1
|
Weilinger NL, Yang K, Choi HB, Groten CJ, Wendt S, Murugan M, Wicki-Stordeur LE, Bernier LP, Velayudhan PS, Zheng J, LeDue JM, Rungta RL, Tyson JR, Snutch TP, Wu LJ, MacVicar BA. Pannexin-1 opening in neuronal edema causes cell death but also leads to protection via increased microglia contacts. Cell Rep 2023; 42:113128. [PMID: 37742194 PMCID: PMC10824275 DOI: 10.1016/j.celrep.2023.113128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/26/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Neuronal swelling during cytotoxic edema is triggered by Na+ and Cl- entry and is Ca2+ independent. However, the causes of neuronal death during swelling are unknown. Here, we investigate the role of large-conductance Pannexin-1 (Panx1) channels in neuronal death during cytotoxic edema. Panx1 channel inhibitors reduce and delay neuronal death in swelling triggered by voltage-gated Na+ entry with veratridine. Neuronal swelling causes downstream production of reactive oxygen species (ROS) that opens Panx1 channels. We confirm that ROS activates Panx1 currents with whole-cell electrophysiology and find scavenging ROS is neuroprotective. Panx1 opening and subsequent ATP release attract microglial processes to contact swelling neurons. Depleting microglia using the CSF1 receptor antagonist PLX3397 or blocking P2Y12 receptors exacerbates neuronal death, suggesting that the Panx1-ATP-dependent microglia contacts are neuroprotective. We conclude that cytotoxic edema triggers oxidative stress in neurons that opens Panx1 to trigger death but also initiates neuroprotective feedback mediated by microglia contacts.
Collapse
Affiliation(s)
- Nicholas L Weilinger
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Kai Yang
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hyun B Choi
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Christopher J Groten
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Stefan Wendt
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Leigh E Wicki-Stordeur
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Louis-Philippe Bernier
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Prashanth S Velayudhan
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeffrey M LeDue
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ravi L Rungta
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Stomatology and Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - John R Tyson
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Terrance P Snutch
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian A MacVicar
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
2
|
Aydın MŞ, Bay S, Yiğit EN, Özgül C, Oğuz EK, Konuk EY, Ayşit N, Cengiz N, Erdoğan E, Him A, Koçak M, Eroglu E, Öztürk G. Active shrinkage protects neurons following axonal transection. iScience 2023; 26:107715. [PMID: 37701578 PMCID: PMC10493506 DOI: 10.1016/j.isci.2023.107715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
Trauma, vascular events, or neurodegenerative processes can lead to axonal injury and eventual transection (axotomy). Neurons can survive axotomy, yet the underlying mechanisms are not fully understood. Excessive water entry into injured neurons poses a particular risk due to swelling and subsequent death. Using in vitro and in vivo neurotrauma model systems based on laser transection and surgical nerve cut, we demonstrated that axotomy triggers actomyosin contraction coupled with calpain activity. As a consequence, neurons shrink acutely to force water out through aquaporin channels preventing swelling and bursting. Inhibiting shrinkage increased the probability of neuronal cell death by about 3-fold. These studies reveal a previously unrecognized cytoprotective response mechanism to neurotrauma and offer a fresh perspective on pathophysiological processes in the nervous system.
Collapse
Affiliation(s)
- Mehmet Şerif Aydın
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Sadık Bay
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Esra Nur Yiğit
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Cemil Özgül
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Elif Kaval Oğuz
- Department of Science Education, Faculty of Education, Yüzüncü Yıl University, Van 65080, Türkiye
| | - Elçin Yenidünya Konuk
- Department of Medical Biology, School of Medicine, Bakırçay University, İzmir 35665, Türkiye
| | - Neşe Ayşit
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
- Department of Medical Biology and Genetics, School of Medicine, Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Nureddin Cengiz
- Department of Histology and Embryology, School of Medicine, Bandırma Onyedi Eylül University, Bandırma, Balıkesir 10200, Türkiye
| | - Ender Erdoğan
- Department of Histology and Embryology, School of Medicine, Selçuk University, Konya 42130, Türkiye
| | - Aydın Him
- Department of Physiology, School of Medicine, Bolu Abant İzzet Baysal University, Bolu 14030, Türkiye
| | - Mehmet Koçak
- Biostatistics and Bioinformatics Analysis Unit, Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
- Department of Biostatistics and Medical Informatics, International School of Medicine, Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Emrah Eroglu
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul 34810, Türkiye
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul 34810, Türkiye
| |
Collapse
|
3
|
Adeyeye TA, Babatunde BR, Ehireme SE, Shallie PD. Caffeine alleviates anxiety-like behavior and brainstem lesions in a rotenone-induced rat model of Parkinson's disease. J Chem Neuroanat 2023; 132:102315. [PMID: 37481171 DOI: 10.1016/j.jchemneu.2023.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms. In 2016, approximately 6.1 million individuals were affected by PD, with 211,296 deaths attributed to the disease. The understanding of PD initially came from the observation of dopaminergic system alterations in a specific region of the brainstem, indicating that the core motor and non-motor features of PD are closely associated with brainstem dysfunction. The primary treatment approach for PD revolves around dopamine replacement, as many of the symptoms are responsive to this therapeutic intervention. However, long-term administration of this approach is linked to several complications, and a definitive gold-standard therapy for PD is yet to be identified. The pharmacological management of PD has been challenging and inconsistent, mainly due to the unclear underlying cause of the disease. This study aims to evaluate the effects of caffeine on the brainstem of rats with PD induced by rotenone. METHODOLOGY Fifty adult male Wistar rats weighing between 150 and 200 g were used in this study. The rats were randomly divided into five groups of ten rats each: Vehicle Group, Rotenone-only treated Group (rotenone only treated with 3 mg/kg, intraperitoneal administration [IP]), Preventive Group (caffeine 30 mg/kg + rotenone 3 mg/kg, IP), Curative Group (rotenone 3 mg/kg + caffeine 30 mg/kg, IP), and Caffeine only treated Group (caffeine only treated with 30 mg/kg, IP). The animals underwent neurobehavioral assessments, followed by sacrifice. The brains were then excised, weighed, and processed histologically. Appropriate brain sections were taken and processed. Photomicrographs were obtained, morphometric and statistical analysis was performed using an Omax LED digital RESULTS: The results demonstrated a significant (p < 0.05) reduction in body weight and relative brain weight, which were increased by caffeine treatments. Rotenone administration led to histological changes similar to those observed in PD, including neuronal structural derangement, degenerated nerve fibers, loss of myelinated neurons, and Nissl substance, as well as downregulation in the expressions of NRF2 and TH in the midbrain. However, these pathological features were counteracted or ameliorated by caffeine treatment. CONCLUSION Our study contributes additional evidence to the growing body of research supporting the therapeutic potential of caffeine in Parkinson's disease (PD). The results underscore the neuroprotective properties of caffeine and its capacity to mitigate oxidative stress by modulating TH (tyrosine hydroxylase) and cytoplasmic NRF2 (nuclear factor erythroid 2-related factor 2) in the mesencephalon. These findings suggest that caffeine holds promise as a viable treatment option for PD.
Collapse
|
4
|
Gale JR, Hartnett-Scott K, Ross MM, Rosenberg PA, Aizenman E. Copper induces neuron-sparing, ferredoxin 1-independent astrocyte toxicity mediated by oxidative stress. J Neurochem 2023; 167:277-295. [PMID: 37702109 PMCID: PMC10591933 DOI: 10.1111/jnc.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
Copper is an essential enzyme cofactor in oxidative metabolism, anti-oxidant defenses, and neurotransmitter synthesis. However, intracellular copper, when improperly buffered, can also lead to cell death. Given the growing interest in the use of copper in the presence of the ionophore elesclomol (CuES) for the treatment of gliomas, we investigated the effect of this compound on the surround parenchyma-namely neurons and astrocytes in vitro. Here, we show that astrocytes were highly sensitive to CuES toxicity while neurons were surprisingly resistant, a vulnerability profile that is opposite of what has been described for zinc and other toxins. Bolstering these findings, a human astrocytic cell line was similarly sensitive to CuES. Modifications of cellular metabolic pathways implicated in cuproptosis, a form of copper-regulated cell death, such as inhibition of mitochondrial respiration or knock-down of ferredoxin 1 (FDX1), did not block CuES toxicity to astrocytes. CuES toxicity was also unaffected by inhibitors of apoptosis, necrosis or ferroptosis. However, we did detect the presence of lipid peroxidation products in CuES-treated astrocytes, indicating that oxidative stress is a mediator of CuES-induced glial toxicity. Indeed, treatment with anti-oxidants mitigated CuES-induced cell death in astrocytes indicating that oxidative stress is a mediator of CuES-induced glial toxicity. Lastly, prior induction of metallothioneins 1 and 2 in astrocytes with zinc plus pyrithione was strikingly protective against CuES toxicity. As neurons express high levels of metallothioneins basally, these results may partially account for their resistance to CuES toxicity. These results demonstrate a unique toxic response to copper in glial cells which contrasts with the cell selectivity profile of zinc, another biologically relevant metal.
Collapse
Affiliation(s)
- Jenna R. Gale
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States, 15213
| | - Karen Hartnett-Scott
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States, 15213
| | - Madeline M. Ross
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States, 15213
| | - Paul A. Rosenberg
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States, 02115
| | - Elias Aizenman
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States, 15213
| |
Collapse
|
5
|
Lapierre J, Karuppan MKM, Perry M, Rodriguez M, El-Hage N. Different Roles of Beclin1 in the Interaction Between Glia and Neurons after Exposure to Morphine and the HIV- Trans-Activator of Transcription (Tat) Protein. J Neuroimmune Pharmacol 2022; 17:470-486. [PMID: 34741242 PMCID: PMC9068829 DOI: 10.1007/s11481-021-10017-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/22/2021] [Indexed: 01/18/2023]
Abstract
Previously we showed that Beclin1 has a regulatory role in the secretion of inflammatory molecules in glia after exposure to morphine and Tat (an HIV protein). Here we show increased secretion of neuronal growth factors and increased neuronal survival in Beclin1-deficient glia. However, without glia co-culture, neurons deficient in Beclin1 showed greater death and enhanced dendritic beading when compared to wild-type neurons, suggesting that glial-secreted growth factors compensate for the damage reduced autophagy causes neurons. To assess if our ex vivo results correlated with in vivo studies, we used a wild-type (Becn1+/+) and Beclin1-deficient (Becn1+/+) mouse model and intracranially infused the mice with Tat and subcutaneously administered morphine pellets. After morphine implantation, significantly impaired locomotor activities were detected in both Becn1+/+ and Becn1+/- mice, irrespective of Tat infusion. After induction of pain, morphine-induced antinociception was detected. Interestingly, co-exposure to morphine and Tat increased sensitivity to pain in Becn1+/+ mice, but not in similarly treated Becn1+/- mice. Brain homogenates from Becn1+/+ mice exposed to Tat, alone and in combination with morphine, showed increased secretion of pro-inflammatory cytokines and reduced expression of growth factors when compared to similarly treated Becn1+/- mice. Likewise, increased neuronal loss was detected when both Tat and morphine were administered to Becn1+/+ mice, but not in similarly treated Becn1+/- mice. Overall, our findings show that there is a Beclin1-driven interaction between Tat and morphine in glia and neurons. Moreover, reduced glial-Beclin1 may provide a layer of protection to neurons under stressful conditions, such as when exposed to morphine and Tat.
Collapse
Affiliation(s)
- Jessica Lapierre
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Mohan K M Karuppan
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Marissa Perry
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Myosotys Rodriguez
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Nazira El-Hage
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA.
| |
Collapse
|
6
|
KCC2 drives chloride microdomain formation in dendritic blebbing. Cell Rep 2022; 41:111556. [DOI: 10.1016/j.celrep.2022.111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/23/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
|
7
|
Characterisation of Severe Traumatic Brain Injury Severity from Fresh Cerebral Biopsy of Living Patients: An Immunohistochemical Study. Biomedicines 2022; 10:biomedicines10030518. [PMID: 35327320 PMCID: PMC8945429 DOI: 10.3390/biomedicines10030518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is an extremely complex disease and current systems classifying TBI as mild, moderate, and severe often fail to capture this complexity. Neuroimaging cannot resolve the cellular and molecular changes due to lack of resolution, and post-mortem tissue examination may not adequately represent acute disease. Therefore, we examined the cellular and molecular sequelae of TBI in fresh brain samples and related these to clinical outcomes. Brain biopsies, obtained shortly after injury from 25 living adult patients suffering severe TBI, underwent immunohistochemical analysis. There were no adverse events. Immunostaining revealed various qualitative cellular and biomolecular changes relating to neuronal injury, dendritic injury, neurovascular injury, and neuroinflammation, which we classified into 4 subgroups for each injury type using the newly devised Yip, Hasan and Uff (YHU) grading system. Based on the Glasgow Outcome Scale-Extended, a total YHU grade of ≤8 or ≥11 had a favourable and unfavourable outcome, respectively. Biomolecular changes observed in fresh brain samples enabled classification of this heterogeneous patient population into various injury severity categories based on the cellular and molecular pathophysiology according to the YHU grading system, which correlated with outcome. This is the first study investigating the acute biomolecular response to TBI.
Collapse
|
8
|
Ayalon G, Lee SH, Adolfsson O, Foo-Atkins C, Atwal JK, Blendstrup M, Booler H, Bravo J, Brendza R, Brunstein F, Chan R, Chandra P, Couch JA, Datwani A, Demeule B, DiCara D, Erickson R, Ernst JA, Foreman O, He D, Hötzel I, Keeley M, Kwok MCM, Lafrance-Vanasse J, Lin H, Lu Y, Luk W, Manser P, Muhs A, Ngu H, Pfeifer A, Pihlgren M, Rao GK, Scearce-Levie K, Schauer SP, Smith WB, Solanoy H, Teng E, Wildsmith KR, Bumbaca Yadav D, Ying Y, Fuji RN, Kerchner GA. Antibody semorinemab reduces tau pathology in a transgenic mouse model and engages tau in patients with Alzheimer's disease. Sci Transl Med 2021; 13:13/593/eabb2639. [PMID: 33980574 DOI: 10.1126/scitranslmed.abb2639] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 12/10/2020] [Indexed: 11/02/2022]
Abstract
Tau has become an attractive alternative target for passive immunotherapy efforts for Alzheimer's disease (AD). The anatomical distribution and extent of tau pathology correlate with disease course and severity better than other disease markers to date. We describe here the generation, preclinical characterization, and phase 1 clinical characterization of semorinemab, a humanized anti-tau monoclonal antibody with an immunoglobulin G4 (igG4) isotype backbone. Semorinemab binds all six human tau isoforms and protects neurons against tau oligomer neurotoxicity in cocultures of neurons and microglia. In addition, when administered intraperitoneally once weekly for 13 weeks, murine versions of semorinemab reduced the accumulation of tau pathology in a transgenic mouse model of tauopathy, independent of antibody effector function status. Semorinemab also showed clear evidence of target engagement in vivo, with increases in systemic tau concentrations observed in tau transgenic mice, nonhuman primates, and humans. Higher concentrations of systemic tau were observed after dosing in AD participants compared to healthy control participants. No concerning safety signals were observed in the phase 1 clinical trial at single doses up to 16,800 mg and multiple doses totaling 33,600 mg in a month.
Collapse
Affiliation(s)
- Gai Ayalon
- Department of Neuroscience, Genentech Inc., San Francisco, CA 94080, USA
| | - Seung-Hye Lee
- Department of Neuroscience, Genentech Inc., San Francisco, CA 94080, USA
| | - Oskar Adolfsson
- AC Immune SA, EPFL Innovation Park, Building B, CH-1015 Lausanne, Switzerland
| | | | - Jasvinder K Atwal
- Department of Neuroscience, Genentech Inc., San Francisco, CA 94080, USA
| | - Mira Blendstrup
- Department of Early Clinical Development, Genentech Inc., San Francisco, CA 94080, USA
| | - Helen Booler
- Department of Safety Assessment, Genentech Inc., San Francisco, CA 94080, USA
| | - Joseph Bravo
- Department of Safety Assessment, Genentech Inc., San Francisco, CA 94080, USA
| | - Robert Brendza
- Department of Neuroscience, Genentech Inc., San Francisco, CA 94080, USA
| | - Flavia Brunstein
- Department of Licensing and Early Development Safety, Genentech Inc., San Francisco, CA 94080, USA
| | - Ruby Chan
- Department of Protein Chemistry, Genentech Inc., San Francisco, CA 94080, USA
| | - Priya Chandra
- Department of Clinical Pharmacology, Genentech Inc., San Francisco, CA 94080, USA
| | - Jessica A Couch
- Project Team Leadership, Genentech Inc., San Francisco, CA 94080, USA
| | - Akash Datwani
- Department of Bioanalytical Sciences, Genentech Inc., San Francisco, CA 94080, USA
| | - Barthélemy Demeule
- Department of Late Stage Pharmaceutical Development, Genentech Inc., San Francisco, CA 94080, USA
| | - Danielle DiCara
- Department of Antibody Engineering, Genentech Inc., San Francisco, CA 94080, USA
| | - Rich Erickson
- Department of Bioanalytical Sciences, Genentech Inc., San Francisco, CA 94080, USA
| | - James A Ernst
- Department of Protein Chemistry, Genentech Inc., San Francisco, CA 94080, USA
| | - Oded Foreman
- Department of Pathology, Genentech Inc., San Francisco, CA 94080, USA
| | - Dongping He
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., San Francisco, CA 94080, USA
| | - Isidro Hötzel
- Department of Antibody Engineering, Genentech Inc., San Francisco, CA 94080, USA
| | - Michael Keeley
- Project Team Leadership, Genentech Inc., San Francisco, CA 94080, USA
| | - Michael C M Kwok
- Department of Protein Chemistry, Genentech Inc., San Francisco, CA 94080, USA
| | | | - Han Lin
- Department of Neuroscience, Genentech Inc., San Francisco, CA 94080, USA
| | - Yanmei Lu
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., San Francisco, CA 94080, USA
| | - Wilman Luk
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., San Francisco, CA 94080, USA
| | - Paul Manser
- Biostatistics, Genentech Inc., San Francisco, CA 94080, USA
| | - Andreas Muhs
- AC Immune SA, EPFL Innovation Park, Building B, CH-1015 Lausanne, Switzerland
| | - Hai Ngu
- Department of Pathology, Genentech Inc., San Francisco, CA 94080, USA
| | - Andrea Pfeifer
- AC Immune SA, EPFL Innovation Park, Building B, CH-1015 Lausanne, Switzerland
| | - Maria Pihlgren
- AC Immune SA, EPFL Innovation Park, Building B, CH-1015 Lausanne, Switzerland
| | - Gautham K Rao
- Department of Safety Assessment, Genentech Inc., San Francisco, CA 94080, USA
| | | | - Stephen P Schauer
- Department of Biomarker Development, Genentech Inc., San Francisco, CA 94080, USA
| | - William B Smith
- Alliance for Multispecialty Research, University of Tennessee Medical Center, Knoxville, TN 37920, USA
| | - Hilda Solanoy
- Department of Neuroscience, Genentech Inc., San Francisco, CA 94080, USA
| | - Edmond Teng
- Department of Early Clinical Development, Genentech Inc., San Francisco, CA 94080, USA
| | - Kristin R Wildsmith
- Department of Biomarker Development, Genentech Inc., San Francisco, CA 94080, USA
| | - Daniela Bumbaca Yadav
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., San Francisco, CA 94080, USA
| | - Yong Ying
- Department of Bioanalytical Sciences, Genentech Inc., San Francisco, CA 94080, USA
| | - Reina N Fuji
- Department of Safety Assessment, Genentech Inc., San Francisco, CA 94080, USA.
| | - Geoffrey A Kerchner
- Department of Early Clinical Development, Genentech Inc., San Francisco, CA 94080, USA
| |
Collapse
|
9
|
Okada Y, Sabirov RZ, Sato-Numata K, Numata T. Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 1: Roles of VSOR/VRAC in Cell Volume Regulation, Release of Double-Edged Signals and Apoptotic/Necrotic Cell Death. Front Cell Dev Biol 2021; 8:614040. [PMID: 33511120 PMCID: PMC7835517 DOI: 10.3389/fcell.2020.614040] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
Cell volume regulation (CVR) is essential for survival and functions of animal cells. Actually, normotonic cell shrinkage and swelling are coupled to apoptotic and necrotic cell death and thus called the apoptotic volume decrease (AVD) and the necrotic volume increase (NVI), respectively. A number of ubiquitously expressed anion and cation channels are involved not only in CVD but also in cell death induction. This series of review articles address the question how cell death is induced or protected with using ubiquitously expressed ion channels such as swelling-activated anion channels, acid-activated anion channels and several types of TRP cation channels including TRPM2 and TRPM7. The Part 1 focuses on the roles of the volume-sensitive outwardly rectifying anion channels (VSOR), also called the volume-regulated anion channel (VRAC), which is activated by cell swelling or reactive oxygen species (ROS) in a manner dependent on intracellular ATP. First we describe phenotypical properties, the molecular identity, and physical pore dimensions of VSOR/VRAC. Second, we highlight the roles of VSOR/VRAC in the release of organic signaling molecules, such as glutamate, glutathione, ATP and cGAMP, that play roles as double-edged swords in cell survival. Third, we discuss how VSOR/VRAC is involved in CVR and cell volume dysregulation as well as in the induction of or protection from apoptosis, necrosis and regulated necrosis under pathophysiological conditions.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ravshan Z. Sabirov
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Kaori Sato-Numata
- Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tomohiro Numata
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
10
|
The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) targets the olfactory bulb region. Arch Toxicol 2020; 94:2799-2808. [PMID: 32435914 PMCID: PMC7395073 DOI: 10.1007/s00204-020-02775-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
Olfactory dysfunction is implicated in neurodegenerative disorders and typically manifests years before other symptoms. The cyanobacterial neurotoxin β-N-methylamino-l-alanine (BMAA) is suggested as a risk factor for neurodegenerative disease. Detection of BMAA in air filters has increased the concern that aerosolization may lead to human BMAA exposure through the air. The aim of this study was to determine if BMAA targets the olfactory system. Autoradiographic imaging showed a distinct localization of radioactivity in the right olfactory mucosa and bulb following a unilateral intranasal instillation of 3H-BMAA (0.018 µg) in mice, demonstrating a direct transfer of BMAA via the olfactory pathways to the brain circumventing the blood–brain barrier, which was confirmed by liquid scintillation. Treatment of mouse primary olfactory bulb cells with 100 µM BMAA for 24 h caused a disruption of the neurite network, formation of dendritic varicosities and reduced cell viability. The NMDA receptor antagonist MK-801 and the metabotropic glutamate receptor antagonist MCPG protected against the BMAA-induced alterations, demonstrating the importance of glutamatergic mechanisms. The ionotropic non-NMDA receptor antagonist CNQX prevented the BMAA-induced decrease of cell viability in mixed cultures containing both neuronal and glial cells, but not in cultures with neurons only, suggesting a role of neuron–glial interactions and glial AMPA receptors in the BMAA-induced toxicity. The results show that the olfactory region may be a target for BMAA following inhalation exposure. Further studies on the relations between environmental olfactory toxicants and neurodegenerative disorders are warranted.
Collapse
|
11
|
Liao R, Wood TR, Nance E. Superoxide dismutase reduces monosodium glutamate-induced injury in an organotypic whole hemisphere brain slice model of excitotoxicity. J Biol Eng 2020; 14:3. [PMID: 32042309 PMCID: PMC7001228 DOI: 10.1186/s13036-020-0226-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/29/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Knowledge of glutamate excitotoxicity has increased substantially over the past few decades, with multiple proposed pathways involved in inflicting damage. We sought to develop a monosodium glutamate (MSG) exposed ex vivo organotypic whole hemisphere (OWH) brain slice model of excitotoxicity to study excitotoxic processes and screen the efficacy of superoxide dismutase (SOD). RESULTS The OWH model is a reproducible platform with high cell viability and retained cellular morphology. OWH slices exposed to MSG induced significant cytotoxicity and downregulation of neuronal excitation-related gene expression. The OWH brain slice model has enabled us to isolate and study components of excitotoxicity, distinguishing the effects of glutamate excitation, hyperosmolar stress, and inflammation. We find that extracellularly administered SOD is significantly protective in inhibiting cell death and restoring healthy mitochondrial morphology. SOD efficacy suggests that superoxide scavenging is a promising therapeutic strategy in excitotoxic injury. CONCLUSIONS Using OWH brain slice models, we can obtain a better understanding of the pathological mechanisms of excitotoxic injury, and more rapidly screen potential therapeutics.
Collapse
Affiliation(s)
- Rick Liao
- Department of Chemical Engineering, University of Washington, 3781 Okanogan Lane NE, Seattle, WA 98195 USA
| | - Thomas R. Wood
- Department of Pediatrics, University of Washington, Seattle, WA USA
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, 3781 Okanogan Lane NE, Seattle, WA 98195 USA
- Department of Radiology, University of Washington, Seattle, WA USA
- Center on Human Development and Disability, University of Washington, Seattle, WA USA
| |
Collapse
|
12
|
Emmons-Bell M, Durant F, Tung A, Pietak A, Miller K, Kane A, Martyniuk CJ, Davidian D, Morokuma J, Levin M. Regenerative Adaptation to Electrochemical Perturbation in Planaria: A Molecular Analysis of Physiological Plasticity. iScience 2019; 22:147-165. [PMID: 31765995 PMCID: PMC6881696 DOI: 10.1016/j.isci.2019.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/01/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022] Open
Abstract
Anatomical homeostasis results from dynamic interactions between gene expression, physiology, and the external environment. Owing to its complexity, this cellular and organism-level phenotypic plasticity is still poorly understood. We establish planarian regeneration as a model for acquired tolerance to environments that alter endogenous physiology. Exposure to barium chloride (BaCl2) results in a rapid degeneration of anterior tissue in Dugesia japonica. Remarkably, continued exposure to fresh solution of BaCl2 results in regeneration of heads that are insensitive to BaCl2. RNA-seq revealed transcriptional changes in BaCl2-adapted heads that suggests a model of adaptation to excitotoxicity. Loss-of-function experiments confirmed several predictions: blockage of chloride and calcium channels allowed heads to survive initial BaCl2 exposure, inducing adaptation without prior exposure, whereas blockade of TRPM channels reversed adaptation. Such highly adaptive plasticity may represent an attractive target for biomedical strategies in a wide range of applications beyond its immediate relevance to excitotoxicity preconditioning. Exposure to BaCl2 causes the heads of Dugesia japonica to degenerate Prolonged exposure to BaCl2 results in regeneration of a BaCl2-insensitive head Ion channel expression is altered in the head to compensate for excitotoxic stress TRPMa is upregulated in BaCl2-treated animals; blocking TRPM prevents adaptation
Collapse
Affiliation(s)
- Maya Emmons-Bell
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Fallon Durant
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Angela Tung
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Alexis Pietak
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Kelsie Miller
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Anna Kane
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Devon Davidian
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Junji Morokuma
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
13
|
Roles of volume-regulatory anion channels, VSOR and Maxi-Cl, in apoptosis, cisplatin resistance, necrosis, ischemic cell death, stroke and myocardial infarction. CURRENT TOPICS IN MEMBRANES 2019; 83:205-283. [PMID: 31196606 DOI: 10.1016/bs.ctm.2019.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Sengupta S, Le TT, Adam A, Tadić V, Stubendorff B, Keiner S, Kloss L, Prell T, Witte OW, Grosskreutz J. Interferon-γ Receptor 1 and GluR1 upregulated in motor neurons of symptomatic hSOD1G93A mice. Eur J Neurosci 2019; 49:62-78. [PMID: 30457201 DOI: 10.1111/ejn.14276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/18/2018] [Accepted: 11/08/2018] [Indexed: 01/21/2023]
Abstract
Motor neurons are markedly vulnerable to excitotoxicity mostly by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor (AMPAR) stimulation and are principal targets in the neurodegenerative disease Amyotrophic Lateral Sclerosis. Interferon-gamma (IFN-γ), a pro-inflammatory cytokine, can independently cause neuronal dysfunction by triggering calcium influx through a calcium-permeable complex of IFN-γ receptor 1(IFNGR1) subunit and AMPAR subunit GluR1. This receptor complex is formed via a non-canonical neuron-specific IFN-γ pathway that involves Jak1/Stat1 and Protein Kinase A. In this study, we explore the expression of the pathway's participants for the first time in the hSOD1G93A Amyotrophic Lateral Sclerosis mouse model. Elevated IFNGR1 and GluR1 are detected in motor neurons of hSOD1G93A symptomatic mice ex vivo, unlike the downstream targets - Jak1, Stat1, and Protein Kinase A. We, also, determine effects of IFN-γ alone or in the presence of an excitotoxic agent, kainate, on motor neuron survival in vitro. IFN-γ induces neuronal damage, but does not influence kainate-mediated excitotoxicity. Increased IFNGR1 can most likely sensitize motor neurons to excitotoxic insults involving GluR1 and/or pathways mediated by IFN-γ, thus, serving as a potential direct link between neurodegeneration and inflammation in Amyotrophic Lateral Sclerosis.
Collapse
Affiliation(s)
- Saikata Sengupta
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Thanh Tu Le
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Adam Adam
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Vedrana Tadić
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Silke Keiner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Linda Kloss
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Tino Prell
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Julian Grosskreutz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
15
|
Nitric Oxide and Mitochondrial Function in Neurological Diseases. Neuroscience 2018; 376:48-71. [DOI: 10.1016/j.neuroscience.2018.02.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/20/2018] [Accepted: 02/09/2018] [Indexed: 12/17/2022]
|
16
|
Abstract
Oncotic cell death or oncosis represents a major mechanism of cell death in ischaemic stroke, occurring in many central nervous system (CNS) cell types including neurons, glia and vascular endothelial cells. In stroke, energy depletion causes ionic pump failure and disrupts ionic homeostasis. Imbalance between the influx of Na+ and Cl- ions and the efflux of K+ ions through various channel proteins and transporters creates a transmembrane osmotic gradient, with ensuing movement of water into the cells, resulting in cell swelling and oncosis. Oncosis is a key mediator of cerebral oedema in ischaemic stroke, contributing directly through cytotoxic oedema, and indirectly through vasogenic oedema by causing vascular endothelial cell death and disruption of the blood-brain barrier (BBB). Hence, inhibition of uncontrolled ionic flux represents a novel and powerful strategy in achieving neuroprotection in stroke. In this review, we provide an overview of oncotic cell death in the pathology of stroke. Importantly, we summarised the therapeutically significant pathways of water, Na+, Cl- and K+ movement across cell membranes in the CNS and their respective roles in the pathobiology of stroke.
Collapse
|
17
|
Calcineurin/NFAT Signaling in Activated Astrocytes Drives Network Hyperexcitability in Aβ-Bearing Mice. J Neurosci 2017; 37:6132-6148. [PMID: 28559377 DOI: 10.1523/jneurosci.0877-17.2017] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/25/2022] Open
Abstract
Hyperexcitable neuronal networks are mechanistically linked to the pathologic and clinical features of Alzheimer's disease (AD). Astrocytes are a primary defense against hyperexcitability, but their functional phenotype during AD is poorly understood. Here, we found that activated astrocytes in the 5xFAD mouse model were strongly associated with proteolysis of the protein phosphatase calcineurin (CN) and the elevated expression of the CN-dependent transcription factor nuclear factor of activated T cells 4 (NFAT4). Intrahippocampal injections of adeno-associated virus vectors containing the astrocyte-specific promoter Gfa2 and the NFAT inhibitory peptide VIVIT reduced signs of glutamate-mediated hyperexcitability in 5xFAD mice, measured in vivo with microelectrode arrays and ex vivo brain slices, using whole-cell voltage clamp. VIVIT treatment in 5xFAD mice led to increased expression of the astrocytic glutamate transporter GLT-1 and to attenuated changes in dendrite morphology, synaptic strength, and NMDAR-dependent responses. The results reveal astrocytic CN/NFAT4 as a key pathologic mechanism for driving glutamate dysregulation and neuronal hyperactivity during AD.SIGNIFICANCE STATEMENT Neuronal hyperexcitability and excitotoxicity are increasingly recognized as important mechanisms for neurodegeneration and dementia associated with Alzheimer's disease (AD). Astrocytes are profoundly activated during AD and may lose their capacity to regulate excitotoxic glutamate levels. Here, we show that a highly active calcineurin (CN) phosphatase fragment and its substrate transcription factor, nuclear factor of activated T cells (NFAT4), appear in astrocytes in direct proportion to the extent of astrocyte activation. The blockade of astrocytic CN/NFAT signaling in a common mouse model of AD, using adeno-associated virus vectors normalized glutamate signaling dynamics, increased astrocytic glutamate transporter levels and alleviated multiple signs of neuronal hyperexcitability. The results suggest that astrocyte activation drives hyperexcitability during AD through a mechanism involving aberrant CN/NFAT signaling and impaired glutamate transport.
Collapse
|
18
|
Swiatkowski P, Nikolaeva I, Kumar G, Zucco A, Akum BF, Patel MV, D'Arcangelo G, Firestein BL. Role of Akt-independent mTORC1 and GSK3β signaling in sublethal NMDA-induced injury and the recovery of neuronal electrophysiology and survival. Sci Rep 2017; 7:1539. [PMID: 28484273 PMCID: PMC5431483 DOI: 10.1038/s41598-017-01826-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/03/2017] [Indexed: 01/02/2023] Open
Abstract
Glutamate-induced excitotoxicity, mediated by overstimulation of N-methyl-D-aspartate (NMDA) receptors, is a mechanism that causes secondary damage to neurons. The early phase of injury causes loss of dendritic spines and changes to synaptic activity. The phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt/ mammalian target of rapamycin (PI3K/Akt/mTOR) pathway has been implicated in the modulation and regulation of synaptic strength, activity, maturation, and axonal regeneration. The present study focuses on the physiology and survival of neurons following manipulation of Akt and several downstream targets, such as GSK3β, FOXO1, and mTORC1, prior to NMDA-induced injury. Our analysis reveals that exposure to sublethal levels of NMDA does not alter phosphorylation of Akt, S6, and GSK3β at two and twenty four hours following injury. Electrophysiological recordings show that NMDA-induced injury causes a significant decrease in spontaneous excitatory postsynaptic currents at both two and twenty four hours, and this phenotype can be prevented by inhibiting mTORC1 or GSK3β, but not Akt. Additionally, inhibition of mTORC1 or GSK3β promotes neuronal survival following NMDA-induced injury. Thus, NMDA-induced excitotoxicity involves a mechanism that requires the permissive activity of mTORC1 and GSK3β, demonstrating the importance of these kinases in the neuronal response to injury.
Collapse
Affiliation(s)
- Przemyslaw Swiatkowski
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA.,Graduate Program in Molecular Biosciences, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA
| | - Ina Nikolaeva
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA.,Graduate Program in Molecular Biosciences, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA
| | - Gaurav Kumar
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA
| | - Avery Zucco
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA.,Graduate Program in Neurosciences, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA
| | - Barbara F Akum
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA
| | - Mihir V Patel
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA.,Graduate Program in Neurosciences, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA
| | - Gabriella D'Arcangelo
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey, 08854-8082, USA.
| |
Collapse
|
19
|
Sword J, Croom D, Wang PL, Thompson RJ, Kirov SA. Neuronal pannexin-1 channels are not molecular routes of water influx during spreading depolarization-induced dendritic beading. J Cereb Blood Flow Metab 2017; 37:1626-1633. [PMID: 26994044 PMCID: PMC5435276 DOI: 10.1177/0271678x16639328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spreading depolarization-induced focal dendritic swelling (beading) is an early hallmark of neuronal cytotoxic edema. Pyramidal neurons lack membrane-bound aquaporins posing a question of how water enters neurons during spreading depolarization. Recently, we have identified chloride-coupled transport mechanisms that can, at least in part, participate in dendritic beading. Yet transporter-mediated ion and water fluxes could be paralleled by water entry through additional pathways such as large-pore pannexin-1 channels opened by spreading depolarization. Using real-time in vivo two-photon imaging in mice with pharmacological inhibition or conditional genetic deletion of pannexin-1, we showed that pannexin-1 channels are not required for spreading depolarization-induced focal dendritic swelling.
Collapse
Affiliation(s)
- Jeremy Sword
- 1 Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - Deborah Croom
- 1 Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - Phil L Wang
- 1 Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - Roger J Thompson
- 2 Hotchkiss Brain Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Sergei A Kirov
- 1 Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA.,3 Department of Neurosurgery, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
20
|
Hasbani MJ, Underhill SM, De Erausquin G, Goldberg MP. Synapse Loss and Regeneration: A Mechanism for Functional Decline and Recovery after Cerebral Ischemia? Neuroscientist 2016. [DOI: 10.1177/107385840000600208] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Little is known of the mechanisms governing functional recovery after ischemic brain injury, and there is no clinical therapy established to restore neurologic function after ischemic injury is complete. Even so, pronounced spontaneous recovery of function is often observed in a subset of patients. Resolution of neurological deficits after ischemia must occur through replacement of lost tissue via production of new neurons, or through changes in the structure, function, or connectivity of surviving neurons. This review focuses on the neuronal synapse as a potential locus for functional recovery. Selective disruption of synaptic elements is a characteristic feature of hypoxic-ischemic brain injury, such as that seen in ischemic stroke or cardiac arrest. Ischemic damage to synapses occurs even in the absence of neuronal loss, and therefore might underlie the clinical disability observed in patients following mild or transient ischemia. We review evidence that recovery of lost synapses occurs after ischemic injury and that this recovery may be a necessary step for restoration of neurological function. The process of synapse loss and recovery can be examined in neuronal cultures and experimental stroke models. Such studies may help to gain a better understanding of the extracellular factors and intracellular cascades that facilitate recovery of synapses, and may result in therapeutic approaches to improve function after cerebral ischemia.
Collapse
Affiliation(s)
- M. Josh Hasbani
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| | - Suzanne M. Underhill
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| | - Gabriel De Erausquin
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| | - Mark P. Goldberg
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
21
|
Platelet-Activating Factor Receptors Mediate Excitatory Postsynaptic Hippocampal Injury in Experimental Autoimmune Encephalomyelitis. J Neurosci 2016; 36:1336-46. [PMID: 26818520 DOI: 10.1523/jneurosci.1171-15.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Gray matter degeneration contributes to progressive disability in multiple sclerosis (MS) and can occur out of proportion to measures of white matter disease. Although white matter pathology, including demyelination and axon injury, can lead to secondary gray matter changes, we hypothesized that neurons can undergo direct excitatory injury within the gray matter independent of these. We tested this using a model of experimental autoimmune encephalomyelitis (EAE) with hippocampal degeneration in C57BL/6 mice, in which immunofluorescent staining showed a 28% loss of PSD95-positive excitatory postsynaptic puncta in hippocampal area CA1 compared with sham-immunized controls, despite preservation of myelin and VGLUT1-positive excitatory axon terminals. Loss of postsynaptic structures was accompanied by appearance of PSD95-positive debris that colocalized with the processes of activated microglia at 25 d after immunization, and clearance of debris was followed by persistently reduced synaptic density at 55 d. In vitro, addition of activated BV2 microglial cells to hippocampal cultures increased neuronal vulnerability to excitotoxic dendritic damage following a burst of synaptic activity in a manner dependent on platelet-activating factor receptor (PAFR) signaling. In vivo treatment with PAFR antagonist BN52021 prevented PSD95-positive synapse loss in hippocampi of mice with EAE but did not affect development of EAE or local microglial activation. These results demonstrate that postsynaptic structures can be a primary target of injury within the gray matter in autoimmune neuroinflammatory disease, and suggest that this may occur via PAFR-mediated modulation of activity-dependent synaptic physiology downstream of microglial activation. SIGNIFICANCE STATEMENT Unraveling gray matter degeneration is critical for developing treatments for progressive disability and cognitive impairment in multiple sclerosis (MS). In a mouse model of MS, we show that neurons can undergo injury at their synaptic connections within the gray matter, independent of the white matter pathology, demyelination, and axon injury that have been the focus of most current and emerging treatments. Damage to excitatory synapses in the hippocampus occurs in association with activated microglia, which can promote excitotoxic injury via activation of receptors for platelet-activating factor, a proinflammatory signaling molecule elevated in the brain in MS. Platelet-activating factor receptor blockade protected synapses in the mouse model, identifying a potential target for neuroprotective treatments in MS.
Collapse
|
22
|
Pedersen SF, Okada Y, Nilius B. Biophysics and Physiology of the Volume-Regulated Anion Channel (VRAC)/Volume-Sensitive Outwardly Rectifying Anion Channel (VSOR). Pflugers Arch 2016; 468:371-83. [DOI: 10.1007/s00424-015-1781-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 01/25/2023]
|
23
|
Chloride Cotransporters as a Molecular Mechanism underlying Spreading Depolarization-Induced Dendritic Beading. J Neurosci 2015; 35:12172-87. [PMID: 26338328 DOI: 10.1523/jneurosci.0400-15.2015] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Spreading depolarizations (SDs) are waves of sustained neuronal and glial depolarization that propagate massive disruptions of ion gradients through the brain. SD is associated with migraine aura and recently recognized as a novel mechanism of injury in stroke and brain trauma patients. SD leads to neuronal swelling as assessed in real time with two-photon laser scanning microscopy (2PLSM). Pyramidal neurons do not express aquaporins and thus display low inherent water permeability, yet SD rapidly induces focal swelling (beading) along the dendritic shaft by unidentified molecular mechanisms. To address this issue, we induced SD in murine hippocampal slices by focal KCl microinjection and visualized the ensuing beading of dendrites expressing EGFP by 2PLSM. We confirmed that dendritic beading failed to arise during large (100 mOsm) hyposmotic challenges, underscoring that neuronal swelling does not occur as a simple osmotic event. SD-induced dendritic beading was not prevented by pharmacological interference with the cytoskeleton, supporting the notion that dendritic beading may result entirely from excessive water influx. Dendritic beading was strictly dependent on the presence of Cl(-), and, accordingly, combined blockade of Cl(-)-coupled transporters led to a significant reduction in dendritic beading without interfering with SD. Furthermore, our in vivo data showed a strong inhibition of dendritic beading during pharmacological blockage of these cotransporters. We propose that SD-induced dendritic beading takes place as a consequence of the altered driving forces and thus activity for these cotransporters, which by transport of water during their translocation mechanism may generate dendritic beading independently of osmotic forces. SIGNIFICANCE STATEMENT Spreading depolarization occurs during pathological conditions such as stroke, brain injury, and migraine and is characterized as a wave of massive ion translocation between intracellular and extracellular space in association with recurrent transient focal swelling (beading) of dendrites. Numerous ion channels have been demonstrated to be involved in generation and propagation of spreading depolarization, but the molecular machinery responsible for the dendritic beading has remained elusive. Using real-time in vitro and in vivo two-photon laser scanning microscopy, we have identified the transport mechanisms involved in the detrimental focal swelling of dendrites. These findings have clear clinical significance because they may point to a new class of pharmacological targets for prevention of neuronal swelling that consequently will serve as neuroprotective agents.
Collapse
|
24
|
Maiti P, Manna J, Ilavazhagan G, Rossignol J, Dunbar GL. Molecular regulation of dendritic spine dynamics and their potential impact on synaptic plasticity and neurological diseases. Neurosci Biobehav Rev 2015; 59:208-37. [PMID: 26562682 DOI: 10.1016/j.neubiorev.2015.09.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/20/2015] [Accepted: 09/07/2015] [Indexed: 12/12/2022]
Abstract
The structure and dynamics of dendritic spines reflect the strength of synapses, which are severely affected in different brain diseases. Therefore, understanding the ultra-structure, molecular signaling mechanism(s) regulating dendritic spine dynamics is crucial. Although, since last century, dynamics of spine have been explored by several investigators in different neurological diseases, but despite countless efforts, a comprehensive understanding of the fundamental etiology and molecular signaling pathways involved in spine pathology is lacking. The purpose of this review is to provide a contextual framework of our current understanding of the molecular mechanisms of dendritic spine signaling, as well as their potential impact on different neurodegenerative and psychiatric diseases, as a format for highlighting some commonalities in function, as well as providing a format for new insights and perspectives into this critical area of research. Additionally, the potential strategies to restore spine structure-function in different diseases are also pointed out. Overall, these informations should help researchers to design new drugs to restore the structure-function of dendritic spine, a "hot site" of synaptic plasticity.
Collapse
Affiliation(s)
- Panchanan Maiti
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA.
| | - Jayeeta Manna
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - G Ilavazhagan
- Hindustan University, Rajiv Gandhi Salai (OMR), Padur, Kelambakam, Chennai, TN, India.
| | - Julien Rossignol
- Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA; College of Medicine, Central Michigan University, Mt. Pleasant, MI, USA.
| | - Gary L Dunbar
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI, USA; Department of Psychology and Neurosciences Program, Central Michigan University, Mt. Pleasant, MI, USA.
| |
Collapse
|
25
|
Eikermann-Haerter K, Arbel-Ornath M, Yalcin N, Yu ES, Kuchibhotla KV, Yuzawa I, Hudry E, Willard CR, Climov M, Keles F, Belcher AM, Sengul B, Negro A, Rosen IA, Arreguin A, Ferrari MD, van den Maagdenberg AMJM, Bacskai BJ, Ayata C. Abnormal synaptic Ca(2+) homeostasis and morphology in cortical neurons of familial hemiplegic migraine type 1 mutant mice. Ann Neurol 2015; 78:193-210. [PMID: 26032020 DOI: 10.1002/ana.24449] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Migraine is among the most common and debilitating neurological conditions. Familial hemiplegic migraine type 1 (FHM1), a monogenic migraine subtype, is caused by gain-of-function of voltage-gated CaV 2.1 calcium channels. FHM1 mice carry human pathogenic mutations in the α1A subunit of CaV 2.1 channels and are highly susceptible to cortical spreading depression (CSD), the electrophysiologic event underlying migraine aura. To date, however, the mechanism underlying increased CSD/migraine susceptibility remains unclear. METHODS We employed in vivo multiphoton microscopy of the genetically encoded Ca(2+)-indicator yellow cameleon to investigate synaptic morphology and [Ca(2+)]i in FHM1 mice. To study CSD-induced cerebral oligemia, we used in vivo laser speckle flowmetry and multimodal imaging. With electrophysiologic recordings, we investigated the effect of the CaV 2.1 gating modifier tert-butyl dihydroquinone on CSD in vivo. RESULTS FHM1 mutations elevate neuronal [Ca(2+)]i and alter synaptic morphology as a mechanism for enhanced CSD susceptibility that we were able to normalize with a CaV 2.1 gating modifier in hyperexcitable FHM1 mice. At the synaptic level, axonal boutons were larger, and dendritic spines were predominantly of the mushroom type, which both provide a structural correlate for enhanced neuronal excitability. Resting neuronal [Ca(2+)]i was elevated in FHM1, with loss of compartmentalization between synapses and neuronal shafts. The percentage of calcium-overloaded neurons was increased. Neuronal [Ca(2+)]i surge during CSD was faster and larger, and post-CSD oligemia and hemoglobin desaturation were more severe in FHM1 brains. INTERPRETATION Our findings provide a mechanism for enhanced CSD susceptibility in hemiplegic migraine. Abnormal synaptic Ca(2+) homeostasis and morphology may contribute to chronic neurodegenerative changes as well as enhanced vulnerability to ischemia in migraineurs.
Collapse
Affiliation(s)
- Katharina Eikermann-Haerter
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Michal Arbel-Ornath
- Alzheimer Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Nilufer Yalcin
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Esther S Yu
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Kishore V Kuchibhotla
- Alzheimer Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Izumi Yuzawa
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Eloise Hudry
- Alzheimer Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Carli R Willard
- Alzheimer Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Mihail Climov
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Fatmagul Keles
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Arianna M Belcher
- Alzheimer Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Buse Sengul
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Andrea Negro
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Isaac A Rosen
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Andrea Arreguin
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Brian J Bacskai
- Alzheimer Disease Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA.,Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
26
|
Rungta R, Choi H, Tyson J, Malik A, Dissing-Olesen L, Lin P, Cain S, Cullis P, Snutch T, MacVicar B. The Cellular Mechanisms of Neuronal Swelling Underlying Cytotoxic Edema. Cell 2015; 161:610-621. [DOI: 10.1016/j.cell.2015.03.029] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/03/2015] [Accepted: 03/12/2015] [Indexed: 01/08/2023]
|
27
|
Dzhala V, Staley KJ. Acute and chronic efficacy of bumetanide in an in vitro model of posttraumatic epileptogenesis. CNS Neurosci Ther 2014; 21:173-80. [PMID: 25495911 DOI: 10.1111/cns.12369] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Seizures triggered by acute injuries to the developing brain respond poorly to first-line medications that target the inhibitory chloride-permeable GABAA receptor. Neuronal injury is associated with profound increases in cytoplasmic chloride ([Cl(-)]i) resulting in depolarizing GABA signaling, higher seizure propensity and limited efficacy of GABAergic anticonvulsants. The Na(+)-K(+)-2Cl(-) (NKCC1) cotransporter blocker bumetanide reduces [Cl(-)]i and causes more negative GABA equilibrium potential in injured neurons. We therefore tested both the acute and chronic efficacy of bumetanide on early posttraumatic ictal-like epileptiform discharges and epileptogenesis. METHODS Acute hippocampal slices were used as a model of severe traumatic brain injury and posttraumatic epileptogenesis. Hippocampal slices were then incubated for 3 weeks. After a 1-week latent period, slice cultures developed chronic spontaneous ictal-like discharges. The anticonvulsant and anti-epileptogenic efficacy of bumetanide, phenobarbital, and the combination of these drugs was studied. RESULTS Bumetanide reduced the frequency and power of early posttraumatic ictal-like discharges in vitro and enhanced the anticonvulsant efficacy of phenobarbital. Continuous 2-3 weeks administration of bumetanide as well as phenobarbital in combination with bumetanide failed to prevent posttraumatic ictal-like discharges and epileptogenesis. CONCLUSIONS Our data demonstrate a persistent contribution of NKCC1 cotransport in posttraumatic ictal-like activity, presumably as a consequence of chronic alterations in neuronal chloride homeostasis and GABA-mediated inhibition. New strategies for more effective reduction in posttraumatic and seizure-induced [Cl(-)]i accumulation could provide the basis for effective treatments for posttraumatic epileptogenesis and the resultant seizures.
Collapse
Affiliation(s)
- Volodymyr Dzhala
- Neurology Department, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
28
|
Stradleigh TW, Greenberg KP, Partida GJ, Pham A, Ishida AT. Moniliform deformation of retinal ganglion cells by formaldehyde-based fixatives. J Comp Neurol 2014; 523:545-64. [PMID: 25283775 DOI: 10.1002/cne.23689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 09/27/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022]
Abstract
Protocols for characterizing cellular phenotypes commonly use chemical fixatives to preserve anatomical features, mechanically stabilize tissue, and stop physiological responses. Formaldehyde, diluted in either phosphate-buffered saline or phosphate buffer, has been widely used in studies of neurons, especially in conjunction with dyes and antibodies. However, previous studies have found that these fixatives induce the formation of bead-like varicosities in the dendrites and axons of brain and spinal cord neurons. We report here that these formaldehyde formulations can induce bead formation in the dendrites and axons of adult rat and rabbit retinal ganglion cells, and that retinal ganglion cells differ from hippocampal, cortical, cerebellar, and spinal cord neurons in that bead formation is not blocked by glutamate receptor antagonists, a voltage-gated Na(+) channel toxin, extracellular Ca(2+) ion exclusion, or temperature shifts. Moreover, we describe a modification of formaldehyde-based fixatives that prevents bead formation in retinal ganglion cells visualized by green fluorescent protein expression and by immunohistochemistry.
Collapse
Affiliation(s)
- Tyler W Stradleigh
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, 95616
| | | | | | | | | |
Collapse
|
29
|
Sayre NL, Chen Y, Sifuentes M, Stoveken B, Lechleiter JD. Purinergic receptor stimulation decreases ischemic brain damage by energizing astrocyte mitochondria. ADVANCES IN NEUROBIOLOGY 2014; 11:121-50. [PMID: 25236727 DOI: 10.1007/978-3-319-08894-5_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As a leading cause of death in the world, cerebral ischemic stroke has limited treatment options. The lack of glucose and oxygen after stroke is particularly harmful in the brain because neuronal metabolism accounts for significantly more energy consumption per gram of body weight compared to other organs. Our laboratory has identified mitochondrial metabolism of astrocytes to be a key target for pharmacologic intervention, not only because astrocytes play a central role in regulating brain metabolism, but also because they are essential for neuronal health and support. Here we review current literature pertaining to the pathobiology of stroke, along with the role of astrocytes and metabolism in stroke. We also discuss our research, which has revealed that pharmacologic stimulation of metabotropic P2Y1 receptor signaling in astrocytes can increase mitochondrial energy production and also reduce damage after stroke.
Collapse
Affiliation(s)
- Naomi L Sayre
- Department of Cellular and Structural Biology, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | | | | | | | | |
Collapse
|
30
|
Ahlgren H, Bas-Orth C, Freitag HE, Hellwig A, Ottersen OP, Bading H. The nuclear calcium signaling target, activating transcription factor 3 (ATF3), protects against dendrotoxicity and facilitates the recovery of synaptic transmission after an excitotoxic insult. J Biol Chem 2014; 289:9970-82. [PMID: 24515113 DOI: 10.1074/jbc.m113.502914] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The focal swellings of dendrites ("dendritic beading") are an early morphological hallmark of neuronal injury and dendrotoxicity. They are associated with a variety of pathological conditions, including brain ischemia, and cause an acute disruption of synaptic transmission and neuronal network function, which contribute to subsequent neuronal death. Here, we show that increased synaptic activity prior to excitotoxic injury protects, in a transcription-dependent manner, against dendritic beading. Expression of activating transcription factor 3 (ATF3), a nuclear calcium-regulated gene and member of the core gene program for acquired neuroprotection, can protect against dendritic beading. Conversely, knockdown of ATF3 exacerbates dendritic beading. Assessment of neuronal network functions using microelectrode array recordings revealed that hippocampal neurons expressing ATF3 were able to regain their ability for functional synaptic transmission and to participate in coherent neuronal network activity within 48 h after exposure to toxic concentrations of NMDA. Thus, in addition to attenuating cell death, synaptic activity and expression of ATF3 render hippocampal neurons more resistant to acute dendrotoxicity and loss of synapses. Dendroprotection can enhance recovery of neuronal network functions after excitotoxic insults.
Collapse
Affiliation(s)
- Hanna Ahlgren
- From the Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, INF 364, 69120 Heidelberg, Germany and
| | | | | | | | | | | |
Collapse
|
31
|
Force spectroscopy measurements show that cortical neurons exposed to excitotoxic agonists stiffen before showing evidence of bleb damage. PLoS One 2013; 8:e73499. [PMID: 24023686 PMCID: PMC3758302 DOI: 10.1371/journal.pone.0073499] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/22/2013] [Indexed: 12/12/2022] Open
Abstract
In ischemic and traumatic brain injury, hyperactivated glutamate (N-methyl-D-aspartic acid, NMDA) and sodium (Nav) channels trigger excitotoxic neuron death. Na+, Ca++ and H2O influx into affected neurons elicits swelling (increased cell volume) and pathological blebbing (disassociation of the plasma membrane’s bilayer from its spectrin-actomyosin matrix). Though usually conflated in injured tissue, cell swelling and blebbing are distinct processes. Around an injury core, salvageable neurons could be mildly swollen without yet having suffered the bleb-type membrane damage that, by rendering channels leaky and pumps dysfunctional, exacerbates the excitotoxic positive feedback spiral. Recognizing when neuronal inflation signifies non-lethal osmotic swelling versus blebbing should further efforts to salvage injury-penumbra neurons. To assess whether the mechanical properties of osmotically-swollen versus excitotoxically-blebbing neurons might be cytomechanically distinguishable, we measured cortical neuron elasticity (gauged via atomic force microscopy (AFM)-based force spectroscopy) upon brief exposure to hypotonicity or to excitotoxic agonists (glutamate and Nav channel activators, NMDA and veratridine). Though unperturbed by solution exchange per se, elasticity increased abruptly with hypotonicity, with NMDA and with veratridine. Neurons then invariably softened towards or below the pre-treatment level, sometimes starting before the washout. The initial channel-mediated stiffening bespeaks an abrupt elevation of hydrostatic pressure linked to NMDA or Nav channel-mediated ion/H2O fluxes, together with increased [Ca++]int-mediated submembrane actomyosin contractility. The subsequent softening to below-control levels is consistent with the onset of a lethal level of bleb damage. These findings indicate that dissection/identification of molecular events during the excitotoxic transition from stiff/swollen to soft/blebbing is warranted and should be feasible.
Collapse
|
32
|
Llorente IL, Perez-Rodriguez D, Martínez-Villayandre B, Dos-Anjos S, Darlison MG, Poole AV, Fernández-López A. GABA(A) receptor chloride channels are involved in the neuroprotective role of GABA following oxygen and glucose deprivation in the rat cerebral cortex but not in the hippocampus. Brain Res 2013; 1533:141-51. [PMID: 23969196 DOI: 10.1016/j.brainres.2013.08.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/11/2013] [Accepted: 08/12/2013] [Indexed: 01/23/2023]
Abstract
Assays on "ex vivo" sections of rat hippocampus and rat cerebral cortex, subjected to oxygen and glucose deprivation (OGD) and a three-hour reperfusion-like (RL) recovery, were performed in the presence of either GABA or the GABA(A) receptor binding site antagonist, bicuculline. Lactate dehydrogenase (LDH) and propidium iodide were used to quantify cell mortality. We also measured, using real-time quantitative polymerase chain reaction (qPCR), the early transcriptional response of a number of genes of the glutamatergic and GABAergic systems. Specifically, glial pre- and post-synaptic glutamatergic transporters (namely GLAST1a, EAAC-1, GLT-1 and VGLUT1), three GABAA receptor subunits (α1, β2 and γ2), and the GABAergic presynaptic marker, glutamic acid decarboxylase (GAD65), were studied. Mortality assays revealed that GABAA receptor chloride channels play an important role in the neuroprotective effect of GABA in the cerebral cortex, but have a much smaller effect in the hippocampus. We also found that GABA reverses the OGD-dependent decrease in GABA(A) receptor transcript levels, as well as mRNA levels of the membrane and vesicular glutamate transporter genes. Based on the markers used, we conclude that OGD results in differential responses in the GABAergic presynaptic and postsynaptic systems.
Collapse
Affiliation(s)
- Irene L Llorente
- Área de Biología Celular, Instituto de Biomedicina, Universidad de León, 24071 León, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
In the developing brain, dendrite branches and dendritic spines form and turn over dynamically. By contrast, most dendrite arbors and dendritic spines in the adult brain are stable for months, years and possibly even decades. Emerging evidence reveals that dendritic spine and dendrite arbor stability have crucial roles in the correct functioning of the adult brain and that loss of stability is associated with psychiatric disorders and neurodegenerative diseases. Recent findings have provided insights into the molecular mechanisms that underlie long-term dendrite stabilization, how these mechanisms differ from those used to mediate structural plasticity and how they are disrupted in disease.
Collapse
|
34
|
Function and innervation of the locus ceruleus in a macaque model of Functional Hypothalamic Amenorrhea. Neurobiol Dis 2012; 50:96-106. [PMID: 23069677 DOI: 10.1016/j.nbd.2012.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/30/2012] [Accepted: 10/03/2012] [Indexed: 02/04/2023] Open
Abstract
A body of knowledge implicates an increase in output from the locus ceruleus (LC) during stress. We questioned the innervation and function of the LC in our macaque model of Functional Hypothalamic Amenorrhea, also known as Stress-Induced Amenorrhea. Cohorts of macaques were initially characterized as highly stress resilient (HSR) or stress-sensitive (SS) based upon the presence or absence of ovulation during a protocol involving 2 menstrual cycles with psychosocial and metabolic stress. Afterwards, the animals were rested until normal menstrual cycles resumed and then euthanized on day 5 of a new menstrual cycle [a] in the absence of further stress; or [b] after 5 days of resumed psychosocial and metabolic stress. In this study, parameters of the LC were examined in HSR and SS animals in the presence and absence of stress (2×2 block design) using ICC and image analysis. Tyrosine hydroxylase (TH) is the rate-limiting enzyme for the synthesis of catecholamines; and the TH level was used to assess by inference, NE output. The pixel area of TH-positive dendrites extending outside the medial border of the LC was significantly increased by stress to a similar degree in both HSR and SS animals (p<0.0001). There is a significant CRF innervation of the LC. The positive pixel area of CRF boutons, lateral to the LC, was higher in SS than HSR animals in the absence of stress. Five days of moderate stress significantly increased the CRF-positive bouton pixel area in the HSR group (p<0.02), but not in the SS group. There is also a significant serotonin innervation of the LC. A marked increase in medial serotonin dendrite swelling and beading was observed in the SS+stress group, which may be a consequence of excitotoxicity. The dendrite beading interfered with analysis of axonal boutons. However, at one anatomical level, the serotonin-positive bouton area was obtained between the LC and the superior cerebellar peduncle. Serotonin-positive bouton pixel area was significantly higher in HSR than SS animals (p<0.04). There was no change in either group after 5 days of moderate stress. The ratio of serotonin/TH correlates with ovarian estrogen production with a sensitivity×stress interaction. Therefore, it appears that the serotonin system determines stress sensitivity and the NE system responds to stress. We hypothesize that elevated NE with low serotonin functionality ultimately leads to stress-induced infertility. In contrast, high serotonin functionality maintains ovulation in the presence of stress even with elevated NE.
Collapse
|
35
|
Traumatic alterations in GABA signaling disrupt hippocampal network activity in the developing brain. J Neurosci 2012; 32:4017-31. [PMID: 22442068 DOI: 10.1523/jneurosci.5139-11.2012] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Severe head trauma causes widespread neuronal shear injuries and acute seizures. Shearing of neural processes might contribute to seizures by disrupting the transmembrane ion gradients that subserve normal synaptic signaling. To test this possibility, we investigated changes in intracellular chloride concentration ([Cl(-)](i)) associated with the widespread neural shear injury induced during preparation of acute brain slices. In hippocampal slices and intact hippocampal preparations from immature CLM-1 mice, increases in [Cl(-)](i) correlated with disruption of neural processes and biomarkers of cell injury. Traumatized neurons with higher [Cl(-)](i) demonstrated excitatory GABA signaling, remained synaptically active, and facilitated network activity as assayed by the frequency of extracellular action potentials and spontaneous network-driven oscillations. These data support a more inhibitory role for GABA in the unperturbed immature brain, demonstrate the utility of the acute brain slice preparation for the study of the consequences of trauma, and provide potential mechanisms for both GABA-mediated excitatory network events in the slice preparation and early post-traumatic seizures.
Collapse
|
36
|
Chao D, He X, Yang Y, Bazzy-Asaad A, Lazarus LH, Balboni G, Kim DH, Xia Y. DOR activation inhibits anoxic/ischemic Na+ influx through Na+ channels via PKC mechanisms in the cortex. Exp Neurol 2012; 236:228-39. [PMID: 22609332 DOI: 10.1016/j.expneurol.2012.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 04/11/2012] [Accepted: 05/09/2012] [Indexed: 01/17/2023]
Abstract
Activation of delta-opioid receptors (DOR) is neuroprotective against hypoxic/ischemic injury in the cortex, which is at least partially related to its action against hypoxic/ischemic disruption of ionic homeostasis that triggers neuronal injury. Na(+) influx through TTX-sensitive voltage-gated Na(+) channels may be a main mechanism for hypoxia-induced disruption of K(+) homeostasis, with DOR activation attenuating the disruption of ionic homeostasis by targeting voltage-gated Na(+) channels. In the present study we examined the role of DOR in the regulation of Na(+) influx in anoxia and simulated ischemia (oxygen-glucose deprivation) as well as the effect of DOR activation on the Na(+) influx induced by a Na(+) channel opener without anoxic/ischemic stress and explored a potential PKC mechanism underlying the DOR action. We directly measured extracellular Na(+) activity in mouse cortical slices with Na(+) selective electrodes and found that (1) anoxia-induced Na(+) influx occurred mainly through TTX-sensitive Na(+) channels; (2) DOR activation inhibited the anoxia/ischemia-induced Na(+) influx; (3) veratridine, a Na(+) channel opener, enhanced the anoxia-induced Na(+) influx; this could be attenuated by DOR activation; (4) DOR activation did not reduce the anoxia-induced Na(+) influx in the presence of chelerythrine, a broad-spectrum PKC blocker; and (5) DOR effects were blocked by PKCβII peptide inhibitor, and PKCθ pseudosubstrate inhibitor, respectively. We conclude that DOR activation inhibits anoxia-induced Na(+) influx through Na(+) channels via PKC (especially PKCβII and PKCθ isoforms) dependent mechanisms in the cortex.
Collapse
Affiliation(s)
- Dongman Chao
- The Third Medical College of Soochow University, Changzhou, Jiangsu 213003, PR China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Dendritic spine pathology in epilepsy: cause or consequence? Neuroscience 2012; 251:141-50. [PMID: 22522469 DOI: 10.1016/j.neuroscience.2012.03.048] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/26/2012] [Accepted: 03/04/2012] [Indexed: 01/23/2023]
Abstract
Abnormalities in dendritic spines have commonly been observed in brain specimens from epilepsy patients and animal models of epilepsy. However, the functional implications and clinical consequences of this dendritic pathology for epilepsy are uncertain. Dendritic spine abnormalities may promote hyperexcitable circuits and seizures in some types of epilepsy, especially in specific genetic syndromes with documented dendritic pathology, but in these cases it is difficult to differentiate their effects on seizures versus other comorbidities, such as cognitive deficits and autism. In other situations, seizures themselves may cause damage to dendrites and dendritic spines and this seizure-induced brain injury may then contribute to progressive epileptogenesis, memory problems and other neurological deficits in epilepsy patients. The mechanistic basis of dendritic spine abnormalities in epilepsy has begun to be elucidated and suggests novel therapeutic strategies for treating epilepsy and its complications.
Collapse
|
38
|
Chao D, He X, Yang Y, Balboni G, Salvadori S, Kim DH, Xia Y. Hydrogen sulfide induced disruption of Na+ homeostasis in the cortex. Toxicol Sci 2012; 128:198-208. [PMID: 22474073 DOI: 10.1093/toxsci/kfs125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Maintenance of ionic balance is essential for neuronal functioning. Hydrogen sulfide (H(2)S), a known toxic environmental gaseous pollutant, has been recently recognized as a gasotransmitter involved in numerous biological processes and is believed to play an important role in the neural activities under both physiological and pathological conditions. However, it is unclear if it plays any role in maintenance of ionic homeostasis in the brain under physiological/pathophysiological conditions. Here, we report by directly measuring Na(+) activity using Na(+) selective electrodes in mouse cortical slices that H(2)S donor sodium hydrosulfide (NaHS) increased Na(+) influx in a concentration-dependent manner. This effect could be partially blocked by either Na(+) channel blocker or N-methyl-D-aspartate receptor (NMDAR) blocker alone or almost completely abolished by coapplication of both blockers but not by non-NMDAR blocker. These data suggest that increased H(2)S in pathophysiological conditions, e.g., hypoxia/ischemia, potentially causes a disruption of ionic homeostasis by massive Na(+) influx through Na(+) channels and NMDARs, thus injuring neural functions. Activation of delta-opioid receptors (DOR), which reduces Na(+) currents/influx in normoxia, had no effect on H(2)S-induced Na(+) influx, suggesting that H(2)S-induced disruption of Na(+) homeostasis is resistant to DOR regulation and may play a major role in neuronal injury in pathophysiological conditions, e.g., hypoxia/ischemia.
Collapse
Affiliation(s)
- Dongman Chao
- The Vivan L. Smith Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
The role of PSD-95 and cypin in morphological changes in dendrites following sublethal NMDA exposure. J Neurosci 2011; 31:15468-80. [PMID: 22031893 DOI: 10.1523/jneurosci.2442-11.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Focal swelling or varicosity formation in dendrites and loss of dendritic spines are the earliest indications of glutamate-induced excitotoxicity. Although it is known that microtubule dynamics play a role in varicosity formation, very little is known about the proteins that directly impact microtubules during focal swelling and dendritic spine loss. Our laboratory has recently reported that the postsynaptic protein PSD-95 and its cytosolic interactor (cypin) regulate the patterning of dendrites in hippocampal neurons. Cypin promotes microtubule assembly, and PSD-95 disrupts microtubule organization. Thus, we hypothesized that cypin and PSD-95 may play a role in altering dendrite morphology and spine number in response to sublethal NMDA-induced excitotoxicity. Using an in vitro model of glutamate-induced toxicity in rat hippocampal cultures, we found that cypin overexpression or PSD-95 knockdown increases the percentage of neurons with varicosities and the number of varicosities along dendrites, decreases the size of varicosities after sublethal NMDA exposure, and protects neurons from NMDA-induced death. In contrast, cypin knockdown or PSD-95 overexpression results in opposite effects. We further show that cypin regulates the density of spines/filopodia: cypin overexpression decreases the number of protrusions per micrometer of dendrite while cypin knockdown results in an opposite effect. Cypin overexpression and PSD-95 knockdown attenuate NMDA-promoted decreases in protrusion density. Thus, we have identified a novel pathway by which the microtubule cytoskeleton is regulated during sublethal changes to dendrites.
Collapse
|
40
|
Mesngon M, McNutt P. Alpha-latrotoxin rescues SNAP-25 from BoNT/A-mediated proteolysis in embryonic stem cell-derived neurons. Toxins (Basel) 2011; 3:489-503. [PMID: 22069721 PMCID: PMC3202834 DOI: 10.3390/toxins3050489] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/22/2011] [Accepted: 04/29/2011] [Indexed: 11/17/2022] Open
Abstract
The botulinum neurotoxins (BoNTs) exhibit zinc-dependent proteolytic activity against members of the core synaptic membrane fusion complex, preventing neurotransmitter release and resulting in neuromuscular paralysis. No pharmacologic therapies have been identified that clinically relieve botulinum poisoning. The black widow spider venom α-latrotoxin (LTX) has the potential to attenuate the severity or duration of BoNT-induced paralysis in neurons via the induction of synaptic degeneration and remodeling. The potential for LTX to antagonize botulinum poisoning was evaluated in embryonic stem cell-derived neurons (ESNs), using a novel screening assay designed around the kinetics of BoNT/A activation. Exposure of ESNs to 400 pM LTX for 6.5 or 13 min resulted in the nearly complete restoration of uncleaved SNAP-25 within 48 h, whereas treatment with 60 mM K+ had no effect. Time-lapse imaging demonstrated that LTX treatment caused a profound increase in Ca2+ influx and evidence of excitotoxicity, though ESNs remained viable 48 h after LTX treatment. This is the first instance of a cell-based treatment that has shown the ability to eliminate BoNT activity. These data suggest that LTX treatment may provide the basis for a new class of therapeutic approach to BoNT intoxication and may contribute to an improved understanding of long-term mechanisms of BoNT intoxication and recovery. They further demonstrate that ESNs are a novel, responsive and biologically relevant model for LTX research and BoNT therapeutic drug discovery.
Collapse
Affiliation(s)
- Mariano Mesngon
- United States Army Medical Research Institute of Chemical Defense, 3100 Ricketts Point Road, Gunpowder, MD 21010, USA.
| | | |
Collapse
|
41
|
White MG, Wang Y, Akay C, Lindl KA, Kolson DL, Jordan-Sciutto KL. Parallel high throughput neuronal toxicity assays demonstrate uncoupling between loss of mitochondrial membrane potential and neuronal damage in a model of HIV-induced neurodegeneration. Neurosci Res 2011; 70:220-9. [PMID: 21291924 DOI: 10.1016/j.neures.2011.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 12/08/2010] [Accepted: 01/25/2011] [Indexed: 11/24/2022]
Abstract
Neurocognitive deficits seen in HIV-associated neurocognitive disorders (HANDs) are attributed to the release of soluble factors from CNS-resident, HIV-infected and/or activated macrophages and microglia. To study HIV-associated neurotoxicity, we used our in vitro model in which primary rat neuronal/glial cultures are treated with supernatants from cultured human monocyte-derived macrophages, infected with a CNS-isolated HIV-1 strain (HIV-MDM). We found that neuronal damage, detected as a loss of microtubule-associated protein-2 (MAP2), begins as early as 2h and is preceded by a loss of mitochondrial membrane potential (Δψ(m)). Interestingly, inhibitors of calpains, but not inhibitors of caspases, blocked MAP2 loss, however neither type of inhibitor prevented the loss of Δψ(m). To facilitate throughput for these studies, we refined a MAP2 cell-based-ELISA whose data closely compare with our standardized method of hand counting neurons. In addition, we developed a tetramethyl rhodamine methyl ester (TMRM)-based multi-well fluorescent plate assay for the evaluation of whole culture Δψ(m). Together, these findings indicate that calpain activation and loss of Δψ(m) may be parallel pathways to death in HIV-MDM-treated neurons and also demonstrate the validity of plate assays for assessing multiple experimental parameters as is useful for screening neurotherapeutics for neuronal damage and death.
Collapse
Affiliation(s)
- Michael G White
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
42
|
Hahm ET, Hammond DL, Proudfit HK. Substance P induces the reversible formation of varicosities in the dendrites of rat brainstem neurons. Brain Res 2010; 1369:36-45. [PMID: 21044613 DOI: 10.1016/j.brainres.2010.10.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 10/23/2010] [Accepted: 10/26/2010] [Indexed: 12/28/2022]
Abstract
This study investigated the ability of substance P (Sub P) to induce dendritic varicosities (DVs) or beads in neurons of the rostral ventromedial medulla (RVM) of the rat. Microinjection of 5-200 pmol Sub P in the RVM produced a concentration-dependent increase in the number of DVs in distal dendrites of RVM neurons that were immunoreactive for the neurokinin-1 receptor, but not serotonin. The effect was reversible, as DVs were essentially absent 2 and 4h after microinjection. Fluoro-Jade B labeled neurons were not evident in the RVM 4 days after microinjection of Sub P, although such neurons were present 4 days after microinjection of a neurotoxic dose of kainate. Bath application of Sub P to brainstem slices for a period as brief as 30s also produced DVs in neurokinin-1 immunoreactive RVM neurons. Prior exposure to L-703606 prevented the formation of DVs by Sub P, implicating the neurokinin-1 receptor, a Gq type of G protein coupled receptor, in the formation of DVs by Sub P. Finally, stabilization of microtubules by prior exposure to taxol also prevented the formation of DVs, consistent with the idea that increases in intracellular Ca(2+) lead to the formation of DVs secondary to a disruption of the linear arrays of microtubules in dendrites. These data establish a mechanistic basis for the formation of DVs by Sub P and support further studies to test the hypothesis that the formation of DVs is a morphological mechanism by which neurons can regulate their responses to inhibitory or excitatory inputs.
Collapse
Affiliation(s)
- Eu-teum Hahm
- Department of Pharmacology, The University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
43
|
Stefaniuk M, Swiech L, Dzwonek J, Lukasiuk K. Expression of Ttyh1, a member of the Tweety family in neurons in vitro and in vivo and its potential role in brain pathology. J Neurochem 2010; 115:1183-94. [PMID: 20874767 DOI: 10.1111/j.1471-4159.2010.07023.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously shown that Ttyh1 mRNA is expressed in neurons and its expression is up-regulated in the brain during epileptogenesis and epilepsy. In this study, we aimed to elucidate the role of Ttyh1 in neurons. We found widespread expression of Ttyh1 protein in neurons in vivo and in vitro. Ttyh1 immunoreactivity in vitro was frequently found in invaginations of dendritic spines; however, Ttyh1, seldom co-localized with synaptic markers in vivo. Silencing Ttyh1 expression with siRNA in hippocampal cultures resulted in alterations of MAP2 distribution along neurites causing it to appear in the form of chains of beads. Over-expression of Ttyh1 caused intense neuritogenesis and the formation of numerous filopodia-like protrusions. Similar protrusions were also produced in SH-SY5Y neuroblastoma cells over-expressing Ttyh1. Using a biotin-streptavidin pull-down assay and mass spectrometry, we identified proteins that can form complexes with Ttyh1 in the brain. Ttyh1 binding proteins are often expressed in the endoplasmic reticulum or the Golgi apparatus or are localized at synapses. Finally, we found increased expression of Ttyh1 in the inner molecular layer of the dentate gyrus in an animal model of epilepsy. On the basis of our findings, we propose Ttyh1 involvement in brain pathology.
Collapse
Affiliation(s)
- Marzena Stefaniuk
- Laboratory of Epileptogenesis, The Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | |
Collapse
|
44
|
Kintner DB, Chen X, Currie J, Chanana V, Ferrazzano P, Baba A, Matsuda T, Cohen M, Orlowski J, Chiu SY, Taunton J, Sun D. Excessive Na+/H+ exchange in disruption of dendritic Na+ and Ca2+ homeostasis and mitochondrial dysfunction following in vitro ischemia. J Biol Chem 2010; 285:35155-68. [PMID: 20817726 DOI: 10.1074/jbc.m110.101212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal dendrites are vulnerable to injury under diverse pathological conditions. However, the underlying mechanisms for dendritic Na(+) overload and the selective dendritic injury remain poorly understood. Our current study demonstrates that activation of NHE-1 (Na(+)/H(+) exchanger isoform 1) in dendrites presents a major pathway for Na(+) overload. Neuronal dendrites exhibited higher pH(i) regulation rates than soma as a result of a larger surface area/volume ratio. Following a 2-h oxygen glucose deprivation and a 1-h reoxygenation, NHE-1 activity was increased by ∼70-200% in dendrites. This elevation depended on activation of p90 ribosomal S6 kinase. Moreover, stimulation of NHE-1 caused dendritic Na(+)(i) accumulation, swelling, and a concurrent loss of Ca(2+)(i) homeostasis. The Ca(2+)(i) overload in dendrites preceded the changes in soma. Inhibition of NHE-1 or the reverse mode of Na(+)/Ca(2+) exchange prevented these changes. Mitochondrial membrane potential in dendrites depolarized 40 min earlier than soma following oxygen glucose deprivation/reoxygenation. Blocking NHE-1 activity not only attenuated loss of dendritic mitochondrial membrane potential and mitochondrial Ca(2+) homeostasis but also preserved dendritic membrane integrity. Taken together, our study demonstrates that NHE-1-mediated Na(+) entry and subsequent Na(+)/Ca(2+) exchange activation contribute to the selective dendritic vulnerability to in vitro ischemia.
Collapse
Affiliation(s)
- Douglas B Kintner
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Monnerie H, Tang-Schomer MD, Iwata A, Smith DH, Kim HA, Le Roux PD. Dendritic alterations after dynamic axonal stretch injury in vitro. Exp Neurol 2010; 224:415-23. [PMID: 20478308 DOI: 10.1016/j.expneurol.2010.05.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/29/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
Abstract
Traumatic axonal injury (TAI) is the most common and important pathology of traumatic brain injury (TBI). However, little is known about potential indirect effects of TAI on dendrites. In this study, we used a well-established in vitro model of axonal stretch injury to investigate TAI-induced changes in dendrite morphology. Axons bridging two separated rat cortical neuron populations plated on a deformable substrate were used to create a zone of isolated stretch injury to axons. Following injury, we observed the formation of dendritic alterations or beading along the dendrite shaft. Dendritic beading formed within minutes after stretch then subsided over time. Pharmacological experiments revealed a sodium-dependent mechanism, while removing extracellular calcium exacerbated TAI's effect on dendrites. In addition, blocking ionotropic glutamate receptors with the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 prevented dendritic beading. These results demonstrate that axon mechanical injury directly affects dendrite morphology, highlighting an important bystander effect of TAI. The data also imply that TAI may alter dendrite structure and plasticity in vivo. An understanding of TAI's effect on dendrites is important since proper dendrite function is crucial for normal brain function and recovery after injury.
Collapse
Affiliation(s)
- Hubert Monnerie
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
46
|
Prilloff S, Fan J, Henrich-Noack P, Sabel BA. In vivoconfocal neuroimaging (ICON): non-invasive, functional imaging of the mammalian CNS with cellular resolution. Eur J Neurosci 2010; 31:521-8. [DOI: 10.1111/j.1460-9568.2010.07078.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system playing critical roles in basal synaptic transmission and mechanisms of learning and memory. Under normal conditions, glutamate is sequestered within synaptic vesicles (approximately 100 mM) with extracellular glutamate concentrations being limited (<1 microM), via retrieval by plasma-membrane transporters on neuronal and glial cells. In the case of central nervous system trauma, stroke, epilepsy, and in certain neurodegenerative diseases, increased concentrations of extracellular glutamate (by vesicular release, cell lysis and/or decreased glutamate transporter uptake/reversal) stimulate the overactivation of local ionotropic glutamate receptors that trigger neuronal cell death (excitotoxicity). Other natural agonists, such as domoic acid, alcohol and auto-antibodies, have also been reported to induce excitotoxicity.
Collapse
|
48
|
Chao D, Xia Y. Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol 2009; 90:439-70. [PMID: 20036308 DOI: 10.1016/j.pneurobio.2009.12.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 09/10/2009] [Accepted: 12/17/2009] [Indexed: 12/17/2022]
Abstract
Neurons in the mammalian central nervous system are extremely vulnerable to oxygen deprivation and blood supply insufficiency. Indeed, hypoxic/ischemic stress triggers multiple pathophysiological changes in the brain, forming the basis of hypoxic/ischemic encephalopathy. One of the initial and crucial events induced by hypoxia/ischemia is the disruption of ionic homeostasis characterized by enhanced K(+) efflux and Na(+)-, Ca(2+)- and Cl(-)-influx, which causes neuronal injury or even death. Recent data from our laboratory and those of others have shown that activation of opioid receptors, particularly delta-opioid receptors (DOR), is neuroprotective against hypoxic/ischemic insult. This protective mechanism may be one of the key factors that determine neuronal survival under hypoxic/ischemic condition. An important aspect of the DOR-mediated neuroprotection is its action against hypoxic/ischemic disruption of ionic homeostasis. Specially, DOR signal inhibits Na(+) influx through the membrane and reduces the increase in intracellular Ca(2+), thus decreasing the excessive leakage of intracellular K(+). Such protection is dependent on a PKC-dependent and PKA-independent signaling pathway. Furthermore, our novel exploration shows that DOR attenuates hypoxic/ischemic disruption of ionic homeostasis through the inhibitory regulation of Na(+) channels. In this review, we will first update current information regarding the process and features of hypoxic/ischemic disruption of ionic homeostasis and then discuss the opioid-mediated regulation of ionic homeostasis, especially in hypoxic/ischemic condition, and the underlying mechanisms.
Collapse
Affiliation(s)
- Dongman Chao
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT 06520, USA
| | | |
Collapse
|
49
|
Transgenic expression of Glud1 (glutamate dehydrogenase 1) in neurons: in vivo model of enhanced glutamate release, altered synaptic plasticity, and selective neuronal vulnerability. J Neurosci 2009; 29:13929-44. [PMID: 19890003 DOI: 10.1523/jneurosci.4413-09.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effects of lifelong, moderate excess release of glutamate (Glu) in the CNS have not been previously characterized. We created a transgenic (Tg) mouse model of lifelong excess synaptic Glu release in the CNS by introducing the gene for glutamate dehydrogenase 1 (Glud1) under the control of the neuron-specific enolase promoter. Glud1 is, potentially, an important enzyme in the pathway of Glu synthesis in nerve terminals. Increased levels of GLUD protein and activity in CNS neurons of hemizygous Tg mice were associated with increases in the in vivo release of Glu after neuronal depolarization in striatum and in the frequency and amplitude of miniature EPSCs in the CA1 region of the hippocampus. Despite overexpression of Glud1 in all neurons of the CNS, the Tg mice suffered neuronal losses in select brain regions (e.g., the CA1 but not the CA3 region). In vulnerable regions, Tg mice had decreases in MAP2A labeling of dendrites and in synaptophysin labeling of presynaptic terminals; the decreases in neuronal numbers and dendrite and presynaptic terminal labeling increased with advancing age. In addition, the Tg mice exhibited decreases in long-term potentiation of synaptic activity and in spine density in dendrites of CA1 neurons. Behaviorally, the Tg mice were significantly more resistant than wild-type mice to induction and duration of anesthesia produced by anesthetics that suppress Glu neurotransmission. The Glud1 mouse might be a useful model for the effects of lifelong excess synaptic Glu release on CNS neurons and for age-associated neurodegenerative processes.
Collapse
|
50
|
Melzer N, Meuth SG, Wiendl H. CD8+ T cells and neuronal damage: direct and collateral mechanisms of cytotoxicity and impaired electrical excitability. FASEB J 2009; 23:3659-73. [PMID: 19567369 DOI: 10.1096/fj.09-136200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytotoxic CD8(+) T cells are increasingly recognized as key players in various inflammatory and degenerative central nervous system (CNS) disorders. CD8(+) T cells are believed to actively contribute to neural damage in these CNS conditions. Conceptually, one can separate two possible ways that CD8(+) T cells harm neuronal function or integrity: CD8(+) T cells either directly target neurons and their neurites in an antigen- or contact-dependent fashion, or exert their action via "collateral" mechanisms of neuronal damage that might follow destruction of the myelin sheath or glial cells in both the CNS gray and white matter. After introducing clinical examples, in which the putative relevance CD8(+) T cells has been demonstrated, we summarize knowledge on the sequence of initiation and execution of CD8(+) T-cell responses in the CNS. This includes the initial antigen cross-presentation and priming of naive CD8(+) T cells, followed by the invasion, migration, and target-cell recognition of CD8(+) effector T cells in the CNS parenchyma. Moreover, we discuss mechanisms of impaired electrical signaling and cell death of neurons as direct and collateral targets of CD8(+) T cells in the CNS.
Collapse
Affiliation(s)
- Nico Melzer
- Department of Neurology, University of Würzburg, Josef-Schneider-Strasse 11, 97080 Würzburg, Germany.
| | | | | |
Collapse
|