 131:061011. [PMID: 19449965 PMCID: PMC2817935 DOI: 10.1115/1.3127262] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human embryonic stem cells (hESCs) possess an immense potential in a variety of regenerative applications. A firm understanding of hESC mechanics, on the single cell level, may provide great insight into the role of biophysical forces in the maintenance of cellular phenotype and elucidate mechanical cues promoting differentiation along various mesenchymal lineages. Moreover, cellular biomechanics can provide an additional tool for characterizing stem cells as they follow certain differentiation lineages, and thus may aid in identifying differentiated hESCs, which are most suitable for tissue engineering. This study examined the viscoelastic properties of single undifferentiated hESCs, chondrogenically differentiated hESC subpopulations, mesenchymal stem cells (MSCs), and articular chondrocytes (ACs). hESC chondrogenesis was induced using either transforming growth factor-beta1 (TGF-beta1) or knock out serum replacer as differentiation agents, and the resulting cell populations were separated based on density. All cell groups were mechanically tested using unconfined creep cytocompression. Analyses of subpopulations from all differentiation regimens resulted in a spectrum of mechanical and morphological properties spanning the range of hESCs to MSCs to ACs. Density separation was further successful in isolating cellular subpopulations with distinct mechanical properties. The instantaneous and relaxed moduli of subpopulations from TGF-beta1 differentiation regimen were statistically greater than those of undifferentiated hESCs. In addition, two subpopulations from the TGF-beta1 group were identified, which were not statistically different from native articular chondrocytes in their instantaneous and relaxed moduli, as well as their apparent viscosity. Identification of a differentiated hESC subpopulation with similar mechanical properties as native chondrocytes may provide an excellent cell source for tissue engineering applications. These cells will need to withstand any mechanical stimulation regimen employed to augment the mechanical and biochemical characteristics of the neotissue. Density separation was effective at purifying distinct populations of cells. A differentiated hESC subpopulation was identified with both similar mechanical and morphological characteristics as ACs. Future research may utilize this cell source in cartilage regeneration efforts.
Collapse
Affiliation(s)
- Gidon Ofek
- Dept. of Bioengineering, Rice University, Houston, Texas, 77005
| | | | - Eugene J. Koay
- Dept. of Bioengineering, Rice University, Houston, Texas, 77005
- Baylor College of Medicine, Houston, TX, 77030
| | - Jerry C. Hu
- Dept. of Bioengineering, Rice University, Houston, Texas, 77005
| | - Patrick Lin
- M.D. Anderson Cancer Center, University of Texas, Houston, TX, 77050
| | | |
Collapse
|
28
|
Kim YH, Lee JW. Targeting of focal adhesion kinase by small interfering RNAs reduces chondrocyte redifferentiation capacity in alginate beads culture with type II collagen. J Cell Physiol 2009; 218:623-30. [DOI: 10.1002/jcp.21637] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Higuchi C, Nakamura N, Yoshikawa H, Itoh K. Transient dynamic actin cytoskeletal change stimulates the osteoblastic differentiation. J Bone Miner Metab 2009; 27:158-67. [PMID: 19183835 DOI: 10.1007/s00774-009-0037-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 07/11/2008] [Indexed: 11/26/2022]
Abstract
Dynamic cytoskeletal changes appear to be one of intracellular signals that control cell differentiation. To test this hypothesis, we examined the effects of short-term actin cytoskeletal changes on osteoblastic differentiation. We found an actin polymerization interfering reagent, cytochalasin D, promoted osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells. We also found that these effects were mediated by the protein kinase D (PKD) pathway. Short-term cytochalasin D treatment increased alkaline phosphatase (ALP) activity, osteocalcin (OCN) secretion, and mineralization of the extracellular matrix in MC3T3-E1 cells, with temporary changes in actin cytoskeleton. Furthermore, the disruption of actin cytoskeleton induced phosphorylation of 744/748 serine within the activation loop of PKD in a dose-dependent manner. The protein kinase C (PKC)/PKD inhibitor Go6976 suppressed cytochalasin D-induced acceleration of osteoblastic differentiation, whereas Go6983, a specific inhibitor of conventional PKCs, did not. Involvement of PKD signaling was confirmed by using small interfering RNA to knock down PKD. In addition, another actin polymerization interfering reagent, latrunculin B, also stimulated ALP activity and OCN secretion with PKD activation. On the other hand, the present data suggested that transient dynamic actin cytoskeletal reorganization could be a novel cellular signal that directly stimulated osteoblastic differentiation.
Collapse
Affiliation(s)
- Chikahisa Higuchi
- Department of Orthopedic Surgery, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
30
|
|
31
|
Liu K, Wang K, Yan H. Incomplete digestion preserves chondrocytes from dedifferentiating in long-termed culture on plastic substrate. Tissue Cell 2008; 41:1-11. [PMID: 18674789 DOI: 10.1016/j.tice.2008.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 06/09/2008] [Accepted: 06/17/2008] [Indexed: 11/29/2022]
Abstract
Epiphyseal pieces from young rat's costal cartilage were predigested for 30min by hyaluronidase then digested by collagenase for 1h with gentle beating applied. Resulted grape-like chondrocytes connecting with the residual cartilage matrix were seeded in plastic culture dishes and 4 passages at about 12-days interval were carried out. Morphological observations were performed daily. Compared with completely isolated chondrocytes at the same passage, detection for collagen II, integrin-beta(1) and focal adhesion kinase by immunochemistry staining, Western Blot and RT-PCR were performed to evaluate the preservation of chondrocytic phenotype and cellular functions. Primary chondrocytes isolated by complete enzymatic digestion served as control. Completely isolated chondrocytes in the monolayer culture were ready to lose the chondrocytic phenotype marked by the down-regulation of collagen II secretion and specific morphological alterations which were characterized as the cells gradually became long and spindle-like from their originally rounded shape. In case of the incompletely digested chondrocytes, the expression of collagen II was stable during the whole experiment while extensive cell-cell contacts and matrix-cell connections were observed. Transcription and expression of integrin-beta(1) and FAK were active and paracrine of BMP-7 was positive. These results suggested stable chondrocytic phenotype. Conclusionly, by the incomplete digestion method, the requisite time for enzymatic isolation was reduced and chondrocytes with residual matrix were harvested instead of mono-cell suspension. Compared with the novel techniques, the incomplete digestion shortened the enzymatic procedure greatly and simplified the subculturing operations with less financial cost. Especially, as extracellular matrix was preserved, chondrocytes expressed stable phenotype in a rather long-termed culture.
Collapse
Affiliation(s)
- Kai Liu
- Second Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shanxi 710004, China
| | | | | |
Collapse
|
32
|
Iscru DF, Anghelina M, Agarwal S, Agarwal G. Changes in surface topologies of chondrocytes subjected to mechanical forces: an AFM analysis. J Struct Biol 2008; 162:397-403. [PMID: 18406170 PMCID: PMC2488411 DOI: 10.1016/j.jsb.2008.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 01/01/2008] [Accepted: 02/21/2008] [Indexed: 12/31/2022]
Abstract
The cartilage is composed of chondrocytes embedded in a matrix of collagen fibrils interspersed within a network of proteoglycans and is constantly exposed to biomechanical forces during normal joint movement. Characterization of the surface morphology, cytoskeletal structure, adherance and elastic properties of these mechanosensitive cells are crucial in understanding the effects of mechanical forces around a cell and how a cell responds to changes in its physical environment. In this work, we employed the atomic force microscope (AFM) to image cultured chondrocytes before and after subjecting them to mechanical forces in the presence or absence of interleukin-1beta to mimic inflammatory conditions. Nanoscale imaging and quantitative measurements from AFM data revealed that there are distinct changes in cell-surface topology and cytoskeleton arrangement in the cells following treatment with mechanical forces, IL-1beta or both. Our findings for the first time demonstrate that cultured chondrocytes are amenable to high-resolution AFM imaging and dynamic tensile forces may help overcome the effect of inflammatory factors on chondrocyte response.
Collapse
Affiliation(s)
- Daniel F. Iscru
- AFM Core Facility at the Davis Heart and Lung Research Institute
| | | | | | - Gunjan Agarwal
- AFM Core Facility at the Davis Heart and Lung Research Institute
- Biomedical Engineering Department, The Ohio State University
| |
Collapse
|
33
|
Yoon DM, Fisher JP. Chondrocyte signaling and artificial matrices for articular cartilage engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 585:67-86. [PMID: 17120777 DOI: 10.1007/978-0-387-34133-0_5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chondrocytes depend on their environment to aid in their expression of appropriate proteins. It has been found that the interaction of integrin receptors with chondrocytes effects the production of extracellular molecules such as type II collagen and aggrecan. Additionally, the presence of growth factors such as IGF-1, TGF-beta1 and BMP-7 induce various signaling pathways that also aid in transducing phenotypic expressions by chondrocytes. Natural and synthetic polymers have been used to act as a scaffold for chondrocytes. The production of extracellular matrix proteins by chondrocytes has been studied. As tissue engineers, it is advantageous to explore the possibility of how altering biomaterial properties affect the signaling cascades by activation of receptors and transduction through the cytoplasm. This vital information will be able to aid in the future of engineering an appropriate biomaterial that can incorporate chondrocytes to act as a scaffold for articular cartilage.
Collapse
Affiliation(s)
- Diana M Yoon
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
34
|
Woods A, Wang G, Beier F. Regulation of chondrocyte differentiation by the actin cytoskeleton and adhesive interactions. J Cell Physiol 2007; 213:1-8. [PMID: 17492773 DOI: 10.1002/jcp.21110] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chondrocyte differentiation is a multi-step process characterized by successive changes in cell morphology and gene expression. In addition to tight regulation by numerous soluble factors, these processes are controlled by adhesive events. During the early phase of the chondrocyte life cycle, cell-cell adhesion through molecules such as N-cadherin and neural cell adhesion molecule (N-CAM) is required for differentiation of mesenchymal precursor cells to chondrocytes. At later stages, for example in growth plate chondrocytes, adhesion signaling from extracellular matrix (ECM) proteins through integrins and other ECM receptors such as the discoidin domain receptor (DDR) 2 (a collagen receptor) and Annexin V is necessary for normal chondrocyte proliferation and hypertrophy. Cell-matrix interactions are also important for chondrogenesis, for example through the activity of CD44, a receptor for Hyaluronan and collagens. The roles of several signaling molecules involved in adhesive signaling, such as integrin-linked kinase (ILK) and Rho GTPases, during chondrocyte differentiation are beginning to be understood, and the actin cytoskeleton has been identified as a common target of these adhesive pathways. Complete elucidation of the pathways connecting adhesion receptors to downstream effectors and the mechanisms integrating adhesion signaling with growth factor- and hormone-induced pathways is required for a better understanding of physiological and pathological skeletal development.
Collapse
Affiliation(s)
- Anita Woods
- CIHR Group in Skeletal Development and Remodeling, Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
35
|
Chubinskaya S, Hurtig M, Rueger DC. OP-1/BMP-7 in cartilage repair. INTERNATIONAL ORTHOPAEDICS 2007; 31:773-81. [PMID: 17687553 PMCID: PMC2266666 DOI: 10.1007/s00264-007-0423-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 05/17/2007] [Accepted: 05/23/2007] [Indexed: 12/31/2022]
Abstract
Three years ago we published a book chapter on the role of bone morphogenetic proteins (BMPs) in cartilage repair. Since that time our understanding of the function of osteogenic protein-1 (OP-1) or BMP-7 in cartilage homeostasis and repair has substantially improved and therefore we decided to devote a current review solely to this BMP. Here we summarise the information accumulated on OP-1 from in vitro and ex vivo studies with cartilage cells and tissues as well as from in vivo studies of cartilage repair in various animal models. The primary focus is on articular chondrocytes and cartilage, but data will also be presented on nonarticular cartilage, particularly from the intervertebral disc. The data show that OP-1 is a unique growth factor which, unlike other members of the same BMP family, exhibits in addition to its strong pro-anabolic activity very prominent anti-catabolic properties. Animal studies have demonstrated that OP-1 has the ability to repair cartilage in vivo in various models of articular cartilage degradation, including focal osteochondral and chondral defects and osteoarthritis, as well as models of degeneration in intervertebral disc cartilage. Together our findings indicate a significant promise for OP-1 as therapeutic in cartilage repair.
Collapse
Affiliation(s)
- Susan Chubinskaya
- Department of Biochemistry, Orthopedics and Section of Rheumatology (Department of Internal Medicine), Rush University Medical Center, Chicago, IL 60612 USA
| | - Mark Hurtig
- Comparative Orthopaedic Research, Department of Clinical Studies, University of Guelph, 50 McGilvray Lane, Guelph, ON N1G 2W1 Canada
| | | |
Collapse
|
36
|
Dodig M, Ogunwale B, Dasarathy S, Li M, Wang B, McCullough AJ. Differences in regulation of type I collagen synthesis in primary and passaged hepatic stellate cell cultures: the role of alpha5beta1-integrin. Am J Physiol Gastrointest Liver Physiol 2007; 293:G154-64. [PMID: 17510195 DOI: 10.1152/ajpgi.00432.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic stellate cells (HSC) differ in their phenotype depending on the initiation and progression of their activation. Our hypothesis was that different mechanisms govern type I collagen synthesis depending on stage of HSC activation. We investigated the role of alpha(5)beta(1)-integrin as a regulator of type I collagen gene COL1A1 expression in primary and passaged HSC cultures using transgenic mouse containing type I collagen gene COL1A1 promoter linked to the chloramphenicol acetyltransferase (CAT) reporter gene. The alpha(5)beta(1) protein levels increased during the activation and were highest in day 6 primary cultures but decreased in passaged HSC. CAT activity, reflecting COL1A1 expression, was upregulated by alpha(5)beta(1)-integrin. Inhibition of alpha(5)beta(1)-integrin by echistatin and blocking antibody resulted in reduced transgene activity only in early primary cultures (compared with the control, 53.3 +/- 12% echistatin and 58.8 +/- 7% blocking antibody, respectively, P < 0.05). Treatment of passaged HSC with either echistatin or blocking antibody had no effect. Fibronectin, an alpha(5)beta(1)-integrin ligand, increased transgene activity in primary (210 +/- 33%, P < 0.05) but not in passaged HSC cultures (119 +/- 8%). This alpha(5)beta(1)-integrin effect appears to be at least in part mediated by CCAAT enhancer binding protein-beta (C/EBPbeta), because fibronectin increased and alpha(5)-gene silencing by small interfering RNA decreased C/EBPbeta levels. In addition, C/EBPbeta knockout mice showed reduced type I collagen synthesis compared with wild-type littermates. Therefore alpha(5)beta(1)-integrin is an important regulator of type I collagen production in early primary HSC cultures but appears to have no direct role once the HSC are fully activated.
Collapse
Affiliation(s)
- Milan Dodig
- Department of Gastroenterology and Hepatology, Cleveland Clinic and Cleveland Clinic Lerner College of Medicine, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Kino-oka M, Morinaga Y, Kim MH, Takezawa Y, Kawase M, Yagi K, Taya M. Morphological regulation of rabbit chondrocytes on glucose-displayed surface. Biomaterials 2007; 28:1680-8. [PMID: 17182094 DOI: 10.1016/j.biomaterials.2006.11.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 11/29/2006] [Indexed: 11/22/2022]
Abstract
A culture surface was designed to regulate morphology of rabbit chondrocytes by changing the ratio of D- and L-glucose isomers displayed on a glass plate. With increasing ratio of d-glucose displayed on the surfaces, the efficiency of cell attachment improved, meaning that the attachment exclusively occurred via mediation of an affinity between D-glucose displayed and glucose transporter on cell membrane. At 0% and 100% D-glucose display, the round-shaped cells appeared dominantly, and most of cells became stretched in shape at 50% d-glucose display, indicating that the frequency of round-shaped cells depicted a concave profile against the ratio of D-glucose displayed. From the cytoskeletal staining of F-actin and vinculin, the immature stress fibers with fewer focal contacts were recognized in both the round shaped cells and those stretched in shape on 100% D-glucose-displayed surface. The time-lapse observation revealed that the cells on 100% D-glucose-displayed surface conducted active migration and aggregation with formation of collagen type II. These results suggest that 100% D-glucose-displayed surface can offer culture environment to maintain the chondrocytic phenotype of cells, similarly to the conditions achieved in three-dimensional (3-D) culture.
Collapse
Affiliation(s)
- Masahiro Kino-oka
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Olivotto E, Vitellozzi R, Fernandez P, Falcieri E, Battistelli M, Burattini S, Facchini A, Flamigni F, Santi S, Facchini A, Borzi' RM. Chondrocyte hypertrophy and apoptosis induced by GROalpha require three-dimensional interaction with the extracellular matrix and a co-receptor role of chondroitin sulfate and are associated with the mitochondrial splicing variant of cathepsin B. J Cell Physiol 2007; 210:417-27. [PMID: 17096385 DOI: 10.1002/jcp.20864] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CXCR2 ligands contribute to chondrocyte hypertrophy and apoptosis, important determinants in cartilage pathophysiology. We unraveled the kinetics of signaling, biochemical, transcriptional, and morphological events triggered by GROalpha in human osteoarthritic chondrocytes kept in three-dimensional culture. p38 MAPK activation was assessed with a highly sensitive ELISA. Effector caspase activation was evaluated by cleavage of a fluorogenic substrate. Gene expression of key markers of hypertrophy (MMP-13, Runx-2) and matrix synthesis (aggrecan), and of cathepsin B isoform CB(-2,3) was evaluated by real time PCR. Occurrence of the morphological markers of apoptosis was investigated by transmission electron microscopy (TEM). GROalpha led to p38 MAPK activation in passaged chondrocytes cultured in micromass but not as a high-density monolayer. This caused the downstream triggering of chondrocyte hypertrophy (MMP-13 and Runx-2 upregulation, and calcium deposition) and apoptosis/anoikis following concurrence of matrix degrading activity, and inhibition of matrix synthesis which also involved the induction of CB(-2,3). These phenomena proved to be dependent on the co-receptor role of sulfated glycosaminoglycans (sGAG) and the activation of p38 MAPK, since they were abrogated either by preincubation with soluble chondroitin-4 sulfate or p38 MAPK inhibitors. The co-receptor role of sGAG was further demonstrated by colocalization experiments of these molecules with GROalpha in the stimulated micromasses. These findings suggest that extracellular matrix exerts a regulatory role in chondrocytes differentiation, and that meaningful investigation of the effects of chemokines on chondrocyte biology requires culture conditions respectful of both the differentiated status of the chondrocytes and of their three-dimensional interaction with the extracellular matrix.
Collapse
Affiliation(s)
- Eleonora Olivotto
- Laboratorio di Immunologia e Genetica, Istituti Ortopedici Rizzoli, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Klein TJ, Schumacher BL, Blewis ME, Schmidt TA, Voegtline MS, Thonar EJM, Masuda K, Sah RL. Tailoring secretion of proteoglycan 4 (PRG4) in tissue-engineered cartilage. ACTA ACUST UNITED AC 2006; 12:1429-39. [PMID: 16846341 DOI: 10.1089/ten.2006.12.1429] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Articular cartilage provides a low-friction surface for joint articulation, with boundary lubrication facilitated by proteoglycan 4 (PRG4), which is secreted by chondrocytes of the superficial zone. Chondrocytes from different zones are phenotypically distinct, and their phenotypes in vitro are influenced by the system in which they are cultured. We hypothesized that culturing cells from the superficial (S) zone in two-dimensional monolayer or three-dimensional alginate would affect their synthesis of PRG4, and that subsequently seeding them atop alginate-recovered cells from the middle/ deep (M) zone in various proportions would result in tissue-engineered constructs with varying levels of PRG4 secretion and matrix accumulation. During monolayer culture, S cells retained their PRG4-secreting phenotype, whereas in alginate culture the percentage of cells secreting PRG4 decreased with time. Constructs formed with increasing percentages of S cells decreased in thickness and matrix accumulation, depending on both the culture conditions before construct formation and the S-cell density. PRG4-secreting cells were localized to the S-cell seeded construct surface, with secretion rates of 0.1-4 pg/cell/day or 0.1-1 pg/cell/day for constructs formed with monolayer-recovered or alginate-recovered S cells, respectively. Tailoring secretion of PRG4 in cartilage constructs may be useful for enhancing low-friction properties at the articular surface, while maintaining other surfaces free of PRG4 for enhancing integration with surrounding tissues.
Collapse
Affiliation(s)
- Travis J Klein
- Department of Bioengineering, University of California-San Diego, La Jolla, California 92093-0412, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sotobori T, Ueda T, Myoui A, Yoshioka K, Nakasaki M, Yoshikawa H, Itoh K. Bone morphogenetic protein-2 promotes the haptotactic migration of murine osteoblastic and osteosarcoma cells by enhancing incorporation of integrin beta1 into lipid rafts. Exp Cell Res 2006; 312:3927-38. [PMID: 17022972 DOI: 10.1016/j.yexcr.2006.08.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 08/20/2006] [Accepted: 08/24/2006] [Indexed: 11/18/2022]
Abstract
Cell migration is essential for both organogenesis and tumor progression. Bone morphogenetic proteins (BMPs) are reported to be critical for not only bone formation but also tumor invasion. Here, we found that treatment with recombinant human BMP-2 (rhBMP-2) enhanced the haptotactic response of murine osteoblastic MC3T3-E1 and osteosarcoma Dunn cells to various extracellular matrix (ECM) components, including fibronectin, type I collagen, and laminin-1. Function-blocking antibody against integrin alpha5beta1 partially inhibited haptotaxis to fibronectin, suggesting that the response was propagated via these integrins. rhBMP-2 slightly increased the expression level of integrin beta1, and enhanced the speed of cell spreading on fibronectin, focal adhesion formation and phosphorylation of focal adhesion kinase (FAK) at Tyr397. By means of sucrose gradient flotation, incorporation of integrin beta1 in fractions of detergent (CHAPS) resistant membrane was increased when the cells were treated with rhBMP-2. Further, treatment with methyl-beta-cyclodextrin to deplete membrane cholesterol abrogated the effect of rhBMP-2 on haptotaxis, and exogenously added cholesterol reversed this inhibitory effect. Collectively, these results provide insights into the mechanism by which BMP signaling enhances cell migration by modulating fibronectin-integrin beta1 signaling via cholesterol enriched membrane microdomains, lipid rafts.
Collapse
Affiliation(s)
- Tsukasa Sotobori
- Department of Biology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka 537-8511, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Bazou D, Dowthwaite GP, Khan IM, Archer CW, Ralphs JR, Coakley WT. Gap junctional intercellular communication and cytoskeletal organization in chondrocytes in suspension in an ultrasound trap. Mol Membr Biol 2006; 23:195-205. [PMID: 16754362 DOI: 10.1080/09687860600555906] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Particles or cells suspended in an appropriately designed ultrasound standing wave field can be aggregated at a node to form a single monolayer in a plane that can be interrogated microscopically. The approach is applied here to investigate the temporal development of F-actin and Cx43 distribution and of gap junctional intercellular communication in 2-D chondrocyte aggregates (monolayers) rapidly and synchronously formed and held in suspension in an ultrasound trap. Development of the F-actin cytoskeleton in the confluent single layer of 'cuboidal' cells forming the aggregate was completed within 1 h. Chondrocytes levitated in the trap synchronously formed functional gap junctions (as assessed by CMFDA dye transfer assays) in less than 1 h of initiation of cell-cell contact in the trap. It was shown that Cx43 gene expression was retained in isolated chondrocytes in suspension. Preincubation of cells with the protein synthesis inhibitor cycloheximide caused a six-fold decrease in Cx43 accumulation (as assessed by immunofluorescence) at the interfaces of chondrocytes in the aggregate. It is shown that the ultrasound trap provides an approach to studying the early stages of cytoskeletal and gap junction development as cells progress from physical aggregation, through molecular adhesion, to display the intracellular consequences of receptor interactions.
Collapse
Affiliation(s)
- Despina Bazou
- Cardiff University, School of Biosciences, Cardiff, Wales, UK
| | | | | | | | | | | |
Collapse
|
42
|
Lo SH. Focal adhesions: what's new inside. Dev Biol 2006; 294:280-91. [PMID: 16650401 DOI: 10.1016/j.ydbio.2006.03.029] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/22/2006] [Accepted: 03/27/2006] [Indexed: 01/15/2023]
Abstract
The cytoplasmic side of focal adhesions is comprised of large molecular complexes that link transmembrane receptors, such as integrins, to the actin cytoskeleton and mediate signals modulating cell attachment, migration, proliferation, differentiation, and gene expression. These complexes are heterogeneous and dynamic structures that are apparent targets of regulatory signals that control the function of focal adhesions. Recent studies using genetic approaches in invertebrate and vertebrate systems have begun to reveal the structure and function of these complexes in vivo.
Collapse
Affiliation(s)
- Su Hao Lo
- Center for Tissue Regeneration and Repair, Department of Orthopaedic Surgery and Cancer Center, University of California-Davis, Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
43
|
Klooster AR, Bernier SM. Tumor necrosis factor alpha and epidermal growth factor act additively to inhibit matrix gene expression by chondrocyte. Arthritis Res Ther 2004; 7:R127-38. [PMID: 15642133 PMCID: PMC1064891 DOI: 10.1186/ar1464] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 10/08/2004] [Accepted: 10/22/2004] [Indexed: 01/09/2023] Open
Abstract
The failure of chondrocytes to replace the lost extracellular matrix contributes to the progression of degenerative disorders of cartilage. Inflammatory mediators present in the joint regulate the breakdown of the established matrix and the synthesis of new extracellular matrix molecules. In the present study, we investigated the effects of tumor necrosis factor alpha (TNF-alpha) and epidermal growth factor (EGF) on chondrocyte morphology and matrix gene expression. Chondrocytes were isolated from distal femoral condyles of neonatal rats. Cells in primary culture displayed a cobblestone appearance. EGF, but not TNF-alpha, increased the number of cells exhibiting an elongated morphology. TNF-alpha potentiated the effect of EGF on chondrocyte morphology. Individually, TNF-alpha and EGF diminished levels of aggrecan and type II collagen mRNA. In combination, the effects of TNF-alpha and EGF were additive, indicating the involvement of discrete signaling pathways. Cell viability was not compromised by TNF-alpha or by EGF, alone or in combination. EGF alone did not activate NF-kappaB or alter NF-kappaB activation by TNF-alpha. Pharmacologic studies indicated that the effects of TNF-alpha and EGF alone or in combination were independent of protein kinase C signaling, but were dependent on MEK1/2 activity. Finally, we analyzed the involvement of Sox-9 using a reporter construct of the 48 base pair minimal enhancer of type II collagen. TNF-alpha attenuated enhancer activity as expected; in contrast, EGF did not alter either the effect of TNF-alpha or basal activity. TNF-alpha and EGF, acting through distinct signaling pathways, thus have additive adverse effects on chondrocyte function. These findings provide critical insights into the control of chondrocytes through the integration of multiple extracellular signals.
Collapse
Affiliation(s)
- Aaron R Klooster
- CIHR Group in Skeletal Development and Remodeling, Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada.
| | | |
Collapse
|
44
|
Petroianu A, Corsetti RA, Alberti LR. The effect of the presence of muscle tissue in a bone healing site. REVISTA DO HOSPITAL DAS CLINICAS 2004; 59:193-7. [PMID: 15361984 DOI: 10.1590/s0041-87812004000400007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
PURPOSE The recovery of a bone fracture is a process that is not yet fully understood. The literature conflicts on the results obtained by the interposition of foreign tissue inside a damaged bone. The objective of the present study was to ascertain the effect of placing muscle tissue between the stumps of a fractured bone. METHOD The study was carried out on 10 rabbits divided into 2 groups (n = 5): Group 1--partial fracture of the humerus and interposition of muscle tissue; Group 2--complete fracture of the humerus and interposition of muscle tissue. The fractured limb of all animals was immobilized for 8 weeks. At the end of this time, the rabbits were killed and their operated humeri were carefully removed for roentgenological and histological assessment. RESULTS All humeri of Group 1 recovered their integrity and normal aspect. However, the healing of the humeri of Group 2 was not perfect. Gross angulation of the bone diaphysis occurred in all animals, and immature trabecular bone, osteochondral tissue, and persistence of muscle tissue substituted normal bone. CONCLUSIONS Interposed muscle does not affect partial bone fracture healing but causes instability in a complete fracture.
Collapse
Affiliation(s)
- Andy Petroianu
- Department of Surgery, Medical School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | |
Collapse
|
45
|
Jura J, Wegrzyn P, Zarebski A, Władyka B, Koj A. Identification of changes in the transcriptome profile of human hepatoma HepG2 cells stimulated with interleukin-1 beta. Biochim Biophys Acta Mol Basis Dis 2004; 1689:120-33. [PMID: 15196593 DOI: 10.1016/j.bbadis.2004.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 02/27/2004] [Accepted: 03/02/2004] [Indexed: 10/26/2022]
Abstract
Interleukin-1 (IL-1) is the principal pro-inflammatory cytokine participating in the initiation of acute phase response. Human hepatoma HepG2 cells were exposed to 15 ng/ml of IL-1beta for times ranging from 1 to 24 h and the total RNA was isolated. Then cDNA was obtained and used for differential display with 10 arbitrary primers and 9 oligo(dT) primers designed by Clontech. Validation of observed changes of differentially expressed known genes was carried out by RT-PCR or Northern blot analysis. Out of 90 cDNA strands modulated by IL-1, 46 have been successfully reamplified and their sequencing indicates that they represent 36 different cDNA templates. By GenBank search, 26 cDNA clones were identified as already known genes while 10 showed no homology to any known gene. The identified transcripts modulated by IL-1 in HepG2 cells code for intracellular proteins of various function: trafficking/motor proteins (3 genes), proteins participating in the translation machinery or posttranscriptional/posttranslational modifications (7 genes), proteases (1 gene), proteins involved in metabolism (6 genes), activity modulators (3 genes), proteins of the cell cycle machinery (2 genes) and those functionally unclassified (4 genes). Majority of genes responded to IL-1 within 1 to 6 h (early genes), while two were late response genes (12-24 h) and four showed prolonged response over the whole 24-h period. Most of the observed changes of expression were in the range of two- to threefold increase in comparison to control untreated cells. Among identified genes, no typical secretory acute phase protein was found. The obtained results suggest that IL-1 affects the expression of several genes in HepG2 cells, especially those engaged in the synthesis and modifications of proteins.
Collapse
Affiliation(s)
- Jolanta Jura
- Department of Cell Biochemistry, Faculty of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | | | | | | | | |
Collapse
|
46
|
Spalazzi JP, Dionisio KL, Jiang J, Lu HH. Osteoblast and chondrocyte interactions during coculture on scaffolds. ACTA ACUST UNITED AC 2004; 22:27-34. [PMID: 14699933 DOI: 10.1109/memb.2003.1256269] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeffrey P Spalazzi
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace Building, MC 8904, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | | | | | | |
Collapse
|
47
|
Abstract
OBJECTIVE The initial attachment of transplanted chondrocytes to the surface of a cartilage defect is crucial for the success of chondrocyte transplantation. The purpose of this study was to investigate the early interaction of chondrocytes with the deep or calcified zones of cartilage or the subchondral bone, joint surfaces to which transplanted chondrocytes might have to attach in vivo. DESIGN Freshly isolated (primary) or passaged (P1) chondrocytes were seeded on the top of bone plugs having either a surface composed of mid-deep zone hyaline cartilage or calcified cartilage or bone only. The percent of cells that attached, the role of integrins in cell attachment, and gene expression after placement of the cells on the different surfaces were determined. RESULTS Both primary and passaged chondrocytes attached efficiently to all three surfaces (over 88% of seeded cells). The chondrocytes showed a punctate distribution of beta 1-integrin and vinculin, which in areas co-localized with actin, suggesting that the cells formed focal adhesions. The primary chondrocytes had a different shape, appearance of focal contacts, and actin distribution when compared to passaged cells and these did not appear to be influenced by the type of surface to which the cells attached. Blocking either beta 1-integrin or alpha v beta 5 integrin partially inhibited (between 27 to 48% and 26 to 37% respectively) attachment of both primary and passaged chondrocytes to all surfaces. Blocking alpha v beta 3 had no effect on adhesion. There was expression of type II collagen and aggrecan core protein mRNA by 2h. The different surfaces did not appear to affect the expression of these genes up to 24h although gene levels were lower in passaged cells. CONCLUSIONS Chondrocytes, either freshly isolated or passaged, have the potential to adhere to the different joint surfaces that could be exposed in a cartilage defect. Understanding how chondrocytes adhere and interact with damaged joint surfaces may help identify methods to enhance the retention of transplanted cells in the defect site and cartilage tissue formation.
Collapse
Affiliation(s)
- Hangjun Wang
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | | |
Collapse
|
48
|
Kim SJ, Hwang SG, Kim IC, Chun JS. Actin cytoskeletal architecture regulates nitric oxide-induced apoptosis, dedifferentiation, and cyclooxygenase-2 expression in articular chondrocytes via mitogen-activated protein kinase and protein kinase C pathways. J Biol Chem 2003; 278:42448-56. [PMID: 12907684 DOI: 10.1074/jbc.m304887200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nitric oxide (NO) in articular chondrocytes regulates differentiation, survival, and inflammatory responses by modulating ERK-1 and -2, p38 kinase, and protein kinase C (PKC) alpha and zeta. In this study, we investigated the effects of the actin cytoskeletal architecture on NO-induced dedifferentiation, apoptosis, cyclooxygenase (COX)-2 expression, and prostaglandin E2 production in articular chondrocytes, with a focus on ERK-1/-2, p38 kinase, and PKC signaling. Disruption of the actin cytoskeleton by cytochalasin D (CD) inhibited NO-induced apoptosis, dedifferentiation, COX-2 expression, and prostaglandin E2 production in chondrocytes cultured on plastic or during cartilage explants culture. CD treatment did not affect ERK-1/-2 activation but blocked the signaling events necessary for NO-induced dedifferentiation, apoptosis, and COX-2 expression such as activation of p38 kinase and inhibition of PKCalpha and -zeta. CD also suppressed activation of downstream signaling of p38 kinase and PKC, such as NF-kappaB activation, p53 accumulation, and caspase-3 activation, which are necessary for NO-induced apoptosis. NO production in articular chondrocytes caused down-regulation of phosphatidylinositol (PI) 3-kinase and Akt activities. The down-regulation of PI 3-kinase and Akt was blocked by CD treatment, and the CD effects on apoptosis, p38 kinase, and PKCalpha and -zeta were abolished by the inhibition of PI 3-kinase with LY294002. Our results collectively indicate that the actin cytoskeleton mediates NO-induced regulatory effects in chondrocytes by modulating down-regulation of PI 3-kinase and Akt, activation of p38 kinase, and inhibition of PKCalpha and -zeta
Collapse
Affiliation(s)
- Song-Ja Kim
- Department of Biological Science, Kongju National University, Gongju, Chungnam 314-701, Korea
| | | | | | | |
Collapse
|
49
|
Abstract
The purpose of this review is to summarize the current scientific knowledge of bone morphogenetic proteins (BMPs) in adult articular cartilage. We specifically focus on adult cartilage, since one of the major potential applications of the members of the BMP family may be a repair of adult tissue after trauma and/or disease. After reviewing cartilage physiology and BMPs, we analyze the data on the role of recombinant BMPs as anabolic agents in tissue formation and restoration in different in vitro and in vivo models following with the endogenous expression of BMPs and factors that regulate their expression. We also discuss recent transgenic modifications of BMP genes and subsequent effect on cartilage matrix synthesis. We found that the most studied BMPs in adult articular cartilage are BMP-7 and BMP-2 as well as transforming growth factor-beta (TGF-beta). There are a number of contradicting reports for some of these growth factors, since different models, animals, doses, time points, culture conditions and devices were used. However, regardless of the experimental conditions, only BMP-7 or osteogenic protein-1 (OP-1) exhibits the most convincing effects. It is the only BMP studied thus far in adult cartilage that demonstrates strong anabolic activity in vitro and in vivo with and without serum. OP-1 stimulates the synthesis of the majority of cartilage extracellular matrix proteins in adult articular chondrocytes derived from different species and of different age. OP-1 counteracts the degenerative effect of numerous catabolic mediators; it is also expressed in adult human, bovine, rabbit and goat articular cartilage. This review reveals the importance of the exploration of the BMPs in the cartilage field and highlights their significance for clinical applications in the treatment of cartilage-related diseases.
Collapse
Affiliation(s)
- Susan Chubinskaya
- Department of Biochemistry, Rush Medical College at Rush-Presbyterian-St. Luke's Medical Center, Chicago, IL 60612, USA.
| | | |
Collapse
|
50
|
Abstract
Thyroid hormones exert a profound effect on development, growth, and metabolism of skeleton. In the present study, we evaluated the effects of thyroxine (T4) and growth hormone (GH) on the terminal differentiation of rib growth plate chondrocytes in three-dimensional pellet culture. T4 (30ng/ml) stimulated the expressions of type II and X collagens, alkaline phosphatase (ALP) activity. On the other hand, the expression of chondrogenic transcription factor Sox9 in the T4 treatment group decreased significantly compared to the control group. T4 downregulates Sox9 and promotes hypertrophy. After day 7, T4 increases dramatically the synthesis of type X collagen mRNA, ALP activity, and cellular hypertrophy. Addition of GH does not modify the action of T4. Thus, T4 acts directly on chondrocytes. In conclusion, we demonstrated that T4 enhances the cellular and molecular events of terminal differentiation and hypertrophy of chondrocytes in the three-dimensional cultures.
Collapse
Affiliation(s)
- Yasunori Okubo
- Center for Tissue Regeneration and Repair, Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | | |
Collapse
|