1
|
Simões JLB, Braga GDC, Fontana M, Assmann CE, Bagatini MD. The Neuroprotective Role of A2A Adenosine Purinoceptor Modulation as a Strategy Against Glioblastoma. Brain Sci 2024; 14:1286. [PMID: 39766485 PMCID: PMC11674974 DOI: 10.3390/brainsci14121286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Glioblastoma (GBM) is a highly lethal type of cancer, frequently presenting an unfavorable prognosis. The current treatment options for this neoplasia are still limited, highlighting the need for further research evaluating new drugs to treat GBM or to serve as an adjuvant to improve the efficiency of currently used therapies. In this sense, the inhibition of A2A receptors in the brain has presented a neuroprotective role for several diseases, such as neurodegenerative conditions, and it has been suggested as a possible pharmacological target in some types of cancer; thus, it also can be underscored as a potential target in GBM. Recently, Istradefylline (IST) was approved by the FDA for treating Parkinson's disease, representing a safe drug that acts through the inhibition of the A2A receptor, and it has also been suggested as an antineoplastic drug. Therefore, this work aims to explore the effects of A2A receptor inhibition as a therapy for GBM and assess the feasibility of this blockage occurring through the effects of IST.
Collapse
Affiliation(s)
- Júlia Leão Batista Simões
- Medical School, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil; (J.L.B.S.); (G.d.C.B.); (M.F.)
| | - Geórgia de Carvalho Braga
- Medical School, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil; (J.L.B.S.); (G.d.C.B.); (M.F.)
| | - Michelli Fontana
- Medical School, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil; (J.L.B.S.); (G.d.C.B.); (M.F.)
| | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Margarete Dulce Bagatini
- Graduate Program in Medical Sciences, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
| |
Collapse
|
2
|
Venugopala KN, Buccioni M. Current Understanding of the Role of Adenosine Receptors in Cancer. Molecules 2024; 29:3501. [PMID: 39124905 PMCID: PMC11313767 DOI: 10.3390/molecules29153501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer, a complex array of diseases, involves the unbridled proliferation and dissemination of aberrant cells in the body, forming tumors that can infiltrate neighboring tissues and metastasize to distant sites. With over 200 types, each cancer has unique attributes, risks, and treatment avenues. Therapeutic options encompass surgery, chemotherapy, radiation therapy, hormone therapy, immunotherapy, targeted therapy, or a blend of these methods. Yet, these treatments face challenges like late-stage diagnoses, tumor diversity, severe side effects, drug resistance, targeted drug delivery hurdles, and cost barriers. Despite these hurdles, advancements in cancer research, encompassing biology, genetics, and treatment, have enhanced early detection methods, treatment options, and survival rates. Adenosine receptors (ARs), including A1, A2A, A2B, and A3 subtypes, exhibit diverse roles in cancer progression, sometimes promoting or inhibiting tumor growth depending on the receptor subtype, cancer type, and tumor microenvironment. Research on AR ligands has revealed promising anticancer effects in lab studies and animal models, hinting at their potential as cancer therapeutics. Understanding the intricate signaling pathways and interactions of adenosine receptors in cancer is pivotal for crafting targeted therapies that optimize benefits while mitigating drawbacks. This review delves into each adenosine receptor subtype's distinct roles and signaling pathways in cancer, shedding light on their potential as targets for improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Katharigatta Narayanaswamy Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Michela Buccioni
- School of Pharmacy, Medicinal Chemistry Unit, ChIP, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy;
| |
Collapse
|
3
|
Bova V, Filippone A, Casili G, Lanza M, Campolo M, Capra AP, Repici A, Crupi L, Motta G, Colarossi C, Chisari G, Cuzzocrea S, Esposito E, Paterniti I. Adenosine Targeting as a New Strategy to Decrease Glioblastoma Aggressiveness. Cancers (Basel) 2022; 14:cancers14164032. [PMID: 36011024 PMCID: PMC9406358 DOI: 10.3390/cancers14164032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Given the rising mortality rate caused by GBM, current therapies do not appear to be effective in counteracting tumor progression. The role of adenosine and its interaction with specific receptor subtypes in various physiological functions has been studied for years. Only recently, adenosine has been defined as a tumor-protective target because of its accumulation in the tumor microenvironment. Current knowledge of the adenosine pathway and its involvement in brain tumors would support research in the development of adenosine receptor antagonists that could represent alternative treatments for glioblastoma, used either alone and/or in combination with chemotherapy, immunotherapy, or both. Abstract Glioblastoma is the most commonly malignant and aggressive brain tumor, with a high mortality rate. The role of the purine nucleotide adenosine and its interaction with its four subtypes receptors coupled to the different G proteins, A1, A2A, A2B, and A3, and its different physiological functions in different systems and organs, depending on the active receptor subtype, has been studied for years. Recently, several works have defined extracellular adenosine as a tumoral protector because of its accumulation in the tumor microenvironment. Its presence is due to both the interaction with the A2A receptor subtype and the increase in CD39 and CD73 gene expression induced by the hypoxic state. This fact has fueled preclinical and clinical research into the development of efficacious molecules acting on the adenosine pathway and blocking its accumulation. Given the success of anti-cancer immunotherapy, the new strategy is to develop selective A2A receptor antagonists that could competitively inhibit binding to its endogenous ligand, making them reliable candidates for the therapeutic management of brain tumors. Here, we focused on the efficacy of adenosine receptor antagonists and their enhancement in anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Valentina Bova
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Lelio Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Gianmarco Motta
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Cristina Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Giulia Chisari
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
- Correspondence: ; Tel.: +39-090-676-5208
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| |
Collapse
|
4
|
Moens A, Sadat Seyed Tabib N, Ballet V, Sabino J, Vermeire S, Ferrante M. Safety of sequential biological therapy in inflammatory bowel disease: results from a tertiary referral centre. Aliment Pharmacol Ther 2022; 56:271-281. [PMID: 35441398 DOI: 10.1111/apt.16928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 04/01/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Biologicals represent the cornerstone of treatment for moderate-to-severe inflammatory bowel diseases (IBD). Many patients cycle between biologicals when encountering loss of response or adverse events. AIM To assess the occurrence of serious infections and malignancies with exposure to several (classes of) biologicals. METHODS We performed a retrospective cohort study in a tertiary referral centre including consecutive IBD patients exposed to adalimumab, infliximab, ustekinumab or vedolizumab between 1996 and 2019. All serious infections and malignancies, as well as potential confounders, were accounted for. RESULTS In total, 1575 patients were included with a median (interquartile range) follow-up of 10 (6-16) years and a duration of biological therapy of 71 (39-112) months. Incidence rates of serious infections were 3.4 per 100 patients' years (PY) in the post-biological setting. Serious infections after biological exposure were associated with systemic steroids in monotherapy (hazard ratio 2.96 [95% confidence interval 1.78-4.93], p < 0.0001), combination therapy of systemic steroids and a biological (2.44 [1.37-4.34], p = 0.002), female gender (1.25 [1.04-1.51], p = 0.02), and prior serious infections in the pre-biological setting (1.42 [1.03-1.96], p = 0.03). Malignancy rates were 1.06 per 100PY in the post-biological setting and increased with older age at biological initiation (1.04 [1.02-1.05], p < 0.0001). The risk for serious infections or malignancies was independent of type and number of biologicals to which the patient was exposed. CONCLUSION This study shows that the sequential use of biological therapy in IBD does not seem to convey an overall higher risk of serious infections or malignancies, but that underlying more refractory disease seems to increase this risk.
Collapse
Affiliation(s)
- Annick Moens
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Department of Chronic Diseases Metabolism and Ageing, Catholic University Leuven, Leuven, Belgium
| | - Nasim Sadat Seyed Tabib
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Department of Chronic Diseases Metabolism and Ageing, Catholic University Leuven, Leuven, Belgium
| | - Vera Ballet
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - João Sabino
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Department of Chronic Diseases Metabolism and Ageing, Catholic University Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Department of Chronic Diseases Metabolism and Ageing, Catholic University Leuven, Leuven, Belgium
| | - Marc Ferrante
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Department of Chronic Diseases Metabolism and Ageing, Catholic University Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Janho dit Hreich S, Benzaquen J, Hofman P, Vouret-Craviari V. The Purinergic Landscape of Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14081926. [PMID: 35454832 PMCID: PMC9025794 DOI: 10.3390/cancers14081926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the most common cancer worldwide. Despite recent therapeutic advances, including targeted therapies and immune checkpoint inhibitors, the disease progresses in almost all advanced lung cancers and in up to 50% of early-stage cancers. The purpose of this review is to discuss whether purinergic checkpoints (CD39, CD73, P2RX7, and ADORs), which shape the immune response in the tumor microenvironment, may represent novel therapeutic targets to combat progression of non-small cell lung cancer by enhancing the antitumor immune response.
Collapse
Affiliation(s)
- Serena Janho dit Hreich
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM), FHU OncoAge, Université Côte d’Azur, 06108 Nice, France; (S.J.d.H.); (J.B.)
| | - Jonathan Benzaquen
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM), FHU OncoAge, Université Côte d’Azur, 06108 Nice, France; (S.J.d.H.); (J.B.)
| | - Paul Hofman
- CHU Nice, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France;
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM, Team 4), Université Côte d’Azur, 06100 Nice, France
- CHU Nice, FHU OncoAge, Hospital-Integrated Biobank (BB-0033-00025), Université Côte d’Azur, 06000 Nice, France
| | - Valérie Vouret-Craviari
- Institute of Research on Cancer and Aging (IRCAN, CNRS, INSERM), FHU OncoAge, Université Côte d’Azur, 06108 Nice, France; (S.J.d.H.); (J.B.)
- Correspondence: ; Tel.: +33-492-031-223
| |
Collapse
|
6
|
Salehi Khesht AM, Karpisheh V, Sahami Gilan P, Melnikova LA, Olegovna Zekiy A, Mohammadi M, Hojjat-Farsangi M, Majidi Zolbanin N, Mahmoodpoor A, Hassannia H, Aghebati-Maleki L, Jafari R, Jadidi-Niaragh F. Blockade of CD73 using siRNA loaded chitosan lactate nanoparticles functionalized with TAT-hyaluronate enhances doxorubicin mediated cytotoxicity in cancer cells both in vitro and in vivo. Int J Biol Macromol 2021; 186:849-863. [PMID: 34245737 DOI: 10.1016/j.ijbiomac.2021.07.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/10/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023]
Abstract
Chemotherapy drugs are still one of the first treatment options used in many cancers; however, problems such as cytotoxic side effects on normal cells after systemic administration and resistance to treatment have reduced the use of chemotherapeutics day by day. Targeted delivery of these drugs to the tumor site and sensitization of cancer cells to death induced by chemotherapy drugs are ways that can overcome the limitations of the use of these drugs. In this study, we designed and generated a novel nanocarrier composed of chitosan lactate nanoparticles (NPs) functionalized by HIV-1 derived TAT peptide (Transactivating transcriptional activator) and hyaluronate (HA) to deliver CD73 siRNA and doxorubicin to 4T1 and CT26 cancer cells, both in vivo and in vitro, as a novel combinatorial treatment strategy. The CD73 molecule plays a key role in many cancer cell behaviors such as proliferation, angiogenesis, metastasis, imunosuppression, and resistance to chemotherapy. Therefore, we decided to reduce the side effects of DOX by simultaneously transmitting CD73 siRNA and DOX by CL-TAT-HA NPs, increase the susceptibility of cancer cells to DOX-induced cell death, and stimulate anti-tumor immune responses, for the first time. These results indicated that simultaneous transfer of CD73 siRNA and DOX to cancer cells (4 T1 and CT26) increased cell death and inhibited the prolifration and spread of cancer cells. Also, the preferential aggregation of NPs in the tumor microenvironment reduced tumor growh, promoted the survival of tumor-bearing mice, and induced anti-tumor immune responses. These findings indicate that CL-TAT-HA NPs are a good candidate for targeted siRNA/drug delivery to cancer cells and the simultaneous transfer of CD73 siRNA and DOX to cancer cells using this nanocarrier can be used to treat cancer.
Collapse
Affiliation(s)
- Armin Mahmoud Salehi Khesht
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Materials Engineering, Islamic Azad University, Najafabad Branch, Najafabad, Iran
| | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Sahami Gilan
- Medical Biology Research Center, Health Technologies Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Lyubov A Melnikova
- Finance University under the Government of the Russian Federation, Moscow, Russian Federation
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mahdis Mohammadi
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| | | | - Naime Majidi Zolbanin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran; Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology, School of Medicine, Imam Reza Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Reza Jafari
- Solid Tumor Research Center, Cellular and Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Ellerin BE, Demandante CGN, Martins JT. Pure abscopal effect of radiotherapy in a salivary gland carcinoma: Case report, literature review, and a search for new approaches. Cancer Radiother 2020; 24:226-246. [PMID: 32192840 DOI: 10.1016/j.canrad.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
We report the case of an 84-year-old woman with poorly differentiated non-small cell carcinoma of the right parotid who presented with headache, was found to have a primary right parotid gland cancer as well as metastatic disease, and underwent palliative radiotherapy to the primary site. The patient received no chemotherapy or immunotherapy, but both the primary site and several non-irradiated foci in the lungs regressed or completely resolved. The patient remained free of disease for about one year before progression. The case is a rare instance of abscopal regression of metastatic disease in the absence of pharmacologic immunomodulation. A literature review surveys the history of the abscopal effect of radiation therapy, attempts to understand the mechanisms of its successes and failures, and points to new approaches that can inform and improve the outcomes of radioimmunotherapy.
Collapse
Affiliation(s)
| | | | - J T Martins
- UT Health HOPE Cancer Center, Tyler, TX 75701, USA
| |
Collapse
|
8
|
Yi Y, Zhou Y, Chu X, Zheng X, Fei D, Lei J, Qi H, Dai Y. Blockade of Adenosine A2b Receptor Reduces Tumor Growth and Migration in Renal Cell Carcinoma. J Cancer 2020; 11:421-431. [PMID: 31897237 PMCID: PMC6930437 DOI: 10.7150/jca.31245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
Adenosine A2b receptor (A2bR) is a member of the G protein-coupled receptor superfamily members, which has been considered involved in the pathogenesis of various cancers. However, little is known about the role of A2bR renal cell carcinoma (RCC). The A2bR expression levels in RCC 769-P and Caki-1 cell lines compared with HK-2 were analyzed by qRT-PCR. 769-P and Caki-1 cells were transfected with shRNA-A2bR to knock down the expression of A2bR. Cell proliferation was detected by MTT assays and colony formation assays. Wounding healing assays and transwell assays were used to evaluate the effects of A2bR on cell capacity of invasion and migration. Finally, potential mechanisms involved in A2bR blockade's effects on altered tumor behaviors were evaluated by western blotting. We showed that A2bR were significantly up-regulated in RCC cells compared to HK-2 cell. Functionally, MRS1754, a selective A2bR antagonist, and knocking-down the expression of A2bR by shRNA reduced proliferation and migration in vitro and tumor growth in vivo. Furthermore, we demonstrated that A2bR blockade inhibited tumor progression in part via the MAPK/JNK pathway. Conclusion: Our findings suggest the A2bR potentially plays an important role in RCC progression and A2bR blockade may be a promising candidate for therapeutic intervention for renal cell carcinoma.
Collapse
Affiliation(s)
- Ye Yi
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha 410600, China
| | - Yihong Zhou
- Department of Urology, The fifth affiliated hospital Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai 519000, China
| | - Xi Chu
- Department of Urology, The fifth affiliated hospital Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai 519000, China
| | - Xiaoping Zheng
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha 410600, China
| | - Deng Fei
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha 410600, China
| | - Jun Lei
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha 410600, China
| | - Huiyue Qi
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138 Tongzipo Road, Changsha 410600, China
| | - Yingbo Dai
- Department of Urology, The fifth affiliated hospital Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai 519000, China
| |
Collapse
|
9
|
Vigano S, Alatzoglou D, Irving M, Ménétrier-Caux C, Caux C, Romero P, Coukos G. Targeting Adenosine in Cancer Immunotherapy to Enhance T-Cell Function. Front Immunol 2019; 10:925. [PMID: 31244820 PMCID: PMC6562565 DOI: 10.3389/fimmu.2019.00925] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022] Open
Abstract
T cells play a critical role in cancer control, but a range of potent immunosuppressive mechanisms can be upregulated in the tumor microenvironment (TME) to abrogate their activity. While various immunotherapies (IMTs) aiming at re-invigorating the T-cell-mediated anti-tumor response, such as immune checkpoint blockade (ICB), and the adoptive cell transfer (ACT) of natural or gene-engineered ex vivo expanded tumor-specific T cells, have led to unprecedented clinical responses, only a small proportion of cancer patients benefit from these treatments. Important research efforts are thus underway to identify biomarkers of response, as well as to develop personalized combinatorial approaches that can target other inhibitory mechanisms at play in the TME. In recent years, adenosinergic signaling has emerged as a powerful immuno-metabolic checkpoint in tumors. Like several other barriers in the TME, such as the PD-1/PDL-1 axis, CTLA-4, and indoleamine 2,3-dioxygenase (IDO-1), adenosine plays important physiologic roles, but has been co-opted by tumors to promote their growth and impair immunity. Several agents counteracting the adenosine axis have been developed, and pre-clinical studies have demonstrated important anti-tumor activity, alone and in combination with other IMTs including ICB and ACT. Here we review the regulation of adenosine levels and mechanisms by which it promotes tumor growth and broadly suppresses protective immunity, with extra focus on the attenuation of T cell function. Finally, we present an overview of promising pre-clinical and clinical approaches being explored for blocking the adenosine axis for enhanced control of solid tumors.
Collapse
Affiliation(s)
- Selena Vigano
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dimitrios Alatzoglou
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christine Ménétrier-Caux
- Department of Immunology Virology and Inflammation, INSERM 1052, CNRS 5286, Léon Bérard Cancer Center, Cancer Research Center of Lyon, University of Lyon, University Claude Bernard Lyon 1, Lyon, France
| | - Christophe Caux
- Department of Immunology Virology and Inflammation, INSERM 1052, CNRS 5286, Léon Bérard Cancer Center, Cancer Research Center of Lyon, University of Lyon, University Claude Bernard Lyon 1, Lyon, France
| | - Pedro Romero
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Chrétien S, Zerdes I, Bergh J, Matikas A, Foukakis T. Beyond PD-1/PD-L1 Inhibition: What the Future Holds for Breast Cancer Immunotherapy. Cancers (Basel) 2019; 11:E628. [PMID: 31060337 PMCID: PMC6562626 DOI: 10.3390/cancers11050628] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy has altered the management of human malignancies, improving outcomes in an expanding list of diseases. Breast cancer - presumably due to its perceived low immunogenicity - is a late addition to this list. Furthermore, most of the focus has been on the triple negative subtype because of its higher tumor mutational load and lymphocyte-enriched stroma, although emerging data show promise on the other breast cancer subtypes as well. To this point the clinical use of immunotherapy is limited to the inhibition of two immune checkpoints, Programmed Cell Death Protein 1 (PD-1) and Cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4). Consistent with the complexity of the regulation of the tumor - host interactions and their lack of reliance on a single regulatory pathway, combinatory approaches have shown improved efficacy albeit at the cost of increased toxicity. Beyond those two checkpoints though, a large number of co-stimulatory or co-inhibitory molecules play major roles on tumor evasion from immunosurveillance. These molecules likely represent future targets of immunotherapy provided that the promise shown in early data is translated into improved patient survival in randomized trials. The biological role, prognostic and predictive implications regarding breast cancer and early clinical efforts on exploiting these immune-related therapeutic targets are herein reviewed.
Collapse
Affiliation(s)
- Sebastian Chrétien
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Ioannis Zerdes
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Jonas Bergh
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Alexios Matikas
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Theodoros Foukakis
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| |
Collapse
|
11
|
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of Adenosine Receptors: The State of the Art. Physiol Rev 2018; 98:1591-1625. [PMID: 29848236 DOI: 10.1152/physrev.00049.2017] [Citation(s) in RCA: 518] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine is a ubiquitous endogenous autacoid whose effects are triggered through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Due to the rapid generation of adenosine from cellular metabolism, and the widespread distribution of its receptor subtypes in almost all organs and tissues, this nucleoside induces a multitude of physiopathological effects, regulating central nervous, cardiovascular, peripheral, and immune systems. It is becoming clear that the expression patterns of adenosine receptors vary among cell types, lending weight to the idea that they may be both markers of pathologies and useful targets for novel drugs. This review offers an overview of current knowledge on adenosine receptors, including their characteristic structural features, molecular interactions and cellular functions, as well as their essential roles in pain, cancer, and neurodegenerative, inflammatory, and autoimmune diseases. Finally, we highlight the latest findings on molecules capable of targeting adenosine receptors and report which stage of drug development they have reached.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Stefania Gessi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Stefania Merighi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| |
Collapse
|
12
|
Gourdin N, Bossennec M, Rodriguez C, Vigano S, Machon C, Jandus C, Bauché D, Faget J, Durand I, Chopin N, Tredan O, Marie JC, Dubois B, Guitton J, Romero P, Caux C, Ménétrier-Caux C. Autocrine Adenosine Regulates Tumor Polyfunctional CD73 +CD4 + Effector T Cells Devoid of Immune Checkpoints. Cancer Res 2018; 78:3604-3618. [PMID: 29559470 DOI: 10.1158/0008-5472.can-17-2405] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 02/08/2018] [Accepted: 03/16/2018] [Indexed: 11/16/2022]
Abstract
The production of CD73-derived adenosine (Ado) by Tregs has been proposed as a resistance mechanism to anti-PD-1 therapy in murine tumor models. We reported that human Tregs express the ectonucleotidase CD39, which generates AMP from ATP, but do not express the AMPase CD73. In contrast, CD73 defined a subset of effector CD4+ T cells (Teffs) enriched in polyfunctional Th1.17 cells characterized by expression of CXCR3, CCR6, and MDR1, and production of IL17A/IFNγ/IL22/GM-CSF. CD39+ Tregs selectively targeted CD73+ Teffs through cooperative degradation of ATP into Ado inhibiting and restricting the ability of CD73+ Teffs to secrete IL17A. CD73+ Teffs infiltrating breast and ovarian tumors were functionally blunted by Tregs expressing upregulated levels of CD39 and ATPase activity. Moreover, tumor-infiltrating CD73+ Teffs failed to express inhibitory immune checkpoints, suggesting that CD73 might be selected under pressure from immune checkpoint blockade therapy and thus may represent a nonredundant target for restoring antitumor immunity.Significance: Polyfunctional CD73+ T-cell effectors lacking other immune checkpoints are selectively targeted by CD39 overexpressing Tregs that dominate the breast tumor environment. Cancer Res; 78(13); 3604-18. ©2018 AACR.
Collapse
Affiliation(s)
- Nicolas Gourdin
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Team 11, Immunology Virology Inflammation (IVI) Department, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France.,Innovation and Translational Research Department, Centre Léon Bérard, Lyon, France
| | - Marion Bossennec
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Team 11, Immunology Virology Inflammation (IVI) Department, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France
| | - Céline Rodriguez
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Team 11, Immunology Virology Inflammation (IVI) Department, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France.,Innovation and Translational Research Department, Centre Léon Bérard, Lyon, France
| | - Selena Vigano
- Ludwig Cancer Research Center, Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christelle Machon
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de Biochimie et Toxicologie, Pierre-Bénite, France.,Université de Lyon, Université Lyon 1, ISPB Faculté de pharmacie, Laboratoire de Chimie Analytique, Lyon, France
| | - Camilla Jandus
- Ludwig Cancer Research Center, Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - David Bauché
- Team 11, Immunology Virology Inflammation (IVI) Department, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France.,TGF-β and Immuno-evasion Department of Immunology Virology and Inflammation, INSERM U1052, Cancer Research Center of Lyon, Lyon, France.,TGF-β and Immuno-evasion, Tumor immunology Program, DKFZ, Heidelberg, Germany
| | - Julien Faget
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Team 11, Immunology Virology Inflammation (IVI) Department, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France.,Innovation and Translational Research Department, Centre Léon Bérard, Lyon, France
| | - Isabelle Durand
- Team 11, Immunology Virology Inflammation (IVI) Department, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France.,Cytometry platform, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France
| | - Nicolas Chopin
- Centre Léon Bérard, Medical Oncology Department, Lyon, France
| | - Olivier Tredan
- Centre Léon Bérard, Medical Oncology Department, Lyon, France
| | - Julien C Marie
- Team 11, Immunology Virology Inflammation (IVI) Department, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France.,TGF-β and Immuno-evasion Department of Immunology Virology and Inflammation, INSERM U1052, Cancer Research Center of Lyon, Lyon, France.,TGF-β and Immuno-evasion, Tumor immunology Program, DKFZ, Heidelberg, Germany
| | - Bertrand Dubois
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Team 11, Immunology Virology Inflammation (IVI) Department, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France
| | - Jérôme Guitton
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Laboratoire de Biochimie et Toxicologie, Pierre-Bénite, France.,Université de Lyon, Université Lyon 1, ISPB Faculté de pharmacie, Laboratoire de Toxicologie, Lyon, France
| | - Pedro Romero
- Ludwig Cancer Research Center, Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christophe Caux
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.,Team 11, Immunology Virology Inflammation (IVI) Department, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France.,Innovation and Translational Research Department, Centre Léon Bérard, Lyon, France
| | - Christine Ménétrier-Caux
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France. .,Team 11, Immunology Virology Inflammation (IVI) Department, INSERM U-1052, Cancer Research Center of Lyon, Lyon, France.,Innovation and Translational Research Department, Centre Léon Bérard, Lyon, France
| |
Collapse
|
13
|
Kazemi MH, Raoofi Mohseni S, Hojjat-Farsangi M, Anvari E, Ghalamfarsa G, Mohammadi H, Jadidi-Niaragh F. Adenosine and adenosine receptors in the immunopathogenesis and treatment of cancer. J Cell Physiol 2017; 233:2032-2057. [DOI: 10.1002/jcp.25873] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 02/21/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Mohammad H. Kazemi
- Student Research Committee, Department of Immunology, School of Medicine; Iran University of Medical Sciences (IUMS); Tehran Iran
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Sahar Raoofi Mohseni
- Department of Immunology, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK); Karolinska University Hospital Solna and Karolinska Institute; Stockholm Sweden
- Department of Immunology, School of Medicine; Bushehr University of Medical Sciences; Bushehr Iran
| | - Enayat Anvari
- Faculty of Medicine, Department of Physiology; Ilam University of Medical Sciences; Ilam Iran
| | - Ghasem Ghalamfarsa
- Medicinal Plants Research Center; Yasuj University of Medical Sciences; Yasuj Iran
| | - Hamed Mohammadi
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Immunology, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
- Faculty of Medicine, Department of Immunology; Tabriz University of Medical Sciences; Tabriz Iran
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
14
|
Jadidi-Niaragh F, Atyabi F, Rastegari A, Kheshtchin N, Arab S, Hassannia H, Ajami M, Mirsanei Z, Habibi S, Masoumi F, Noorbakhsh F, Shokri F, Hadjati J. CD73 specific siRNA loaded chitosan lactate nanoparticles potentiate the antitumor effect of a dendritic cell vaccine in 4T1 breast cancer bearing mice. J Control Release 2017; 246:46-59. [DOI: 10.1016/j.jconrel.2016.12.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/30/2016] [Accepted: 12/12/2016] [Indexed: 12/17/2022]
|
15
|
The role of adenosine and adenosine receptors in the immunopathogenesis of multiple sclerosis. Inflamm Res 2016; 65:511-20. [PMID: 26960979 DOI: 10.1007/s00011-016-0936-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/10/2016] [Accepted: 02/25/2016] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is a heterogeneous neurological disorder with multifactorial etiologies characterized by demyelination, axonal degeneration, and oligodendroglial death. It is believed that both genetics and environmental risk factors such as infection are involved in disease etiology. Accumulating evidence indicates that alteration in purinergic system signaling is involved in immunity and inflammation. Adenosine, a key purine nucleoside, has been shown to be produced during metabolic stress, including ischemia, inflammatory condition, and tissue injury. METHODS Extracellular adenosine directly affects various physiological and pathological processes of MS by stimulating G protein-coupled adenosine receptors A1, A2A, A2B, and A3 on the surface of immune cells. It has been suggested that promotion of adenosinergic system may be an important factor in MS pathophysiology and considered as promising therapeutic target for this disease. CONCLUSION In this review, we will discuss about the immunopathologic effects of adenosine on MS and its animal model, experimental autoimmune encephalomyelitis.
Collapse
|
16
|
Umansky V, Shevchenko I, Bazhin AV, Utikal J. Extracellular adenosine metabolism in immune cells in melanoma. Cancer Immunol Immunother 2014; 63:1073-80. [PMID: 24756420 PMCID: PMC11029545 DOI: 10.1007/s00262-014-1553-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/11/2014] [Indexed: 01/04/2023]
Abstract
Malignant melanoma is characterized by the development of chronic inflammation in the tumor microenvironment, which leads to a strong immunosuppression associated with a rapid tumor progression. Adenosine is considered as one of the main immunosuppressive factors in the tumor environment. It is produced via enzymatic hydrolysis of extracellular ATP by ectonucleotidases CD39 and CD73 localized on cell surface. Using the ret transgenic mouse melanoma model that closely mimics human melanoma, we demonstrated an increased frequency of ectonucleotidase-positive myeloid-derived suppressor cells (MDSCs) in melanoma lesions and lymphoid organs. Furthermore, we observed that conventional CD4(+)FoxP3(-) and CD8(+) T cells infiltrating melanoma lesions of ret transgenic mice were distinctly enriched in the CD39(+)CD73(+) subpopulation that co-expressed also PD-1. Ectonucleotidase expression was also up-regulated in CD4(+) and CD8(+) T cells upon activation. In addition, these ectoenzymes were largely found to be expressed on memory T cell compartment (in particular, on effector memory cells). Our data suggest that extracellular adenosine produced by regulatory T cells (Tregs) and MDSCs can suppress T cell effector functions through paracrine signaling. Another mechanism involves its production also by effector T cells and an inhibition of their anti-tumor reactivity via autocrine signaling as a part of the negative feedback loop. This mode of adenosine signaling could be also used by Tregs and MDSCs to enhance their immunosuppressive activity.
Collapse
Affiliation(s)
- Viktor Umansky
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany,
| | | | | | | |
Collapse
|
17
|
Brenu EW, Huth TK, Hardcastle SL, Fuller K, Kaur M, Johnston S, Ramos SB, Staines DR, Marshall-Gradisnik SM. Role of adaptive and innate immune cells in chronic fatigue syndrome/myalgic encephalomyelitis. Int Immunol 2013; 26:233-42. [PMID: 24343819 DOI: 10.1093/intimm/dxt068] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Perturbations in immune processes are a hallmark of a number of autoimmune and inflammatory disorders. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is an inflammatory disorder with possible autoimmune correlates, characterized by reduced NK cell activity, elevations in regulatory T cells (Tregs) and dysregulation in cytokine levels. The purpose of this article is to examine innate and adaptive immune cell phenotypes and functional characteristics that have not been previously examined in CFS/ME patients. Thirty patients with CFS/ME and 25 non-fatigued controls were recruited for this study. Whole blood samples were collected from all participants for the assessment of cell phenotypes, functional properties, receptors, adhesion molecules, antigens and intracellular proteins using flow cytometric protocols. The cells investigated included NK cells, dendritic cells, neutrophils, B cells, T cells, γδT cells and Tregs. Significant changes were observed in B-cell subsets, Tregs, CD4(+)CD73(+)CD39(+) T cells, cytotoxic activity, granzyme B, neutrophil antigens, TNF-α and IFN-γ in the CFS/ME patients in comparison with the non-fatigued controls. Alterations in B cells, Tregs, NK cells and neutrophils suggest significant impairments in immune regulation in CFS/ME and these may have similarities to a number of autoimmune disorders.
Collapse
Affiliation(s)
- Ekua Weba Brenu
- School of Medical Science, Griffith University, Gold Coast, QLD 4215, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Foster AD, Sivarapatna A, Gress RE. The aging immune system and its relationship with cancer. ACTA ACUST UNITED AC 2011; 7:707-718. [PMID: 22121388 DOI: 10.2217/ahe.11.56] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The incidence of most common cancers increases with age. This occurs in association with, and is possibly caused by a decline in immune function, termed immune senescence. Although the size of the T-cell compartment is quantitatively maintained into older age, several deleterious changes (including significant changes to T-cell subsets) occur over time that significantly impair immunity. This article highlights some of the recent findings regarding the aging immune system, with an emphasis on the T-cell compartment and its role in cancer.
Collapse
Affiliation(s)
- Anthony D Foster
- National Cancer Institute (NCI), Experimental Transplantation & Immunology Branch (ETIB), 10 Center Dr. 10 CRC, 3-3330 Bethesda, MD 20814, USA
| | | | | |
Collapse
|
19
|
Gessi S, Merighi S, Sacchetto V, Simioni C, Borea PA. Adenosine receptors and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1400-12. [DOI: 10.1016/j.bbamem.2010.09.020] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 09/14/2010] [Accepted: 09/20/2010] [Indexed: 01/25/2023]
|
20
|
Buffon A, Ribeiro VB, Schanoski AS, Sarkis JJF. Diminution in adenine nucleotide hydrolysis by platelets and serum from rats submitted to Walker 256 tumour. Mol Cell Biochem 2009; 281:189-95. [PMID: 16328972 DOI: 10.1007/s11010-006-1029-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 07/18/2005] [Indexed: 11/29/2022]
Abstract
Extracellular adenine nucleotide hydrolysis in the circulation is mediated by the action of an NTPDase (CD39, apyrase) and of a 5'-nucleotidase (CD73), presenting as a final product, adenosine. Among other properties described for adenine nucleotides, an anti-cancer activity is suggested, since ATP is considered a cytotoxic molecule in several tumour cell systems. Conversely, some studies demonstrate that adenosine presents a tumour-promoting activity. In this study, we evaluated the pattern of adenine nucleotide hydrolysis by serum and platelets from rats submitted to the Walker 256 tumour model. Extracellular adenine nucleotide hydrolysis by blood serum and platelets obtained from rats at, 6, 10 and 15 days after the subcutaneous Walker 256 tumour inoculation, was evaluated. Our results demonstrate a significant reduction in ATP, ADP and AMP hydrolysis in blood serum at 6, 10 and 15 days after tumour induction. In platelets, a significant reduction in ATP and AMP hydrolysis was observed at 10 and 15 days after tumour induction, while an inhibition of ADP hydrolysis was observed at all times studied. Based on these results, it is possible to suggest a physiologic protection mechanism against the tumoral process in circulation. The inhibition in nucleotide hydrolysis observed probably maintains ATP levels elevated (cytotoxic compound) and, at the same time, reduces the adenosine production (tumour-promoting molecule) in the circulation.
Collapse
Affiliation(s)
- Andréia Buffon
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
21
|
Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA. The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 2007; 117:123-40. [PMID: 18029023 DOI: 10.1016/j.pharmthera.2007.09.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 09/05/2007] [Indexed: 02/01/2023]
Abstract
Adenosine is a primordial signaling molecule present in every cell of the human body that mediates its physiological functions by interacting with 4 subtypes of G-protein-coupled receptors, termed A1, A2A, A2B and A3. The A3 subtype is perhaps the most enigmatic among adenosine receptors since, although several studies have been performed in the years to elucidate its physiological function, it still presents in several cases a double nature in different pathophysiological conditions. The 2 personalities of A3 often come into direct conflict, e.g., in ischemia, inflammation and cancer, rendering this receptor as a single entity behaving in 2 different ways. This review focuses on the most relevant aspects of A3 adenosine subtype activation and summarizes the pharmacological evidence as the basis of the dichotomy of this receptor in different therapeutic fields. Although much is still to be learned about the function of the A3 receptor and in spite of its duality, at the present time it can be speculated that A3 receptor selective ligands might show utility in the treatment of ischemic conditions, glaucoma, asthma, arthritis, cancer and other disorders in which inflammation is a feature. The biggest and most intriguing challenge for the future is therefore to understand whether and where selective A3 agonists or antagonists are the best choice.
Collapse
Affiliation(s)
- Stefania Gessi
- Department of Clinical and Experimental Medicine, Pharmacology Unit and Interdisciplinary Center for the Study of Inflammation, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Gessi S, Varani K, Merighi S, Fogli E, Sacchetto V, Benini A, Leung E, Mac-Lennan S, Borea PA. Adenosine and lymphocyte regulation. Purinergic Signal 2007; 3:109-16. [PMID: 18404424 PMCID: PMC2096755 DOI: 10.1007/s11302-006-9042-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 01/01/2006] [Indexed: 11/29/2022] Open
Abstract
Adenosine is a potent extracellular messenger that is produced in high concentrations under metabolically unfavourable conditions. Tissue hypoxia, consequent to a compromised cellular energy status, is followed by the enhanced breakdown of ATP leading to the release of adenosine. Through the interaction with A(2) and A(3) membrane receptors, adenosine is devoted to the restoration of tissue homeostasis, acting as a retaliatory metabolite. Several aspects of the immune response have to be taken into consideration and even though in general it is very important to dampen inflammation, in some circumstances, such as the case of cancer, it is also necessary to increase the activity of immune cells against pathogens. Therefore, adenosine receptors that are defined as "sensors" of metabolic changes in the local tissue environment may be very important targets for modulation of immune responses and drugs devoted to regulating the adenosinergic system are promising in different clinical situations.
Collapse
Affiliation(s)
- Stefania Gessi
- Department of Clinical and Experimental Medicine, Pharmacology Unit, University of Ferrara, Via Fossato di Mortara 17-19, 44100, Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Richard CL, Tan EY, Blay J. Adenosine upregulates CXCR4 and enhances the proliferative and migratory responses of human carcinoma cells to CXCL12/SDF-1alpha. Int J Cancer 2006; 119:2044-53. [PMID: 16823836 DOI: 10.1002/ijc.22084] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The level of expression of the chemokine receptor CXCR4 has been shown to play a crucial role in determining the ability of cancer cells to metastasize from the primary tumor and become established in tissue sites that are rich in the CXCR4 ligand CXCL12/SDF-1alpha. High CXCR4 expression on cancer cells is associated with an increased risk of recurrence and poorer overall survival. We propose that local tissue mediators within the primary tumor or at secondary sites may modulate the level of CXCR4 expression and, therefore, potentially affect the ability of the cancer cells to metastasize. The purine nucleoside adenine-9-beta-D-ribofuranoside (adenosine) is generated at high concentrations within the extracellular fluid of solid tumors because of their hypoxia. We show here that adenosine acts through A(2A) and A(2B) adenosine receptors on human colorectal carcinoma cells to upregulate CXCR4 mRNA expression up to 10-fold and selectively increases cell-surface CXCR4 protein up to 3-fold. This increase in cell-surface CXCR4 enables the carcinoma cells to migrate toward CXCL12, and enhances their proliferation in response to CXCL12. Adenosine may therefore be one of the factors within the tumor microenvironment that facilitates tumor dissemination, by upregulating CXCR4 on certain cancer cells and enhancing cellular responses to CXCL12.
Collapse
Affiliation(s)
- Cynthia Lee Richard
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|
24
|
Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 2006; 112:358-404. [PMID: 16784779 DOI: 10.1016/j.pharmthera.2005.04.013] [Citation(s) in RCA: 782] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 02/07/2023]
Abstract
Human health is under constant threat of a wide variety of dangers, both self and nonself. The immune system is occupied with protecting the host against such dangers in order to preserve human health. For that purpose, the immune system is equipped with a diverse array of both cellular and non-cellular effectors that are in continuous communication with each other. The naturally occurring nucleotide adenosine 5'-triphosphate (ATP) and its metabolite adenosine (Ado) probably constitute an intrinsic part of this extensive immunological network through purinergic signaling by their cognate receptors, which are widely expressed throughout the body. This review provides a thorough overview of the effects of ATP and Ado on major immune cell types. The overwhelming evidence indicates that ATP and Ado are important endogenous signaling molecules in immunity and inflammation. Although the role of ATP and Ado during the course of inflammatory and immune responses in vivo appears to be extremely complex, we propose that their immunological role is both interdependent and multifaceted, meaning that the nature of their effects may shift from immunostimulatory to immunoregulatory or vice versa depending on extracellular concentrations as well as on expression patterns of purinergic receptors and ecto-enzymes. Purinergic signaling thus contributes to the fine-tuning of inflammatory and immune responses in such a way that the danger to the host is eliminated efficiently with minimal damage to healthy tissues.
Collapse
Affiliation(s)
- M J L Bours
- Maastricht University, Department of Epidemiology, Nutrition and Toxicology Research Institute Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
25
|
Tan EY, Richard CL, Zhang H, Hoskin DW, Blay J. Adenosine downregulates DPPIV on HT-29 colon cancer cells by stimulating protein tyrosine phosphatase(s) and reducing ERK1/2 activity via a novel pathway. Am J Physiol Cell Physiol 2006; 291:C433-44. [PMID: 16611738 DOI: 10.1152/ajpcell.00238.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The multifunctional cell-surface protein dipeptidyl peptidase IV (DPPIV/CD26) is aberrantly expressed in many cancers and plays a key role in tumorigenesis and metastasis. Its diverse cellular roles include modulation of chemokine activity by cleaving dipeptides from the chemokine NH(2)-terminus, perturbation of extracellular nucleoside metabolism by binding the ecto-enzyme adenosine deaminase, and interaction with the extracellular matrix by binding proteins such as collagen and fibronectin. We have recently shown that DPPIV can be downregulated from the cell surface of HT-29 colorectal carcinoma cells by adenosine, which is a metabolite that becomes concentrated in the extracellular fluid of hypoxic solid tumors. Most of the known responses to adenosine are mediated through four different subtypes of G protein-coupled adenosine receptors: A(1), A(2A), A(2B), and A(3). We report here that adenosine downregulation of DPPIV from the surface of HT-29 cells occurs independently of these classic receptor subtypes, and is mediated by a novel cell-surface mechanism that induces an increase in protein tyrosine phosphatase activity. The increase in protein tyrosine phosphatase activity leads to a decrease in the tyrosine phosphorylation of ERK1/2 MAP kinase that in turn links to the decline in DPPIV mRNA and protein. The downregulation of DPPIV occurs independently of changes in the activities of protein kinases A or C, phosphatidylinositol 3-kinase, other serine/threonine phosphatases, or the p38 or JNK MAP kinases. This novel action of adenosine has implications for our ability to manipulate adenosine-dependent events within the solid tumor microenvironment.
Collapse
Affiliation(s)
- Ernest Y Tan
- Department of Pharmacology, Faculty of Medicine, Sir Charles Tupper Medical Bldg., Dalhousie University, 1459 Oxford St., Halifax, Nova Scotia, Canada B3H 1X5
| | | | | | | | | |
Collapse
|
26
|
Buffon A, Ribeiro VB, Fürstenau CR, Battastini AMO, Sarkis JJF. Acetylsalicylic acid inhibits ATP diphosphohydrolase activity by platelets from adult rats. Clin Chim Acta 2005; 349:53-60. [PMID: 15469855 DOI: 10.1016/j.cccn.2004.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 05/31/2004] [Accepted: 06/01/2004] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND METHODS The in vitro effect of the nonsteroidal anti-inflammatory drug, acetylsalicylic acid (ASA), on the extracellular adenine nucleotide hydrolysis by intact rat blood platelets was studied. RESULTS Our results demonstrate that aspirin, at final concentrations of 2.0 and 3.0 mM, inhibits ATP extracellular hydrolysis in vitro by approximately 17% and 21%, respectively. Aspirin, at a final concentration of 3.0 mM, also inhibited in vitro extracellular ADP hydrolysis by approximately 41%. The same concentrations of this drug, however, did not alter AMP hydrolysis by intact rat blood platelets under similar assay conditions. The kinetic analysis demonstrated that the inhibition of ADP and ATP hydrolysis by aspirin in rat platelets is of the uncompetitive type. CONCLUSION In this study, we demonstrated an inhibitory effect of ASA upon E-NTPDase 3 activity of platelets from adult rats and discussed the significance of our findings.
Collapse
Affiliation(s)
- Andréia Buffon
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, ANEXO, CEP Porto Alegre, RS, Brazil.
| | | | | | | | | |
Collapse
|
27
|
Zhang H, Conrad DM, Butler JJ, Zhao C, Blay J, Hoskin DW. Adenosine acts through A2 receptors to inhibit IL-2-induced tyrosine phosphorylation of STAT5 in T lymphocytes: role of cyclic adenosine 3',5'-monophosphate and phosphatases. THE JOURNAL OF IMMUNOLOGY 2004; 173:932-44. [PMID: 15240680 DOI: 10.4049/jimmunol.173.2.932] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adenosine is a purine nucleoside with immunosuppressive activity that acts through cell surface receptors (A(1), A(2a), A(2b), A(3)) on responsive cells such as T lymphocytes. IL-2 is a major T cell growth and survival factor that is responsible for inducing Jak1, Jak3, and STAT5 phosphorylation, as well as causing STAT5 to translocate to the nucleus and bind regulatory elements in the genome. In this study, we show that adenosine suppressed IL-2-dependent proliferation of CTLL-2 T cells by inhibiting STAT5a/b tyrosine phosphorylation that is associated with IL-2R signaling without affecting IL-2-induced phosphorylation of Jak1 or Jak3. The inhibitory effect of adenosine on IL-2-induced STAT5a/b tyrosine phosphorylation was reversed by the protein tyrosine phosphatase inhibitors sodium orthovanadate and bpV(phen). Adenosine dramatically increased Src homology region 2 domain-containing phosphatase-2 (SHP-2) tyrosine phosphorylation and its association with STAT5 in IL-2-stimulated CTLL-2 T cells, implicating SHP-2 in adenosine-induced STAT5a/b dephosphorylation. The inhibitory effect of adenosine on IL-2-induced STAT5a/b tyrosine phosphorylation was reproduced by A(2) receptor agonists and was blocked by selective A(2a) and A(2b) receptor antagonists, indicating that adenosine was mediating its effect through A(2) receptors. Inhibition of STAT5a/b phosphorylation was reproduced with cell-permeable 8-bromo-cAMP or forskolin-induced activation of adenylyl cyclase, and blocked by the cAMP/protein kinase A inhibitor Rp-cAMP. Forskolin and 8-bromo-cAMP also induced SHP-2 tyrosine phosphorylation. Collectively, these findings suggest that adenosine acts through A(2) receptors and associated cAMP/protein kinase A-dependent signaling pathways to activate SHP-2 and cause STAT5 dephosphorylation that results in reduced IL-2R signaling in T cells.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Tan EY, Mujoomdar M, Blay J. Adenosine down-regulates the surface expression of dipeptidyl peptidase IV on HT-29 human colorectal carcinoma cells: implications for cancer cell behavior. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:319-30. [PMID: 15215186 PMCID: PMC1618535 DOI: 10.1016/s0002-9440(10)63299-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/30/2004] [Indexed: 01/07/2023]
Abstract
Dipeptidyl peptidase IV (DPPIV) is a multifunctional cell-surface protein that, as well as having dipeptidase activity, is the major binding protein for adenosine deaminase (ADA) and also binds extracellular matrix proteins such as fibronectin and collagen. It typically reduces the activity of chemokines and other peptide mediators as a result of its enzymatic activity. DPPIV is aberrantly expressed in many cancers, and decreased expression has been linked to increases in invasion and metastasis. We asked whether adenosine, a purine nucleoside that is present at increased levels in the hypoxic tumor microenvironment, might affect the expression of DPPIV at the cell surface. Treatment with a single dose of adenosine produced an initial transient (1 to 4 hours) modest (approximately 10%) increase in DPPIV, followed by a more profound (approximately 40%) depression of DPPIV protein expression at the surface of HT-29 human colon carcinoma cells, with a maximal decline being reached after 48 hours, and persisting for at least a week with daily exposure to adenosine. This down-regulation ofDPPIV occurred at adenosine concentrations comparable to those present within the extracellular fluid of colorectal tumors growing in vivo, and was not elicited by inosine or guanosine. Neither cellular uptake of adenosine nor its phosphorylation was necessary for the down-regulation of DPPIV. The decrease in DPPIV protein at the cell surface was paralleled by decreases in DPPIV enzyme activity, binding of ADA, and the ability of the cells to bind to and migrate on cellular fibronectin. Adenosine, at concentrations that exist within solid tumors, therefore acts at the surface of colorectal carcinoma cells to decrease levels and activities of DPPIV. This down-regulation of DPPIV may increase the sensitivity of cancer cells to the tumor-promoting effects of adenosine and their response to chemokines and the extracellular matrix, facilitating their expansion and metastasis.
Collapse
Affiliation(s)
- Ernest Y Tan
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, 1459 Oxford Street, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | |
Collapse
|
29
|
Mujoomdar M, Bennett A, Hoskin D, Blay J. Adenosine stimulation of proliferation of breast carcinoma cell lines: Evaluation of the [3H]thymidine assay system and modulatory effects of the cellular microenvironment in vitro. J Cell Physiol 2004; 201:429-38. [PMID: 15389546 DOI: 10.1002/jcp.20089] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purine nucleoside adenosine is produced at increased levels in the tissues of solid cancers as a result of local hypoxia. Adenosine inhibits the cell-mediated anti-tumor immune response, promotes tumor cell migration and angiogenesis, and stimulates the proliferation of tumor cells. We examined the stimulatory effect of adenosine on DNA synthesis, cell cycle progression, and cell proliferation in MCF7 and T-47D breast carcinoma cell lines in culture, and identified factors that modulate the growth response. The ability of adenosine to stimulate DNA synthesis, as measured by the incorporation of [(3)H]thymidine, was independent of the total radioactivity of the [(3)H]thymidine up to 10 microCi/ml, total thymidine concentrations up to 100 microM, and the labeling interval. It was also not affected by the presence of low-molecular-weight compounds (such as thymidine and adenosine) in the serum used to supplement the medium. Adenosine stimulated DNA synthesis and cell proliferation with an EC(50) of 4-6 microM and a maximum response at 30-100 microM, when given as a single addition. The stimulatory effect of adenosine involved progression through the cell cycle and a genuine increase in cell number, in the absence of significant apoptotic or necrotic cell death. The mitogenic effect of adenosine was dependent upon the culture cell density, with an optimum adenosine response at around 50% of confluent density. The response was also highly dependent upon the form of the serum addition to the growth medium, with the best response elicited in the presence of low concentrations of nonfetal bovine serum, although adenosine was mitogenic under standard culture conditions. The effects of serum supplementation and cell density were not due to differences in the rate of adenosine metabolism by either serum or cellular enzymes, but appeared to result from changes in the sensitivity to adenosine of the cell population in response to environmental cues. We, therefore, find that adenosine is consistently mitogenic for human breast carcinoma cells, and that the [(3)H]thymidine incorporation assay is a valid measure of this response. The data are consistent with the stimulatory effect of adenosine on cell proliferation being modulated by the local cellular environment.
Collapse
Affiliation(s)
- Michelle Mujoomdar
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | |
Collapse
|
30
|
Mujoomdar M, Hoskin D, Blay J. Adenosine stimulation of the proliferation of colorectal carcinoma cell lines. Roles of cell density and adenosine metabolism. Biochem Pharmacol 2003; 66:1737-47. [PMID: 14563484 DOI: 10.1016/s0006-2952(03)00548-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adenosine is a purine nucleoside which is present at micromolar concentrations in the extracellular fluid of solid cancers as a result of tissue hypoxia. Adenosine acts to promote tumor survival by inhibiting the cell-mediated anti-tumor immune response. However, its role in modulating proliferation of the tumor cell population is unclear. Differing results have been obtained using adenosine analogues or by interfering with adenosine metabolism. We examined the effect of adenosine itself on DNA synthesis and cell growth in six different human and mouse colorectal carcinoma cell lines, from different sites and at different stages of differentiation. Adenosine given as a single dose consistently stimulated DNA synthesis and cell proliferation in all cell lines tested, with an EC(50) of 3.8-30 microM and a maximum stimulation being reached at 10-100 microM. AMP and ATP also stimulated cell proliferation at similar doses. The stimulation by adenosine varied depending upon the culture cell density, with the greatest mitogenic effect at subconfluent densities. Adenosine was metabolized by cellular adenosine deaminase and adenosine kinase. The half-life (t(1/2)) for the decline in adenosine concentration in the medium following a single addition was between 40 min and 3 hr depending on the cell line and culture conditions. The rate of production of endogenous adenosine was low under normoxic culture conditions. Continuous dosing of cultures with adenosine to provide a steady-state concentration showed that proliferation could be stimulated by low micromolar concentrations of adenosine. We conclude that adenosine is stimulatory to the growth of human colorectal carcinoma cells at concentrations present within the tumor extracellular environment.
Collapse
Affiliation(s)
- Michelle Mujoomdar
- Department of Pharmacology, Faculty of Medicine, Sir Charles Tupper Medical Building, Dalhousie University, Halifax, NS, Canada B3H 4H7
| | | | | |
Collapse
|
31
|
Butler JJ, Mader JS, Watson CL, Zhang H, Blay J, Hoskin DW. Adenosine inhibits activation-induced T cell expression of CD2 and CD28 co-stimulatory molecules: role of interleukin-2 and cyclic AMP signaling pathways. J Cell Biochem 2003; 89:975-91. [PMID: 12874832 DOI: 10.1002/jcb.10562] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Adenosine is an immunosuppressive molecule that is associated with the microenvironment of solid tumors. Mouse T cells activated with anti-CD3 antibody in the presence of adenosine with or without coformycin (to prevent adenosine breakdown by adenosine deaminase) exhibited decreased tyrosine phosphorylation of some intracellular proteins and were inhibited in their ability to proliferate and synthesize interleukin (IL)-2. In addition, adenosine interfered with activation-induced expression of the co-stimulatory molecules CD2 and CD28. Activation-induced CD2 and CD28 expression was also diminished when T cells were activated in the presence of anti-IL-2 and anti-CD25 antibodies to neutralize IL-2 bioactivity. Collectively, these data suggest that CD2 and CD28 up-regulation following T cell activation is IL-2-dependent; and that adenosine inhibits activation-induced T cell expression of CD2 and CD28 by interfering with IL-2-dependent signaling. The inhibitory effect of adenosine on activation-induced CD2 and CD28 expression could not be attributed to cyclic AMP (cAMP) accumulation resulting from the stimulation of adenylyl cyclase-coupled adenosine receptors, even though cAMP at concentrations much higher than those generated following adenosine stimulation was inhibitory for both CD2 and CD28 expression. We conclude that adenosine interferes with IL-2-dependent T cell expression of co-stimulatory molecules via a mechanism that does not involve the accumulation of intracellular cAMP.
Collapse
Affiliation(s)
- Jared J Butler
- Department of Microbiology & Immunology, Faculty of Medicine, Sir Charles Tupper Medical Building, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Hilden TJ, Valmu L, Kärkkäinen S, Gahmberg CG. Threonine phosphorylation sites in the beta 2 and beta 7 leukocyte integrin polypeptides. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4170-7. [PMID: 12682249 DOI: 10.4049/jimmunol.170.8.4170] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cytoplasmic domains of integrins play a key role in a variety of integrin-mediated events including adhesion, migration, and signaling. The molecular mechanisms that enhance integrin function are still incompletely understood. Because protein kinases are known to be involved in the signaling and the activation of integrins, the role of phosphorylation has been studied by several groups. The beta(2) leukocyte integrin subunit has previously been shown to become phosphorylated in leukocytes on cytoplasmic serine and functionally important threonine residues. We have now mapped the phosphorylated threonine residues in activated T cells. After phorbol ester stimulation, all three threonine residues (758-760) of the threonine triplet became phosphorylated but only two at a time. CD3 stimulation leads to a strong threonine phosphorylation of the beta(2) integrin, but differed from phorbol ester activation in that phosphorylation occurred only on threonine 758. The other leukocyte-specific integrin, beta(7), has also been shown to need the cytoplasmic domain and leukocyte-specific signal transduction elements for integrin activation. Cell activation with phorbol ester, and interestingly, through the TCR-CD3 complex, caused beta(7) integrin binding to VCAM-1. Additionally, cell activation led to increased phosphorylation of the beta(7) subunit, and phosphoamino acid analysis revealed that threonine residues became phosphorylated after cell activation. Sequence analysis by manual radiosequencing by Edman degradation established that threonine phosphorylation occurred in the same threonine triplet as in beta(2) phosphorylation.
Collapse
Affiliation(s)
- Tiina J Hilden
- Department of Biosciences, Division of Biochemistry, and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
33
|
Lowthers EL, Richard CL, Blay J. DIFFERENTIAL SENSITIVITY TO SHORT-CHAIN CERAMIDE ANALOGUES OF HUMAN INTESTINAL CARCINOMA CELLS GROWN IN TUMOR SPHEROIDS VERSUS MONOLAYER CULTURE. ACTA ACUST UNITED AC 2003; 39:340-2. [PMID: 14640787 DOI: 10.1290/1543-706x(2003)039<0340:dstsca>2.0.co;2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cytotoxic activity of short-chain (C(2)) ceramide was evaluated in human intestinal carcinoma cells grown as multicellular tumor spheroids versus the same cells cultured as monolayers under closely comparable conditions. A decrease in cell number was seen in monolayer cultures of HT-29, Caco-2, and HRT-18 cells, with an EC(50) (concentration for half-maximal toxicity) of between 13 and 23 microM. However, when the same cells were grown in the multicellular spheroid format, C(2) was markedly less potent in reducing cell number, with an EC(50) of between 44 and 63 microM, representing a 1.9- to 4.9-fold decrease in its potency. The chemotherapeutic agents 5-fluorouracil and cisplatin were equally potent against spheroids and monolayer cultures, indicating that although drug access is a problem in conventionally grown tumor spheroids it is not a problem for spheroids grown under the conditions used in this study. Our results suggest that although ceramide is capable of inducing cell death in intestinal carcinoma cells grown in spheroid culture, its cellular toxicity is constrained by influences that are independent of drug access and may be the consequence of the altered cellular relationships. Carcinoma cell populations show an intrinsically decreased responsiveness to the effects of ceramide when they are grown in a three-dimensional culture format.
Collapse
Affiliation(s)
- Erica L Lowthers
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | |
Collapse
|