1
|
Hejtmancik JF. Oxidative Stress in Genetic Cataract Formation. Antioxidants (Basel) 2024; 13:1315. [PMID: 39594457 PMCID: PMC11591473 DOI: 10.3390/antiox13111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Cataracts are the leading cause of blindness worldwide, and age-related cataracts are the result of environmental insults that largely lead to oxidative stress imposed on a genetic background that determines susceptibility to these stresses. METHODS A comprehensive literature review was performed to identify GWAS, targeted association studies, and TWAS that identified genes associated with age-related cataract. Additional genes associated with age-related cataracts were identified through the CAT-MAP online database. Pathway analysis was performed using Qiagen Ingenuity Pathway Analysis and pathways related to oxidative stress were analyzed using the same program. RESULTS A large number of genes have been identified as causes of both Mendelian and complex cataracts. Of these, 10 genes related to oxidative stress were identified, and all were associated with age-related cataracts. These genes fall into seven canonical pathways primarily related to glutathione metabolism and other pathways related to detoxifying reactive oxygen species. CONCLUSIONS While a relatively small number of antioxidant related genes were identified as being associated with cataracts, they allow the identification of redox pathways important for lens metabolism and homeostasis. These are largely related to glutathione and its metabolism, other pathways for detoxification of reactive oxygen species, and the transcriptional systems that control their expression.
Collapse
Affiliation(s)
- James Fielding Hejtmancik
- Ophthalmic Molecular Genetics Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Lou MF. Glutathione and Glutaredoxin in Redox Regulation and Cell Signaling of the Lens. Antioxidants (Basel) 2022; 11:1973. [PMID: 36290696 PMCID: PMC9598519 DOI: 10.3390/antiox11101973] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
The ocular lens has a very high content of the antioxidant glutathione (GSH) and the enzymes that can recycle its oxidized form, glutathione disulfide (GSSG), for further use. It can be synthesized in the lens and, in part, transported from the neighboring anterior aqueous humor and posterior vitreous body. GSH is known to protect the thiols of the structural lens crystallin proteins from oxidation by reactive oxygen species (ROS) so the lens can maintain its transparency for proper visual function. Age-related lens opacity or senile cataract is the major visual impairment in the general population, and its cause is closely associated with aging and a constant exposure to environmental oxidative stress, such as ultraviolet light and the metabolic end product, H2O2. The mechanism for senile cataractogenesis has been hypothesized as the results of oxidation-induced protein-thiol mixed disulfide formation, such as protein-S-S-glutathione and protein-S-S-cysteine mixed disulfides, which if not reduced in time, can change the protein conformation to allow cascading modifications of various kinds leading to protein-protein aggregation and insolubilization. The consequence of such changes in lens structural proteins is lens opacity. Besides GSH, the lens has several antioxidation defense enzymes that can repair oxidation damage. One of the specific redox regulating enzymes that has been recently identified is thioltransferase (glutaredoxin 1), which works in concert with GSH, to reduce the oxidative stress as well as to regulate thiol/disulfide redox balance by preventing protein-thiol mixed disulfide accumulation in the lens. This oxidation-resistant and inducible enzyme has multiple physiological functions. In addition to protecting structural proteins and metabolic enzymes, it is able to regulate the redox signaling of the cells during growth factor-stimulated cell proliferation and other cellular functions. This review article focuses on describing the redox regulating functions of GSH and the thioltransferase enzyme in the ocular lens.
Collapse
Affiliation(s)
- Marjorie F. Lou
- School of Veterinary Medicine and Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
- Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmaceutical Sciences, System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
3
|
Guo G, Dong J. Diosmetin attenuates oxidative stress-induced damage to lens epithelial cells via the mitogen-activated protein kinase (MAPK) pathway. Bioengineered 2022; 13:11072-11081. [PMID: 35481411 PMCID: PMC9208454 DOI: 10.1080/21655979.2022.2068755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cataract is a global ophthalmic disease that blinds the eye, and oxidative stress is one of its primary causes. Apoptosis of lens epithelial cells (LECs) is considered the major cytological basis of many cataracts except congenital cataracts. The purpose of this study was to investigate whether diosmetin could reduce oxidative stress-induced damage to LECs, and explore its regulatory pathway. Lens epithelial cell line SRA01/04 was used as the object of study. Using ultraviolet B (UVB) and hydrogen peroxide (H2O2) as sources of oxidative stress, the protective effects of diosmetin at different concentrations on cells were investigated, including inhibition of proliferation, apoptosis, and oxidative stress. Molecular docking was then used to predict the target proteins and validation was performed at the cellular and protein levels. The oxidative stress of SRA01/04 was induced by UVB and H2O2, and inhibition of proliferation and apoptosis were observed. Here, diosmetin has a dose-dependent cell-protecting effect. This effect is achieved by targeting the MEK2 protein and inhibiting the MAPK signaling. In conclusion, diosmetin reduces H2O2- and UVB-induced inhibition of SRA01/04 proliferation and apoptosis by reducing oxidative stress-induced activation of the MAPK pathway.
Collapse
Affiliation(s)
- Guanghai Guo
- Department of Ophthalmology, Feicheng Hospital of Shandong Yiyang Health Group, Shandong, Feicheng, P.R. China
| | - Jin Dong
- Department of Clinical Laboratory, Feicheng Hospital of Shandong Yiyang Health Group, Shandong, Feicheng, P.R. China
| |
Collapse
|
4
|
Zhao Y, Liu S, Li X, Xu Z, Hao L, Cui Z, Bi K, Zhang Y, Liu Z. Cross-talk of Signaling Pathways in the Pathogenesis of Allergic Asthma and Cataract. Protein Pept Lett 2021; 27:810-822. [PMID: 32031062 DOI: 10.2174/0929866527666200207113439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Allergic asthma is a chronic inflammatory disease, which involves many cellular and cellular components. Cataract is a condition that affects the transparency of the lens, which the opacity of the lens caused by any innate or acquired factor degrades its transparency or changes in color. Both of them belong to diseases induced by immune disorders or inflammation. We want to confirm the signaling pathways involved in the regulation of asthma and cataract simultaneously, and provide reference for the later related experiments. So we conducted a scoping review of many databases and searched for studies (Academic research published in Wiley, Springer and Bentham from 2000 to 2019) about the possible relationship between asthma and cataract. It was found that during the onset of asthma and cataract, Rho/Rock signaling pathway, Notch signaling pathway, Wnt/β-catenin signaling pathway, PI3K/AKT signaling pathway, JAK/STAT signaling pathway, MAPK signaling pathway, TGF-β1/Smad signaling pathway and NF-κB signaling pathway are all active, so they may have a certain correlation in pathogenesis. Asthma may be associated with cataract through the eight signaling pathways, causing inflammation or immune imbalance based on allergy that can lead to cataract. According to these studies, we speculated that the three most likely signaling pathways are PI3K/AKT, MAPK and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yang Zhao
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Sumei Liu
- Department of Stomatology, No. 2 Hospital of Baoding, Baoding 071002, China
| | - Xiangsheng Li
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Zhenzhen Xu
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Lifang Hao
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Zhe Cui
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Kewei Bi
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Yanfen Zhang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China,Offices of Science and Technology, Hebei University, Baoding 071002, China
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| |
Collapse
|
5
|
Let-7c-3p Regulates Autophagy under Oxidative Stress by Targeting ATG3 in Lens Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6069390. [PMID: 32258130 PMCID: PMC7102475 DOI: 10.1155/2020/6069390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/24/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
Abstract
Background Oxidative stress is an important factor during age-related cataract formation. Apoptosis and autophagy induced by oxidative stress have been reported as key factors in age-related cataract. In our research, we investigated the role of let-7c-3p in the regulation of autophagy and apoptosis during the formation of age-related cataract. Material and Methods. Real-time PCR and western blot were employed to detect the expression of let-7c-3p in the tissues of age-related cataract. Human lens epithelial cells (LECs) were treated with H2O2 as an age-related cataract model. The extent of apoptosis was measured by flow cytometry and western blot. To detect autophagy, immunofluorescence was used to analyze the spot number of LC3, and western blot was used to detect the expression of LC3-II/I and ATG3. The molecular mechanisms of let-7c-3p regulating autophagy via ATG3 under oxidative stress were performed by a luciferase report gene assay and rescue experiment. Results Downregulation of let-7c-3p was found in the age-related cataract group aged >65 years relative to the age-related cataract group aged ≤65 years. Consistently, the expression of let-7c-3p was also lower under oxidative stress. The activities of LEC apoptosis and autophagy induced by oxidative stress were inhibited by let-7c-3p. By the bioinformatics database and the luciferase reporter assay, ATG3 was found to be a direct target of let-7c-3p. Let-7c-3p reduced the ATG3-mediated autophagy level, which was induced by oxidative stress in LECs. Conclusion Let-7c-3p inhibits autophagy by targeting ATG3 in LECs in age-related cataract.
Collapse
|
6
|
Valiunas V, Brink PR, White TW. Lens Connexin Channels Have Differential Permeability to the Second Messenger cAMP. Invest Ophthalmol Vis Sci 2019; 60:3821-3829. [PMID: 31529078 PMCID: PMC6750889 DOI: 10.1167/iovs.19-27302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/13/2019] [Indexed: 01/14/2023] Open
Abstract
Purpose Gap junction channels exhibit connexin specific biophysical properties, including the selective intercellular passage of larger solutes, such as second messengers. Here, we have examined the cyclic nucleotide permeability of the lens connexins, which could influence events like epithelial cell division and differentiation. Methods We compared the cAMP permeability through channels composed of Cx43, Cx46, or Cx50 using simultaneous measurements of junctional conductance and intercellular transfer. For cAMP detection, the recipient cells were transfected with a cAMP sensor gene, the cyclic nucleotide-modulated channel from sea urchin sperm (SpIH). cAMP was introduced via patch pipette into the cell of the pair that did not express SpIH. SpIH-derived currents were recorded from the other cell of a pair that expressed SpIH. cAMP permeability was also directly visualized in transfected cells using a chemically modified fluorescent form of the molecule. Results cAMP transfer was observed for homotypic Cx43 channels over a wide range of junctional conductance. Homotypic Cx46 channels also transferred cAMP, but permeability was reduced compared with Cx43. In contrast, homotypic Cx50 channels exhibited extremely low permeability to cAMP, when compared with either Cx43, or Cx46. Conclusions These data show that channels made from Cx43 and Cx46 result in the intercellular delivery of cAMP in sufficient quantity to activate cyclic nucleotide-modulated channels. The data also suggest that the greatly reduced cAMP permeability of Cx50 channels could play a role in the regulation of cell division in the lens.
Collapse
Affiliation(s)
- Virginijus Valiunas
- The Renaissance Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Peter R. Brink
- The Renaissance Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Thomas W. White
- The Renaissance Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States
| |
Collapse
|
7
|
Zhou W, Xu J, Wang C, Shi D, Yan Q. miR-23b-3p regulates apoptosis and autophagy via suppressing SIRT1 in lens epithelial cells. J Cell Biochem 2019; 120:19635-19646. [PMID: 31338869 DOI: 10.1002/jcb.29270] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
Abstract
Age-related cataract is one of the prior causes of blindness and the incidence rates of cataract are even rising. Oxidative stress plays an important role in the pathogenesis of cataracts. Under oxidative stress, lens epithelial cell (LEC cell) apoptosis is activated, which might lead to the opacity of the lens and accelerate the progression of cataract development. Meanwhile, autophagy is also active to face oxidative stress. miRNAs have been reported to involve cataract. However, the underlying mechanism is not clear. The present study aimed to investigate the regulatory effect of miR23b-3p on apoptosis and autophagy in LEC cells under oxidative stress. The expression levels of miR-23b-3p were examined in age-related cataract tissues and LEC cells treated with hydrogen peroxide, showing that miR23b-3p expression levels were upregulated. Knockdown of miR23b-3p expression in LEC cells brought about apoptosis significantly decreased while autophagy significantly increased during hydrogen peroxide. We predicted microRNA miRNA-23b-3p might participate in regulating silent information regulator 1 (SIRT1) by bioinformatics database of TargetScan. Luciferase reporter assays confirmed that miRNA-23b-p could suppress SIRT1 expression by binding its 3'UTR. In addition, overexpression or knockdown of miR-23b-3p could decrease or increase SIRT1 expression, which indicated that Mir-23b-3p could suppress SIRT1 expression. In addition, enhanced SIRT1 could attenuate the regulation of cell apoptosis and autophagy induced by overexpression of miR-23b-3p. Taken together, our findings revealed that miR-23b-3p regulated apoptosis and autophagy via suppressing SIRT1 in LEC cell under oxidative stress, which could provide new ideas for clinical treatment of cataract.
Collapse
Affiliation(s)
- Wenkai Zhou
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jun Xu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Chunxia Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong Shi
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Qichang Yan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Lens differentiation is controlled by the balance between PDGF and FGF signaling. PLoS Biol 2019; 17:e3000133. [PMID: 30716082 PMCID: PMC6375662 DOI: 10.1371/journal.pbio.3000133] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/14/2019] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
How multiple receptor tyrosine kinases coordinate cell fate determination is yet to be elucidated. We show here that the receptor for platelet-derived growth factor (PDGF) signaling recruits the p85 subunit of Phosphoinositide 3-kinase (PI3K) to regulate mammalian lens development. Activation of PI3K signaling not only prevents B-cell lymphoma 2 (BCL2)-Associated X (Bax)- and BCL2 Antagonist/Killer (Bak)-mediated apoptosis but also promotes Notch signaling to prevent premature cell differentiation. Reducing PI3K activity destabilizes the Notch intracellular domain, while the constitutive activation of Notch reverses the PI3K deficiency phenotype. In contrast, fibroblast growth factor receptors (FGFRs) recruit Fibroblast Growth Factor Receptor Substrate 2 (Frs2) and Rous sarcoma oncogene (Src) Homology Phosphatase 2 (Shp2) to activate Mitogen-Activated Protein Kinase (MAPK) signaling, which induces the Notch ligand Jagged 1 (Jag1) and promotes cell differentiation. Inactivation of Shp2 restored the proper timing of differentiation in the p85 mutant lens, demonstrating the antagonistic interaction between FGF-induced MAPK and PDGF-induced PI3K signaling. By selective activation of PI3K and MAPK, PDGF and FGF cooperate with and oppose each other to balance progenitor cell maintenance and differentiation. A central aim in understanding cell signaling is to decode the cellular logic that underlies the functional specificity of growth factors. Although these factors are known to activate a common set of intracellular pathways, they nevertheless play specific roles in development and physiology. Using lens development in mice as a model, we show that fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF) antagonize each other through their intrinsic biases toward distinct downstream targets. While FGF primarily induces the Ras–Mitogen-Activated Protein Kinase (MAPK) axis to promote lens cell differentiation, PDGF preferentially stimulates Phosphoinositide 3-kinase (PI3K) to enhance Notch signaling, which is necessary for maintaining the lens progenitor cell pool. By revealing the intricate interactions between PDGF, FGF, and Notch, we present a paradigm for how signaling crosstalk enables balanced growth and differentiation in multicellular organisms.
Collapse
|
9
|
Zadi Heydarabad M, Baharaghdam S, Azimi A, Mohammadi H, Eivazi Ziaei J, Yazdanpanah B, Zak MS, Farahani ME, Dohrabpour A, Partash N, Talebi M. The role of tumor suppressor of resveratrol and prednisolone by downregulation of YKL-40 expression in CCRF-CEM cell line. J Cell Biochem 2018; 120:3773-3779. [PMID: 30426549 DOI: 10.1002/jcb.27659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/21/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is characterized by excessive accumulation of lymphoblast and progenitors. Leukemia is the most common cancer in children and ALL is the most common subtype. Many studies have shown that the YKL-40 gene is one of the most widely expressed genes in tumors, including leukemia, but not in healthy blood cells. Clinical studies have shown that serum YKL-40 levels have a positive correlation with tumor expansion, in addition to being a prognostic agent independent of a short relapse-free interval, as well as a brief overall survival in patients with various cancers. The previous study shows that YKL-40 is closely related to the degree of pathology or degree of human leukemia pathology and plays an important role in cell proliferation. Hence, the YKL-40 can be an attractive target in designing anticancer therapies. METHODS CCRF-CEM cells were treated with resveratrol and prednisolone. For analysis of YKL-40 expression changes under medication, real-time polymerase chain reaction (PCR) and Western blot techniques were used at resonating intervals of 24 and 48 hours. RESULTS The effect of 15, 50, and 100 μM resveratrol and 700 μM of prednisolone on CCRF-CEM cells reduced YKL-40. The YKL-40 gene was quantitatively measured using RT-PCR. The Western blot method was used to evaluate changes in the expression of YKL-40 protein. CONCLUSION In this study, we first evaluated YKL-40 expression and resveratrol and prednisolone effect on YKL-40 in ALL. This finding supports the idea of targeting YKL-40 as a new drug treatment of ALL and extends the use of resveratrol in antileukemia research.
Collapse
Affiliation(s)
| | - Sina Baharaghdam
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ako Azimi
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Hamed Mohammadi
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamal Eivazi Ziaei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behruz Yazdanpanah
- Department of Laboratory Sciences, School Paramedics, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohsen Sharif Zak
- Clinical Biochemistry and Laboratory, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Aghdas Dohrabpour
- Department of Microbiology, Yasuj Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Partash
- Department of Nursing, School of Nursing and Midwifery, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mehdi Talebi
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Marneros AG. Increased VEGF-A promotes multiple distinct aging diseases of the eye through shared pathomechanisms. EMBO Mol Med 2016; 8:208-31. [PMID: 26912740 PMCID: PMC4772957 DOI: 10.15252/emmm.201505613] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
While increased VEGF‐A has been associated with neovascular age‐related macular degeneration (AMD), it is not known whether VEGF‐A may also promote other age‐related eye diseases. Here, we show that an increase in VEGF‐A is sufficient to cause multiple distinct common aging diseases of the eye, including cataracts and both neovascular and non‐exudative AMD‐like pathologies. In the lens, increased VEGF‐A induces age‐related opacifications that are associated with ERK hyperactivation, increased oxidative damage, and higher expression of the NLRP3 inflammasome effector cytokine IL‐1β. Similarly, increased VEGF‐A induces oxidative stress and IL‐1β expression also in the retinal pigment epithelium (RPE). Targeting NLRP3 inflammasome components or Il1r1 strongly inhibited not only VEGF‐A‐induced cataract formation, but also both neovascular and non‐exudative AMD‐like pathologies. Moreover, increased VEGF‐A expression specifically in the RPE was sufficient to cause choroidal neovascularization (CNV) as in neovascular AMD, which could be inhibited by RPE‐specific inactivation of Flk1, while Tlr2 inactivation strongly reduced CNV. These findings suggest a shared pathogenic role of VEGF‐A‐induced and NLRP3 inflammasome‐mediated IL‐1β activation for multiple distinct ocular aging diseases.
Collapse
Affiliation(s)
- Alexander G Marneros
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA, USA Department of Dermatology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Wang C, Dawes LJ, Liu Y, Wen L, Lovicu FJ, McAvoy JW. Dexamethasone influences FGF-induced responses in lens epithelial explants and promotes the posterior capsule coverage that is a feature of glucocorticoid-induced cataract. Exp Eye Res 2013; 111:79-87. [PMID: 23518408 DOI: 10.1016/j.exer.2013.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/08/2013] [Accepted: 03/08/2013] [Indexed: 12/14/2022]
Abstract
Aberrant spreading of lens epithelial cells along the posterior capsule is the basis for development of glucocorticoid (GC)-induced cataract; the resulting foci of nucleated cells at the posterior pole causing disruptions to normal lens cellular architecture. In this study, rat lens epithelial explants were used to assess the effects of dexamethasone (DEX), a widely used synthetic GC, on FGF2-induced lens cell proliferation and elongation as well as the ability of lens cells to spread and cover the posterior capsule. In the presence of FGF2, DEX significantly promoted lens cell proliferation after 48 h. Cell coverage of the posterior capsule was also enhanced during 5 days culture. In contrast, cell elongation was retarded by the inclusion of DEX. In the absence of FGF2, DEX had no marked effects on any of these cellular processes. Thus, in the presence of FGF2, DEX promoted cell proliferation and posterior capsule coverage but inhibited cell elongation. These results provide insights into the molecular mechanism underlying GC-induced cataract in humans.
Collapse
Affiliation(s)
- Chunxiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
12
|
Osmotic stress, not aldose reductase activity, directly induces growth factors and MAPK signaling changes during sugar cataract formation. Exp Eye Res 2012; 101:36-43. [PMID: 22710095 DOI: 10.1016/j.exer.2012.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/24/2012] [Accepted: 05/25/2012] [Indexed: 12/31/2022]
Abstract
In sugar cataract formation in rats, aldose reductase (AR) activity is not only linked to lenticular sorbitol (diabetic) or galactitol (galactosemic) formation but also to signal transduction changes, cytotoxic signals and activation of apoptosis. Using both in vitro and in vivo techniques, the interrelationship between AR activity, polyol (sorbitol and galactitol) formation, osmotic stress, growth factor induction, and cell signaling changes have been investigated. For in vitro studies, lenses from Sprague Dawley rats were cultured for up to 48 h in TC-199-bicarbonate media containing either 30 mM fructose (control), or 30 mM glucose or galactose with/without the aldose reductase inhibitors AL1576 or tolrestat, the sorbitol dehydrogenase inhibitor (SDI) CP-470,711, or 15 mM mannitol (osmotic-compensated media). For in vivo studies, lenses were obtained from streptozotocin-induced diabetic Sprague Dawley rats fed diet with/without the ARIs AL1576 or tolrestat for 10 weeks. As expected, lenses cultured in high glucose/galactose media or from untreated diabetic rats all showed a decrease in the GSH pool that was lessened by ARI treatment. Lenses either from diabetic rats or from glucose/galactose culture conditions showed increased expression of basic-FGF, TGF-β, and increased signaling through P-Akt, P-ERK1/2 and P-SAPK/JNK which were also normalized by ARIs to the expression levels observed in non-diabetic controls. Culturing rat lenses in osmotically compensated media containing 30 mM glucose or galactose did not lead to increased growth factor expression or altered signaling. These studies indicate that it is the biophysical response of the lens to osmotic stress that results in an increased intralenticular production of basic-FGF and TGF-β and the altered cytotoxic signaling that is observed during sugar cataract formation.
Collapse
|
13
|
Mathias RT, White TW, Gong X. Lens gap junctions in growth, differentiation, and homeostasis. Physiol Rev 2010; 90:179-206. [PMID: 20086076 DOI: 10.1152/physrev.00034.2009] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The cells of most mammalian organs are connected by groups of cell-to-cell channels called gap junctions. Gap junction channels are made from the connexin (Cx) family of proteins. There are at least 20 isoforms of connexins, and most tissues express more than 1 isoform. The lens is no exception, as it expresses three isoforms: Cx43, Cx46, and Cx50. A common role for all gap junctions, regardless of their Cx composition, is to provide a conduit for ion flow between cells, thus creating a syncytial tissue with regard to intracellular voltage and ion concentrations. Given this rather simple role of gap junctions, a persistent question has been: Why are there so many Cx isoforms and why do tissues express more than one isoform? Recent studies of lens Cx knockout (KO) and knock in (KI) lenses have begun to answer these questions. To understand these roles, one must first understand the physiological requirements of the lens. We therefore first review the development and structure of the lens, its numerous transport systems, how these systems are integrated to generate the lens circulation, the roles of the circulation in lens homeostasis, and finally the roles of lens connexins in growth, development, and the lens circulation.
Collapse
Affiliation(s)
- Richard T Mathias
- Department of Physiology and Biophysics, SUNY at Stony Brook, Stony Brook, New York 11794-8661, USA.
| | | | | |
Collapse
|
14
|
Wang Q, McAvoy JW, Lovicu FJ. Growth factor signaling in vitreous humor-induced lens fiber differentiation. Invest Ophthalmol Vis Sci 2010; 51:3599-610. [PMID: 20130274 DOI: 10.1167/iovs.09-4797] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE. Although some of the factors and signaling pathways that are involved in induction of fiber differentiation have been defined, such as FGF-mediated MAPK/ERK and PI3-K/Akt signaling, the factors in the vitreous that regulate this differentiation process in vivo have yet to be identified. The purpose of this study was to better understand the role of growth factors in vitreous that regulate this process by further characterizing the signaling pathways involved in lens fiber differentiation. METHODS. Rat lens epithelial explants were used to compare the ability of vitreous, IGF-1, PDGF-A, EGF, and FGF-2 to stimulate the phosphorylation of ERK1/2 and Akt leading to fiber differentiation, in the presence or absence of selective receptor tyrosine kinase (RTK) inhibitors. RESULTS. Similar to vitreous, FGF induced a sustained ERK1/2 signaling profile, unlike IGF, PDGF, and EGF, which induced a more transient (shorter) activation of ERK1/2. For Akt activation, IGF was the only factor that induced a profile similar to vitreous. IGF, PDGF, and EGF potentiated the effects of a low dose of FGF on lens fiber differentiation by extending the duration of ERK1/2 phosphorylation. In the presence of selective RTK inhibitors, although the sustained vitreous-induced ERK1/2 signaling profile and subsequent fiber differentiation was perturbed, the results also showed that, although prolonged ERK1/2 phosphorylation was necessary, it was not sufficient for fiber differentiation to proceed. CONCLUSIONS. These results are consistent with FGF's being the key growth factor involved in vitreous-induced signaling leading to lens fiber differentiation; however, they also indicate that other vitreal growth factors such as IGF may be involved in fine-tuning ERK1/2- and Akt-phosphorylation to the level that is necessary for initiation and/or maintenance of lens fiber differentiation in vivo.
Collapse
Affiliation(s)
- Qian Wang
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
15
|
Saravanamuthu SS, Gao CY, Zelenka PS. Notch signaling is required for lateral induction of Jagged1 during FGF-induced lens fiber differentiation. Dev Biol 2009; 332:166-76. [PMID: 19481073 PMCID: PMC2730671 DOI: 10.1016/j.ydbio.2009.05.566] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 01/08/2023]
Abstract
Previous studies of the developing lens have shown that Notch signaling regulates differentiation of lens fiber cells by maintaining a proliferating precursor pool in the anterior epithelium. However, whether Notch signaling is further required after the onset of fiber cell differentiation is not clear. This work investigates the role of Notch2 and Jagged1 (Jag1) in secondary fiber cell differentiation using rat lens epithelial explants undergoing FGF-2 dependent differentiation in vitro. FGF induced Jag1 expression and Notch2 signaling (as judged by the appearance of activated Notch2 Intracellular Domain (N2ICD)) within 12-24 h. These changes were correlated with induction of the Notch effector, Hes5, upregulation of N-cadherin (N-cad), and downregulation of E-cadherin (E-cad), a cadherin switch characteristic of fiber cell differentiation. Induction of Jag1 was efficiently blocked by U0126, a specific inhibitor of MAPK/ERK signaling, indicating a requirement for signaling through this pathway downstream of the FGF receptor. Other growth factors that activate MAPK/ERK signaling (EGF, PDGF, IGF) did not induce Jag1. Inhibition of Notch signaling using gamma secretase inhibitors DAPT and L-685,458 or anti-Jag1 antibody markedly decreased FGF-dependent expression of Jag1 demonstrating Notch-dependent lateral induction. In addition, inhibition of Notch signaling reduced expression of N-cad, and the cyclin dependent kinase inhibitor, p57Kip2, indicating a direct role for Notch signaling in secondary fiber cell differentiation. These results demonstrate that Notch-mediated lateral induction of Jag1 is an essential component of FGF-dependent lens fiber cell differentiation.
Collapse
Affiliation(s)
- Senthil S Saravanamuthu
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
16
|
Lin D, Harris R, Stutzman R, Zampighi GA, Davidson H, Takemoto DJ. Protein Kinase C-γ Activation in the Early Streptozotocin Diabetic Rat Lens. Curr Eye Res 2009; 32:523-32. [PMID: 17612968 DOI: 10.1080/02713680701418124] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE The purpose of this study is to demonstrate the early activation of the protein kinase C-gamma (PKC-gamma) pathway in the streptozotocin (STZ)-induced diabetic rat lens. METHODS Twelve-week-old male and female Sprague-Dawley rats were injected with 80 mg/kg (body weight) of STZ (N-[methylnitrosocarbamoyl]-D-glucosamine) intraperitoneally. Very high glucose (VHG) diabetes was defined as a nonfasting blood glucose level of at least 450 mg/dl, confirmed by daily monitoring with Accu-Check Advantage test strips, and occurred about 2 weeks after STZ administration. All assayed lenses were from VHG or age-matched control rats, harvested within 24 hr of VHG detection. PKC-gamma activation was measured by enzyme activity assay and by Western blotting to show autophosphorylation on Thr514. Cellular insulin-like growth factor-1 (IGF-1), PKC-gamma phosphorylation of Cx43 on Ser368, and activation of phospholipase C-gamma 1 (PLC-gamma 1), extracellular signal-regulated kinase (ERK1/2), and caspase-3 were determined by Western blotting. Endogenous diacylglycerol (DAG) levels were measured with a DAG assay kit. Lens gap junction activity was determined by the microinjection/Lucifer yellow dye transfer assay. Electron microscopy was applied to affirm fiber cell damage in the VHG diabetic lenses. RESULTS In the lenses of VHG diabetic rats, PKC-gamma enzyme was activated. PKC-gamma could be further activated by 400 nM phorbol-12-myristate-13-acetate (PMA), but the PKC-gamma protein levels remained constant. No elevation of IGF-1 level was observed. Western blots showed that activation of PKC-gamma may be due to activation of PLC-gamma 1, which synthesized endogenous DAG, a native PKC activator. The level of PKC-gamma -catalyzed phosphorylation of Cx43 on Ser368 and resulting inhibition of lens gap junction dye transfer activity was increased in the VHG diabetic lenses. At this early time period, the diabetic lens showed no activation of either caspase-3 or ERK1/2. Only a single fiber cell layer deep within the cortex (approximately 90 cell layers from capsule surface) showed vacuoles and damaged cell connections. CONCLUSIONS Early activation of PLC-gamma 1 and elevated DAG were observed within VHG diabetic lenses. These were correlated with activation of PKC-gamma, phosphorylation of Cx43 on Ser368, and inhibition of dye transfer. Abnormal signaling from PKC-gamma to Cx43 in the epithelial cells/early fiber cells, observed within VHG diabetic lenses, may be responsible for fiber cell damage deeper in the lens cortex.
Collapse
Affiliation(s)
- Dingbo Lin
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | | | |
Collapse
|
17
|
Boswell BA, Le ACN, Musil LS. Upregulation and maintenance of gap junctional communication in lens cells. Exp Eye Res 2009; 88:919-27. [PMID: 19103198 PMCID: PMC2853755 DOI: 10.1016/j.exer.2008.11.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/08/2008] [Accepted: 11/26/2008] [Indexed: 01/20/2023]
Abstract
The cells of the lens are joined by an extensive network of gap junction intercellular channels consisting of connexins 43, 46, and 50. We have proposed, and experimentally supported, the hypothesis that fibroblast growth factor (FGF) signaling is required for upregulation of gap junction-mediated intercellular coupling (GJIC) at the lens equator. The ability of FGF to increase GJIC in cultured lens cells requires sustained activation of extracellular signal-regulated kinase (ERK). In other cell types, activation of ERK has been shown to block GJIC mediated by connexin43 (Cx43). Why ERK signaling does not block lens cell coupling is not known. Another unresolved issue in lens gap junction regulation is how connexins, synthesized before the loss of biosynthetic organelles in mature lens fiber cells, avoid degradation during formation of the organelle-free zone. We have addressed these questions using serum-free cultures (termed DCDMLs) of primary embryonic chick lens epithelial cells. We show that FGF stimulates ERK in DCDMLs via the canonical Ras/Raf1 pathway, and that the reason that neither basal nor growth factor-stimulated GJIC is blocked by activation of ERK is because it is not mediated by Cx43. In fibroblastic cells, the normally rapid rate of degradation of Cx43 after its transport to the plasma membrane is reduced by treatments that either directly (ALLN; epoxomicin) or indirectly (generation of oxidatively un/mis-folded proteins by arsenic compounds) prevent the ubiquitin/proteasome system (UPS) from acting on its normal substrates. We show here that Cx45.6 and Cx56, the chick orthologs of mammalian Cx50 and Cx46, behave similarly in DCDMLs. When organelles lyse during the maturation of fiber cells, they release into the cytosol a large amount of new proteins that have the potential to saturate the capacity, and/or compromise the function, of the UPS. This would serve to spare gap junctions from degradation during formation of the organelle-free zone, thereby preserving GJIC between mature fiber cells despite the lack of de novo connexin synthesis.
Collapse
Affiliation(s)
- Bruce. A. Boswell
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, U.S.A
| | | | - Linda S. Musil
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, U.S.A
| |
Collapse
|
18
|
Iyengar L, Patkunanathan B, McAvoy JW, Lovicu FJ. Growth factors involved in aqueous humour-induced lens cell proliferation. Growth Factors 2009; 27:50-62. [PMID: 19085197 DOI: 10.1080/08977190802610916] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lens epithelial cell proliferation is regulated by growth factors in the aqueous humour of the eye. Although the lens fibre cell-differentiating factors are well defined, the factors in aqueous that promote lens cell proliferation are not. Mitogens present in aqueous primarily signal through the MAPK/ERK and PI3-K/Akt pathways. By characterising the signalling pathways involved in lens cell proliferation, we aim to identify the factors in aqueous that regulate this process in vivo. Using rat lens epithelial explants, 5'-2'-bromo-deoxyuridine and H(3)-thymidine incorporation were used to compare the effects of aqueous, insulin-like growth factor (IGF-1), platelet-derived growth factor (PDGF-A), epidermal growth factor (EGF) and fibroblast growth factor (FGF-2) on lens cell proliferation. Western blotting was employed to characterise ERK1/2 and Akt signalling induced by these mitogens. The above assays were also repeated in the presence of selective receptor inhibitors. Similar to aqueous, FGF induced a sustained ERK1/2 signalling profile (up to 6 h), unlike IGF, PDGF and EGF that induced a transient activation of ERK1/2. In the presence of a FGF receptor (FGFR) inhibitor, the sustained aqueous-induced ERK1/2 signalling profile was perturbed, resembling the transient IGF-, PDGF- or EGF-induced profile. In the presence of other growth factor receptor inhibitors, aqueous maintained its sustained, 6 h, ERK1/2 signalling profile, although ERK1/2 phosphorylation at earlier time periods was reduced. No one-specific receptor inhibitor could block aqueous-induced lens cell proliferation; however, combinations of inhibitors could, providing FGFR signalling was blocked. Multiple growth factors are likely to regulate lens cell proliferation in vivo, with a key role for FGF in aqueous-induced signalling and lens cell proliferation.
Collapse
Affiliation(s)
- Laxmi Iyengar
- Save Sight Institute, University of Sydney, NSW, Australia
| | | | | | | |
Collapse
|
19
|
Hawkins TA, Cavodeassi F, Erdélyi F, Szabó G, Lele Z. The small molecule Mek1/2 inhibitor U0126 disrupts the chordamesoderm to notochord transition in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2008; 8:42. [PMID: 18419805 PMCID: PMC2359734 DOI: 10.1186/1471-213x-8-42] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 04/17/2008] [Indexed: 11/10/2022]
Abstract
Background Key molecules involved in notochord differentiation and function have been identified through genetic analysis in zebrafish and mice, but MEK1 and 2 have so far not been implicated in this process due to early lethality (Mek1-/-) and functional redundancy (Mek2-/-) in the knockout animals. Results Here, we reveal a potential role for Mek1/2 during notochord development by using the small molecule Mek1/2 inhibitor U0126 which blocks phosphorylation of the Mek1/2 target gene Erk1/2 in vivo. Applying the inhibitor from early gastrulation until the 18-somite stage produces a specific and consistent phenotype with lack of dark pigmentation, shorter tail and an abnormal, undulated notochord. Using morphological analysis, in situ hybridization, immunhistochemistry, TUNEL staining and electron microscopy, we demonstrate that in treated embryos the chordamesoderm to notochord transition is disrupted and identify disorganization in the medial layer of the perinotochordal basement mebrane as the probable cause of the undulations and bulges in the notochord. We also examined and excluded FGF as the upstream signal during this process. Conclusion Using the small chemical U0126, we have established a novel link between MAPK-signaling and notochord differentiation. Our phenotypic analysis suggests a potential connection between the MAPK-pathway, the COPI-mediated intracellular transport and/or the copper-dependent posttranslational regulatory processes during notochord differentiation.
Collapse
Affiliation(s)
- Thomas A Hawkins
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | | | | | | | | |
Collapse
|
20
|
Gupta V, Wagner BJ. Search for a functional glucocorticoid receptor in the mammalian lens. Exp Eye Res 2008; 88:248-56. [PMID: 18541233 DOI: 10.1016/j.exer.2008.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 03/29/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
Abstract
Prolonged glucocorticoid treatment of medical conditions such as rheumatoid arthritis or asthma can lead to the formation of a posterior subcapsular cataract as a negative side effect. Currently, the only treatment for this cataract is surgery because very little is known about the mechanism of glucocorticoid action in the mammalian lens. Understanding of a lens glucocorticoid response is essential for the treatment and prevention of a steroid induced cataract. It has been suggested that glucocorticoids exert their effects on the lens indirectly, non-specifically, or through non-classical mechanisms. While these modes of action may contribute to the formation of glucocorticoid induced posterior subcapsular cataract, the finding of a classical, specific, functional lens glucocorticoid receptor suggests that glucocorticoids target lens epithelial cells directly, specifically, and similar to what has been observed in other cells types. This review explores the discovery of the glucocorticoid receptor in humans lens epithelial cells and the lens specific glucocorticoid response. The distinct changes in lens epithelial cell signaling pathways (MAPK and PI3K-AKT) suggest that glucocorticoids modulate several cellular functions and may explain why a lens glucocorticoid response has been difficult to elucidate.
Collapse
Affiliation(s)
- Vanita Gupta
- Department of Pathology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
21
|
Liu Y, Lu JB, Chen Q, Ye ZR. Involvement of MAPK/ERK kinase-ERK pathway in exogenous bFGF-induced Egr-1 binding activity enhancement in anoxia-reoxygenation injured astrocytes. Neurosci Bull 2008; 23:221-8. [PMID: 17687397 PMCID: PMC5550585 DOI: 10.1007/s12264-007-0033-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE Intravenous administration of basic fibroblast growth factor (bFGF) is effective to reduce the volume of cerebral infract due to ischemia. This study was designed to investigate the molecular mechanism, especially the signal transduction pathways, involved in this protective role of bFGF. METHODS Anoxia-reoxygenation treated astrocytes were used to study the role of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MAPK/ERK kinase, MEK)-ERK signaling pathway after exogenous bFGF administration by Western blot. Electrophoretic mobile shift assay was used to detect the binding activity of early growth response factor-1 (Egr-1), an important transcription factor for endogenous bFGF. RESULTS bFGF could protect some signal transduction proteins from the oxygen-derived free radicals induced degradation. ERK1/2 was activated and involved in Egr-1 binding activity enhancement induced by exogenous bFGF. CONCLUSION MEK-ERK MAPK cascade may be an important signal transduction pathway contributed to bFGF induced enhancement of Egr-1 binding activity in anoxia-reoxygenation injured astrocytes.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pathology, Shanghai Medical College Fudan University, Shanghai, 200032 China
| | - Jin-Biao Lu
- Department of Pathology, Shanghai Medical College Fudan University, Shanghai, 200032 China
| | - Qi Chen
- Department of Pathology, Shanghai Medical College Fudan University, Shanghai, 200032 China
| | - Zhu-Rong Ye
- Department of Pathology, Shanghai Medical College Fudan University, Shanghai, 200032 China
| |
Collapse
|
22
|
Xin X, Chen S, Khan ZA, Chakrabarti S. Akt activation and augmented fibronectin production in hyperhexosemia. Am J Physiol Endocrinol Metab 2007; 293:E1036-44. [PMID: 17666488 DOI: 10.1152/ajpendo.00271.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Dysmetabolic state in diabetes may lead to augmented synthesis of extracellular matrix (ECM) proteins. In the endothelial cells, we have previously demonstrated that glucose-induced fibronectin (FN) production and that of its splice variant, EDB(+)FN, is regulated by protein kinase B (PKB, also known as Akt). In this study, we investigated the role of Akt1 in ECM protein production in the organs affected by chronic diabetic complications. We studied Akt1/PKBalpha knockout mice and wild-type control littermates. To avoid confounding effects of systemic insulin, we used 30% galactose feeding to induce hyperhexosemia for 8 wk starting at 6 wk of age. We investigated FN mRNA, EDB(+)FN mRNA, and transforming growth factor (TGF)-beta mRNA expression, Akt phosphorylation, Akt kinase activity, and NF-kappaB and AP-1 activation in the retina, heart, and kidney. Renal and cardiac tissues were histologically examined. Galactose feeding caused significant upregulation of FN, EDB(+)FN, and TGF-beta in all tissues. FN protein levels paralleled mRNA. Such upregulation were prevented in Akt1-deficient galactose-fed mice. Galactose feeding caused ECM protein deposition in the glomeruli and in the myocardium, which was prevented in the Akt knockout mice. NF-kappaB and AP-1 activation was pronounced in galactose-fed wild-type mice and prevented in the galactose-fed Akt1/PKBalpha-deficient group. In the retina and kidney, Ser473 was the predominant site for Akt phosphorylation, whereas in the heart it was Thr308. Parallel experiment in streptozotocin-induced diabetic animals showed similar results. The data from this study indicate that hyperhexosemia-induced Akt/PKB activation may be an important mechanism leading to NF-kappaB and AP-1 activation and increased ECM protein synthesis in the organs affected by chronic diabetic complications.
Collapse
Affiliation(s)
- Xiping Xin
- Dept. of Pathology, 4011 Dental Sciences Bldg., Univ. of Western Ontario, London, ON, Canada N6A 5C1
| | | | | | | |
Collapse
|
23
|
Gupta V, Awasthi N, Wagner BJ. Specific activation of the glucocorticoid receptor and modulation of signal transduction pathways in human lens epithelial cells. Invest Ophthalmol Vis Sci 2007; 48:1724-34. [PMID: 17389505 PMCID: PMC2814520 DOI: 10.1167/iovs.06-0889] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Prolonged use of glucocorticoids (GCs) can lead to cataract formation. Lens GC responses have been difficult to elucidate. A previous study showed the presence of the glucocorticoid receptor (GR) in immortalized and primary human lens epithelial cells (hLECs) and GC-induced changes in gene expression. This study demonstrates specific GR activation and identifies the biological effect of GC-induced changes in gene expression in hLECs. METHODS HLE B-3 (B-3) and primary cultures of hLECs were transfected with pGRE.Luc and treated with or without dexamethasone (Dex), RU-486, spironolactone, or vehicle. mRNA and protein expression were examined by real-time PCR and Western blot analysis, respectively. Cell proliferation and apoptosis were examined by WST-1 and flow cytometry, respectively. RESULTS Dex treatment of B-3 and primary cultures demonstrated specific GR, but not mineralocorticoid receptor (MR), activation and phosphorylation. Pathway analysis revealed GC-induced changes in expression of MAPK regulators. Increased expression of GILZ mRNA and MKP-1 mRNA and protein was observed in immortalized and donor hLECs. This corresponded with a decrease in the phosphorylated forms of RAF, ERK, p38, and AKT, but not in JNK. No net change in LEC proliferation or apoptosis was observed with Dex treatment. CONCLUSIONS GC treatment of hLECs activates the GR to modulate the expression of MAPK and PI3K/AKT regulators. This is the first demonstration of GC signaling in hLECs. GCs, MAPK, and PI3K/AKT are involved in cell processes implicated in steroid-induced cataractogenesis. The absence of a net change in cell activity with acute steroid treatment is consistent with the possibility that chronic treatment leads to prolonged modulation of these pathways and steroid-induced cataract.
Collapse
Affiliation(s)
- Vanita Gupta
- Department of Biochemistry and Molecular Biology, the Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA.
| | | | | |
Collapse
|
24
|
Rao PV, Maddala R. The role of the lens actin cytoskeleton in fiber cell elongation and differentiation. Semin Cell Dev Biol 2006; 17:698-711. [PMID: 17145190 PMCID: PMC1803076 DOI: 10.1016/j.semcdb.2006.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The vertebrate ocular lens is a fascinating and unique transparent tissue that grows continuously throughout life. During the process of differentiation into fiber cells, lens epithelial cells undergo dramatic morphological changes, membrane remodeling, polarization, transcriptional activation and elimination of cellular organelles including nuclei, concomitant with migration towards the lens interior. Most of these events are presumed to be influenced in large part, by dynamic reorganization of the cellular actin cytoskeleton and by intercellular and cell: extracellular matrix interactions. In light of recent and unprecedented advancement in our understanding of the mechanistic bases underlying regulation of actin cytoskeletal dynamics and the role of the actin cytoskeleton in cell function, this review attempts to summarize current knowledge regarding the role of the cellular actin cytoskeleton, in lens fiber cell elongation and differentiation, and regulation of actin cytoskeletal organization in the lens.
Collapse
Affiliation(s)
- P Vasantha Rao
- Departments of Ophthalmology, Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| | | |
Collapse
|
25
|
Iyengar L, Patkunanathan B, Lynch OT, McAvoy JW, Rasko JEJ, Lovicu FJ. Aqueous humour- and growth factor-induced lens cell proliferation is dependent on MAPK/ERK1/2 and Akt/PI3-K signalling. Exp Eye Res 2006; 83:667-78. [PMID: 16684521 DOI: 10.1016/j.exer.2006.03.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 02/28/2006] [Accepted: 03/14/2006] [Indexed: 11/26/2022]
Abstract
The aqueous humour of the eye is a rich source of growth factors, many of which have been shown to be lens cell mitogens; however, the identity of the endogenous mitogen(s) for lens cells is still unknown. As a first approach to identify the mechanisms by which these aqueous humour-derived growth factors induce lens cell proliferation, the present study set out to examine MAPK/ERK1/2 and PI3-K/Akt signalling associated with lens cell proliferation. Using a lens explant system, we examined the effects of different lens mitogens (aqueous humour, FGF, PDGF, IGF and EGF) using 5'-2'-bromo-deoxyuridine incorporation. In addition, we adopted immunolabelling techniques to compare the roles that the ERK1/2 and PI3-K signalling pathways play in regulating lens cell proliferation. We showed that the aqueous humour, and all the other growth factors examined, could activate ERK1/2 and PI3-K/Akt signalling. By targeting these pathways using specific pharmacological inhibitors, we were able to show that both ERK1/2 and PI3-K signalling are required for growth factor-induced lens cell proliferation, and that there was a strong correlation between the spatial distribution of proliferating cells in lens explants with ERK1/2 labelling. Furthermore, our blocking studies confirmed that PI3-K/Akt signalling can act upstream of ERK1/2, potentiating ERK1/2 phosphorylation in growth factor-induced lens cell proliferation. A better understanding of the signalling pathways required for aqueous humour-induced lens cell proliferation may ultimately allow us to identify the mitogen(s) that are important for regulating lens cell proliferation in situ.
Collapse
Affiliation(s)
- Laxmi Iyengar
- Save Sight Institute, Institute for Biomedical Research, University of Sydney, City Road, NSW 2006, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Hauck SM, Kinkl N, Deeg CA, Swiatek-de Lange M, Schöffmann S, Ueffing M. GDNF family ligands trigger indirect neuroprotective signaling in retinal glial cells. Mol Cell Biol 2006; 26:2746-57. [PMID: 16537917 PMCID: PMC1430306 DOI: 10.1128/mcb.26.7.2746-2757.2006] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 10/17/2005] [Accepted: 01/11/2006] [Indexed: 11/20/2022] Open
Abstract
Apoptotic cell death of photoreceptors is the final event leading to blindness in the heterogeneous group of inherited retinal degenerations. GDNF (glial cell-line-derived neurotrophic factor) was found to rescue photoreceptor function and survival very effectively in an animal model of retinal degeneration (M. Frasson, S. Picaud, T. Leveillard, M. Simonutti, S. Mohand-Said, H. Dreyfus, D. Hicks, and J. Sahel, Investig. Ophthalmol. Vis. Sci. 40:2724-2734, 1999). However, the cellular mechanism of GDNF action remained unresolved. We show here that in porcine retina, GDNF receptors GFRalpha-1 and RET are expressed on retinal Mueller glial cells (RMG) but not on photoreceptors. Additionally, RMG express the receptors for the GDNF family members artemin and neurturin (GFRalpha-2 and GFRalpha-3). We further investigated GDNF-, artemin-, and neurturin-induced signaling in isolated primary RMG and demonstrate three intracellular cascades, which are activated in vitro: MEK/ERK, stress-activated protein kinase (SAPK), and PKB/AKT pathways with different kinetics in dependence on stimulating GFL. We correlate the findings to intact porcine retina, where GDNF induces phosphorylation of ERK in the perinuclear region of RMG located in the inner nuclear layer. GDNF signaling resulted in transcriptional upregulation of FGF-2, which in turn was found to support photoreceptor survival in an in vitro assay. We provide here a detailed model of GDNF-induced signaling in mammalian retina and propose that the GDNF-induced rescue effect on mutated photoreceptors is an indirect effect mediated by retinal Mueller glial cells.
Collapse
Affiliation(s)
- Stefanie M Hauck
- GSF-National Research Center for Environment and Health, Institute of Human Genetics, Ingolstaedter Landstrasse 1, 85764 Munich-Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Li DWC, Liu JP, Mao YW, Xiang H, Wang J, Ma WY, Dong Z, Pike HM, Brown RE, Reed JC. Calcium-activated RAF/MEK/ERK signaling pathway mediates p53-dependent apoptosis and is abrogated by alpha B-crystallin through inhibition of RAS activation. Mol Biol Cell 2005; 16:4437-53. [PMID: 16000378 PMCID: PMC1196350 DOI: 10.1091/mbc.e05-01-0010] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 05/16/2005] [Accepted: 06/27/2005] [Indexed: 12/20/2022] Open
Abstract
The ocular lens is the only organ that does not develop spontaneous tumor. The molecular mechanism for this phenomenon remains unknown. Through examination of the signaling pathways mediating stress-induced apoptosis, here we presented evidence to show that different from most other tissues in which the extracellular signal-regulated kinases (ERKs) pathway is generally implicated in mediation of survival signals activated by different factors, the RAF/MEK/ERK signaling pathway alone plays a key role in stress-activated apoptosis of lens epithelial cells. Treatment of N/N1003A cells with calcimycin, a calcium mobilizer, activates the RAF/MEK/ERK pathway through RAS, which is indispensable for the induced apoptosis because inhibition of this pathway by either pharmacological drug or dominant negative mutants greatly attenuates the induced apoptosis. Calcimycin also activates p38 kinase and JNK2, which are not involved in calcium-induced apoptosis. Downstream of ERK activation, p53 is essential. Activation of RAF/MEK/ERK pathway by calcimycin leads to distinct up-regulation of p53. Moreover, overexpression of p53 enhances calcimycin-induced apoptosis, whereas inhibition of p53 expression attenuates calcimycin-induced apoptosis. Up-regulation of p53 directly promotes Bax expression, which changes the integrity of mitochondria, leading to release of cytochrome c, activation of caspase-3 and eventually execution of apoptosis. Overexpression of alphaB-crystallin, a member of the small heat-shock protein family, blocks activation of RAS to inhibit ERK1/2 activation, and greatly attenuates calcimycin-induced apoptosis. Together, our results provide 1) a partial explanation for the lack of spontaneous tumor in the lens, 2) a novel signaling pathway for calcium-induced apoptosis, and 3) a novel antiapoptotic mechanism for alphaB-crystallin.
Collapse
|
28
|
Wang L, Wormstone IM, Reddan JR, Duncan G. Growth factor receptor signalling in human lens cells: role of the calcium store. Exp Eye Res 2005; 80:885-95. [PMID: 15939046 DOI: 10.1016/j.exer.2005.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 01/05/2005] [Accepted: 01/07/2005] [Indexed: 11/18/2022]
Abstract
In the human lens, stimulation of tyrosine-kinase coupled growth factor receptors such as epidermal growth factor receptor (EGFR) can induce calcium release from endoplasmic reticulum (ER) stores. The present study investigated the impact of calcium store inactivation on EGFR signalling, cell growth and death in a well-characterised human lens cell line (FHL124). FHL124 cells were routinely cultured in Eagle's minimum essential medium (EMEM) supplemented with 10% foetal calf serum (FCS) and seeded on 24-well plates (DNA and protein synthesis), tissue culture dishes (growth assay, western immunoblot), and glass coverslips (immunocytochemistry). DNA and protein synthesis rates were quantified by measuring the incorporation of (3)H-thymidine and (35)S-methionine into FHL124 cells in serum-free EMEM or EMEM supplemented with thapsigargin (Tg) (100 nM and 1 microM). Longer-term growth was assessed by quantifying the increase in area over time of a circular patch of seeded cells. EGFR was identified using anti-EGFR mouse monoclonal antibody and visualised by fluorescence microscopy with ALEXA 488 conjugated secondary antibody. Programmed cell death was determined by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) assay method. Activation of the mitogen-activated protein kinase (MAPK) signalling protein extracellular signal-regulated kinase (ERK) and the cell cycle proteins CDK2 and P27(kip1) were detected by western immunoblot techniques. Inactivation by > or =100 nM Tg inhibited both protein and DNA synthesis although the effect on the latter was greatest. The cell cycle activator CDK2 was reduced by Tg, while the inhibitor P27(kip1) was increased along with the percentage of apoptotic cells. A single, maximal epidermal growth factor (EGF) (10 ng ml(-1)) exposure induced receptor internalization and increased ERK phosphorylation. Both internalisation and ERK activation were unaffected by the presence of Tg. However, reduced internalisation and ERK activation followed repeated EGF applications in the presence of Tg. Additionally, ERK activation by submaximal EGF concentrations was reduced by store depletion. An intact endoplasmic reticulum calcium store therefore plays a significant role in human lens cell survival and growth.
Collapse
Affiliation(s)
- Lixin Wang
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | |
Collapse
|
29
|
Wang J, Feng H, Huang XQ, Xiang H, Mao YW, Liu JP, Yan Q, Liu WB, Liu Y, Deng M, Gong L, Sun S, Luo C, Liu SJ, Zhang XJ, Liu Y, Li DWC. Human telomerase reverse transcriptase immortalizes bovine lens epithelial cells and suppresses differentiation through regulation of the ERK signaling pathway. J Biol Chem 2005; 280:22776-87. [PMID: 15849192 DOI: 10.1074/jbc.m500032200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Telomerase is a specialized reverse transcriptase that extends telomeres of eukaryotic chromosomes. The functional telomerase complex contains a telomerase reverse transcriptase catalytic subunit and a telomerase template RNA. We have previously demonstrated that human telomerase reverse transcriptase (hTERT) catalytic subunit is functionally compatible with a telomerase template RNA from rabbit. In this study, we show that hTERT is also functionally compatible with a telomerase template RNA from bovine. Introduction of hTERT into bovine lens epithelial cells (BLECs) provides the transfected cells telomerase activity. The expressed hTERT in BLECs supports normal growth of the transfected cells for 108 population doublings so far, and these cells are still extremely healthy in both morphology and growth. In contrast, the vector-transfected cells display growth crisis after 20 population doublings. These cells run into cellular senescence due to shortening of the telomeres and also commit differentiation as indicated by the accumulation of the differentiation markers, beta-crystallin and filensin. hTERT prevents the occurrence of both events. By synthesizing new telomere, hTERT prevents replicative senescence, and through regulation of MEK/ERK, protein kinase C, and protein kinase A and eventual suppression of the MEK/ERK signaling pathway, hTERT inhibits differentiation of BLECs. Our finding that hTERT can suppress RAS/RAF/MEK/ERK signaling pathway to prevent differentiation provides a novel mechanism to explain how hTERT regulates cell differentiation.
Collapse
Affiliation(s)
- Juan Wang
- College of Life Sciences, Hunan Normal University, Changsha, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lovicu FJ, McAvoy JW. Growth factor regulation of lens development. Dev Biol 2005; 280:1-14. [PMID: 15766743 DOI: 10.1016/j.ydbio.2005.01.020] [Citation(s) in RCA: 271] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 01/05/2005] [Accepted: 01/13/2005] [Indexed: 02/01/2023]
Abstract
Lens arises from ectoderm situated next to the optic vesicles. By thickening and invaginating, the ectoderm forms the lens vesicle. Growth factors are key regulators of cell fate and behavior. Current evidence indicates that FGFs and BMPs are required to induce lens differentiation from ectoderm. In the lens vesicle, posterior cells elongate to form the primary fibers whereas anterior cells differentiate into epithelial cells. The divergent fates of these embryonic cells give the lens its distinctive polarity. There is now compelling evidence that, at least in mammals, FGF is required to initiate fiber differentiation and that progression of this complex process depends on the synchronized and integrated action of a number of distinct growth factor-induced signaling pathways. It is also proposed that an antero-posterior gradient of FGF stimulation in the mammalian eye ensures that the lens attains and maintains its polarity and growth patterns. Less is known about differentiation of the lens epithelium; however, recent studies point to a role for Wnt signaling. Multiple Wnts and their receptors are expressed in the lens epithelium, and mice with impaired Wnt signaling have a deficient epithelium. Recent studies also indicate that other families of molecules, that can modulate growth factor signaling, have a role in regulating the ordered growth and differentiation of the lens.
Collapse
Affiliation(s)
- F J Lovicu
- Save Sight Institute, University of Sydney, NSW, Australia
| | | |
Collapse
|
31
|
Browaeys-Poly E, Fafeur V, Vilain JP, Cailliau K. ERK2 is required for FGF1-induced JNK1 phosphorylation in Xenopus oocyte expressing FGF receptor 1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1743:1-4. [PMID: 15777834 DOI: 10.1016/j.bbamcr.2004.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 07/21/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
A possible connection between the ERK2 and JNK1 MAP kinases transduction cascades was investigated in Xenopus oocytes expressing FGFR1 stimulated by FGF1. Injection of various inhibitors for the Shc/Grb2/Ras/Mos/MEK/ERK2 cascade blocked FGF1-induced germinal vesicle breakdown (GVBD), as well as ERK2 and JNK1 phosphorylation. JNK1 was found to be activated downstream of ERK2, since injection of an active ERK2 triggered JNK1 phosphorylation and inhibition of ERK2 either by a MEK inhibitor or the MKP3 phosphatase blocked JNK1 phosphorylation. These results demonstrated that in FGFR1 signalling JNK1 phosphorylation depends on ERK2.
Collapse
Affiliation(s)
- Edith Browaeys-Poly
- Laboratoire de Biologie du Développement, Université des Sciences et Technologies de Lille, UPRES EA 1033, IFR 118, Bâtiment SN3, 59655 Villeneuve D'Ascq Cedex, France
| | | | | | | |
Collapse
|
32
|
Hong OK, Suh SH, Kwon HS, Ko SH, Choi YH, Moon SD, Yoo SJ, Son HY, Park KS, Lee IK, Yoon KH. Proteomic analysis of differential protein expression in response to epidermal growth factor in neonatal porcine pancreatic cell monolayers. J Cell Biochem 2005; 95:769-81. [PMID: 15838865 DOI: 10.1002/jcb.20482] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have proposed that porcine neonatal pancreatic cell clusters (NPCCs) may be a useful alternative source of cells for islet transplantation, and that monolayer cultures might provide an opportunity to manipulate the cells before transplantation. In addition we previously identified 10 genes up-regulated by epidermal growth factor (EGF) in cultured porcine NPCC monolayers. We have now analyzed the intracellular signaling pathways activated by EGF and searched for proteins differentially expressed following EGF treatment of the monolayers, using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). EGF treatment resulted in phosphorylation of both Erk 1/2 and Akt, as well as increased cell proliferation. Five unknown and 13 previously identified proteins were differentially expressed in response to EGF. EGF treatment increased the expression of several structural proteins of epithelial cells, such as cytokeratin 19 and plakoglobin, whereas vimentin, the intermediate filament protein of mesenchymal cells, and non-muscle myosin alkali chain isoform 1, decreased. Heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 factor, which promotes epithelial cell proliferation, and hemoglobin alpha I & II also increased, whereas cyclin A1, immunoglobulin heavy chain, apolipoprotein A1, 5,10-ethylenetetrahydrofolated reductase (5,10-MTHFR), angiotensin-converting enzyme 2 (ACE2), co-lipase II precursor, and NAD+ isocitrate dehydrogenase (NAD+ IDH) alpha chain proteins decreased. Our results show that EGF stimulates proliferation of pancreatic epithelial cells by simultaneously activating the MAPK and PI-3K pathways. HnRNP A2/B1, hemoglobin, cyclin A1, and ACE2 may play roles in the proliferation of epithelial cells in response to EGF.
Collapse
Affiliation(s)
- Oak-Kee Hong
- Immunology & Cell Biology Core Laboratory, Catholic Research Institutes of Medical Science, The Catholic University of Korea, Banpo-Dong, Seocho-Ku, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Long AC, Colitz CMH, Bomser JA. Apoptotic and necrotic mechanisms of stress-induced human lens epithelial cell death. Exp Biol Med (Maywood) 2004; 229:1072-80. [PMID: 15522844 DOI: 10.1177/153537020422901012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Exposure to ultraviolet radiation (UVR) and reactive oxygen species (ROS) can damage the human lens and contribute to cataract formation. Recent evidence suggests that apoptosis in lens epithelial cells (LEC) is an initiating event in noncongenital cataract formation in humans and animals. The present study examines the cellular and molecular mechanisms by which environmental (ultraviolet B [UVB]) and chemical (hydrogen peroxide [H(2)O(2)], t-butyl hydroperoxide [TBHP]) stress induces cell death in an SV-40 immortalized human lens epithelial (HLE) cell line. Treatment of HLE cells with UVB, H(2)O(2), and TBHP significantly decreased cell density with LD50 values of 350 J/m(2), 500 muM, and 200 muM, respectively. Cellular morphology, DNA fragmentation, and annexin/propidium iodide staining consistent with apoptosis was observed only in UVB-treated cells, whereas lactate dehydrogenase (LDH) release was significantly higher in H(2)0(2)- and TBHP-treated cells. In addition, activation of apoptotic stress-signaling proteins, including c-Jun NH2-terminal kinase (JNK), caspase-3, and DNA fragmentation factor 45 (DFF45) was observed only in UVB-treated cells. Inhibition of JNK activity increased UVB-induced cell death, suggesting that this pathway may serve a prosurvival role in HLE cells. These findings suggest UVB predominantly induces apoptosis in HLE cells, whereas H(2)O(2) and TBHP induce necrosis.
Collapse
Affiliation(s)
- Amy C Long
- OSU Interdisciplinary PhD Program in Nutrition, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
34
|
Umeda IO, Nakata H, Nishigori H. Identification of protein phosphatase 2C and confirmation of other protein phosphatases in the ocular lenses. Exp Eye Res 2004; 79:385-92. [PMID: 15336501 DOI: 10.1016/j.exer.2004.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 06/04/2004] [Indexed: 11/30/2022]
Abstract
The reversible phosphorylation of proteins plays essential roles in regulating various cellular events, and is regulated by the opposing actions of protein kinases and protein phosphatases. Protein kinases in the lens system have been well studied, but very little is known about lens protein phosphatases. Protein phosphatases can be divided several families, such as protein phosphatase types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C) and protein tyrosine phosphatases (PTP). In this study we evaluated what kinds of protein phosphatases are present in the lens by using various specific substrates and inhibitors. Samples were prepared from lenses of 17-day-old chick embryos, and fractionated by high-resolution gel permeation column chromatography, then the fractions were assayed for phosphatase activities. The results with 32P-labeled glycogen phosphorylase A, okadaic acid and inhibitor-1, which are a specific substrate and inhibitors of PP1 and/or PP2A, showed that PP1activities were present in the 500-, 115- and 45-kDa fractions of the lens protein. The 115-kDa fraction also contained PP2A activity. By using a phosphothreonine-containing peptide as a substrate, three peaks of phosphatase activities were found at around 115, 55 and 35 kDa. Based on their response to various phosphatase inhibitors and their metal dependency, the fractions of 115 and 35 kDa were concluded to contain PP2A, while the 55-kDa fraction contained PP2C. Immunoblot using specific antibodies against PP1, PP2A and PP2C confirmed that each fraction above contained corresponding protein phosphatases as proteins. When a phosphotyrosine-containing peptide substrate was examined at pH 7.4, we observed a major peak at 500 kDa, which was presumed to contain receptor-like PTP(s). On the other hand, at pH 5.5, we observed a peak of 18 kDa, which was confirmed to contain a low-molecular-weight PTP. These protein phosphatases have recently been suggested to be involved in stress response and apoptosis. Their physiological roles in the lens are of much interest.
Collapse
Affiliation(s)
- I Ogihara Umeda
- Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1, Suwarashi, Sagamiko Tsukui, Kanagawa, Japan.
| | | | | |
Collapse
|
35
|
Liu JP, Schlosser R, Ma WY, Dong Z, Feng H, Liu L, Huang XQ, Liu Y, Li DWC. Human αA- and αB-crystallins prevent UVA-induced apoptosis through regulation of PKCα, RAF/MEK/ERK and AKT signaling pathways. Exp Eye Res 2004; 79:393-403. [PMID: 15336502 DOI: 10.1016/j.exer.2004.06.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Accepted: 06/14/2004] [Indexed: 01/05/2023]
Abstract
AlphaA- and alphaB-crystallins are distinct antiapoptotic regulators. Regarding the antiapoptotic mechanisms, we have previously demonstrated that under staurosporine treatment, HalphaA- and HalphaB-crystallins can interact with Bax and Bcl-XS, proapoptotic members of the Bcl-2 family, to sequester their translocation into mitochondria, and thus prevent the staurosporine-induced apoptosis. In the present study, we further compared the anti-apoptotic mechanisms of HalphaA- and HalphaB-crystallin in preventing human lens epithelial cells from UVA-induced apoptosis. UVA-irradiation of human lens epithelial cells turned on the apoptotic death program. Moreover, associated with the activation of the death program, UVA also activated the RAF/MEK/ERK signaling pathway. In contrast, p38 kinase and JNK1/2 signaling pathways were not activated. Inhibition of the RAF/MEK/ERK pathway by a dominant negative mutant RAF1 greatly attenuated UVA-induced apoptosis. Expression of the exogenous human alphaB-crystallin prevented UVA-induced activation of RAF/MEK/ERK pathway and thus substantially abrogated UVA-induced apoptosis. In contrast, expression of the exogenous human alphaA-crystallin did not prevent UVA-induced activation of RAF/MEK/ERK pathway. Instead, it activated AKT kinase pathway to promote survival and thus counteracted the UVA-induced apoptosis. Together, our results for the first time reveal that by regulating multiple signaling pathways the two alpha-crystallins can prevent stress-induced apoptosis through different mechanisms.
Collapse
Affiliation(s)
- Jin-Ping Liu
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin 55912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chen KCW, Zhou Y, Xing K, Krysan K, Lou MF. Platelet derived growth factor (PDGF)-induced reactive oxygen species in the lens epithelial cells: the redox signaling. Exp Eye Res 2004; 78:1057-67. [PMID: 15109912 DOI: 10.1016/j.exer.2004.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2003] [Accepted: 02/11/2004] [Indexed: 12/12/2022]
Abstract
Low level of reactive oxygen species (ROS) has been shown to play an important role in host defense and mediating mitogen-stimulated cell signaling in several cell types. This study is to identify the mitogen-induced endogenous ROS generation and the range of exogenous H(2)O(2) that initiate redox signaling and cell proliferation in human lens epithelial cells (HLE B3), using platelet-derived growth factor (PDGF) as a model. To detect ROS generation, serum starved HLE cells (1.6 million) were loaded with fluorescent dye, 2',7'-dichlorofluorescin diacetate (DCFH-DA), before exposing to PDGF (1 ng ml(-1)). The fluorescence generated from the oxidant-sensitive DCFH, the intracellular product of DCFH-DA hydrolysate, was immediately measured in live cells by confocal laser light microscopy (lambda(Ex)=488 nm, lambda(Em)=522 nm, laser power=10%). PDGF-stimulated cells showed strong transient fluorescence during the 60 min while no fluorescence could be seen in the unstimulated cells. The PDGF-induced fluorescence could be suppressed with cells preloaded with N-acetyl-L-cysteine (NAC, 30 mm), catalase (1 mg ml(-1)), or D-mannitol (100mm). The ability of catalase to penetrate and function in HLE cells was confirmed by western blot, enzyme activity and immunofluorescence microscopic analyses. PDGF induced DNA synthesis within one hour as measured by (3)H-thymidine incorporation, and transiently activated the mitogen-activated protein kinases (MAPKs) of ERK1/2 and JNK. PDGF-stimulated DNA synthesis and MAPK activation were eliminated in the presence of catalase or mannitol. Low levels of H(2)O(2) (10-20 microm) mimicked PDGF in both MAPK stimulation and cell proliferation. In conclusion, the mitogenic stimulus function of PDGF in HLE cells appears to be mediated via ROS to activate MAPKs and cell proliferation, which can be mimicked by low levels of H(2)O(2). It is proposed that the physiological function of ROS, the redox signaling, is present in the HLE cells and may play an important role in the development and maintenance of the lens.
Collapse
Affiliation(s)
- Kate Chao-Wei Chen
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | | | | | | | | |
Collapse
|
37
|
Golestaneh N, Fan J, Fariss RN, Lo WK, Zelenka PS, Chepelinsky AB. Lens major intrinsic protein (MIP)/aquaporin 0 expression in rat lens epithelia explants requires fibroblast growth factor-induced ERK and JNK signaling. J Biol Chem 2004; 279:31813-22. [PMID: 15145928 DOI: 10.1074/jbc.m403473200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lens major intrinsic protein (MIP), exclusive to the vertebrate lens, otherwise known as MIP26 and Aquaporin 0, is abundantly expressed as a lens fiber membrane protein. Although relatively less efficient compared with other aquaporins, MIP is suggested to function as a water channel, as an adhesion molecule, and is required for lens transparency. Because MIP is specifically expressed in lens fiber cells, we investigated in this study the activation of Mip expression after triggering differentiation of rat lens epithelia explants by fibroblast growth factor (FGF)-2. Here, we show that Mip expression in the lens cells is regulated by FGF-2. Using Real time PCR we demonstrate that endogenous Mip levels in the explants were up-regulated upon FGF-2 stimulation, in a concentration-dependent manner. Up-regulation of Mip at the transcriptional level was simultaneous with the activation of the FGF down-stream signaling components, ERK1/2 and JNK. Specific inhibitors, UO126 for ERK1/2 and SP600125 for JNK, abrogated Mip expression in response to FGF-2 in the explants. This inhibition pattern was recapitulated in reporter assays for transfection of the rat lens epithelia explants, driven by the Mip promoter (-1648/+44). Our studies show that ERK1/2 and JNK signaling pathways are required for Mip expression in lens epithelia explants induced to differentiate by FGF-2.
Collapse
Affiliation(s)
- Nady Golestaneh
- Laboratory of Molecular and Developmental Biology, NEI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Valverde P, Obin MS, Taylor A. Role of Gas6/Axl signaling in lens epithelial cell proliferation and survival. Exp Eye Res 2004; 78:27-37. [PMID: 14667825 DOI: 10.1016/j.exer.2003.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Axl is a receptor tyrosine kinase that is activated by Gas6, a growth factor that belongs to the vitamin K-dependent protein family. Although Gas6 binding to Axl has been shown to transmit mitogenic and/or antiapoptotic signals to a variety of cell types, the role of the Axl-Gas6 system in normal and pathological lens biology is not known. We demonstrate for the first time that Axl protein is expressed in normal rat and bovine lens and that its ligand, Gas6, is present in bovine aqueous humor. In addition, we have detected tyrosine-phosphorylated Axl in normal rat and bovine lens epithelial tissues. We further show that human recombinant Gas6 is able to act as a growth factor in cultured human lens epithelial cells by activating Axl and then the AKT signaling pathway. Gas6 mediates a survival and anti-apoptotic response in cultured human lens epithelial cells subjected to serum-starvation (48-72hr), or treated with transforming growth factor beta1 (5 ng ml(-1), 48hr) or tumor necrosis alpha (100 ng ml(-1), 48hr), as demonstrated by increased number of viable cells, and decreased DNA condensation or caspase-3 activity. In contrast, Gas6 is not able to block apoptosis induced by staurosporin (1microM, 5-24hr) in human lens epithelial cells. Taken together, these data suggest that the Gas6/Axl signaling plays an important role in the control of lens epithelial cell growth and survival and hence in the maintenance of lens homeostasis.
Collapse
Affiliation(s)
- P Valverde
- JM USDA Human Nutrition Research Center on Aging at Tufts University, Boston MA 02111, USA.
| | | | | |
Collapse
|
40
|
Abstract
We sought to study the possible physiological function of thioltransferase (TTase) in combating oxidative damage in the lens epithelial cells. The cells transfected with either TTase-containing plasmid or vector only were compared for their resistance to oxidative stress in the presence of a bolus of H2O2 (0.1 mM) for 3 h. Cells depleted of TTase activity upon cadmium treatment were also examined for the resistance to oxidative stress under the same conditions. TTase activity assay, Western blot, and Northern blot analyses confirmed that hTTase gene was successfully transfected into the HLE B3 cells and was overexpressed. The TTase-transfected cells detoxified H2O2 as efficiently as the control cells but displayed a faster and more complete recovery of oxidatively inactivated glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and glutathione peroxidase (GPx) activities and suppressed protein thiolation (PSSG formation). With TTase activity being inhibited by cadmium, the spontaneous reactivation of GAPDH under bolus H2O2 treatment was not accomplished in cadmium-pretreated cells. These data indicate a new physiological function of TTase, which involves in the reactivation of the oxidatively inactivated enzymes through dethiolation; thus this redox-regulating enzyme can protect the human lens epithelial cells and maybe other cell types by preventing them from permanent oxidative damage.
Collapse
Affiliation(s)
- Kuiyi Xing
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0905, USA
| | | |
Collapse
|
41
|
Zatechka DS, Kador PF, Garcia-Castiñeiras S, Lou MF. Diabetes can alter the signal transduction pathways in the lens of rats. Diabetes 2003; 52:1014-22. [PMID: 12663474 DOI: 10.2337/diabetes.52.4.1014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetes is known to affect cataract formation by means of osmotic stress induced by activated aldose reductase in the sorbitol pathway. In addition, alterations in the bioavailability of numerous extralenticular growth factors has been reported and shown to result in various consequences. We have found that the basic fibroblast growth factor (bFGF) accumulates in the vitreous humor of 3- and 8-week diabetic rats. Consequently, the associating signal transduction cascades were severely disrupted, including upregulated phosphorylation of extracellular signal-regulated kinase (ERK) and the common stress-associated mitogen-activated protein kinases p38 and SAPK/JNK. Conversely, under diabetic condition, we observed a dramatic inhibition of phosphatidylinositol-3 kinase activity in lenses obtained from the same animal. Rats treated with the aldose reductase inhibitor AL01576 for the duration of the diabetic condition showed that the diabetes-induced lenticular signaling alterations were normalized, comparable to controls. However, treatment of AL01576 in vitro was ineffective at normalizing the altered constituents in extracted diabetic vitreous after the onset of diabetes. The effect of AL01576 in the high galactose-induced cataract model in vitro was also examined. Administration of AL01576 to lens organ culture normalized the aberrant signaling effects and morphological characteristics associated with in vitro sugar cataract formation. In conclusion, our findings demonstrate diabetes-associated alterations in the lens signal transduction parameters and the effectiveness of AL01576 at normalizing such alterations. The causes for these alterations can be attributed to elevated vitreal bFGF in conjunction with osmotic stress and associated attenuation in redox status of the lens.
Collapse
Affiliation(s)
- D Steven Zatechka
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | | | | |
Collapse
|
42
|
Steven Zatechka D, Lou MF. Studies of the mitogen-activated protein kinases and phosphatidylinositol-3 kinase in the lens. 2. The intercommunications. Exp Eye Res 2002; 75:177-92. [PMID: 12137763 DOI: 10.1006/exer.2002.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lens possesses comprehensive mitogen-activated signal transduction pathways (MAPK), which include the mitogen response pathway (Raf-MEK-ERK cascade), the stress-response pathways (p38 and SAPK/JNK cascades) and also the survival pathway (PI-3K-Akt). To understand the cross-cascade intercommunication among signal transduction pathways in the lens, we used specific protein kinase inhibitors and cultured the lenses under unstimulated, basic fibroblast growth factor (bFGF)- or galactose-treated conditions. Inhibitors included genistein (tyrosine kinases inhibitor), U0126 (MEK inhibitor), SB203580 or SB202190 (p38 inhibitor), FTS (Ras inhibitor), wortmannin (PI-3K inhibitor) or phorbol ester (protein kinase C down-regulator following long-term exposure). The results showed that genistein inhibited the activations of the members of the MAPK superfamily and the activation of PI-3K. FTS suppressed the activation of Raf and PI-3K but stimulated the other members of MAPKs. MEK inhibitor restrained the activations of ERK, SAPK/JNK (under bFGF-stimulated condition) and p38 (under galactose-stimulated condition) while p38 inhibitor suppressed ERK but stimulated SAPK/JNK. Both MEK and p38 inhibitors stimulated PI-3K. Wortmannin had a strong inhibitory effect on Raf but little effect on its downstream target proteins. Down-regulating PKC suppressed Raf and PI-3K but stimulated ERK. Taken together, these data suggest that all the stimuli responses are mediated through phosphorylation and that the signaling among the mitogenic and stress response pathways is integrated through 'cross-talk' to process the most appropriate response. The survival signaling pathway appears to communicate well with the mitogenic and stress response pathways. In addition to Ras, both Raf and MEK emerge to be the diverging or regulatory points for signal integration, amplification, suppression or compensatory action in the lens.
Collapse
Affiliation(s)
- D Steven Zatechka
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0905, USA
| | | |
Collapse
|