1
|
Banasiak K, Szulc NA, Pokrzywa W. The Dose-Dependent Pleiotropic Effects of the UBB +1 Ubiquitin Mutant. Front Mol Biosci 2021; 8:650730. [PMID: 33842548 PMCID: PMC8032880 DOI: 10.3389/fmolb.2021.650730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/02/2021] [Indexed: 11/23/2022] Open
Abstract
The proteolytic machinery activity diminishes with age, leading to abnormal accumulation of aberrant proteins; furthermore, a decline in protein degradation capacity is associated with multiple age-related proteinopathies. Cellular proteostasis can be maintained via the removal of ubiquitin (Ub)-tagged damaged and redundant proteins by the ubiquitin-proteasome system (UPS). However, during aging, central nervous system (CNS) cells begin to express a frameshift-mutated Ub, UBB+1. Its accumulation is a neuropathological hallmark of tauopathy, including Alzheimer’s disease and polyglutamine diseases. Mechanistically, in cell-free and cell-based systems, an increase in the UBB+1 concentration disrupts proteasome processivity, leading to increased aggregation of toxic proteins. On the other hand, a low level of UBB+1 improves stress resistance and extends lifespan. Here we summarize recent findings regarding the impact of UBB+1 on Ub signaling and neurodegeneration. We also review the molecular basis of how UBB+1 affects UPS components as well as its dose-dependent switch between cytoprotective and cytotoxic roles.
Collapse
Affiliation(s)
- Katarzyna Banasiak
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Natalia A Szulc
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Morrow CS, Moore DL. Vimentin's side gig: Regulating cellular proteostasis in mammalian systems. Cytoskeleton (Hoboken) 2020; 77:515-523. [PMID: 33190414 DOI: 10.1002/cm.21645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Intermediate filaments (IFs) perform a diverse set of well-known functions including providing structural support for the cell and resistance to mechanical stress, yet recent evidence has revealed unexpected roles for IFs as stress response proteins. Previously, it was shown that the type III IF protein vimentin forms cage-like structures around centrosome-associated proteins destined for degradation, structures referred to as aggresomes, suggesting a role for vimentin in protein turnover. However, vimentin's function at the aggresome has remained largely understudied. In a recent report, vimentin was shown to be dispensable for aggresome formation, but played a critical role in protein turnover at the aggresome through localizing proteostasis-related machineries, such as proteasomes, to the aggresome. Here, we review evidence for vimentin's function in proteostasis and highlight the organismal implications of these findings.
Collapse
Affiliation(s)
- Christopher S Morrow
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Donohue TM, Osna NA, Kharbanda KK, Thomes PG. Lysosome and proteasome dysfunction in alcohol-induced liver injury. LIVER RESEARCH 2019; 3:191-205. [DOI: 10.1016/j.livres.2019.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Muñoz-Arellano AJ, Chen X, Molt A, Meza E, Petranovic D. Different Expression Levels of Human Mutant Ubiquitin B +1 (UBB +1) Can Modify Chronological Lifespan or Stress Resistance of Saccharomyces cerevisiae. Front Mol Neurosci 2018; 11:200. [PMID: 29950972 PMCID: PMC6008557 DOI: 10.3389/fnmol.2018.00200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/18/2018] [Indexed: 11/13/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is the main pathway responsible for the degradation of misfolded proteins, and its dysregulation has been implicated in several neurodegenerative diseases, including Alzheimer's disease (AD). UBB+1, a mutant variant of ubiquitin B, was found to accumulate in neurons of AD patients and it has been linked to UPS dysfunction and neuronal death. Using the yeast Saccharomyces cerevisiae as a model system, we constitutively expressed UBB+1 to evaluate its effects on proteasome function and cell death, particularly under conditions of chronological aging. We showed that the expression of UBB+1 caused inhibition of the three proteasomal proteolytic activities (caspase-like (β1), trypsin-like (β2) and chymotrypsin-like (β5) activities) in yeast. Interestingly, this inhibition did not alter cell viability of growing cells. Moreover, we showed that cells expressing UBB+1 at lower level displayed an increased capacity to degrade induced misfolded proteins. When we evaluated cells during chronological aging, UBB+1 expression at lower level, prevented cells to accumulate reactive oxygen species (ROS) and avert apoptosis, dramatically increasing yeast life span. Since proteasome inhibition by UBB+1 has previously been shown to induce chaperone expression and thus protect against stress, we evaluated our UBB+1 model under heat shock and oxidative stress. Higher expression of UBB+1 caused thermotolerance in yeast due to induction of chaperones, which occurred to a lesser extent at lower expression level of UBB+1 (where we observed the phenotype of extended life span). Altering UPS capacity by differential expression of UBB+1 protects cells against several stresses during chronological aging. This system can be valuable to study the effects of UBB+1 on misfolded proteins involved in neurodegeneration and aging.
Collapse
Affiliation(s)
- Ana Joyce Muñoz-Arellano
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Xin Chen
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Andrea Molt
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Eugenio Meza
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Dina Petranovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
5
|
Zhao W, Wang L, Liu M, Jiang K, Wang M, Yang G, Qi C, Wang B. Transcriptome, antioxidant enzyme activity and histopathology analysis of hepatopancreas from the white shrimp Litopenaeus vannamei fed with aflatoxin B1(AFB1). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 74:69-81. [PMID: 28400284 DOI: 10.1016/j.dci.2017.03.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
Aflatoxin produced by Aspergillus flavus or Aspergillus parasiticus fungi during grain and feed processing and storage. Aflatoxins cause severe health problems reducing the yield and profitability of shrimp cultures. We sought to understand the interaction between shrimp immunity and aflatoxin B1 (AFB1), analyzing transcriptome expression, antioxidant enzyme activity, and histological features of the hepatopancreas of shrimp fed with AFB1. From over 4 million high-quality reads, de novo unigene assembly produced 103,644 fully annotated genes. A total of 1024 genes were differentially expressed in shrimp fed with AFB1, being involved in functions, such as peroxidase metabolism, signal transduction, transcriptional control, apoptosis, proteolysis, endocytosis, and cell adhesion and cell junction. Upon AFB1 challenge, there were severe histological alterations in shrimp hepatopancreas. AFB1 challenge increased the activity of several antioxidant enzymes. Our data contribute to improve the current understanding of host-AFB1 interaction, providing an abundant source for identification of novel genes.
Collapse
Affiliation(s)
- Wei Zhao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; College of Fishery Science, Tianjin Agriculture University/Tianjin Key Laboratory of Aquaculture, Tianjin 300384, China
| | - Lei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Mei Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Keyong Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Guang Yang
- College of Fishery Science, Tianjin Agriculture University/Tianjin Key Laboratory of Aquaculture, Tianjin 300384, China
| | - Cancan Qi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Baojie Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
6
|
French SW, Mendoza AS, Peng Y. The mechanisms of Mallory-Denk body formation are similar to the formation of aggresomes in Alzheimer's disease and other neurodegenerative disorders. Exp Mol Pathol 2016; 100:426-33. [PMID: 27068270 DOI: 10.1016/j.yexmp.2016.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
There is a possibility that the aggresomes that form in the brain in neurodegenerative diseases like Alzheimer's disease (AD) and in the liver where aggresomes like Mallory-Denk Bodies (MDB) form, share mechanisms. MDBs can be prevented by feeding mice sadenosylmethionine (SAMe) or betaine. Possibly these proteins could prevent AD. We compared the literature on MDBs and AD pathogenesis, which include roles played by p62, ubiquitin UBB +1, HSPs70, 90, 104, FAT10, NEDD8, VCP/97, and the protein quality control mechanisms including the 26s proteasome, the IPOD and JUNQ and autophagosome pathways.
Collapse
Affiliation(s)
- S W French
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509, United States
| | - A S Mendoza
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509, United States
| | - Y Peng
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509, United States
| |
Collapse
|
7
|
Yamada T, Kawabata Y. Pneumocyte injury and ubiquitin-positive pneumocytes in interstitial lung diseases. Histopathology 2014; 66:161-72. [PMID: 25123224 PMCID: PMC4329384 DOI: 10.1111/his.12528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Pneumocyte injury is a characteristic of pulmonary interstitial pneumonias (IPs). Histological markers of pneumocyte injury and inflammation include pneumocyte necrosis, erosion, hyaline membrane and fibrin exudation with subsequent intraluminal granulation tissue formation. We found that intracytoplasmic inclusions in pneumocytes are ubiquitin-positive (Ub+) and that the number of Ub+ pneumocytes shows positive correlation with the extent of diffuse alveolar damage (DAD). To determine the role of Ub+ pneumocytes and inclusions in IPs, we studied their relationship with pathological and clinical features of DAD, usual interstitial pneumonia (UIP) and organizing pneumonia (OP), including airspace enlargement with fibrosis (AEF). We analysed Ub+ pneumocytes, inclusions, erosions and intraluminal granulation tissue in relation to pneumocyte injury. The numbers of immunohistochemically identified Ub+ inclusions in each IP were higher than the number of inclusions detected by light microscopy. The inclusions detected by Ub+ immunostaining were identical to the inclusions observed by light microscopy. UIP and DAD had many Ub+ inclusions, while OP and AEF had fewer Ub+ inclusions. These results suggest that the extent of Ub+ inclusions reflects the severity of pneumocyte injury among IPs. Thus, Ub+ inclusions are a histological marker of pneumocyte injury that may be helpful in determining the severity and prognosis of IPs.
Collapse
Affiliation(s)
- Tsutomu Yamada
- Department of Pathology, Nihon University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
8
|
Hanada S, Harada M, Abe M, Akiba J, Sakata M, Kwan R, Taniguchi E, Kawaguchi T, Koga H, Nagata E, Ueno T, Sata M. Aging modulates susceptibility to mouse liver Mallory-Denk body formation. J Histochem Cytochem 2012; 60:475-83. [PMID: 22473941 DOI: 10.1369/0022155412441478] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mallory-Denk bodies (MDBs) are hepatocyte cytoplasmic inclusions found in several liver diseases and consist primarily of the cytoskeletal proteins, keratins 8 and 18 (K8/K18). Recent evidence indicates that the extent of stress-induced protein misfolding, a K8>K18 overexpression state, and transglutaminase-2 activation promote MDB formation. In addition, the genetic background and gender play an important role in mouse MDB formation, but the effect of aging on this process is unknown. Given that oxidative stress increases with aging, the authors hypothesized that aging predisposes to MDB formation. They used an established mouse MDB model-namely, feeding non-transgenic male FVB/N mice (1, 3, and 8 months old) with 3,5 diethoxycarbonyl-1,4-dihydrocollidine for 2 months. MDB formation was assessed using immunofluorescence staining and biochemically by demonstrating keratin and ubiquitin-containing crosslinks generated by transglutaminase-2. Immunofluorescence staining showed that old mice had a significant increase in MDB formation compared with young mice. MDB formation paralleled the generation of high molecular weight ubiquitinated keratin-containing complexes and induction of p62. Old mouse livers had increased oxidative stress. In addition, 20S proteasome activity and autophagy were decreased, and endoplasmic reticulum stress was increased in older livers. Therefore, aging predisposes to experimental MDB formation, possibly by decreased activity of protein degradation machinery.
Collapse
Affiliation(s)
- Shinichiro Hanada
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nivon M, Abou-Samra M, Richet E, Guyot B, Arrigo AP, Kretz-Remy C. NF-κB regulates protein quality control after heat stress through modulation of the BAG3-HspB8 complex. J Cell Sci 2012; 125:1141-51. [PMID: 22302993 DOI: 10.1242/jcs.091041] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We previously found that the NF-κB transcription factor is activated during the recovery period after heat shock; moreover, we demonstrated that NF-κB is essential for cell survival after heat shock by activating autophagy, a mechanism that probably helps the cell to cope with hyperthermic stress through clearance of damaged proteins. In this study, we analyze the involvement of NF-κB in basal and heat-stress-induced protein quality control, by comparing the level of multiubiquitylated and/or aggregated proteins, and proteasome and autophagic activity in NF-κB-competent and NF-κB-incompetent cells. We show that NF-κB has only a minor role in basal protein quality control, where it modulates autophagosome maturation. By contrast, NF-κB is shown to be a key player in protein quality control after hyperthermia. Indeed, NF-κB-incompetent cells show highly increased levels of multiubiquitylated and/or aggregated proteins and aggresome clearance defects; a phenotype that disappears when NF-κB activity is restored to normal. We demonstrate that during heat shock recovery NF-κB activates selective removal of misfolded or aggregated proteins--a process also called 'aggrephagy'--by controlling the expression of BAG3 and HSPB8 and by modulating the level of the BAG3-HspB8 complex. Thus NF-κB-mediated increase in the level of the BAG3-HspB8 complex leads to upregulation of aggrephagy and clearance of irreversibly damaged proteins and might increase cell survival in conditions of hyperthermia.
Collapse
|
10
|
Clunes LA, Davies CM, Coakley RD, Aleksandrov AA, Henderson AG, Zeman KL, Worthington EN, Gentzsch M, Kreda SM, Cholon D, Bennett WD, Riordan JR, Boucher RC, Tarran R. Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration. FASEB J 2011; 26:533-45. [PMID: 21990373 DOI: 10.1096/fj.11-192377] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cigarette smoke (CS) exposure induces mucus obstruction and the development of chronic bronchitis (CB). While many of these responses are determined genetically, little is known about the effects CS can exert on pulmonary epithelia at the protein level. We, therefore, tested the hypothesis that CS exerts direct effects on the CFTR protein, which could impair airway hydration, leading to the mucus stasis characteristic of both cystic fibrosis and CB. In vivo and in vitro studies demonstrated that CS rapidly decreased CFTR activity, leading to airway surface liquid (ASL) volume depletion (i.e., dehydration). Further studies revealed that CS induced internalization of CFTR. Surprisingly, CS-internalized CFTR did not colocalize with lysosomal proteins. Instead, the bulk of CFTR shifted to a detergent-resistant fraction within the cell and colocalized with the intermediate filament vimentin, suggesting that CS induced CFTR movement into an aggresome-like, perinuclear compartment. To test whether airway dehydration could be reversed, we used hypertonic saline (HS) as an osmolyte to rehydrate ASL. HS restored ASL height in CS-exposed, dehydrated airway cultures. Similarly, inhaled HS restored mucus transport and increased clearance in patients with CB. Thus, we propose that CS exposure rapidly impairs CFTR function by internalizing CFTR, leading to ASL dehydration, which promotes mucus stasis and a failure of mucus clearance, leaving smokers at risk for developing CB. Furthermore, our data suggest that strategies to rehydrate airway surfaces may provide a novel form of therapy for patients with CB.
Collapse
Affiliation(s)
- Lucy A Clunes
- Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Oliva J, Bardag-Gorce F, Lin A, French BA, French SW. The role of cytokines in UbD promoter regulation and Mallory-Denk body-like aggresomes. Exp Mol Pathol 2010; 89:1-8. [PMID: 20433827 PMCID: PMC2900536 DOI: 10.1016/j.yexmp.2010.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 12/30/2022]
Abstract
Mallory-Denk bodies (MDBs) are found in chronic liver diseases. Previous studies showed that diethyl-1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate (DDC) induced formation of MDBs and the up regulation of UbD expression in mouse liver. UbD is a protein over expressed in hepatocellular carcinomas. It is a potential preneoplastic marker in the mouse. It is hypothesized that inflammatory cytokines play a critical role in UbD up regulation and MDB formation. TNFa and IFNg treatment of HCC cell line Hepa 1-6, induced the expression of UbD and the expression of genes coding for the immunoproteasome (LMP2, LMP7, and MECL-1 subunits). TNFa and IFNg induced the activity of the UbD promoter, using a luciferase assay. The cotreatment with TNFa and IFNg induced the activity of the UbD promoter through an Interferon Sequence Responsive Element (ISRE). In addition, long term treatment with TNFa and IFNg induced the formation of MDB-like aggresomes in Hepa 1-6 cells, which emphasizes the role of inflammation in the formation of MDBs leading to the formation of liver tumors, in the mouse. Identifying the mechanism that regulates gene expression of UbD supports the hypothesis that down regulation of UbD and the proinflammatory gene expression would prevent MDB and HCC formations. Previous studies indicate that S-adenosylmethionine or betaine prevented IFNg induced UbD and MDB formations.
Collapse
Affiliation(s)
- Joan Oliva
- Department of Pathology, LABioMed, Torrance, CA 90502, USA
| | | | | | | | | |
Collapse
|
12
|
Hirano K, Guhl B, Roth J, Ziak M. A cell culture system for the induction of Mallory bodies: Mallory bodies and aggresomes represent different types of inclusion bodies. Histochem Cell Biol 2009; 132:293-304. [DOI: 10.1007/s00418-009-0598-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2009] [Indexed: 12/24/2022]
|
13
|
Verhoef LGGC, Heinen C, Selivanova A, Halff EF, Salomons FA, Dantuma NP. Minimal length requirement for proteasomal degradation of ubiquitin-dependent substrates. FASEB J 2008; 23:123-33. [PMID: 18796559 DOI: 10.1096/fj.08-115055] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An erroneous transcriptional process, known as molecular misreading, gives rise to an alternative transcript of the ubiquitin B (UBB) gene. This transcript encodes the protein UBB(+1), which comprises a ubiquitin moiety and a 19-aa C-terminal extension. UBB(+1) is found in affected neurons in neurodegenerative diseases and behaves as an atypical ubiquitin fusion degradation (UFD) proteasome substrate that is poorly degraded and impedes the ubiquitin/proteasome system. Here, we show that the limited length of UBB(+1) is responsible for its inefficient degradation and inhibitory activity. Designed UFD substrates with an equally short 19-aa or a 20-aa C-terminal extension were also poorly degraded and had a general inhibitory activity on the ubiquitin/proteasome system in two unrelated cell lines. Extending the polypeptide to 25 aa sufficed to convert the protein into an efficiently degraded proteasome substrate that lacked inhibitory activity. A similar length dependency was found for degradation of two UFD substrates in Saccharomyces cerevisiae, which suggests that the mechanisms underlying this length constraint are highly conserved. Extending UBB(+1) also converted this protein into an efficient substrate of the proteasome. These observations provide an explanation for the accumulation of UBB(+1) in neurodegenerative disorders and offers new insights into the physical constraints determining proteasomal degradation.
Collapse
Affiliation(s)
- Lisette G G C Verhoef
- Department of Cell and Molecular Biology, The Medical Nobel Institute, Karolinska Institutet, Von Eulers väg 3, S-17177 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
14
|
Mallory-Denk-bodies: lessons from keratin-containing hepatic inclusion bodies. Biochim Biophys Acta Mol Basis Dis 2008; 1782:764-74. [PMID: 18805482 DOI: 10.1016/j.bbadis.2008.08.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 08/25/2008] [Accepted: 08/26/2008] [Indexed: 01/08/2023]
Abstract
Inclusion bodies are characteristic morphological features of various neuronal, muscular and other human disorders. They share common molecular constituents such as p62, chaperones and proteasome subunits. The proteins within aggregates are misfolded with increased beta-sheet structure, they are heavily phosphorylated, ubiquitinylated and partially degraded. Furthermore, involvement of proteasomal system represents a common feature of virtually all inclusions. Multiple aggregates contain intermediate filament proteins as their major constituents. Among them, Mallory-Denk bodies (MDBs) are the best studied. MDBs represent hepatic inclusions observed in diverse chronic liver diseases such as alcoholic and non-alcoholic steatohepatitis, chronic cholestasis, metabolic disorders and hepatocellular neoplasms. MDBs are induced in mice fed griseofulvin or 3,5-diethoxycarbonyl-1,4-dihydrocollidine and resolve after discontinuation of toxin administration. The availability of a drug-induced model makes MDBs a unique tool for studying inclusion formation. Our review summarizes the recent advances gained from this model and shows how they relate to observations in other aggregates. The MDB formation-underlying mechanisms include protein misfolding, chaperone alterations, disproportional protein expression with keratin 8>keratin 18 levels and subsequent keratin 8 crosslinking via transglutaminase. p62 presence is crucial for MDB formation. Proteasome inhibitors precipitate MDB formation, whereas stimulation of autophagy with rapamycin attenuates their formation.
Collapse
|
15
|
Abstract
Myofibrillar myopathies (MFMs) are clinically and genetically heterogeneous muscle disorders that are defined morphologically by the presence of foci of myofibril dissolution, accumulation of myofibrillar degradation products, and ectopic expression of multiple proteins. MFMs are the paradigm of conformational protein diseases of the skeletal (and cardiac) muscles characterised by intracellular protein accumulation in muscle cells. Understanding of this group of disorders has advanced in recent years through the identification of causative mutations in various genes, most of which encode proteins of the sarcomeric Z-disc, including desmin, alphaB-crystallin, myotilin, ZASP and filamin C. This review focuses on the MFMs arising from defects in these proteins, summarising genetic and clinical features of the disorders and then discussing emerging understanding of the molecular pathogenic mechanisms leading to muscle fibre degeneration. Defective extralysosomal degradation of proteins is now recognised as an important element in this process. Several factors--including mutant proteins, a defective ubiquitin-proteasome system, aggresome formation, mutant ubiquitin, p62, oxidative stress and abnormal regulation of some transcription factors--are thought to participate in the cascade of events occurring in muscle fibres in MFMs.
Collapse
|
16
|
Shukla SD, Velazquez J, French SW, Lu SC, Ticku MK, Zakhari S. Emerging role of epigenetics in the actions of alcohol. Alcohol Clin Exp Res 2008; 32:1525-34. [PMID: 18616668 DOI: 10.1111/j.1530-0277.2008.00729.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review deals with the recent developments on the epigenetic effects of ethanol. A large body of data have come from studies in liver and in neuronal systems and involve post-translational modifications in histones and methylations in DNA. Ethanol causes site selective acetylation, methylation, and phosphorylation in histone. With respect to methylations the methyl group donating system involving S-adenosyl methionine appears to play a central role. There is contrasting effect of acetylation versus methylation on the same site of histone, as it relates to the transcriptional activation. Epigenetic memory also appears to correlate with liver pathology and Mallory body formation. Experimental evidence supports transcriptional regulation of genes in the CNS by DNA methylations. These studies are contributing towards a better understanding of a novel epigenetic regulation of gene expression in the context of alcohol. The critical steps and the enzymes (e.g., histone acetyltransferase, histone deacetylase, DNA methyltransferase) responsible for the epigenetic modifications are prime targets for intense investigation. The emerging data are also beginning to offer novel insight towards defining the molecular actions of ethanol and may contribute to potential therapeutic targets at the nucleosomal level. These epigenetic studies have opened up a new avenue of investigation in the alcohol field.
Collapse
Affiliation(s)
- Shivendra D Shukla
- Department of Medical Pharmacology & Physiology, University of Missouri Columbia, Missouri 65212, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Tannous P, Zhu H, Nemchenko A, Berry JM, Johnstone JL, Shelton JM, Miller FJ, Rothermel BA, Hill JA. Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy. Circulation 2008; 117:3070-8. [PMID: 18541737 PMCID: PMC2601596 DOI: 10.1161/circulationaha.107.763870] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Recent reports demonstrate that multiple forms of cardiovascular stress, including pressure overload, chronic ischemia, and infarction-reperfusion injury, provoke an increase in autophagic activity in cardiomyocytes. However, nothing is known regarding molecular events that stimulate autophagic activity in stressed myocardium. Because autophagy is a highly conserved process through which damaged proteins and organelles can be degraded, we hypothesized that stress-induced protein aggregation is a proximal trigger of cardiomyocyte autophagy. METHODS AND RESULTS Here, we report that pressure overload promotes accumulation of ubiquitinated protein aggregates in the left ventricle, development of aggresome-like structures, and a corresponding induction of autophagy. To test for causal links, we induced protein accumulation in cultured cardiomyocytes by inhibiting proteasome activity, finding that aggregation of polyubiquitinated proteins was sufficient to induce cardiomyocyte autophagy. Furthermore, attenuation of autophagic activity dramatically enhanced both aggresome size and abundance, consistent with a role for autophagic activity in protein aggregate clearance. CONCLUSIONS We conclude that protein aggregation is a proximal trigger of cardiomyocyte autophagy and that autophagic activity functions to attenuate aggregate/aggresome formation in heart. Findings reported here are the first to demonstrate that protein aggregation occurs in response to hemodynamic stress, situating pressure-overload heart disease in the category of proteinopathies.
Collapse
Affiliation(s)
- Paul Tannous
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-8573, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Harada M, Hanada S, Toivola DM, Ghori N, Omary MB. Autophagy activation by rapamycin eliminates mouse Mallory-Denk bodies and blocks their proteasome inhibitor-mediated formation. Hepatology 2008; 47:2026-35. [PMID: 18454506 DOI: 10.1002/hep.22294] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UNLABELLED The proteasomal and lysosomal/autophagy pathways in the liver and other tissues are involved in several biological processes including the degradation of misfolded proteins. Exposure of hepatocyte cell lines to proteasome inhibitors (PIs) results in the formation of inclusions that resemble Mallory-Denk bodies (MDBs). Keratins are essential for MDB formation and keratin 8 (K8)-overexpressing transgenic mice are predisposed to MDB formation. We tested the hypothesis that PIs induce MDBs in vivo and that autophagy participates in MDB turnover. The effect of the PI bortezomib (which is used to treat some malignancies) on MDB formation was tested in K8-overexpressing mice and in cultured cells. Inclusion formation was examined using immune and conventional electron microscopy (EM). Bortezomib induced MDB-like inclusions composed of keratins, ubiquitin, and p62 in cultured cells. Short-term exposure to bortezomib induced similar inclusions in K8-overexpressing but not in nontransgenic mice, without causing liver injury. In bortezomib-treated mice, autophagy was activated in hepatocytes as determined by EM and biochemical analysis. Further activation of autophagy by rapamycin (Rap) decreased the number of inclusions in bortezomib-treated K8 transgenic mice significantly. Rap also led to resorption of spontaneously formed MDBs in aging K8-overexpressing mice. Immune EM demonstrated K8-positive and ubiquitin-positive structures in autophagic vacuoles in the mouse liver. CONCLUSION PIs alone are sufficient to induce MDBs in susceptible animals, while Rap-mediated activation of autophagy prevents MDB formation and causes MDB resorption. These findings suggest that some patients treated with PIs may become predisposed to MDB formation. Autophagy provides a potential cellular mechanism for the resorption of cytoplasmic inclusions.
Collapse
Affiliation(s)
- Masaru Harada
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | | | | | | | |
Collapse
|
19
|
Strnad P, Stumptner C, Zatloukal K, Denk H. Intermediate filament cytoskeleton of the liver in health and disease. Histochem Cell Biol 2008; 129:735-49. [PMID: 18443813 PMCID: PMC2386529 DOI: 10.1007/s00418-008-0431-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2008] [Indexed: 02/06/2023]
Abstract
Intermediate filaments (IFs) represent the largest cytoskeletal gene family comprising approximately 70 genes expressed in tissue specific manner. In addition to scaffolding function, they form complex signaling platforms and interact with various kinases, adaptor, and apoptotic proteins. IFs are established cytoprotectants and IF variants are associated with >30 human diseases. Furthermore, IF-containing inclusion bodies are characteristic features of several neurodegenerative, muscular, and other disorders. Acidic (type I) and basic keratins (type II) build obligatory type I and type II heteropolymers and are expressed in epithelial cells. Adult hepatocytes contain K8 and K18 as their only cytoplasmic IF pair, whereas cholangiocytes express K7 and K19 in addition. K8/K18-deficient animals exhibit a marked susceptibility to various toxic agents and Fas-induced apoptosis. In humans, K8/K18 variants predispose to development of end-stage liver disease and acute liver failure (ALF). K8/K18 variants also associate with development of liver fibrosis in patients with chronic hepatitis C. Mallory-Denk bodies (MDBs) are protein aggregates consisting of ubiquitinated K8/K18, chaperones and sequestosome1/p62 (p62) as their major constituents. MDBs are found in various liver diseases including alcoholic and non-alcoholic steatohepatitis and can be formed in mice by feeding hepatotoxic substances griseofulvin and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). MDBs also arise in cell culture after transfection with K8/K18, ubiquitin, and p62. Major factors that determine MDB formation in vivo are the type of stress (with oxidative stress as a major player), the extent of stress-induced protein misfolding and resulting chaperone, proteasome and autophagy overload, keratin 8 excess, transglutaminase activation with transamidation of keratin 8 and p62 upregulation.
Collapse
Affiliation(s)
- P Strnad
- Department of Internal Medicine I, University of Ulm, Robert-Koch-Strabe 8, 89081, Ulm, Germany.
| | | | | | | |
Collapse
|
20
|
Oliva J, Bardag-Gorce F, French BA, Li J, McPhaul L, Amidi F, Dedes J, Habibi A, Nguyen S, French SW. Fat10 is an epigenetic marker for liver preneoplasia in a drug-primed mouse model of tumorigenesis. Exp Mol Pathol 2008; 84:102-12. [PMID: 18280469 PMCID: PMC2874461 DOI: 10.1016/j.yexmp.2007.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 12/19/2007] [Indexed: 10/22/2022]
Abstract
There is clinical evidence that chronic liver diseases in which MDBs (Mallory Denk Bodies) form progress to hepatocellular carcinoma. The present study provides evidence that links MDB formation induced by chronic drug injury, with preneoplasia and later to the formation of tumors, which develop long after drug withdrawal. Evidence indicated that this link was due to an epigenetic cellular memory induced by chronic drug ingestion. Microarray analysis showed that the expressions of many markers of preneoplasia (UBD, Alpha Fetoprotein, KLF6 and glutathione-S-transferase mu2) were increased together when the drug DDC was refed. These changes were suppressed by S-adenosylmethionine feeding, indicating that the drug was affecting DNA and histones methylation in an epigenetic manner. The link between MDB formation and neoplasia formation was likely due to the over expression of UBD (also called FAT10), which is up regulated in 90% of human hepatocellular carcinomas. Immunohistochemical staining of drug-primed mouse livers showed that FAT10 positive liver cells persisted up to 4 months after drug withdrawal and they were still found in the livers of mice, 14 months after drug withdrawal. The refeeding of DDC increased the percent of FAT10 hepatocytes.
Collapse
Affiliation(s)
- Joan Oliva
- Department of Pathology, Harbor-UCLA Medical Center, 1000 W. Carson Street Torrance, CA 90509, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hernández-Espinosa D, Miñano A, Martínez C, Ordoñez A, Pérez-Ceballos E, de Arriba F, Mota RA, Ferrer F, González M, Vicente V, Corral J. Inhibition of proteasome by bortezomib causes intracellular aggregation of hepatic serpins and increases the latent circulating form of antithrombin. J Transl Med 2008; 88:306-17. [PMID: 18195690 DOI: 10.1038/labinvest.3700717] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Conformational diseases include heterogeneous disorders sharing a similar pathological mechanism, leading to intracellular aggregation of proteins with toxic effects. Serpins are commonly involved in these diseases. These are structurally sensitive molecules that modify their folding under even minor genetic or environmental variations. Indeed, under normal conditions, the rate of misfolding of serpins is high and unfolded serpins must be degraded by the proteasome system. Our aim was to study the effects of bortezomib, a proteasome inhibitor, on conformationally sensitive serpins. The effects of bortezomib were analysed in patients with multiple myeloma, HepG2 cells, and Swiss mice, as well as in vitro. Levels, anti-FXa activity, heparin affinity, and conformational features of antithrombin, a relevant anticoagulant serpin, were analysed. Histological, ultrastructural features and immunohistological distribution of antithrombin and alpha1-antitrypsin (another hepatic serpin) were evaluated. We also studied the intracellular accumulation of conformationally sensitive (fibrinogen) or non-sensitive (prothrombin) hepatic proteins. The inhibition of the proteasome caused intracellular accumulation and aggregation of serpins within the endoplasmic reticulum that was associated with confronting cisternae and Mallory body formation. These effects were accompanied by a heat stress response. Bortezomib also increased the levels of intracellular fibrinogen, but has no significant effect on prothrombin. Finally, bortezomib had only minor effects on the mature circulating antithrombin, with increased amounts of latent antithrombin in plasma. These results suggest that the impairment of proteasomal activities leads to an intracellular accumulation of conformationally sensitive proteins and might facilitate the release of misfolded serpins into circulation where they adopt more stable conformations.
Collapse
|
22
|
Li J, Bardag-Gorce F, Dedes J, French BA, Amidi F, Oliva J, French SW. S-adenosylmethionine prevents Mallory Denk body formation in drug-primed mice by inhibiting the epigenetic memory. Hepatology 2008; 47:613-24. [PMID: 18098314 PMCID: PMC2874456 DOI: 10.1002/hep.22029] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
UNLABELLED In previous studies, microarray analysis of livers from mice fed diethyl-1,4-dihydro-2,4,6-trimethyl-3,5-pyridine decarboxylate (DDC) for 10 weeks followed by 1 month of drug withdrawal (drug-primed mice) and then 7 days of drug refeeding showed an increase in the expression of numerous genes referred to here as the molecular cellular memory. This memory predisposes the liver to Mallory Denk body formation in response to drug refeeding. In the current study, drug-primed mice were refed DDC with or without a daily dose of S-adenosylmethionine (SAMe; 4 g/kg of body weight). The livers were studied for evidence of oxidative stress and changes in gene expression with microarray analysis. SAMe prevented Mallory Denk body formation in vivo. The molecular cellular memory induced by DDC refeeding lasted for 4 months after drug withdrawal and was not manifest when SAMe was added to the diet in the in vivo experiment. Liver cells from drug-primed mice spontaneously formed Mallory Denk bodies in primary tissue cultures. SAMe prevented Mallory Denk bodies when it was added to the culture medium. CONCLUSION SAMe treatment prevented Mallory Denk body formation in vivo and in vitro by preventing the expression of a molecular cellular memory induced by prior DDC feeding. No evidence for the involvement of oxidative stress in induction of the memory was found. The molecular memory included the up-regulation of the expression of genes associated with the development of liver cell preneoplasia.
Collapse
Affiliation(s)
- Jun Li
- Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone required for the stability and function of a number of conditionally activated and/or expressed signalling proteins, as well as multiple mutated, chimeric, and/or over-expressed signalling proteins, that promote cancer cell growth and/or survival. Hsp90 inhibitors are unique in that, although they are directed towards a specific molecular target, they simultaneously inhibit multiple cellular signalling pathways. By inhibiting nodal points in multiple overlapping survival pathways utilized by cancer cells, combination of an Hsp90 inhibitor with standard chemotherapeutic agents may dramatically increase the in vivo efficacy of the standard agent. Hsp90 inhibitors may circumvent the characteristic genetic plasticity that has allowed cancer cells to eventually evade the toxic effects of most molecularly targeted agents. The mechanism-based use of Hsp90 inhibitors, both alone and in combination with other drugs, should be effective toward multiple forms of cancer. Further, because Hsp90 inhibitors also induce Hsf-1-dependent expression of Hsp70, and because certain mutated Hsp90 client proteins are neurotoxic, these drugs display ameliorative properties in several neurodegenerative disease models, suggesting a novel role for Hsp90 inhibitors in treating multiple pathologies involving neurodegeneration.
Collapse
Affiliation(s)
- Len Neckers
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Olivé M, van Leeuwen FW, Janué A, Moreno D, Torrejón-Escribano B, Ferrer I. Expression of mutant ubiquitin (UBB+1) and p62 in myotilinopathies and desminopathies. Neuropathol Appl Neurobiol 2007; 34:76-87. [PMID: 17931355 DOI: 10.1111/j.1365-2990.2007.00864.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein aggregates in muscle cells are the morphological hallmark of myofibrillar myopathies, including myotilinopathies and desminopathies. The aim of the present study is to analyse the expression of mutant ubiquitin (UBB+1), an aberrant form of ubiquitin which accumulates in certain disorders characterized by intracellular aggregates of proteins, and p62, a multimeric signal protein which plays an active role in aggregate formation, in muscle biopsies from patients suffering from myotilinopathy and desminopathy in order to gain understanding of the mechanisms leading to protein aggregation in these disorders. Single immunohistochemistry, and single- and double-labelling immunofluorescence and confocal microscopy for UBB+1 and p62, has been performed in muscle biopsies from patients suffering from myotilinopathy and desminopathy. Strong UBB+1 immunoreactivity, colocalizing with myotilin aggregates, was found in muscle fibres in myotilinopathies. UBB+1 accumulation, colocalizing with desmin aggregates, also occurs in desminopathies. In addition, strong p62 immunoreactivity colocalizing with myotilin aggregates was observed in myotilinopathies. Similarly, p62 immunoreactivity colocalizing with desmin aggregates was found in desminopathies. The present findings suggest that accumulation of protein aggregates in myotilinopathies and in desminopathies may be related with UBB+1/abnormal protein complexes which are resistant to proteasome degradation. Furthermore, these observations suggest a relationship between the presence of p62 and the formation of inclusions in different subtypes of myofibrillar myopathies.
Collapse
Affiliation(s)
- M Olivé
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
25
|
Bardag-Gorce F, Dedes J, French BA, Oliva JV, Li J, French SW. Mallory body formation is associated with epigenetic phenotypic change in hepatocytes in vivo. Exp Mol Pathol 2007; 83:160-8. [PMID: 17531972 PMCID: PMC3315395 DOI: 10.1016/j.yexmp.2007.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/08/2007] [Accepted: 03/09/2007] [Indexed: 01/16/2023]
Abstract
Microarrays were done on the livers of mice fed DDC for 10 weeks, withdrawn 1 month (DDC primed livers) and refed 6 days, and compared with mice fed the control diet. The expression of a large number of genes changed when DDC was fed or refed. A Venn diagram analysis identified 649 genes where gene expression was changed in the same direction. The epigenetic memory of the DDC primed liver involved an increase in the expression of ubiquitin D, alpha fetoprotein, connective tissue growth factor, integrin beta 2, DNA methyl transferase 3a and DNA damage-inducible 45 gamma. DNA methyl transferase 3b was down-regulated as was Cbp/p300. When DDC was refed, DNA methyltransferase and histone deacetylase were up-regulated as shown by microarray analysis. Histone3 lysine9 acetylation was increased by DDC and DDC refeeding and DNA methyltransferases were not changed as shown by Western blot analysis. The data suggest the concept that the epigenetic memory that explains why DDC primed hepatocytes form MBs in 7 days of DDC refeeding is primarily the result of epigenetic modifications of gene expression through changes in histone acetylation and methylation, as well as DNA methylation.
Collapse
Affiliation(s)
- Fawzia Bardag-Gorce
- Department of Pathology, Harbor-UCLA Medical Center, 1000 W. Carson St., Torrance, CA 90509, USA
| | | | | | | | | | | |
Collapse
|
26
|
Hanada S, Harada M, Kumemura H, Bishr Omary M, Koga H, Kawaguchi T, Taniguchi E, Yoshida T, Hisamoto T, Yanagimoto C, Maeyama M, Ueno T, Sata M. Oxidative stress induces the endoplasmic reticulum stress and facilitates inclusion formation in cultured cells. J Hepatol 2007; 47:93-102. [PMID: 17434230 DOI: 10.1016/j.jhep.2007.01.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 12/06/2006] [Accepted: 01/06/2007] [Indexed: 01/01/2023]
Abstract
BACKGROUND/AIMS The precise mechanism of formation and significance of Mallory bodies (MBs) are poorly understood. The endoplasmic reticulum (ER) is the organelle responsible for proper folding and elimination of unfolded proteins. Therefore, failure of this function increases defective proteins in the cell. METHODS We examined the effects of oxidative stress on induction of ER stress and keratin 8 and 18 (K8/18)-containing inclusion formation in cultured human hepatoma cells and hepatocytes by immunofluorescence and immunoblot analyses. RESULTS Generation of H(2)O(2) was detected in glucose oxidase (GO)-treated cells by 2',7'-dichlorodihydrofluorescein diacetate and co-treatment with GO and acetyl-leucyl-leucyl-norleucinal (ALLN), a proteasome inhibitor, induced formation of extensive keratin inclusions that were inhibited by pre-treatment with N-acetyl-cysteine. These inclusions shared similar features with MBs by immunofluorescence analysis. Electron microscopy showed that these structures appeared near the nuclei, surrounded by filamentous structures. GO and ALLN upregulated the expression of ER stress markers, however, 4-phenylbutyrate, a chemical chaperone, reduced formation of inclusions and expression of the ER stress markers. CONCLUSIONS The oxidative stress coupled with limited inhibition of the proteasome induces dysfunction of the ER and results in inclusion formation in cultured cells. This suggests that ER stress plays a role in MB formation in liver disease.
Collapse
Affiliation(s)
- Shinichiro Hanada
- Department of Medicine, Kurume University School of Medicine, and Research Center for Innovative Cancer Therapy, and Center of the 21st Century COE Program for Medical Science, Kurume University, Kurume, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zatloukal K, French SW, Stumptner C, Strnad P, Harada M, Toivola DM, Cadrin M, Omary MB. From Mallory to Mallory–Denk bodies: What, how and why? Exp Cell Res 2007; 313:2033-49. [PMID: 17531973 DOI: 10.1016/j.yexcr.2007.04.024] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 12/16/2022]
Abstract
Frank B. Mallory described cytoplasmic hyaline inclusions in hepatocytes of patients with alcoholic hepatitis in 1911. These inclusions became known as Mallory bodies (MBs) and have since been associated with a variety of other liver diseases including non-alcoholic fatty liver disease. Helmut Denk and colleagues described the first animal model of MBs in 1975 that involves feeding mice griseofulvin. Since then, mouse models have been instrumental in helping understand the pathogenesis of MBs. Given the tremendous contributions made by Denk to the field, we propose renaming MBs as Mallory-Denk bodies (MDBs). The major constituents of MDBs include keratins 8 and 18 (K8/18), ubiquitin, and p62. The relevant proteins and cellular processes that contribute to MDB formation and accumulation include the type of chronic stress, the extent of stress-induced protein misfolding and consequent proteasome overload, a K8-greater-than-K18 ratio, transamidation of K8 and other proteins, presence of p62 and autophagy. Although it remains unclear whether MDBs serve a bystander, protective or injury promoting function, they do serve an important role as histological and potential progression markers in several liver diseases.
Collapse
Affiliation(s)
- Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hernández-Espinosa D, Mota R, Miñano A, Ordóñez A, Yélamos J, Vicente V, Corral J. In vivo effects of hyperthermia on the functional and conformational characteristics of antithrombin. J Thromb Haemost 2007; 5:963-70. [PMID: 17472584 DOI: 10.1111/j.1538-7836.2007.02479.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND High temperatures produce in vitro transitions of antithrombin to its inactive latent and polymeric forms. Accordingly, high body temperatures might contribute in vivo to conformational changes in antithrombin associated with increased thrombotic risk. METHODS We assessed the in vivo effects of different hyperthermic stimuli on antithrombin. We studied two mouse models of hyperthermia. (i) Febrile syndrome induced by turpentine. (ii) Heat stroke generated by exposure to 42 degrees C. Body temperatures were measured. Antigen, anti-factor Xa activity and conformational features of plasma antithrombin were studied. Furthermore, structural and ultrastructural features from livers were analyzed. Intracellular retention of serpins (antithrombin and alpha1-antitrypsin) was studied by western-blotting, immunohistochemistry, and immunogold-labeling-electron microscopy. RESULTS Hyperthermic stimuli caused a moderate deficiency of circulating antithrombin and a slight increase in its latent form. Moreover, hyperthermia caused intracellular retention of antithrombin into aggregates within the lumen of the endoplasmic reticulum of hepatocytes. This effect was similar for alpha1-antitrypsin. CONCLUSION Hyperthermia causes minor conformational changes on circulating antithrombin in vivo, although it has severe consequences for intracellular antithrombin and other hepatic serpins, inducing the intracellular retention of the nascent protein. These effects may contribute to the moderate plasma deficiency of antithrombin and the increased thrombotic risk detected in hyperthermic conditions.
Collapse
Affiliation(s)
- D Hernández-Espinosa
- Department of Medicine, Centro Regional de Hemodonación, Hospital 'Vigen de la Arrixaca', Univeristy of Murcia, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Kovacs I, Lentini KM, Ingano LM, Kovacs DM. Presenilin 1 forms aggresomal deposits in response to heat shock. J Mol Neurosci 2007; 29:9-19. [PMID: 16757805 DOI: 10.1385/jmn:29:1:29] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 11/30/1999] [Accepted: 07/22/2005] [Indexed: 11/11/2022]
Abstract
Aggresomes have been described as cytoplasmic membrane protein aggregates that are induced by proteasome inhibition or overexpression of certain proteins. Here, we characterized aggresomes formed by the Alzheimer's disease-associated presenilin 1 (PS1) protein. Proteasome inhibition induced accumulation of PS1 in the endoplasmic reticulum (ER) and retrotranslocation of the protein from the ER membrane into the cytoplasm. Aggresomes formed by PS1 modified the ER structure whereas proteasomes were inhibited. Therefore, clear visual identification of PS1 aggresomes required removal of the proteasome inhibitor followed by hours of recovery to redistribute the ER throughout the cells. Aggresomes formed by PS1 did not potentiate or attenuate apoptotic cell death induced by staurosporine treatment. Selective presence of the heat-shock proteins Hsp70 and HDJ-2/HSDJ, but not Hsp90, in aggresomes suggested chaperone-mediated transport of PS1 into these structures. Because proteasome inhibition and heat shock are both known to induce expression of heat shock proteins, we also demonstrated that heat shock alone was sufficient to induce PS1 aggresome formation and Hsp70 expression. These results indicate that aggresome formation by PS1 is chaperone-mediated and can be induced in response to heat-shock stress, a common cellular event in neurodegenerative diseases. Malfunctioning of the proteasome or heat-shock stress response in the brains of patients affected by Alzheimer's disease may lead to the accumulation of stable aggresomes of PS1, perhaps contributing to neurodegeneration.
Collapse
Affiliation(s)
- Imre Kovacs
- Neurobiology of Disease Laboratory, Genetics and Aging Research Unit/MIND, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | | | | | | |
Collapse
|
30
|
Abstract
The heart is constantly under mechanical, metabolic, and thermal stress, even at baseline physiological conditions, and cardiac stress may increase as a result of environmental or intrinsic pathological insults. Cardiomyocytes are continuously challenged to efficiently and properly fold nascent polypeptides, traffic them to their appropriate cellular locations, and keep them from denaturing in the face of normal and pathological stimuli. Because deployment of misfolded or unfolded proteins can be disastrous, cells, in general, and cardiomyocytes, in particular, have developed a multilayered protein quality control system for maintaining proper protein conformation and for reorganizing and removing misfolded or aggregated polypeptides. Here, we examine recent data pointing to the importance of protein quality control in cardiac homeostasis and disease.
Collapse
Affiliation(s)
- Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | | |
Collapse
|
31
|
Abstract
The majority of intracellular proteins undergo degradation through the ubiquitin-proteasome pathway. The proteasome pathway has a role in regulating cell proliferation, differentiation, survival and apoptosis. The naturally occurring proteasome inhibitor lactacystin was the first proteasome inhibitor noted to induce apoptosis in vitro. Compared with first-generation proteasome inhibitors, bortezomib (PS-341), a dipeptide boronic acid, has exhibited higher potency and specificity, and has been approved for the treatment of relapsed or refractory myeloma. However, there are some patients who do not respond to therapy or who respond briefly and then relapse. It is becoming increasingly clear that myeloma cells respond to the stress caused by proteasome inhibitors (bortezomib) via rapidly up-regulating pathways that suppress apoptosis, thus attenuating its antitumour activity. The delineation of these molecular pathways and mechanisms to circumvent them are needed to allow this important class of agents to remain vital in the armamentarium of the management of multiple myeloma and other malignancies.
Collapse
Affiliation(s)
- Venugopalan Cheriyath
- The Cleveland Clinic Foundation, Taussig Cancer Center, Center for Hematology and Oncology Molecular Therapeutics, Cleveland, Ohio, USA
| | | | | |
Collapse
|
32
|
Bardag-Gorce F, French BA, Nan L, Song H, Nguyen SK, Yong H, Dede J, French SW. CYP2E1 induced by ethanol causes oxidative stress, proteasome inhibition and cytokeratin aggresome (Mallory body-like) formation. Exp Mol Pathol 2006; 81:191-201. [PMID: 17034788 DOI: 10.1016/j.yexmp.2006.07.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 07/28/2006] [Indexed: 12/21/2022]
Abstract
The role of oxidative stress in alcoholic liver disease and cytokeratin aggresome formation is the focus of this in vitro study. HepG2 cells transduced to over express CYP2E1 (E47) and control HepG2 cells (C34) were first treated with arachidonic acid, then Fe-NAT, and finally with ethanol. In the E47 ethanol-treated cells, CYP2E1 was induced and a higher level of reactive oxygen species and carbonyl proteins were generated. The proteasome activity decreased significantly in the E47 ethanol-treated cells. This inhibition was prevented when CYP2E1 was inhibited by DAS. Microarray analysis showed gene expression down regulation of the proteasome subunit, as well as ubiquitin pathway proteins in the E47 ethanol-treated cells. 4-Hydroxynonenal (4-HNE) adducts were increased in the E47 cells treated with ethanol. Furthermore, the immunoprecipitated 4-HNE modified proteins from these cells stained positive with antibodies to the proteasome subunit alpha 6. These results indicate that the ethanol induced CYP2E1 generates oxidative stress that is responsible for the decrease in proteasome activity. Cytokeratin 8 and 18 were induced by ethanol treatment of E47 cells and polyubiquitinated forms of these proteins were found in the polyubiquitin smear upon Western blots analysis. Cytokeratin aggresomes and Mallory body-like inclusions formed in the ethanol-treated E47 cells, indicating that the ubiquitinated cytokeratins accumulated as a result of the inhibition of the proteasome by ethanol treatment when oxidation of ethanol induced oxidative stress. This is the first report where ethanol caused Mallory body-like cytokeratin inclusions in transformed human liver cells in vitro.
Collapse
Affiliation(s)
- Fawzia Bardag-Gorce
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 W. Carson St., Torrance, CA 90509, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hernández-Espinosa D, Miñano A, Martínez C, Pérez-Ceballos E, Heras I, Fuster JL, Vicente V, Corral J. L-asparaginase-induced antithrombin type I deficiency: implications for conformational diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:142-53. [PMID: 16816368 PMCID: PMC1698772 DOI: 10.2353/ajpath.2006.051238] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Serpinopathies, a group of diseases caused by mutations that disrupt the structurally sensitive serpins, have no known acquired cause. Interestingly, l-asparaginase treatment of acute lymphoblastic leukemia patients causes severe deficiency in the serpin antithrombin. We studied the consequences of this drug on antithrombin levels, activity, conformation, and immunohistological and ultrastructural features in plasma from acute lymphoblastic leukemia patients, HepG2 cells, and plasma and livers from mice treated with this drug. Additionally, we evaluated intracellular deposition of alpha1-antitrypsin. l-Asparaginase did not affect functional or conformational parameters of mature antithrombin; however, patients and mice displayed severe type I deficiency with no abnormal conformations of circulating antithrombin. Moreover, l-asparaginase impaired secretion of antithrombin by HepG2 cells. These effects were explained by the intracellular retention of antithrombin, forming aggregates within dilated endoplasmic reticulum cisterns. Similar effects were observed for alpha1-antitrypsin in plasma, cells, and livers, and intracellular aggregates of additional proteins were observed in frontal cortex and pancreas. This is the first report of a conformational drug-associated effect on serpins without genetic factors involved. l-Asparaginase treatment induces severe, acquired, and transient type I deficiency of antithrombin (and alpha1-antitrypsin) with intracellular accumulation of the nascent molecule, increasing the risk of thrombosis.
Collapse
|
34
|
Nan L, Dedes J, French BA, Bardag-Gorce F, Li J, Wu Y, French SW. Mallory body (cytokeratin aggresomes) formation is prevented in vitro by p38 inhibitor. Exp Mol Pathol 2006; 80:228-40. [PMID: 16563375 DOI: 10.1016/j.yexmp.2006.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 01/10/2006] [Indexed: 01/18/2023]
Abstract
Microarray analysis of livers from mice fed diethyl-1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate (DDC) to induce Mallory body (MB) cytokeratin aggresome formation showed that gene expression for cellular adhesion molecules, cytokeratins, kinases and aggresome forming proteins were upregulated, when MBs were formed in vivo. This response was enhanced when the DDC was refed (mice fed DDC for 10 weeks followed by DDC withdrawal for 1 month, then refed DDC for 7 days). Immunofluorescent antibody staining of the MBs that formed showed that MAPK p38 was colocalized with ubiquitin and p62 in the MBs. To investigate further the mechanisms of MB formation, primary cultures derived from DDC primed mice and their controls were incubated for 6 days. Liver cells cultured for 3 h and 6 days were used for microarray analysis. At 3 h, there were no MBs formed, but MBs were numerous after 6 days of culture. At 3 h, the expression of a large number of genes was different when the control, and the DDC primed hepatocytes were compared, which indicates that the primed hepatocytes were phenotypically changed. The gene expression of many kinases including p38 was upregulated after 6 days where the gene expression of cytokeratins, adhesion molecules and aggresome forming proteins were upregulated when MBs formed. An inhibitor of p38 phosphorylation (SB202190) completely prevented MB formation. Western blot showed that phosphorylated p38 MAPK and total p38 were absent in vitro after the p38 inhibitor treatment. Immunostaining of 6-day DDC-primed hepatocyte cultures stained with antibodies to p62 and phospho-p38 MAPK showed that phosphorylated p38 MAPK was concentrated within the MBs. Antibodies to specific serine phosphorylated sites 73 and 431, located in cytokeratin 8, localized to Mallory bodies in vivo, indicating that cytokeratin 8 was hyperphosphorylated. The data supported the concept that MBs form as the result of hyperphosphorylation of cytokeratin 8 by p38.
Collapse
Affiliation(s)
- Li Nan
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Roomi MW, Gaal K, Yuan QX, French BA, Fu P, Bardag-Gorce F, French SW. Preneoplastic liver cell foci expansion induced by thioacetamide toxicity in drug-primed mice. Exp Mol Pathol 2006; 81:8-14. [PMID: 16729998 DOI: 10.1016/j.yexmp.2006.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 02/07/2006] [Indexed: 01/16/2023]
Abstract
Mice primed by feeding griseofulvin or diethyl 1,4-dihydro 1,4,6-trimethyl 3,5-pyridine decarboxylate for 5 months followed by drug withdrawal for 1 month (drug-primed mice) were given thioacetamide intraperitoneally, and the livers were subsequently studied at intervals up to 7 days. The hepatocellular proliferative response was measured by immunostaining for proliferative cell nuclear antigen. Necrosis was followed by measuring ALT. Mallory bodies were identified by immunoperoxidase stains for ubiquitin and cytokeratin. Preneoplastic foci were localized using immunofluorescence stain for glutathione S-transferase (GST mu) and histochemical stain for gamma glutamyl transpeptidase (GGT). The results showed that the preneoplastic foci selectively proliferated and expanded and formed nodules as indicated by quantitation of nuclei stained positive for proliferating cell nuclear antigen after thioacetamide treatment. Data support the hypothesis that the preneoplastic foci consisted of clones of hepatocytes which preferentially express GST mu, GGT and Mallory bodies. These preneoplastic cells selectively proliferate in response to the promoter effects of necrosis-induced liver cell regeneration ("chemical partial hepatectomy").
Collapse
Affiliation(s)
- M Waheed Roomi
- Department of Pathology, Harbor-UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Neckers L, Neckers K. Heat-shock protein 90 inhibitors as novel cancer chemotherapeutics - an update. Expert Opin Emerg Drugs 2006; 10:137-49. [PMID: 15757409 DOI: 10.1517/14728214.10.1.137] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heat-shock protein 90 (Hsp90) is a molecular chaperone whose association is required for stability and function of a growing number of signalling proteins that have been implicated in cancer cell survival, including several mutated proteins that are only found in specific cancers. Furthermore, a growing body of evidence suggests that cancer cells are particularly dependent on Hsp90 for their growth and survival, and, therefore, are more sensitive to the effects of its inhibition than are non-transformed cells and tissues. Several chemically distinct Hsp90 inhibitors have shown encouraging antitumour activity in multiple preclinical model systems, and one Hsp90 inhibitor, the benzoquinone ansamycin 17-allylamino, 17-demethoxygeldanamycin, has completed five Phase I clinical trials, with a number of Phase II trials soon to be underway or in progress. Other Hsp90 inhibitors are either in Phase I clinical trial or under development. This update will focus on how the latest developments in Hsp90 biology may better inform the clinical development of Hsp90 inhibitors.
Collapse
Affiliation(s)
- Len Neckers
- National Cancer Institute, Urologic Oncology Branch, 9610 Medical Ctr., Suite 300, Rockville, MD 20850, USA.
| | | |
Collapse
|
37
|
Nan L, Bardag-Gorce F, Wu Y, Li J, French BA, French SW. Mallory body forming cells express the preneoplastic hepatocyte phenotype. Exp Mol Pathol 2006; 80:109-18. [PMID: 16413534 DOI: 10.1016/j.yexmp.2005.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 11/01/2005] [Accepted: 11/15/2005] [Indexed: 01/05/2023]
Abstract
The livers of mice fed diethyl 1,4-dihydro-2,4,6,-trimethyl-3,5-pyridinedicarboxylate (DDC) for 10 weeks formed Mallory bodies (MBs) in clusters of hepatocytes. Mice withdrawn from DDC for 9 months developed liver tumors. In the present study, the phenotype of the hepatocytes that formed MBs and tumors was characterized. Immunoperoxidase and immunofluorescent stains were done on the DDC-treated mouse livers, as well as mouse liver tumors and a human hepatocellular carcinoma that formed MBs. Antibodies to markers of hepatocellular neoplasms such as alpha-fetoprotein (AFP), ubiquitin B (UbB) fatty acid synthase (FAS) and alpha2 macroglobulin (A2m) stained the MB forming cells positive. Quantitative real-time RT-PCR assay was used to measure AFP, UbB, FAS and GCP-3 A2m mRNA levels in the livers of DDC fed mice and the DDC-induced mouse liver tumors. The FAS, UbB, GPC-3 and AFP mRNA levels were significantly increased in the MB forming liver cells. The in vitro model of MB formation was used to correlate MB formation with gene and protein expression. Primary cultures of DDC-primed hepatocytes were compared with the controls. A2m and UbB expression increased in the primary cultures of DDC-primed hepatocytes when MBs formed. Thus, the tumor markers used to identify hepatocellular carcinoma were upregulated in cells forming MBs in vivo and in vitro, suggesting that MB forming cells express preneoplastic phenotypic features.
Collapse
Affiliation(s)
- Li Nan
- Harbor-UCLA Medical Center, Department of Pathology, Los Angeles Biomedical Research Institute, 1000 W. Carson St., Torrance, CA 90502, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone required for the stability and function of a number of conditionally activated and/or expressed signaling proteins, as well as multiple mutated, chimeric, and/or over-expressed signaling proteins, that promote cancer cell growth and/or survival. Hsp90 inhibitors, by interacting specifically with a single molecular target, cause the inactivation, destabilization, and eventual degradation of Hsp90 client proteins, and they have shown promising anti-tumor activity in preclinical model systems. One Hsp90 inhibitor, 17-AAG, has completed Phase I clinical trial and several Phase II trials of this agent are in progress. Hsp90 inhibitors are unique in that, although they are directed toward a specific molecular target, they simultaneously inhibit multiple signaling pathways that frequently interact to promote cancer cell survival. Further, by inhibiting nodal points in multiple overlapping survival pathways utilized by cancer cells, a combination of an Hsp90 inhibitor with standard chemotherapeutic agents may dramatically increase the in vivo efficacy of the standard agent. Hsp90 inhibitors may circumvent the characteristic genetic plasticity that has allowed cancer cells to eventually evade the toxic effects of most molecularly targeted agents. The mechanism-based use of Hsp90 inhibitors, both alone and in combination with other drugs, should be effective toward multiple forms of cancer.
Collapse
Affiliation(s)
- L Neckers
- Urologic Oncology Branch, National Cancer Institute, Rockville MD, 20850, USA.
| |
Collapse
|
39
|
de Pril R, Fischer DF, van Leeuwen FW. Conformational diseases: an umbrella for various neurological disorders with an impaired ubiquitin-proteasome system. Neurobiol Aging 2005; 27:515-23. [PMID: 16226348 DOI: 10.1016/j.neurobiolaging.2005.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 04/07/2005] [Accepted: 04/20/2005] [Indexed: 12/19/2022]
Abstract
It is increasingly appreciated that failures in the ubiquitin-proteasome system play a pivotal role in the neuropathogenesis of many neurological disorders. This system, involved in protein quality control, should degrade misfolded proteins, but apparently during neuropathogenesis, it is unable to cope with a number of proteins that, by themselves, can consequently accumulate. Ubiquitin is essential for ATP-dependent protein degradation by the proteasome. Ubiquitin+1 (UBB+1) is generated by a dinucleotide deletion (DeltaGU) in UBB mRNA. The aberrant protein has a 19 amino acid extension and has lost the ability to ubiquitinate. Instead of targeting proteins for degradation, it has acquired a dual substrate-inhibitor function; ubiquitinated UBB+1 is a substrate for proteasomal degradation, but can at higher concentrations inhibit, proteasomal degradation. Furthermore, UBB+1 protein accumulates in neurons and glial cells in a disease-specific way, and this event is an indication for proteasomal dysfunction. Many neurological and non-neurological conformational diseases have the accumulation of misfolded proteins and of UBB+1 in common, and this combined accumulation results in the promotion of insoluble protein deposits and neuronal cell death as shown in a cellular model of Huntington's disease.
Collapse
Affiliation(s)
- Remko de Pril
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands
| | | | | |
Collapse
|
40
|
Menéndez-Benito V, Verhoef LGGC, Masucci MG, Dantuma NP. Endoplasmic reticulum stress compromises the ubiquitin–proteasome system. Hum Mol Genet 2005; 14:2787-99. [PMID: 16103128 DOI: 10.1093/hmg/ddi312] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The presence of endoplasmic reticulum (ER) stress and impaired ubiquitin-proteasome system (UPS) activity has been independently implicated in the pathophysiology of conformational diseases. Here, we reveal a link between ER stress and the functionality of the UPS. Treatment of cells with different ER stressors delayed the degradation of an ER reporter substrate and caused a subtle but consistent accumulation of three independent nuclear/cytosolic UPS reporter substrates. A similar signature increase was observed upon induction of ER stress in transgenic mice expressing a reporter substrate. Cells undergoing ER stress failed to clear efficiently UBB+1, an aberrant ubiquitin found in conformational diseases, which in turn caused general impairment of the UPS. We conclude that ER stress has a general inhibitory effect on the UPS. The compromised UPS during ER stress may explain the long-term gradual accumulation of misfolded proteins as well as the selective vulnerability of particular cell populations in conformational diseases.
Collapse
Affiliation(s)
- Victoria Menéndez-Benito
- Department of Cell and Molecular Biology, The Medical Nobel Institute, Karolinska Institutet, PO Box 285, Von Eulers väg 3, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
41
|
Wu Y, Nan L, Bardag-Gorce F, Li J, French BA, Wilson LT, Dedes J, French SW. The role of laminin–integrin signaling in triggering MB formation. An in vivo and in vitro study. Exp Mol Pathol 2005; 79:1-8. [PMID: 15896771 DOI: 10.1016/j.yexmp.2005.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 03/25/2005] [Indexed: 12/25/2022]
Abstract
It is still unclear as to how hepatocytes perceive external factors and transduce the signals which initiate MB formation. To investigate this phenomenon, the model of MB formation in liver in vivo and in primary culture of hepatocytes derived from drug-primed mice was used. Control mice were fed the control diet (group 1). MBs were induced in the livers of mice fed diethyl-1, 4-dihydro-2, 4, 6-trimethyl-3, 5-pyridinedicarboxylate (DDC) for 10 weeks (group 2). The induced MBs completely disappeared after the withdrawal of DDC for 4 weeks (group 3). Newly formed MBs were numerous after DDC was refed for 1 week (group 4). Relative mRNA abundance was determined by quantitative real-time RT-PCR in the liver from the mice. The expression of integrin alpha(6) and beta(2) was significantly increased in the livers of DDC-treated (group 2) and drug refed mice (group 4), when compared with the livers from controls (group 1) and DDC-withdrawn (group 3) mice. The increased mRNA of these two integrin genes was associated with the increased expression of laminin (a ligand for integrin alpha(6)beta(1) and alpha(6)beta(4)), Icam1 (a ligand of alphaLbeta2), Src, MEKK1, and ERK1. Primary cultures of isolated DDC-primed hepatocytes (group 4 mice were withdrawn from DDC-CMZ for 4-6 weeks) produced significantly more MBs on laminin-coated coverslips compared with plastic uncoated, fibronectin-, collagen-, or fibrinogen-coated coverslips. U0126, an inhibitor of MEK1 protein, significantly reduced the phosphorylated forms of ERK1/2 and MB formation in vitro. In conclusion, the current study revealed an association between MB formation and integrin-mediated signaling in vivo. The data indicate that laminin-integrin signaling which activates ERK, triggered MB formation in vitro, and an inhibitor of the signaling cascade reduced MB formation.
Collapse
Affiliation(s)
- Yong Wu
- Department of Pathology, Harbor-UCLA Medical Center, 1000 W. Carson Street, Torrance, CA 90502, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ferrer I, Carmona M, Blanco R, Moreno D, Torrejón-Escribano B, Olivé M. Involvement of clusterin and the aggresome in abnormal protein deposits in myofibrillar myopathies and inclusion body myositis. Brain Pathol 2005; 15:101-8. [PMID: 15912881 PMCID: PMC8095801 DOI: 10.1111/j.1750-3639.2005.tb00504.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Myofibrillar myopathies (MM) are characterized morphologically by the presence of non-hyaline structures corresponding to foci of dissolution of myofibrils, and hyaline lesions composed of aggregates of compacted and degraded myofibrillar elements. Inclusion body myositis (IBM) is characterized by the presence of rimmed vacuoles, eosinophilic inclusions in the cytoplasm, rare intranuclear inclusions, and by the accumulation of several abnormal proteins. Recent studies have demonstrated impaired proteasomal expression and activity in MM and IBM, thus accounting, in part, for the abnormal protein accumulation in these diseases. The present study examines other factors involved in protein aggregation in MM and IBM. Clusterin is a multiple-function protein which participates in Abeta-amyloid, PrP(res) and a-synuclein aggregation in Alzheimer disease, prionopathies and a-synucleinopathies, respectively. gamma-Tubulin is present in the centrosome and is an intracellular marker of the aggresome. Moderate or strong clusterin immunoreactivity has been found in association with abnormal protein deposits, as revealed by immunohistochemistry, single and double-labeling immunofluorescence and confocal microscopy, in MM and IBM, and in target structures in denervation atrophy. Gamma-Tubulin has also been observed in association with abnormal protein deposits in MM, IBM, and in target fibers in denervation atrophy. These morphological findings are accompanied by increased expression of clusterin and gamma-tubulin in muscle homogenates of MM and IBM cases, as revealed by gel electrophoresis and Western blots. Together, these observations demonstrate involvement of clusterin in protein aggregates, and increased expression of aggresome markers in association with abnormal protein inclusions in MM and IBM and in targets, as crucial events related to the pathogenesis of abnormal protein accumulation and degradation in these muscular diseases.
Collapse
Affiliation(s)
- I Ferrer
- Institut Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Spain.
| | | | | | | | | | | |
Collapse
|
43
|
Nan L, Wu Y, Bardag-Gorce F, Li J, French BA, Wilson LT, French SW. The p105/50 NF-kappaB pathway is essential for Mallory body formation. Exp Mol Pathol 2005; 78:198-206. [PMID: 15924871 DOI: 10.1016/j.yexmp.2004.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 12/03/2004] [Indexed: 12/20/2022]
Abstract
To determine if nuclear factor-kappaB (NF-kB) plays a role in Mallory body (MB) formation, quantitative real-time RT-PCR assay was used to measure liver NF-kappaB1/p105 mRNA levels in 4 different groups of mice. Group 1: mice given IP saline for 15 weeks; group 2: mice fed diethyl 1,4-dihydro-2,4,6,-trimethyl-3,5-pyridinedicarboxylate (DDC) for 10 weeks when MBs were formed; group3: mice fed DDC 10 weeks, then withdrawn 5 weeks when MBs disappeared; group 4: mice fed DDC 10 weeks, withdrawn 4 weeks, then fed DDC+chlormethiazole (CMZ) for 1 week when MBs again formed. The mRNA for p105 NF-kappaB expression was significantly increased in the livers of mice treated with DDC (group 2) and DDC+CMZ (group 4) compared with the control livers (group 1) as well as the drug-withdrawal livers (group 3). Primary cultures of hepatocytes from drug-primed mice (the group 4 mice were withdrawn for another 4 weeks when the MBs had disappeared) were studied. The hepatocytes from drug-primed mice were MB free when isolated and used for primary culture. MBs began to form spontaneously within their cytoplasm after 2-3 days of culture. The NF-kappaB inhibitor (NF-kappaBi), a cell-permeable quinazoline compound that acts as a potent inhibitor of NF-kappaB transcriptional activation, was added to the medium 3 h after planting the cultures of liver cells. No MBs formed in the cells treated with 10 microM, 1 microM, and 0.1 microM NF-kappaBi for 6 days. MBs still formed in the cells treated with 10 nM NF-kappaBi for 6 days. Both DDC-primed and normal control liver cells began to enlarge and elongate after a few hours of culture. In contrast, the cells treated with NF-kappaBi stayed polyhedral in shape just as they appeared prior to culturing. The level of NF-kappaB1/p105 mRNA significantly increased in DDC-primed hepatocytes after 24 h of culture and in normal control hepatocytes after 48 h of culture. In DDC-primed hepatocytes, NF-kappaBi 0.1 muM treatment for 6 days significantly decreased mRNA expression of Src, p105/NF-kappaB1, ERK1, MEKK1, and JNK1/2. In normal control liver cells, NF-kappaBi treatment decreased mRNA expression of Src and JNK1 and stimulated the mRNA expression of p105/NF-kappaB1 and Junk2. NF-kappaBi treatment significantly decreased the total ERK1/2 protein and further decreased the phosphorylated (activated) form of ERK1/2 in the cultured hepatocytes. The results indicate that the p105 NF-kappaB pathway which putatively regulates ERK at both the transcriptional and post-translational levels regulates MB formation by way of changes in gene expression.
Collapse
Affiliation(s)
- Li Nan
- Department of Pathology, Harbor-UCLA Medical Center, 1000 W. Carson Street, Torrance, CA 90502, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Nan L, Wu Y, Bardag-Gorce F, Li J, French BA, Wilson LT, Khanh Nguyen S, French SW. RNA interference of VCP/p97 increases Mallory body formation. Exp Mol Pathol 2005; 78:1-9. [PMID: 15596054 DOI: 10.1016/j.yexmp.2004.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Indexed: 11/22/2022]
Abstract
In the present report, valosin-containing protein (VCP) was present in Mallory bodies (MBs). To determine if VCP plays a role in MB formation, primary cultured hepatocytes from drug-primed mice that spontaneously form MBs in vitro were studied. The results were compared with control normal hepatocytes. Gene-specific FITC-labeled gripNA (gVCP) was added to the medium of the primary cultures to inhibit the expression of VCP. gVCP increased MB formation by 230% in drug-primed mouse hepatocytes compared with primed liver cells where no VCP oligos were added. Blocking VCP expression induced both multiple small ubiquitin (Ub) and cytokeratin (CK) aggregates to form within the cytoplasm in normal mouse hepatocytes. Inhibition of VCP expression in both drug-primed and control hepatocytes caused a decrease in proteasome chymotrypsin-like (ChT-L) activity. Overexpression of VCP was achieved by transfecting the hepatocytes with a plasmid containing green fluorescent protein (GFP)-fused VCP (pVCP-GFP). Overexpressed VCP was located in both the cytoplasm and nucleus of pVCP-GFP overexpressing drug-primed hepatocytes. VCP was also concentrated within MBs. MB formation was not decreased by the overexpression of VCP in the cells. These results indicate that VCP plays an important role in inducing MB formation, probably through its molecular chaperone function in the ubiquitin-proteasome system (UPS).
Collapse
Affiliation(s)
- Li Nan
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90505, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Lowe J, Hand N, Mayer RJ. Application of Ubiquitin Immunohistochemistry to the Diagnosis of Disease. Methods Enzymol 2005; 399:86-119. [PMID: 16338351 DOI: 10.1016/s0076-6879(05)99007-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Ubiquitin immunohistochemistry has changed understanding of the pathophysiology of many diseases, particularly chronic neurodegenerative diseases. Protein aggregates (inclusions) containing ubiquitinated proteins occur in neurones and other cell types in the central nervous system in afflicted cells. The inclusions are present in all the neurological illnesses, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, polyglutamine diseases, and rarer forms of neurodegenerative disease. A new cause of cognitive decline in the elderly, "dementia with Lewy bodies," accounting for some 15-30% of cases, was initially discovered and characterized by ubiquitin immunocytochemistry. The optimal methods for carrying out immunohistochemical analyses of paraffin-embedded tissues are described, and examples of all the types of intracellular inclusions detected by ubiquitin immunohistochemistry in the diseases are illustrated. The role of the ubiquitin proteasome system (UPS) in disease progression is being actively researched globally and increasingly, because it is now realized that the UPS controls most pathways in cellular homeostasis. Many of these regulatory mechanisms will be dysfunctional in diseased cells. The goal is to understand fully the role of the UPS in the disorders and then therapeutically intervene in the ubiquitin pathway to treat these incurable diseases.
Collapse
Affiliation(s)
- James Lowe
- School of Molecular Medical Sciences, University of Nottingham Medical School, Queens Medical Centre, Nottingham, United Kingdom
| | | | | |
Collapse
|
46
|
Nan L, Wu Y, Bardag-Gorce F, Li J, French BA, Fu AN, Francis T, Vu J, French SW. p62 is involved in the mechanism of Mallory body formation. Exp Mol Pathol 2004; 77:168-75. [PMID: 15507232 DOI: 10.1016/j.yexmp.2004.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 06/17/2004] [Indexed: 11/16/2022]
Abstract
p62 is a scaffolding protein that binds to polyubiquitin. It is involved in the degradation of proteins by the proteasome. To determine if p62 is critical in the development of Mallory bodies (MBs), primary culture hepatocytes from drug-primed mice were studied and the results were compared with normal hepatocytes. Gene-specific gripNA (gp62) was added to the medium of the primary cultures of the hepatocytes to inhibit the expression of p62. Overexpression of p62 was achieved by transfecting the hepatocytes with a plasmid containing green fluorescent protein (GFP) fused p62 (p62-GFP). Gp62 dramatically inhibited MB formation by 94% in drug-primed hepatocytes. The cells transfected with gp62 had decreased protein levels of p62, ubiquitin (Ub), and cytokeratin 8 (CK8). Overexpression of p62 accelerated and enhanced MB formation by 339% in drug-primed hepatocytes. Overexpression of p62 in normal mouse hepatocytes induced MB-like aggresomes that were stained by Ub but not by CK8. The results indicate that p62 is involved in the mechanism of MB formation.
Collapse
Affiliation(s)
- Li Nan
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Heat shock protein 90 (Hsp90) is a molecular chaperone required for the stability and function of a number of conditionally activated and/or expressed signaling proteins, as well as multiple mutated, chimeric, or overexpressed signaling proteins, which promote cancer cell growth or survival or both. Hsp90 inhibitors, by interacting specifically with a single molecular target, cause the inactivation, destabilization, and eventual degradation of Hsp90 client proteins, and they have shown promising antitumor activity in preclinical model systems. One Hsp90 inhibitor, 17-AAG, has completed Phase I clinical trial, and several Phase II trials are in progress. Hsp90 inhibitors are unique in that, although they are directed towards a specific molecular target, they simultaneously inhibit multiple signaling pathways that frequently interact to promote cancer cell survival. RECENT FINDINGS Recently identified clients of Hsp90 participate, frequently in overlapping pathways, in mediating cancer cell survival. These include Akt, Her2, and HIF-1 alpha. Thus, by inhibiting multiple survival pathways used by cancer cells, combination of an Hsp90 inhibitor with standard chemotherapeutic agents may dramatically increase the in vivo efficacy of the standard agent. Furthermore, Hsp90 modulates androgen receptor activity and the activity of several mutated kinases characteristic of several leukemias and lymphomas, making Hsp90 inhibition an attractive modality in these cases. SUMMARY Hsp90 inhibitors may circumvent the characteristic genetic plasticity that has allowed cancer cells to eventually evade the toxic effects of most molecularly targeted agents. The mechanism-based use of Hsp90 inhibitors, both alone and in combination with other drugs, should augment the treatment of multiple forms of cancer.
Collapse
Affiliation(s)
- Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, USA.
| | | |
Collapse
|
48
|
Golab J, Bauer TM, Daniel V, Naujokat C. Role of the ubiquitin-proteasome pathway in the diagnosis of human diseases. Clin Chim Acta 2004; 340:27-40. [PMID: 14734194 DOI: 10.1016/j.cccn.2003.10.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ubiquitin-proteasome pathway constitutes the major system for nuclear and extralysosomal cytosolic protein degradation in eukaryotic cells. A plethora of cell proteins implicated in the maintenance and regulation of essential cellular processes undergoes processing and functional modification by proteolytic degradation via the ubiquitin-proteasome pathway. Deregulations of the pathway have been shown to contribute to the pathogenesis of several human diseases, such as cancer, neurodegenerative, autoimmune, genetic and metabolic disorders, most of them exhibiting abnormal accumulation and altered composition of components of the pathway that is suitable for diagnostic proceedings. While the ubiquitin-proteasome pathway is currently exploited to develop novel therapeutic strategies, it is less regarded as a diagnostic area. Future research should lead to an improved understanding of the pathophysiology of the ubiquitin-proteasome pathway with the aim of allowing the development of subtle diagnostic strategies.
Collapse
Affiliation(s)
- Jakub Golab
- Department of Immunology, Center of Biostructure Research, The Medical University of Warsaw, Warsaw, Poland
| | | | | | | |
Collapse
|
49
|
Olanow CW, Perl DP, DeMartino GN, McNaught KSP. Lewy-body formation is an aggresome-related process: a hypothesis. Lancet Neurol 2004; 3:496-503. [PMID: 15261611 DOI: 10.1016/s1474-4422(04)00827-0] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder that is associated with the formation of intracytoplasmic protein aggregates (Lewy-body inclusions) in neurons of the substantia nigra pars compacta and other brain areas. These inclusions were discovered over 90 years ago, but the mechanism underlying their formation and their relevance to the neurodegenerative process are unknown. Recent studies have begun to shed light on the biogenesis of Lewy bodies and suggest that they are related to aggresomes. Aggresomes are cytoprotective proteinaceous inclusions formed at the centrosome that segregate and facilitate the degradation of excess amounts of unwanted and possibly cytotoxic proteins. The concept of Lewy bodies as aggresome-related inclusions fits well with ongoing discoveries suggesting that altered protein handling might contribute to the neurodegenerative process in familial and sporadic forms of PD.
Collapse
Affiliation(s)
- C Warren Olanow
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
50
|
Bardag-Gorce F, Riley NE, Nan L, Montgomery RO, Li J, French BA, Lue YH, French SW. The proteasome inhibitor, PS-341, causes cytokeratin aggresome formation. Exp Mol Pathol 2004; 76:9-16. [PMID: 14738863 DOI: 10.1016/j.yexmp.2003.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mallory body (MB) experimental induction takes 10 weeks of drug ingestion. Therefore, it is difficult to study the dynamics and mechanisms involved in vivo. Consequently, an in vitro study was done using primary tissue culture of hepatocytes from drug-primed mice livers in which MBs had already formed. The hypothesis to be tested was that MBs are cytokeratin aggresomes, which form when hepatocytes have a defective ubiquitin-proteasome pathway by which turnover of cytokeratin proteins is prevented. To test this hypothesis, primary tissue cultures of the hepatocytes from normal and MB-forming livers were incubated with the proteasome inhibitor PS-341 and then the cytokeratin filaments and the filament connecting proteins, that is, beta-actin, and ZO1, were visualized by immunofluorescence microscopy. PS-341 caused detachment of the cytokeratins from the cell surface plasma membrane. The cytokeratin filaments retracted toward the nucleus and cytokeratin aggresomes formed. In human livers, MBs showed colocalization of cytokeratin-8 (CK-8) with ubiquitin but not with beta-actin or ZO1. Mouse hepatoma cell lines were studied using PS-341 to induce cytokeratin aggresome formation. In these cell lines, the cytokeratin filaments first retracted toward the nucleus then formed cytokeratin-ubiquitin aggresomes polarized at one side of the nucleus. At the same time, the cells became dissociated from each other, however. The results simulated MB formation. MBs differ from cytokeratin aggresomes both morphologically and in ultrastructure.
Collapse
Affiliation(s)
- Fawzia Bardag-Gorce
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | | | | | | | | | | | | | | |
Collapse
|