1
|
Bektas S, Kaptan E. Microbial lectins as a potential therapeutics for the prevention of certain human diseases. Life Sci 2024; 346:122643. [PMID: 38614308 DOI: 10.1016/j.lfs.2024.122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Lectins are protein or glycoprotein molecules with a specific ability to bind to carbohydrates. From viruses to mammals, they are found in various organisms and exhibit remarkable diverse structures and functions. They are significant contributors to defense mechanisms against microbial attacks in plants. They are also involved in functions such as controlling lymphocyte migration, regulating glycoprotein biosynthesis, cell-cell recognition, and embryonic development in animals. In addition, lectins serve as invaluable molecular tools in various biological and medical disciplines due to their reversible binding ability and enable the monitoring of cell membrane changes in physiological and pathological contexts. Microbial lectins, often referred to as adhesins, play an important role in microbial colonization, pathogenicity, and interactions among microorganisms. Viral lectins are located in the bilayered viral membrane, whereas bacterial lectins are found intracellularly and on the bacterial cell surface. Microfungal lectins are typically intracellular and have various functions in host-parasite interaction, and in fungal growth and morphogenesis. Although microbial lectin studies are less extensive than those of plants and animals, they provide insights into the infection mechanisms and potential interventions. Glycan specificity, essential functions in infectious diseases, and applications in the diagnosis and treatment of viral and bacterial infections are critical aspects of microbial lectin research. In this review, we will discuss the application and therapeutic potential of viral, bacterial and microfungal lectins.
Collapse
Affiliation(s)
- Suna Bektas
- Institute of Graduate Studies in Sciences, Istanbul University, Istanbul 34116, Turkey.
| | - Engin Kaptan
- Istanbul University, Faculty of Science Department of Biology, 34134 Vezneciler, Istanbul, Turkey.
| |
Collapse
|
2
|
Faoro F, Faccio A, Balestrini R. Contributions of Ultrastructural Studies to the Knowledge of Filamentous Fungi Biology and Fungi-Plant Interactions. FRONTIERS IN FUNGAL BIOLOGY 2022; 2:805739. [PMID: 37744126 PMCID: PMC10512230 DOI: 10.3389/ffunb.2021.805739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/14/2021] [Indexed: 09/26/2023]
Abstract
Since the first experiments in 1950s, transmission electron microscopy (TEM) observations of filamentous fungi have contributed extensively to understand their structure and to reveal the mechanisms of apical growth. Additionally, also in combination with the use of affinity techniques (such as the gold complexes), several aspects of plant-fungal interactions were elucidated. Nowadays, after the huge of information obtained from -omics techniques, TEM studies and ultrastructural observations offer the possibility to support these data, considering that the full comprehension of the mechanisms at the basis of fungal morphogenesis and the interaction with other organisms is closely related to a detailed knowledge of the structural features. Here, the contribution of these approaches on fungal biology is illustrated, focusing both on hyphae cell ultrastructure and infection structures of pathogenic and mycorrhizal fungi. Moreover, a concise appendix of methods conventionally used for the study of fungal ultrastructure is provided.
Collapse
Affiliation(s)
- Franco Faoro
- Dipartimento di Scienze Agrarie e Ambientali, Università di Milano, Milan, Italy
| | - Antonella Faccio
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| | - Raffaella Balestrini
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, Turin, Italy
| |
Collapse
|
3
|
Zhang K, Tappero R, Ruytinx J, Branco S, Liao HL. Disentangling the role of ectomycorrhizal fungi in plant nutrient acquisition along a Zn gradient using X-ray imaging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149481. [PMID: 34467922 DOI: 10.1016/j.scitotenv.2021.149481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Zinc (Zn) is a plant essential micronutrient involved in a wide range of cellular processes. Ectomycorrhizal fungi (EMF) are known to play a critical role in regulating plant Zn status. However, how EMF control uptake and translocation of Zn and other nutrients in plant roots under different Zn conditions is not well known. Using X-ray fluorescence imaging, we found the EMF species Suillus luteus increased pine root Zn acquisition under low Zn concentrations and reduced its accumulation under higher Zn levels. By contrast, non-mycorrhizal pine roots exposed to high Zn indiscriminately take up and translocate Zn to root tissues, leading to Zn stress. Regardless of S. luteus inoculation, the absorption pattern of Ca and Cu was similar to Zn. Compared to Ca and Cu, effects of S. luteus on Fe acquisition were more marked, leading to a negative association between Zn addition and Fe concentration within EMF roots. Besides, higher nutrient accumulation in the fungal sheath, compared to hyphae inhabiting between intercellular space of cortex cells, implies the fungal sheath serves as a barrier to regulate nutrient transportation into fungal Hartig net. Our results demonstrate the crucial roles EMF play in plant nutrient uptake and how fungal partners ameliorate soil chemical conditions either by increasing or decreasing element uptake.
Collapse
Affiliation(s)
- Kaile Zhang
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| | - Ryan Tappero
- Brookhaven National Laboratory, NSLS-II, Upton, NY 11973, USA
| | - Joske Ruytinx
- Research Groups Microbiology and Plant Genetics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| | - Sara Branco
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
4
|
Ferreira WAS, Burbano RR, do Ó Pessoa C, Harada ML, do Nascimento Borges B, de Oliveira EHC. Pisosterol Induces G2/M Cell Cycle Arrest and Apoptosis via the ATM/ATR Signaling Pathway in Human Glioma Cells. Anticancer Agents Med Chem 2021; 20:734-750. [PMID: 32013837 DOI: 10.2174/1871520620666200203160117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/05/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pisosterol, a triterpene derived from Pisolithus tinctorius, exhibits potential antitumor activity in various malignancies. However, the molecular mechanisms that mediate the pisosterol-specific effects on glioma cells remain unknown. OBJECTIVE This study aimed to evaluate the antitumoral effects of pisosterol on glioma cell lines. METHODS The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and trypan blue exclusion assays were used to evaluate the effect of pisosterol on cell proliferation and viability in glioma cells. The effect of pisosterol on the distribution of the cells in the cell cycle was performed by flow cytometry. The expression and methylation pattern of the promoter region of MYC, ATM, BCL2, BMI1, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, MDM2, p14ARF and TP53 was analyzed by RT-qPCR, western blotting and bisulfite sequencing PCR (BSP-PCR). RESULTS Here, it has been reported that pisosterol markedly induced G2/M arrest and apoptosis and decreased the cell viability and proliferation potential of glioma cells in a dose-dependent manner by increasing the expression of ATM, CASP3, CDK1, CDKN1A, CDKN2A, CDKN2B, CHEK1, p14ARF and TP53 and decreasing the expression of MYC, BCL2, BMI1 and MDM2. Pisosterol also triggered both caspase-independent and caspase-dependent apoptotic pathways by regulating the expression of Bcl-2 and activating caspase-3 and p53. CONCLUSION It has been, for the first time, confirmed that the ATM/ATR signaling pathway is a critical mechanism for G2/M arrest in pisosterol-induced glioma cell cycle arrest and suggests that this compound might be a promising anticancer candidate for further investigation.
Collapse
Affiliation(s)
- Wallax A S Ferreira
- Laboratorio de Cultura de Tecidos e Citogenetica, SAMAM, Instituto Evandro Chagas, Ananindeua, Para, Brazil
| | - Rommel R Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Belém, Pará, Brazil.,Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém, Pará, Brazil
| | - Claudia do Ó Pessoa
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceara, Fortaleza, Ceara, Brazil
| | - Maria L Harada
- Laboratorio de Biologia Molecular Francisco Mauro Salzano, Instituto de Ciencias Biologicas, Universidade Federal do Para, Belem, Para, Brazil
| | - Bárbara do Nascimento Borges
- Laboratorio de Biologia Molecular Francisco Mauro Salzano, Instituto de Ciencias Biologicas, Universidade Federal do Para, Belem, Para, Brazil
| | - Edivaldo H Correa de Oliveira
- Laboratorio de Cultura de Tecidos e Citogenetica, SAMAM, Instituto Evandro Chagas, Ananindeua, Para, Brazil.,Instituto de Ciências Exatas e Naturais, Faculdade de Ciências Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
5
|
Pellegrin C, Daguerre Y, Ruytinx J, Guinet F, Kemppainen M, Frey NFD, Puech‐Pagès V, Hecker A, Pardo AG, Martin FM, Veneault‐Fourrey C. Laccaria bicolor
MiSSP8 is a small‐secreted protein decisive for the establishment of the ectomycorrhizal symbiosis. Environ Microbiol 2019; 21:3765-3779. [DOI: 10.1111/1462-2920.14727] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Clément Pellegrin
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Yohann Daguerre
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Joske Ruytinx
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Frédéric Guinet
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Minna Kemppainen
- Laboratorio de Micología Molecular, Departamento de Ciencia y TecnologıaUniversidad Nacional de Quilmes and CONICET Roque Sáenz Peña 352 B1876 Bernal Provincia de Buenos Aires Argentina
| | - Nicolas Frei dit Frey
- Laboratoire de Recherche en Sciences VégétalesUniversité de Toulouse, CNRS, UPS 24 chemin de Borde Rouge, Auzeville, BP42617 31326 Castanet Tolosan France
| | - Virginie Puech‐Pagès
- Laboratoire de Recherche en Sciences VégétalesUniversité de Toulouse, CNRS, UPS 24 chemin de Borde Rouge, Auzeville, BP42617 31326 Castanet Tolosan France
| | - Arnaud Hecker
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Alejandro G. Pardo
- Laboratorio de Micología Molecular, Departamento de Ciencia y TecnologıaUniversidad Nacional de Quilmes and CONICET Roque Sáenz Peña 352 B1876 Bernal Provincia de Buenos Aires Argentina
| | - Francis M. Martin
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| | - Claire Veneault‐Fourrey
- INRA, UMR1136Interactions Arbres/microorganismes Centre Grand‐Est Champenoux France
- UMR 1136, Interactions Arbres/Microorganismes (IAM), Faculté des Sciences et TechnologiesUniversité de Lorraine Vandœuvre lès Nancy France
| |
Collapse
|
6
|
Mello A, Balestrini R. Recent Insights on Biological and Ecological Aspects of Ectomycorrhizal Fungi and Their Interactions. Front Microbiol 2018; 9:216. [PMID: 29497408 PMCID: PMC5818412 DOI: 10.3389/fmicb.2018.00216] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/30/2018] [Indexed: 12/21/2022] Open
Abstract
The roots of most terrestrial plants are colonized by mycorrhizal fungi. They play a key role in terrestrial environments influencing soil structure and ecosystem functionality. Around them a peculiar region, the mycorrhizosphere, develops. This is a very dynamic environment where plants, soil and microorganisms interact. Interest in this fascinating environment has increased over the years. For a long period the knowledge of the microbial populations in the rhizosphere has been limited, because they have always been studied by traditional culture-based techniques. These methods, which only allow the study of cultured microorganisms, do not allow the characterization of most organisms existing in nature. The introduction in the last few years of methodologies that are independent of culture techniques has bypassed this limitation. This together with the development of high-throughput molecular tools has given new insights into the biology, evolution, and biodiversity of mycorrhizal associations, as well as, the molecular dialog between plants and fungi. The genomes of many mycorrhizal fungal species have been sequenced so far allowing to better understanding the lifestyle of these fungi, their sexual reproduction modalities and metabolic functions. The possibility to detect the mycelium and the mycorrhizae of heterothallic fungi has also allowed to follow the spatial and temporal distributional patterns of strains of different mating types. On the other hand, the availability of the genome sequencing from several mycorrhizal fungi with a different lifestyle, or belonging to different groups, allowed to verify the common feature of the mycorrhizal symbiosis as well as the differences on how different mycorrhizal species interact and dialog with the plant. Here, we will consider the aspects described before, mainly focusing on ectomycorrhizal fungi and their interactions with plants and other soil microorganisms.
Collapse
Affiliation(s)
- Antonietta Mello
- Institute for Sustainable Plant Protection (IPSP), Torino Unit, National Research Council, Turin, Italy
| | | |
Collapse
|
7
|
Cano J, Berrocal-Lobo M, Domínguez-Núñez J. Growth of Amanita caesarea in the presence of Pseudomonas fluorescens and Bacillus cereus. Fungal Biol 2017; 121:825-833. [DOI: 10.1016/j.funbio.2017.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 11/30/2022]
|
8
|
The StLAC2 gene is required for cell wall integrity, DHN-melanin synthesis and the pathogenicity of Setosphaeria turcica. Fungal Biol 2017; 121:589-601. [PMID: 28606354 DOI: 10.1016/j.funbio.2017.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 04/01/2017] [Accepted: 04/06/2017] [Indexed: 11/21/2022]
Abstract
Laccases are blue multicopper oxidases, play important roles in various biological processes. These processes include fungal dihydroxynaphthalene (DHN)-melanin biosynthesis and pathogenicity, cellular growth, morphogenesis, and differentiation. This study investigated functions of the laccase gene StLAC2 in Setosphaeria turcica. The Δlac2 mutant colony color was distinct from that of the S. turcica wild-type (WT) isolate, and the mutants exhibited defective conidial formation. In contrast to the WT, the mutants exhibited a lighter color on the 2, 2-azino-di-[3-ethylbenzo-thia-zolin-sulphonate] (ABTS) plates, and the intracellular laccase activity was lower. Notably, StLAC2 gene loss correlated with decreased DHN-melanin biosynthesis and affected the integrity of the cell wall, where the StLAC2 gene mutants showed thinner, more transparent walls with a higher number of mitochondria than the WT. The Δlac2 mutants also lost their pathogenicity in maize. The results indicated that the StLAC2 gene involved in cell wall integrity, melanin biosynthesis and appressorial and conidial formation.
Collapse
|
9
|
Wang L, Li H, Zhou Y, Qin Y, Wang Y, Liu B, Qian H. Molecular cloning and characterization of an ADP-ribosylation factor 6 gene (ptARF6) from Pisolithus tinctorius. Can J Microbiol 2016; 62:383-93. [PMID: 26928195 DOI: 10.1139/cjm-2015-0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ADP-ribosylation factor 6 (ARF6) is an evolutionarily conserved molecule that has an essential function in intracellular trafficking and organelle structure. To better understand its role during presymbiosis between plant roots and compatible filamentous fungi, the full-length cDNA sequence of ARF6 from Pisolithus tinctorius was cloned and a variety of bioinformatics analyses performed. The full-length sequence was 849 bp long and contained a 549 bp open reading frame encoding a protein of 182 amino acids. A phylogenetic analysis showed that ptARF6 was the ortholog of the ADP ribosylation factor 6/GTPase SAR1 gene from the white-rot basidiomycete Trametes versicolor. A domain architecture analysis of the ARF6 protein revealed a repeat region, which is a common feature of ARF6 in other species. Recombinant ARF6 protein was expressed with an N-terminal 6×His tag and purified using Ni(2+)-NTA affinity chromatography. The molecular mass of the recombinant protein was estimated by SDS-PAGE to be 25 kDa. The recombinant ARF6 protein bound strongly to 18:1 and 18:2 phosphatidic acids. Thus, ARF6 may participate in the signaling pathways involved in membrane phospholipid composition. The intracellular distribution of ptADP6 in HEK239T cells also indicates that ptADP6 may function not only in plasma membrane events but also in endosomal membranes events. Real-time quantitative PCR revealed that the differential expression of ptARF6 was associated with the presymbiotic stage. ptARF6 may be induced by presymbiosis during the regulation of mycorrhizal formation.
Collapse
Affiliation(s)
- Liling Wang
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| | - Haibo Li
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| | - Yifeng Zhou
- b Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Yuchuan Qin
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| | - Yanbin Wang
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| | - Bentong Liu
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| | - Hua Qian
- a Zhejiang Forestry Academy, Zhejiang Provincial Key Laboratory of Forest Food, Hangzhou, 310023, People's Republic of China
| |
Collapse
|
10
|
Raudaskoski M, Kothe E. Novel findings on the role of signal exchange in arbuscular and ectomycorrhizal symbioses. MYCORRHIZA 2015; 25:243-52. [PMID: 25260351 DOI: 10.1007/s00572-014-0607-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/16/2014] [Indexed: 05/11/2023]
Abstract
The availability of genome sequences from both arbuscular and ectomycorrhizal fungi and their hosts has, together with elegant biochemical and molecular biological analyses, provided new information on signal exchange between the partners in mycorrhizal associations. The progress in understanding cellular processes has been more rapid in arbuscular than ectomycorrhizal symbiosis due to its similarities of early processes with Rhizobium-legume symbiosis. In ectomycorrhiza, the role of auxin and ethylene produced by both fungus and host plant is becoming understood at the molecular level, although the actual ligands and receptors leading to ectomycorrhizal symbiosis have not yet been discovered. For both systems, the functions of small effector proteins secreted from the respective fungus and taken up into the plant cell may be pivotal in understanding the attenuation of host defense. We review the subject by comparing cross-talk between fungal and plant partners during formation and establishment of arbuscular and ectomycorrhizal symbioses.
Collapse
Affiliation(s)
- Marjatta Raudaskoski
- Department of Biochemistry, Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | | |
Collapse
|
11
|
|
12
|
Balestrini R, Bonfante P. Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism. FRONTIERS IN PLANT SCIENCE 2014; 5:237. [PMID: 24926297 PMCID: PMC4044974 DOI: 10.3389/fpls.2014.00237] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/12/2014] [Indexed: 05/05/2023]
Abstract
Cell walls are deeply involved in the molecular talk between partners during plant and microbe interactions, and their role in mycorrhizae, i.e., the widespread symbiotic associations established between plant roots and soil fungi, has been investigated extensively. All mycorrhizal interactions achieve full symbiotic functionality through the development of an extensive contact surface between the plant and fungal cells, where signals and nutrients are exchanged. The exchange of molecules between the fungal and the plant cytoplasm takes place both through their plasma membranes and their cell walls; a functional compartment, known as the symbiotic interface, is thus defined. Among all the symbiotic interfaces, the complex intracellular interface of arbuscular mycorrhizal (AM) symbiosis has received a great deal of attention since its first description. Here, in fact, the host plasma membrane invaginates and proliferates around all the developing intracellular fungal structures, and cell wall material is laid down between this membrane and the fungal cell surface. By contrast, in ectomycorrhizae (ECM), where the fungus grows outside and between the root cells, plant and fungal cell walls are always in direct contact and form the interface between the two partners. The organization and composition of cell walls within the interface compartment is a topic that has attracted widespread attention, both in ecto- and endomycorrhizae. The aim of this review is to provide a general overview of the current knowledge on this topic by integrating morphological observations, which have illustrated cell wall features during mycorrhizal interactions, with the current data produced by genomic and transcriptomic approaches.
Collapse
Affiliation(s)
- Raffaella Balestrini
- Institute for Sustainable Plant Protection, National Research CouncilTorino, Italy
| | - Paola Bonfante
- Department of Life Science and Systems Biology, University of TorinoTorino, Italy
| |
Collapse
|
13
|
Identification of fungal genes involved in the preinfection events between ectomycorrhizal association (Pisolithus tinctorius and Pinus massoniana). Mycol Prog 2013. [DOI: 10.1007/s11557-013-0899-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Structural and phylogenetic analysis of laccases from Trichoderma: a bioinformatic approach. PLoS One 2013; 8:e55295. [PMID: 23383142 PMCID: PMC3561346 DOI: 10.1371/journal.pone.0055295] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/20/2012] [Indexed: 11/19/2022] Open
Abstract
The genus Trichoderma includes species of great biotechnological value, both for their mycoparasitic activities and for their ability to produce extracellular hydrolytic enzymes. Although activity of extracellular laccase has previously been reported in Trichoderma spp., the possible number of isoenzymes is still unknown, as are the structural and functional characteristics of both the genes and the putative proteins. In this study, the system of laccases sensu stricto in the Trichoderma species, the genomes of which are publicly available, were analyzed using bioinformatic tools. The intron/exon structure of the genes and the identification of specific motifs in the sequence of amino acids of the proteins generated in silico allow for clear differentiation between extracellular and intracellular enzymes. Phylogenetic analysis suggests that the common ancestor of the genus possessed a functional gene for each one of these enzymes, which is a characteristic preserved in T. atroviride and T. virens. This analysis also reveals that T. harzianum and T. reesei only retained the intracellular activity, whereas T. asperellum added an extracellular isoenzyme acquired through horizontal gene transfer during the mycoparasitic process. The evolutionary analysis shows that in general, extracellular laccases are subjected to purifying selection, and intracellular laccases show neutral evolution. The data provided by the present study will enable the generation of experimental approximations to better understand the physiological role of laccases in the genus Trichoderma and to increase their biotechnological potential.
Collapse
|
15
|
Genome-wide analysis of cell wall-related genes in Tuber melanosporum. Curr Genet 2012; 58:165-77. [PMID: 22481122 DOI: 10.1007/s00294-012-0374-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/15/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
Abstract
A genome-wide inventory of proteins involved in cell wall synthesis and remodeling has been obtained by taking advantage of the recently released genome sequence of the ectomycorrhizal Tuber melanosporum black truffle. Genes that encode cell wall biosynthetic enzymes, enzymes involved in cell wall polysaccharide synthesis or modification, GPI-anchored proteins and other cell wall proteins were identified in the black truffle genome. As a second step, array data were validated and the symbiotic stage was chosen as the main focus. Quantitative RT-PCR experiments were performed on 29 selected genes to verify their expression during ectomycorrhizal formation. The results confirmed the array data, and this suggests that cell wall-related genes are required for morphogenetic transition from mycelium growth to the ectomycorrhizal branched hyphae. Labeling experiments were also performed on T. melanosporum mycelium and ectomycorrhizae to localize cell wall components.
Collapse
|
16
|
Sunde M, Kwan AHY, Templeton MD, Beever RE, Mackay JP. Structural analysis of hydrophobins. Micron 2007; 39:773-84. [PMID: 17875392 DOI: 10.1016/j.micron.2007.08.003] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/07/2007] [Accepted: 08/07/2007] [Indexed: 11/30/2022]
Abstract
Hydrophobins are a remarkable class of small cysteine-rich proteins found exclusively in fungi. They self-assemble to form robust polymeric monolayers that are highly amphipathic and play numerous roles in fungal biology, such as in the formation and dispersal of aerial spores and in pathogenic and mutualistic interactions. The polymeric form can be reversibly disassembled and is able to reverse the wettability of a surface, leading to many proposals for nanotechnological applications over recent years. The surprising properties of hydrophobins and their potential for commercialization have led to substantial efforts to delineate their morphology and molecular structure. In this review, we summarize the progress that has been made using a variety of spectroscopic and microscopic approaches towards understanding the molecular mechanisms underlying hydrophobin structure.
Collapse
Affiliation(s)
- Margaret Sunde
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney 2006, Australia
| | | | | | | | | |
Collapse
|
17
|
Baptista P, Martins A, Pais MS, Tavares RM, Lino-Neto T. Involvement of reactive oxygen species during early stages of ectomycorrhiza establishment between Castanea sativa and Pisolithus tinctorius. MYCORRHIZA 2007; 17:185-193. [PMID: 17216276 DOI: 10.1007/s00572-006-0091-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 11/08/2006] [Indexed: 05/13/2023]
Abstract
Evidence for the participation of reactive oxygen species (ROS) and antioxidant systems in ectomycorrhizal (ECM) establishment is lacking. In this paper, we evaluated ROS production and the activities of superoxide dismutase (SOD) and catalase (CAT) during the early contact of the ECM fungus Pisolithus tinctorius with the roots of Castanea sativa (chestnut tree). Roots were placed in contact with P. tinctorius mycelia, and ROS production was evaluated by determining the levels of H(2)O(2) and O(2) (.-) during the early stages of fungal contact. Three peaks of H(2)O(2) production were detected, the first two coinciding with O(2) (.-) bursts. The first H(2)O(2) production peak coincided with an increase in SOD activity, whereas CAT activity seemed to be implicated in H(2)O(2) scavenging. P. tinctorius growth was evaluated in the presence of P. tinctorius-elicited C. sativa crude extracts prepared during the early stages of fungal contact. Differential hyphal growth that matched the H(2)O(2) production profile with a delay was detected. The result suggests that during the early stages of ECM establishment, H(2)O(2) results from an inhibition of ROS-scavenging enzymes and plays a role in signalling during symbiotic establishment.
Collapse
Affiliation(s)
- Paula Baptista
- CIMO/ESAB, Escola Superior Agrária de Bragança, Quinta de Sta Apolónia, Apartado 1172, 5301-855, Bragança, Portugal.
| | - Anabela Martins
- CIMO/ESAB, Escola Superior Agrária de Bragança, Quinta de Sta Apolónia, Apartado 1172, 5301-855, Bragança, Portugal
| | - Maria Salomé Pais
- Unidade de Biologia Molecular e Biotecnologia Vegetal, Instituto de Ciência Aplicada e Tecnologia, Edifício ICAT, Campo Grande, 1749-016, Lisboa, Portugal
| | - Rui M Tavares
- Departamento de Biologia, Laboratório de Bioquímica e Fisiologia Molecular de Plantas, Centro de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Teresa Lino-Neto
- Departamento de Biologia, Laboratório de Bioquímica e Fisiologia Molecular de Plantas, Centro de Biologia, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
18
|
Montanini B, Gabella S, Abbà S, Peter M, Kohler A, Bonfante P, Chalot M, Martin F, Ottonello S. Gene expression profiling of the nitrogen starvation stress response in the mycorrhizal ascomycete Tuber borchii. Fungal Genet Biol 2006; 43:630-41. [PMID: 16698294 DOI: 10.1016/j.fgb.2006.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 03/31/2006] [Accepted: 04/02/2006] [Indexed: 01/04/2023]
Abstract
The focus of this work is on the nitrogen starvation stress responses operating in a plant symbiotic fungus. A cDNA array profiling analysis was conducted on N-limited mycelia of the mycorrhizal ascomycete Tuber borchii. Fifty-one unique transcripts, out of 2062 redundant arrayed cDNAs, were differentially expressed by at least 1.5-fold in response to N deprivation. Only two N assimilation components-a nitrate transporter and a high-affinity ammonium transporter-were found among differentially expressed genes. All the other N status responsive genes code for as yet unidentified hypothetical proteins or components not directly involved in N assimilation or metabolism, especially carbohydrate binding proteins and oligosaccharide as well as lipid modifying enzymes. A subset of cDNA array data were confirmed and extended by Northern blot analysis, which showed that most of the latter components respond not only to nitrogen, but also to carbon source depletion.
Collapse
Affiliation(s)
- Barbara Montanini
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rodríguez-Tovar AV, Ruiz-Medrano R, Herrera-Martínez A, Barrera-Figueroa BE, Hidalgo-Lara ME, Reyes-Márquez BE, Cabrera-Ponce JL, Valdés M, Xoconostle-Cázares B. Stable genetic transformation of the ectomycorrhizal fungus Pisolithus tinctorius. J Microbiol Methods 2005; 63:45-54. [PMID: 15936101 DOI: 10.1016/j.mimet.2005.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 02/17/2005] [Accepted: 02/18/2005] [Indexed: 10/25/2022]
Abstract
In the present work the genetic transformation and the expression of gene markers in transgenic Pisolithus tinctorius are reported. The ectomycorrhizae are facultative symbionts of plant roots, which are capable of affording mineral nutrients to its co-host in exchange of fixed carbon. Given the importance of this association (more than 80% of gymnosperms are associated with these fungi), its study from both basic and applied viewpoints is relevant. We have transformed this fungus with reporter genes and analyzed their expression in its saprophytic state. Genetic transformation was performed by microprojectile bombardment and Agrobacterium-mediated transformation. This last method proved to be the more efficient. Southern analysis of biolistic-transformed fungi revealed the random integration of the transgene into the genome. The accumulation of the transcript of the reporter gene was demonstrated by RT-PCR. The visualization of GFP-associated fluorescence in saprophytic mycelia confirmed the expression of the reporter gene. This is the first report on the stable transformation and expression of GFP in the ectomycorrhizal fungus P. tinctorius.
Collapse
Affiliation(s)
- Aída V Rodríguez-Tovar
- Departamento de Biotecnología y Bioingeniería, Irapuato, Centro de Investigación y Estudios Avanzados del IPN., Av. IPN. 2508, San Pedro Zacatenco 07360 México, D.F
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
De Groot PWJ, Ram AF, Klis FM. Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 2005; 42:657-75. [PMID: 15896991 DOI: 10.1016/j.fgb.2005.04.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/04/2005] [Accepted: 04/05/2005] [Indexed: 10/25/2022]
Abstract
The cell walls of many ascomycetous yeasts consist of an internal network of stress-bearing polysaccharides, which serve as a scaffold for a dense external layer of glycoproteins. GPI-modified proteins are the most abundant cell wall proteins and often display a common organization. Their C-terminus can link them covalently to the polysaccharide network, they possess an internal serine- and threonine-rich spacer domain, and the N-terminal region contains a functional domain. Other proteins bind to the polysaccharide network through a mild-alkali-sensitive linkage. Many cell wall proteins are carbohydrate/glycan-modifying enzymes; adhesion proteins are prominent; proteins involved in iron uptake are present, and also specialized proteins that probably help the fungus to survive in its natural environment. The protein composition of the cell wall depends on environmental conditions and developmental stage. We present evidence that the cell wall of mycelial species of the Ascomycotina is similarly organized and contains glycoproteins with comparable functions.
Collapse
Affiliation(s)
- Piet W J De Groot
- Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands
| | | | | |
Collapse
|
21
|
Le Quéré A, Wright DP, Söderström B, Tunlid A, Johansson T. Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and Paxillus involutus (Batsch) Fr. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:659-73. [PMID: 16042012 DOI: 10.1094/mpmi-18-0659] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The formation of ectomycorrhizal (ECM) root tissue is characterized by distinct morphological and developmental stages, such as preinfection and adhesion, mantle, and Hartig net formation. The global pattern of gene expression during these stages in the birch (Betula pendula)-Paxillus involutus ECM association was analyzed using cDNA microarrays. In comparison with nonsymbiotic conditions, 251 fungal (from a total of 1,075) and 138 plant (1,074 in total) genes were found to be differentially regulated during the ECM development. For instance, during mantle and Hartig net development, there were several plant genes upregulated that are normally involved in defense responses during pathogenic fungal challenges. These responses were, at later stages of ECM development, found to be repressed. Other birch genes that showed differential regulation involved several homologs that usually are implicated in water permeability (aquaporins) and water stress tolerance (dehydrins). Among fungal genes differentially upregulated during stages of mantle and Hartig net formation were homologs putatively involved in mitochondrial respiration. In fully developed ECM tissue, there was an upregulation of fungal genes related to protein synthesis and the cytoskeleton assembly machinery. This study highlights complex molecular interactions between two symbionts during the development of an ECM association.
Collapse
Affiliation(s)
- Antoine Le Quéré
- Department of Microbial Ecology, Ecology Building, Lund University, SE-223 62 Lund, Sweden
| | | | | | | | | |
Collapse
|
22
|
Duplessis S, Courty PE, Tagu D, Martin F. Transcript patterns associated with ectomycorrhiza development in Eucalyptus globulus and Pisolithus microcarpus. THE NEW PHYTOLOGIST 2005; 165:599-611. [PMID: 15720670 DOI: 10.1111/j.1469-8137.2004.01248.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Regulated gene expression is an important mechanism for controlling ectomycorrhizal symbiosis development. This study aimed to elucidate the coordination between development of mycorrhiza and the differential gene expression in both partners. We analysed RNA levels from sequential samples of symbiotic tissues of Eucalyptus globulus bicostata and the basidiomycete Pisolithus microcarpus progressing through ectomycorrhiza development using cDNA arrays. We derived groups of coordinately expressed genes using hierarchical and nonhierarchical clustering algorithms. Five major distinct temporal patterns of induction/repression were observed with distinct groups of early, middle-, and late-transcriptionally responsive genes to symbiosis formation. At earliest stages, the differentially expressed fungal genes included cell wall symbiosis-regulated proteins, hydrophobins and mannoproteins, whereas transcripts coding for defense-related proteins were upregulated in plant tissues. Middle- and late-transcriptionally responsive genes coded enzymes of glycolysis, tricarboxylic acid cycle and amino acid biosynthesis, as well as protein synthesis, hormone metabolism and signal transduction components. This investigation confirms and extends earlier results which found that changes in morphology associated with mycorrhizal development were accompanied by changes in transcript patterns, but no ectomycorrhiza-specific genes were detected.
Collapse
Affiliation(s)
- Sébastien Duplessis
- Unité Mixte de Recherche INRA/UHP 1136 'Interactions Arbres/Microorganismes', Institut National de la Recherche Agronomique, Centre de Recherches de Nancy, F-54280 Champenoux, France
| | | | | | | |
Collapse
|
23
|
Nehls U. Ectomycorrhizal development and function - transcriptome analysis. THE NEW PHYTOLOGIST 2003; 159:5-7. [PMID: 33873675 DOI: 10.1046/j.1469-8137.2003.00808.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Uwe Nehls
- Eberhard-Karls-Universität, Physiologische Ökologie der Pflanzen, Auf der Morgenstelle 1, 72076 Tübingen, Germany (email )
| |
Collapse
|
24
|
Peter M, Courty PE, Kohler A, Delaruelle C, Martin D, Tagu D, Frey-Klett P, Duplessis S, Chalot M, Podila G, Martin F. Analysis of expressed sequence tags from the ectomycorrhizal basidiomycetes Laccaria bicolor and Pisolithus microcarpus. THE NEW PHYTOLOGIST 2003; 159:117-129. [PMID: 33873685 DOI: 10.1046/j.1469-8137.2003.00796.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• In an effort to discover genes that are expressed in the ectomycorrhizal basidiomycetes Laccaria bicolor and Pisolithus microcarpus, and in P. microcarpus/Eucalyptus globulus ectomycorrhizas, we have sequenced 1519 and 1681 expressed sequence tags (ESTs) from L. bicolor and P. microcarpus cDNA libraries. • Contig analysis resulted in 905 and 806 tentative consensus sequences (unique transcripts) in L. bicolor and P. microcarpus, respectively. For 36% of the ESTs, significant similarities to sequences in databases were detected. The most abundant transcripts showed no similarity to previously identified genes. Sequence redundancy analysis between different developmental stages indicated that several genes were differentially expressed in free-living mycelium and symbiotic tissues of P. microcarpus. • Based on sequence similarity, 11% of L. bicolor unique transcripts were also detected in P. microcarpus. Similarly, L. bicolor and P. microcarpus shared only a low proportion of common transcripts with other basidiomycetous fungi, such as Pleurotus ostreatus and Agaricus bisporus. Such a low proportion of shared transcripts between basidiomycetes suggests, on the one hand, that the variability of expressed transcripts in different fungi and fungal tissues is considerably high. On the other hand, it might reflect the low number of GenBank entries of basidiomycetous origin and stresses the necessity of an additional sequencing effort. • The present ESTs provide a valuable resource for future research on the development and functioning of ectomycorrhizas.
Collapse
Affiliation(s)
- Martina Peter
- Unité Mixte de Recherche INRA-UHP 1136 'Interactions Arbres/Microorganismes', Centre de Recherches de Nancy, 54280 Champenoux, France
- These authors contributed equally to this work
| | - Pierre-Emmanuel Courty
- Unité Mixte de Recherche INRA-UHP 1136 'Interactions Arbres/Microorganismes', Centre de Recherches de Nancy, 54280 Champenoux, France
- These authors contributed equally to this work
| | - Annegret Kohler
- Unité Mixte de Recherche INRA-UHP 1136 'Interactions Arbres/Microorganismes', Centre de Recherches de Nancy, 54280 Champenoux, France
| | - Christine Delaruelle
- Unité Mixte de Recherche INRA-UHP 1136 'Interactions Arbres/Microorganismes', Centre de Recherches de Nancy, 54280 Champenoux, France
| | - David Martin
- Unité Mixte de Recherche INRA-UHP 1136 'Interactions Arbres/Microorganismes', Centre de Recherches de Nancy, 54280 Champenoux, France
| | - Denis Tagu
- INRA Rennes, Unité Mixte de Recherche BiO3P, BP 35327, 35653 Le Rheu Cedex, France
| | - Pascale Frey-Klett
- Unité Mixte de Recherche INRA-UHP 1136 'Interactions Arbres/Microorganismes', Centre de Recherches de Nancy, 54280 Champenoux, France
| | - Sébastien Duplessis
- Unité Mixte de Recherche INRA-UHP 1136 'Interactions Arbres/Microorganismes', Centre de Recherches de Nancy, 54280 Champenoux, France
| | - Michel Chalot
- Unité Mixte de Recherche INRA-UHP 1136 'Interactions Arbres/Microorganismes', Centre de Recherches de Nancy, 54280 Champenoux, France
| | - Gopi Podila
- Dept. of Biological Sciences, University of Alabama, Huntsville, AL 35899, USA
| | - Francis Martin
- Unité Mixte de Recherche INRA-UHP 1136 'Interactions Arbres/Microorganismes', Centre de Recherches de Nancy, 54280 Champenoux, France
| |
Collapse
|
25
|
Osaku CA, Sassaki GL, Zancan GT, Iacomini M. Studies on neutral exopolysaccharides produced by the ectomycorrhiza Thelephora terrestris. FEMS Microbiol Lett 2002; 216:145-9. [PMID: 12435495 DOI: 10.1111/j.1574-6968.2002.tb11428.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The ectomycorrhizal hymenomycete Thelephora terrestris was grown in synthetic pure culture and the production of extracellular polysaccharide was monitored. The exopolysaccharides were prepared by ethanol precipitation and then fractionated into two components using a DEAE-Sepharose column. A neutral fraction (NeP) was fractionated on Sepharose CL-6B, which resulted in three peaks: NeP1, NeP2 and NeP3. NeP1 was filtered through an exclusion membrane and two polysaccharides were obtained (fractions: NeA, NeB). Fraction NeB was submitted to methylated derivatives and 1H-, 13C- and 2D NMR spectroscopic analyses. These analyses showed a main chain of a (1-->6)-linked alpha-D-Manp units substituted at O-2 by a variety of side chains containing alpha-Fucp, beta-Xylp and beta-Galp residues. The main fraction corresponds to mannan as shown by methylation analysis. Size exclusion chromatography (HPSEC-MALLS) of fraction NeB showed a main component of 15.0 kDa. It contained mannose, galactose, fucose and xylose in a molar ratio of 50:29:11:10. The fractions NeP2 and NeP3 were characterised as a (1-->6)-linked beta-glucan (pustulan) and (1-->3)-linked beta-glucan, respectively.
Collapse
Affiliation(s)
- Clarice A Osaku
- Departamento de Bioquímica, Universidade Federal do Paraná, C P 19046, 81531-990, PR, Curitiba, Brazil
| | | | | | | |
Collapse
|
26
|
Balasubramanian S, Kim SJ, Podila GK. Differential expression of a malate synthase gene during the preinfection stage of symbiosis in the ectomycorrhizal fungus Laccaria bicolor. THE NEW PHYTOLOGIST 2002; 154:517-527. [PMID: 33873436 DOI: 10.1046/j.1469-8137.2002.00391.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• The ectomycorrhiza is a symbiotic organ formed between a filamentous fungus and a plant root, mainly tree roots. Root colonization involves significant shifts in gene expression resulting in metabolic and structural changes in the fungus, including growth toward the plant root, penetration and establishment of the symbiotic organ. • The preinfection stage of the association is crucial as changes that occur throughout mycorrhiza formation are set in motion. Using an in vitro system for identifying preinfection stage symbiosis-regulated genes from the Laccaria bicolor-Pinus resinosa interaction we have identified a malate synthase from L. bicolor (Lb-MS). • The glyoxylate pathway, of which malate synthase is an enzyme, acts as a tricarboxylic acid pathway bypass generating four-carbon compounds for biosynthesis. While it is anticipated that malate synthase would be a part of the genetic and metabolic machinery of any fungus, Lb-MS is of interest because it is symbiosis regulated. • Lb-MS is regulated through interaction between the fungus and the host, by glucose and by the presence of other carbon sources in the medium. Its proposed role in the symbiosis is in the utilization of two carbon compounds formed from catabolic processes in early interaction facilitating hyphal net growth.
Collapse
Affiliation(s)
- Sujata Balasubramanian
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| | - Sung-Jae Kim
- Present address: Department of Medicine and Center for Human Genetics, Duke University Medical Center, PO Box 2903, Durham, NC 27710, USA
| | - Gopi K Podila
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
27
|
Trembley ML, Ringli C, Honegger R. Hydrophobins DGH1, DGH2, and DGH3 in the lichen-forming basidiomycete Dictyonema glabratum. Fungal Genet Biol 2002; 35:247-59. [PMID: 11929214 DOI: 10.1006/fgbi.2001.1325] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dictyonema glabratum is a lichen-forming basidiomycete whose symbiotic phenotype shares similarities to both lichens and its non-lichen-forming relatives. In the photobiont layer of D. glabratum intercellular gas-filled spaces are present even when the lichen is water-saturated. The walls of hyphae lining air cavities are covered by a hydrophobic, rodlet-patterned layer, assumed to be formed by hydrophobins. Hot SDS-insoluble, but trifluoroacetic acid-soluble lichen cell wall extracts contained seven proteins. The N-terminal sequence of the most abundant 14-kDa protein was used to carry out cDNA cloning by RT-PCR. The deduced amino acid sequence of the amplified fragment encoded a class I hydrophobin, called DGH1. The cDNA sequence encoding the signal peptide was cloned by RACE-PCR, which also coamplified cDNA fragments encoding two additional class I hydrophobins, DGH2 and DGH3. The three proteins share 54 to 66% amino acid identity. The D. glabratum hydrophobin extract containing either all proteins or primarily DGH1 self-assembled and formed a rodlet mosaic similar to the one observed in situ. Concentration of the protein extract was shown to influence the length of the self-assembled rodlets.
Collapse
Affiliation(s)
- Marcella L Trembley
- Institute of Plant Biology, University of Zurich, Zurich, CH-8008, Switzerland
| | | | | |
Collapse
|
28
|
Mankel A, Krause K, Kothe E. Identification of a hydrophobin gene that is developmentally regulated in the ectomycorrhizal fungus Tricholoma terreum. Appl Environ Microbiol 2002; 68:1408-13. [PMID: 11872494 PMCID: PMC123729 DOI: 10.1128/aem.68.3.1408-1413.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2001] [Accepted: 11/28/2001] [Indexed: 11/20/2022] Open
Abstract
The symbiosis between ectomycorrhizal fungi and trees is an essential part of forest ecology and depends entirely on the communication between the two partners for establishing and maintaining the relationship. The identification and characterization of differentially expressed genes is a step to identifying such signals and to understanding the regulation of this process. We determined the role of hydrophobins produced by Tricholoma terreum in mycorrhiza formation and hyphal development. A hydrophobin was purified from culture supernatant, and the corresponding gene was identified. The gene is expressed in aerial mycelium and in mycorrhiza. By using a heterologous antiserum directed against a hydrophobin found in the aerial mycelium of Schizophyllum commune, we detected a hydrophobin in the symbiosis between T. terreum and its native pine host Pinus sylvestris. The hydrophobin was found in aerial mycelium of the hyphal mantle and also in the Hartig net hyphae, which form the interface between both partners. Interestingly, this was not the case in the interaction of T. terreum with a host of low compatibility, the spruce Picea abies. The differential expression with respect to host was verified at the transcriptional level by competitive PCR. The differential protein accumulation pattern with respect to host compatibility seen by immunofluorescence staining can thus be attributed at least in part to transcriptional control of the hyd1 gene.
Collapse
Affiliation(s)
- Angela Mankel
- Genetics, Philipps-University Marburg, 35032 Marburg, Germany
| | | | | |
Collapse
|
29
|
Soragni E, Bolchi A, Balestrini R, Gambaretto C, Percudani R, Bonfante P, Ottonello S. A nutrient-regulated, dual localization phospholipase A(2) in the symbiotic fungus Tuber borchii. EMBO J 2001; 20:5079-90. [PMID: 11566873 PMCID: PMC125632 DOI: 10.1093/emboj/20.18.5079] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Important morphogenetic transitions in fungi are triggered by starvation-induced changes in the expression of structural surface proteins. Here, we report that nutrient deprivation causes a strong and reversible up-regulation of TbSP1, a surface-associated, Ca(2+)-dependent phospholipase from the mycorrhizal fungus Tuber borchii. TbSP1 is the first phospholipase A(2) to be described in fungi and identifies a novel class of phospholipid-hydrolyzing enzymes. The TbSP1 phospholipase, which is synthesized initially as a pre-protein, is processed efficiently and secreted during the mycelial phase. The mature protein, however, also localizes to the inner cell wall layer, close to the plasma membrane, in both free-living and symbiosis-engaged hyphae. It thus appears that a dual localization phospholipase A(2) is involved in the adaptation of a symbiotic fungus to conditions of persistent nutritional limitation. Moreover, the fact that TbSP1-related sequences are present in Streptomyces and Neurospora, and not in wholly sequenced non-filamentous microorganisms, points to a general role for TbSP1 phospholipases A(2) in the organization of multicellular filamentous structures in bacteria and fungi.
Collapse
Affiliation(s)
- Elisabetta Soragni
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Parco Area delle Scienze 23/A, I-43100 Parma and
Centro di Studio sulla Micologia del Terreno (CNR) and Dipartimento di Biologia Vegetale, Università di Torino, Vialle Mattioli 25, I-10125 Torino, Italy Present address: Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA Corresponding author e-mail:
| | | | - Raffaella Balestrini
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Parco Area delle Scienze 23/A, I-43100 Parma and
Centro di Studio sulla Micologia del Terreno (CNR) and Dipartimento di Biologia Vegetale, Università di Torino, Vialle Mattioli 25, I-10125 Torino, Italy Present address: Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA Corresponding author e-mail:
| | | | | | - Paola Bonfante
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Parco Area delle Scienze 23/A, I-43100 Parma and
Centro di Studio sulla Micologia del Terreno (CNR) and Dipartimento di Biologia Vegetale, Università di Torino, Vialle Mattioli 25, I-10125 Torino, Italy Present address: Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA Corresponding author e-mail:
| | - Simone Ottonello
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Parco Area delle Scienze 23/A, I-43100 Parma and
Centro di Studio sulla Micologia del Terreno (CNR) and Dipartimento di Biologia Vegetale, Università di Torino, Vialle Mattioli 25, I-10125 Torino, Italy Present address: Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA Corresponding author e-mail:
| |
Collapse
|
30
|
Hahn M, Mendgen K. Signal and nutrient exchange at biotrophic plant-fungus interfaces. CURRENT OPINION IN PLANT BIOLOGY 2001; 4:322-7. [PMID: 11418342 DOI: 10.1016/s1369-5266(00)00180-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Biotrophic interfaces are formed in mutualistic and parasitic plant-fungus interactions. They result from coordinated developmental programs in both partners and represent specialized platforms for the exchange of information and nutritional metabolites. New data on the establishment and the components of functional interfaces have been obtained in a number of ways. First, by isolation of symbiotically defective mutants; second, by characterization of new genes and their products; and, third, by the identification and localization of components of biotrophic interfaces, such as cell-wall proteins, H+-ATPases and nutrient transporters.
Collapse
Affiliation(s)
- M Hahn
- University of Kaiserslautern, Department of Biology, Post Box 3049, 67653, Kaiserslautern, Germany.
| | | |
Collapse
|
31
|
Martin F, Duplessis S, Ditengou F, Lagrange H, Voiblet C, Lapeyrie F. Developmental cross talking in the ectomycorrhizal symbiosis: signals and communication genes. THE NEW PHYTOLOGIST 2001; 151:145-154. [PMID: 33873382 DOI: 10.1046/j.1469-8137.2001.00169.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Development of ectomycorrhizas involves multiple genes that are implicated in a complex series of interdependent, sequential steps. Current research into ectomycorrhiza development and functioning is aimed at understanding this plant-microbe interaction in a framework of the developmental and physiological processes that underlie colonization and morphogenesis. After a brief introduction to the ectomycorrhizal symbiosis, the present article highlights recent work on the early signal exchange taking place between symbionts, and sketches the way functional genomics is altering our thinking about changes in gene expression during the early steps of the ectomycorrhiza development.
Collapse
Affiliation(s)
- Francis Martin
- Equipe de Microbiologie Forestière, Institut National de la Recherche Agronomique, Centre de Recherches de Nancy, 54280 Champenoux, France
| | - Sébastien Duplessis
- Equipe de Microbiologie Forestière, Institut National de la Recherche Agronomique, Centre de Recherches de Nancy, 54280 Champenoux, France
| | - Frank Ditengou
- Equipe de Microbiologie Forestière, Institut National de la Recherche Agronomique, Centre de Recherches de Nancy, 54280 Champenoux, France
| | - Hubert Lagrange
- Equipe de Microbiologie Forestière, Institut National de la Recherche Agronomique, Centre de Recherches de Nancy, 54280 Champenoux, France
| | - Catherine Voiblet
- Equipe de Microbiologie Forestière, Institut National de la Recherche Agronomique, Centre de Recherches de Nancy, 54280 Champenoux, France
| | - Frédéric Lapeyrie
- Equipe de Microbiologie Forestière, Institut National de la Recherche Agronomique, Centre de Recherches de Nancy, 54280 Champenoux, France
| |
Collapse
|
32
|
Voiblet C, Duplessis S, Encelot N, Martin F. Identification of symbiosis-regulated genes in Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001. [PMID: 11169194 DOI: 10.1111/j.1365-313x.2001.00953.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ectomycorrhiza development alters gene expression in the fungal and plant symbionts. The identification of a large number of genes expressed exclusively or predominantly in the symbiosis will contribute greatly to the understanding of the development of the ectomycorrhizal symbiosis. We have constructed a cDNA library of 4-day-old Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza and sequenced 850 cDNAs cloned randomly or obtained through suppression subtractive hybridization (SSH). Based on the absence of a database match, 43% of the ectomycorrhiza ESTs are coding for novel genes. At the developmental stage analysed (fungal sheath formation), the majority of the identified sequences represented 'housekeeping' proteins, i.e. proteins involved in gene/protein expression, cell-wall proteins, metabolic enzymes, and components of signalling systems. We screened arrayed cDNAs to identify symbiosis-regulated genes by using differential hybridization. Comparisons of signals from free-living partners and symbiotic tissues revealed significant differences in expression levels (differential expression ratio >2.5) for 17% of the genes analysed. No ectomycorrhiza-specific gene was detected. The results successfully demonstrate the use of the cDNA array and SSH systems as general approaches for dissecting symbiosis development, and provide the first global picture of the cellular functions operating in ectomycorrhiza.
Collapse
Affiliation(s)
- C Voiblet
- Equipe de Microbiologie Forestière, Institut National de la Recherche Agronomique, Centre de Recherches de Nancy, 54280 Champenoux, France
| | | | | | | |
Collapse
|
33
|
Tagu D, De Bellis R, Balestrini R, De Vries OMH, Piccoli G, Stocchi V, Bonfante P, Martin F. Immunolocalization of hydrophobin HYDPt-1 from the ectomycorrhizal basidiomycete Pisolithus tinctorius during colonization of Eucalyptus globulus roots. THE NEW PHYTOLOGIST 2001; 149:127-135. [PMID: 33853243 DOI: 10.1046/j.1469-8137.2001.00009.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• The immunolocalization of one of the hydrophobins of Pisolithustinctorius (HYDPt-1) is reported. Hydrophobin proteins play key roles in adhesion and aggregation of fungal hyphae, and it is already known that formation of ectomycorrhizas on eucalypt roots enhances the accumulation of hydrophobin mRNAs in the mycelium of Pisolithus tinctorius. • Purification of SDS-insoluble proteins from the mycelium of P. tinctorius showed the presence of a 13 kDa polypeptide with properties of class I hydrophobin. • Polyconal antibodies were raised against a recombinant HYDPt-1 polypeptide, and these were used for immunofluorescence-coupled transmission electron microscopy. • HYDPt-1 is a cell wall protein located at the surface of the hyphae with no preferential accumulation in the fungal cells of the different tissues of the ectomycorrhiza (i.e. extraradical hyphae, mantle or Hartig net).
Collapse
Affiliation(s)
- D Tagu
- I.N.R.A.-Nancy, Microbiologie Forestière, 54280 Champenoux, France
| | - R De Bellis
- Istituto di Chimica Biologica 'Giorgio Fornaini', Università degli Studi di Urbino, via Saffi 2, 61029 Urbino (PS), Italy
| | - R Balestrini
- Dipartimento di Biologia Vegetale, Università di Torino and CMST - CNR, viale Mattioli 25, 10125 Torino, Italy
| | - O M H De Vries
- Molecular Plant Biology Laboratory, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - G Piccoli
- Istituto di Chimica Biologica 'Giorgio Fornaini', Università degli Studi di Urbino, via Saffi 2, 61029 Urbino (PS), Italy
| | - V Stocchi
- Istituto di Chimica Biologica 'Giorgio Fornaini', Università degli Studi di Urbino, via Saffi 2, 61029 Urbino (PS), Italy
| | - P Bonfante
- Dipartimento di Biologia Vegetale, Università di Torino and CMST - CNR, viale Mattioli 25, 10125 Torino, Italy
| | - F Martin
- I.N.R.A.-Nancy, Microbiologie Forestière, 54280 Champenoux, France
| |
Collapse
|
34
|
|
35
|
Garnero L, Bonfante P. TMpcp: a Tuber magnatum gene which encodes a putative mitochondrial phosphate carrier. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2000; 10:407-10. [PMID: 10826699 DOI: 10.3109/10425170009015610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Little is known about the genome of Tuber, Ascomycetes which comprise a number of ectomycorrhizal species. Screening of a genomic library of Tuber magnatum led to identification of a chitin synthase gene (chs). On sequencing upstream of it in the same phage, we found a 2000 bp long fragment that proved to contain a hypothetical gene with high homology with mitochondrial phosphate carriers from human and bovine heart, and from Saccharomyces cerevisiae. The sequence contains two putative introns and its open reading frame encodes for a protein 305 amino acids long. A primary sequence analysis revealed 6 hydrophobic segments and a signature pattern, similar to that of other mitochondrial carriers.
Collapse
Affiliation(s)
- L Garnero
- Dipartimento di Biologia Vegetale--Università i di Torino, Italy
| | | |
Collapse
|