1
|
Lagorgette L, Bogdanova DA, Belotserkovskaya EV, Garrido C, Demidov ON. PP2C phosphatases-terminators of suicidal thoughts. Cell Death Dis 2024; 15:919. [PMID: 39702569 DOI: 10.1038/s41419-024-07269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
Cell death and related signaling pathways are essential during development and in various physiological and pathological conditions. Post-translational modifications such as ubiquitination and phosphorylation play an important role in these signaling pathways. The involvement of kinases - enzymes that catalyze protein phosphorylation - in cell death signaling has been extensively studied. On the other hand, not many studies have been devoted to analyzing the role in cell death of phosphatases, enzymes involved in the removal of phosphorylated residues added to proteins by kinases. Obviously, the two opposite reactions, phosphorylation and dephosphorylation, are equally important in the regulation of protein functions and subsequently in the execution of the cell death program. Here, we have summarized recent work on the involvement of serine-threonine PP2C phosphatases in cell death pathways, senescence and autophagy, focusing in particular on the most studied phosphatase PPM1D (PP2Cδ) as an example of the regulatory role of PP2Cs in cell death. The review should help to draw attention to the importance of PP2C family phosphatases in cell death checkpoints and to discover new targets for drug development.
Collapse
Affiliation(s)
- Lisa Lagorgette
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale contre le Cancer », University of Burgundy, Dijon, France
- University of Burgundy, Faculty of Medicine and Pharmacy, Dijon, France
| | - Daria A Bogdanova
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius University of Science and Technology, Sochi, Russia
- Institute of Cytology RAS, St. Petersburg, Russia
| | | | - Carmen Garrido
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale contre le Cancer », University of Burgundy, Dijon, France
- University of Burgundy, Faculty of Medicine and Pharmacy, Dijon, France
- Center for Cancer Georges-François Leclerc, Dijon, France
| | - Oleg N Demidov
- INSERM, UMR 1231, Laboratoire d'Excellence LipSTIC and « Equipe labellisée par la Ligue Nationale contre le Cancer », University of Burgundy, Dijon, France.
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius University of Science and Technology, Sochi, Russia.
- Institute of Cytology RAS, St. Petersburg, Russia.
| |
Collapse
|
2
|
Fujiwara Y, Takahashi RU, Saito M, Umakoshi M, Shimada Y, Koyama K, Yatabe Y, Watanabe SI, Koyota S, Minamiya Y, Tahara H, Kono K, Shiraishi K, Kohno T, Goto A, Tsuchiya N. Oncofetal IGF2BP3-mediated control of microRNA structural diversity in the malignancy of early-stage lung adenocarcinoma. Proc Natl Acad Sci U S A 2024; 121:e2407016121. [PMID: 39196622 PMCID: PMC11388381 DOI: 10.1073/pnas.2407016121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
The nature of microRNA (miRNA) dysfunction in carcinogenesis remains controversial because of the complex connection between miRNA structural diversity and biological processes. Here, we found that oncofetal IGF2BP3 regulates the selective production of a subset of 3'-isoforms (3'-isomiRs), including miR-21-5p and Let-7 family, which induces significant changes in their cellular seed occupancy and structural components, establishing a cancer-specific gene expression profile. The D-score, reflecting dominant production of a representative miR-21-5p+C (a 3'-isomiR), discriminated between clinical early-stage lung adenocarcinoma (LUAD) cases with low and high recurrence risks, and was associated with molecular features of cell cycle progression, epithelial-mesenchymal transition pressure, and immune evasion. We found that IGF2BP3 controls the production of miR-21-5p+C by directing the nuclear Drosha complex to select the cleavage site. IGF2BP3 was also involved in the production of 3'-isomiRs of miR-425-5p and miR-454-3p. IGF2BP3-regulated these three miRNAs are suggested to be associated with the regulation of p53, TGF-β, and TNF pathways in LUAD. Knockdown of IGF2BP3 also induced a selective upregulation of Let-7 3'-isomiRs, leading to increased cellular Let-7 seed occupancy and broad repression of its target genes encoding cell cycle regulators. The D-score is an index that reflects this cellular situation. Our results suggest that the aberrant regulation of miRNA structural diversity is a critical component for controlling cellular networks, thus supporting the establishment of a malignant gene expression profile in early stage LUAD.
Collapse
Affiliation(s)
- Yuko Fujiwara
- Laboratory of Molecular Carcinogenesis, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Ryou-U Takahashi
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Michinobu Umakoshi
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Yoko Shimada
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Kei Koyama
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Souichi Koyota
- Molecular Medicine Laboratory, Bioscience Education and Research Support Center, Akita University, Akita 010-8543, Japan
| | - Yoshihiro Minamiya
- Department of Thoracic Surgery, Akita University Hospital, Akita 010-8543, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita 010-8543, Japan
| | - Naoto Tsuchiya
- Laboratory of Molecular Carcinogenesis, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
3
|
Zhang L, Hsu JI, Goodell MA. PPM1D in Solid and Hematologic Malignancies: Friend and Foe? Mol Cancer Res 2022; 20:1365-1378. [PMID: 35657598 PMCID: PMC9437564 DOI: 10.1158/1541-7786.mcr-21-1018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 01/07/2023]
Abstract
In the face of constant genomic insults, the DNA damage response (DDR) is initiated to preserve genome integrity; its disruption is a classic hallmark of cancer. Protein phosphatase Mg2+/Mn2+-dependent 1D (PPM1D) is a central negative regulator of the DDR that is mutated or amplified in many solid cancers. PPM1D overexpression is associated with increased proliferative and metastatic behavior in multiple solid tumor types and patients with PPM1D-mutated malignancies have poorer prognoses. Recent findings have sparked an interest in the role of PPM1D in hematologic malignancies. Acquired somatic mutations may provide hematopoietic stem cells with a competitive advantage, leading to a substantial proportion of mutant progeny in the peripheral blood, an age-associated phenomenon termed "clonal hematopoiesis" (CH). Recent large-scale genomic studies have identified PPM1D to be among the most frequently mutated genes found in individuals with CH. While PPM1D mutations are particularly enriched in patients with therapy-related myeloid neoplasms, their role in driving leukemic transformation remains uncertain. Here, we examine the mechanisms through which PPM1D overexpression or mutation may drive malignancy by suppression of DNA repair, cell-cycle arrest, and apoptosis. We also discuss the divergent roles of PPM1D in the oncogenesis of solid versus hematologic cancers with a view to clinical implications and new therapeutic avenues.
Collapse
Affiliation(s)
- Linda Zhang
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Joanne I. Hsu
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Margaret A. Goodell
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Corresponding Author: Margaret A. Goodell, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030. E-mail:
| |
Collapse
|
4
|
MiR-145-5p Inhibits the Invasion of Prostate Cancer and Induces Apoptosis by Inhibiting WIP1. JOURNAL OF ONCOLOGY 2021; 2021:4412705. [PMID: 34899906 PMCID: PMC8660234 DOI: 10.1155/2021/4412705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
Prostate cancer (PCa) is a common malignant tumor of the male genitourinary system that seriously affects the quality of life of patients. Studying the pathogenesis and therapeutic targets of PCa is important. In this study, we investigated the role of miR-145-5p in PCa and its potential molecular mechanisms. The expression levels of miR-145-5p in PCa tissues and adjacent control tissues were detected by real-time quantitative polymerase chain reaction. The effects of miR-145-5p overexpression on PCa were studied using cell proliferation, migration, and invasion experiments. Furthermore, WIP1 was the target gene of miR-145-5p through the bioinformatics website and dual-luciferase reporter gene experiment. Further studies found that WIP1 downregulation could inhibit the proliferation, invasion, and cloning of PCa cells. Overexpression of WIP1 reversed the anticancer effects of miR-145. The anticancer effect of miR-145 was achieved by inhibiting the PI3K/AKT signaling pathway and upregulating ChK2 and p-p38MAPK. Taken together, these results confirmed that miR-145-5p inhibited the growth and metastasis of PCa cells by inhibiting the expression of proto-oncogene WIP1, thereby playing a role in tumor suppression in PCa and may become a potential therapeutic target for the treatment of PCa.
Collapse
|
5
|
Yu Z, Song Y, Cai M, Jiang B, Zhang Z, Wang L, Jiang Y, Zou L, Liu X, Yu N, Mao X, Peng C, Liu S. PPM1D is a potential prognostic biomarker and correlates with immune cell infiltration in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:21294-21308. [PMID: 34470916 PMCID: PMC8457582 DOI: 10.18632/aging.203459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Background: Protein phosphatase magnesium-dependent 1 delta (PPM1D), also referred to as wild-type p53-induced phosphatase 1 (Wip1) or protein phosphatase 2C delta (PP2Cδ), is an oncogenic nuclear serine/threonine phosphatase belonging to the PP2C family. However, the knowledge regarding PPM1D mRNA expression, tumor immunity, and the prognosis in hepatocellular carcinoma (HCC) is scanty. Methods: We analyzed PPM1D, including its expression in both the normal and tumor tissue using the Sangerbox database and Tumor Immune Estimation Resource (TIMER). We evaluated its correlation with prognosis in different tumor types by the Kaplan-Meier plotter and Gene Expression Profiling Interactive Analysis (GEPIA). The correlations between PPM1D and the cancer immune infiltrates were determined using TIMER. The correlations between PPM1D expression and gene marker sets of the immune infiltrates were established by both the TIMER and GEPIA. Immunohistochemistry was performed to detect the expression of Wip1 protein encoded by PPM1D in HCC, and the relationship between Wip1 expression and the prognosis of HCC were analyzed. Results: We found out that PPM1D mRNA expression was significantly higher in several human cancers, including HCC, than in the corresponding normal human tissues. The PPM1D mRNA high expression in HCC was significantly correlated with poor prognosis. The expression was associated with progression-free survival (PFS) in multiple HCC patients’ cohorts (PFS HR = 1.5, P = 0.0066). This was especially in early stage (stage 1) and AJCC_T 1 of HCC. Besides, PPM1D mRNA expression indicated a positive correlation with tumor-infiltrating Monocytes, tumor-associated macrophages (TAMs), M1 Macrophage, M2 Macrophage, dendritic cells (DCs), T-helper (Th) and Treg. Wip1 was higher in HCC than paracancerous tissue. High expression of Wip1 was associated with poor prognosis of HCC. Conclusion: Our findings suggested that PPM1D mRNA is critical in activating tumor immunity. Besides, they implied that PPM1D could be a potential prognostic biomarker for cancer progression. Moreover, it correlated with tumor immune cell infiltration in HCC.
Collapse
Affiliation(s)
- Zhangtao Yu
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China.,Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha 410005, Hunan Province, China.,Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Yinghui Song
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China.,Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha 410005, Hunan Province, China.,Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha 410005, Hunan Province, China.,Central Laboratory of Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Mengting Cai
- Department of Nuclear Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Bo Jiang
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China.,Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha 410005, Hunan Province, China.,Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Zhihua Zhang
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China.,Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha 410005, Hunan Province, China.,Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Le Wang
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China.,Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha 410005, Hunan Province, China.,Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Yu Jiang
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China.,Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha 410005, Hunan Province, China.,Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Lianhong Zou
- Hunan Provincial Institute of Emergency Medicine, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China
| | - Xiehong Liu
- Hunan Provincial Institute of Emergency Medicine, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China
| | - Nanhui Yu
- Hunan Provincial Institute of Emergency Medicine, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China
| | - Xianhai Mao
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China.,Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha 410005, Hunan Province, China.,Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China.,Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha 410005, Hunan Province, China.,Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha 410005, Hunan Province, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Research Center of Biliary Disease, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha 410005, Hunan Province, China.,Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha 410005, Hunan Province, China.,Biliary Disease Research Laboratory of Hunan Provincial People's Hospital, Key Laboratory of Hunan Normal University, Changsha 410005, Hunan Province, China.,Central Laboratory of Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan Province, China
| |
Collapse
|
6
|
Liu SC, Zhang M, Gan P, Yu HF, Ding CF, Zhang RP, He ZY, Hu WY. Wip1 phosphatase deficiency impairs spatial learning and memory. Biochem Biophys Res Commun 2020; 533:1309-1314. [PMID: 33051059 DOI: 10.1016/j.bbrc.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022]
Abstract
Spatial learning and memory are typically assessed to evaluate hippocampus-dependent cognitive and memory functions in vivo. Protein phosphorylation and dephosphorylation by kinases and phosphatases play critical roles in spatial learning and memory. Here we report that the Wip1 phosphatase is essential for spatial learning, with knockout mice lacking Wip1 phosphatase exhibiting dysfunctional spatial cognition. Aberrant phosphorylation of the Wip1 substrates p38, ATM, and p53 were observed in the hippocampi of Wip1-/- mice, but only p38 inhibition reversed impairments in long-term potentiation in Wip1-knockout mice. p38 inhibition consistently ameliorated the spatial learning dysfunction caused by Wip1 deficiency. Our results demonstrate that deletion of Wip1 phosphatase impairs hippocampus-dependent spatial learning and memory, with aberrant downstream p38 phosphorylation involved in this process and providing a potential therapeutic target.
Collapse
Affiliation(s)
- Si-Cheng Liu
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650228, China; Second Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Ming Zhang
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650228, China
| | - Ping Gan
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Hao-Fei Yu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Cai-Feng Ding
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Rong-Ping Zhang
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Zhi-Yong He
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650228, China.
| | - Wei-Yan Hu
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, 650228, China; School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
7
|
Shi L, Tian Q, Feng C, Zhang P, Zhao Y. The biological function and the regulatory roles of wild-type p53-induced phosphatase 1 in immune system. Int Rev Immunol 2020; 39:280-291. [PMID: 32696682 DOI: 10.1080/08830185.2020.1795153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Wild-type p53-induced phosphatase 1 (WIP1) belongs to the protein phosphatase 2C (PP2C) family and is a mammalian serine/threonine specific protein phosphatase to dephosphorylate numerous signaling molecules. Mammalian WIP1 regulates a wide array of targeting molecules and plays key regulatory roles in many cell processes such as DNA damage and repair, cell proliferation, differentiation, apoptosis, and senescence. WIP1 promotes the formation and development of tumors as an oncogene and a negative regulator of p53. It is also involved in the regulation of aging, neurological diseases and immune diseases. Recent studies demonstrated the critical roles of WIP1 in the differentiation and function of immune cells including T cells, neutrophils and macrophages. In the present manuscript, we briefly summarized the expression patterns, biological function and the target molecules and signal pathways of WIP1 and mainly discussed the latest advances on the regulatory effects of WIP1 in the immune system. WIP1 may be a potential target molecule to treat cancers and immune diseases such as allergic asthma.
Collapse
Affiliation(s)
- Lu Shi
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qianchuan Tian
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chang Feng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Metal-dependent Ser/Thr protein phosphatase PPM family: Evolution, structures, diseases and inhibitors. Pharmacol Ther 2020; 215:107622. [PMID: 32650009 DOI: 10.1016/j.pharmthera.2020.107622] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Protein phosphatases and kinases control multiple cellular events including proliferation, differentiation, and stress responses through regulating reversible protein phosphorylation, the most important post-translational modification. Members of metal-dependent protein phosphatase (PPM) family, also known as PP2C phosphatases, are Ser/Thr phosphatases that bind manganese/magnesium ions (Mn2+/Mg2+) in their active center and function as single subunit enzymes. In mammals, there are 20 isoforms of PPM phosphatases: PPM1A, PPM1B, PPM1D, PPM1E, PPM1F, PPM1G, PPM1H, PPM1J, PPM1K, PPM1L, PPM1M, PPM1N, ILKAP, PDP1, PDP2, PHLPP1, PHLPP2, PP2D1, PPTC7, and TAB1, whereas there are only 8 in yeast. Phylogenetic analysis of the DNA sequences of vertebrate PPM isoforms revealed that they can be divided into 12 different classes: PPM1A/PPM1B/PPM1N, PPM1D, PPM1E/PPM1F, PPM1G, PPM1H/PPM1J/PPM1M, PPM1K, PPM1L, ILKAP, PDP1/PDP2, PP2D1/PHLPP1/PHLPP2, TAB1, and PPTC7. PPM-family members have a conserved catalytic core region, which contains the metal-chelating residues. The different isoforms also have isoform specific regions within their catalytic core domain and terminal domains, and these regions may be involved in substrate recognition and/or functional regulation of the phosphatases. The twenty mammalian PPM phosphatases are involved in regulating diverse cellular functions, such as cell cycle control, cell differentiation, immune responses, and cell metabolism. Mutation, overexpression, or deletion of the PPM phosphatase gene results in abnormal cellular responses, which lead to various human diseases. This review focuses on the structures and biological functions of the PPM-phosphatase family and their associated diseases. The development of specific inhibitors against the PPM phosphatase family as a therapeutic strategy will also be discussed.
Collapse
|
9
|
Deng W, Li J, Dorrah K, Jimenez-Tapia D, Arriaga B, Hao Q, Cao W, Gao Z, Vadgama J, Wu Y. The role of PPM1D in cancer and advances in studies of its inhibitors. Biomed Pharmacother 2020; 125:109956. [PMID: 32006900 PMCID: PMC7080581 DOI: 10.1016/j.biopha.2020.109956] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/08/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022] Open
Abstract
A greater understanding of factors causing cancer initiation, progression and evolution is of paramount importance. Among them, the serine/threonine phosphatase PPM1D, also referred to as wild-type p53-induced phosphatase 1 (Wip1) or protein phosphatase 2C delta (PP2Cδ), is emerging as an important oncoprotein due to its negative regulation on a number of crucial cancer suppressor pathways. Initially identified as a p53-regulated gene, PPM1D has been afterwards found amplified and more recently mutated in many human cancers such as breast cancer. The latest progress in this field further reveals that selective inhibition of PPM1D to delay tumor onset or reduce tumor burden represents a promising anti-cancer strategy. Here, we review the advances in the studies of the PPM1D activity and its relevance to various cancers, and recent progress in development of PPM1D inhibitors and discuss their potential application in cancer therapy. Consecutive research on PPM1D and its relationship with cancer is essential, as it ultimately contributes to the etiology and treatment of cancer.
Collapse
Affiliation(s)
- Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Jieqing Li
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Kimberly Dorrah
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Denise Jimenez-Tapia
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Brando Arriaga
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Wei Cao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Zhaoxia Gao
- Department of General Surgery, 5th Hospital of Wuhan, Wuhan, 430050, China; Department of Surgery, Johns Hopkins Hospital Bayview Campus, Baltimore, MD, USA
| | - Jay Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Wang B, Zhang M, Che J, Li K, Mu Y, Liu Z. Wild-type p53-induced phosphatase 1 (WIP1) regulates the proliferation of swine Sertoli cells through P53. Reprod Fertil Dev 2020; 32:1350-1356. [PMID: 33287951 DOI: 10.1071/rd20215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/29/2020] [Indexed: 11/23/2022] Open
Abstract
Wild-type p53-induced phosphatase 1 (WIP1) plays an oncogenic function by increasing cell proliferation in various cancer types. Deficiency in WIP1 expression leads to male infertility, possibly by impairing the blood-testis barrier and spermatogenesis. However, how WIP1 functions in the Sertoli cells to affect male reproduction remains unclear. Thus, in the present study we used a swine Sertoli cell line to investigate whether WIP1 regulated the proliferation of Sertoli cells to participate in male reproduction. The WIP1 inhibitor GSK2830371, WIP1-short interference (si) RNAs and an upstream microRNA (miR-16) were used to inhibit the expression of WIP1, after which the proliferation of swine Sertoli cells, P53 expression and the levels of P53 phosphorylation were determined. Inhibiting WIP1 expression suppressed swine Sertoli cell proliferation, increased P53 expression and increased levels of P53 phosphorylation. In addition, overexpression of miR-16 in swine Sertoli cells resulted in a decrease in WIP1 expression and increases in both P53 expression and P53 phosphorylation. Together, these findings suggest that WIP1 positively regulates the proliferation of swine Sertoli cells by inhibiting P53 phosphorylation, and the miR-16 is likely also involved by targeting WIP1.
Collapse
Affiliation(s)
- Bingyuan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingrui Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; and College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jingjing Che
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yulian Mu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; and Corresponding authors. ;
| | - Zhiguo Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; and Corresponding authors. ;
| |
Collapse
|
11
|
Niu P, Wei Y, Gao Q, Zhang X, Hu Y, Qiu Y, Mu Y, Li K. Male Fertility Potential Molecular Mechanisms Revealed by iTRAQ-Based Quantitative Proteomic Analysis of the Epididymis from Wip1−/− Mice. ACTA ACUST UNITED AC 2019; 23:54-66. [DOI: 10.1089/omi.2018.0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pengxia Niu
- Pig Genetic Engineering and Germplasm Innovation, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yinghui Wei
- Pig Genetic Engineering and Germplasm Innovation, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Gao
- Pig Genetic Engineering and Germplasm Innovation, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Zhang
- Pig Genetic Engineering and Germplasm Innovation, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanqing Hu
- Pig Genetic Engineering and Germplasm Innovation, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiqing Qiu
- Pig Genetic Engineering and Germplasm Innovation, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulian Mu
- Pig Genetic Engineering and Germplasm Innovation, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kui Li
- Pig Genetic Engineering and Germplasm Innovation, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Li K, Liu Y, Xu S, Wang J. PPM1D Functions as Oncogene and is Associated with Poor Prognosis in Esophageal Squamous Cell Carcinoma. Pathol Oncol Res 2018; 26:387-395. [PMID: 30374621 DOI: 10.1007/s12253-018-0518-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022]
Abstract
Mounting evidence has demonstrated that PPM1D participates in the development and progression of a wide variety of tumors. However, its precise roles in esophageal squamous cell carcinoma (ESCC) remain under investigation. Here, UALCAN, an interactive web-portal to perform the expression analyses of PPM1D using TCGA gene expression data, and PPM1D high expression was exhibited in primary esophageal cancer. Further investigation revealed that PPM1D expression was obviously higher in ESCC tissues than in normal tissues (P < 0.01), which was consistent with the results from real-time qPCR and Western blotting in ESCC tissues and paired normal esophageal tissues. Besides, PPM1D expression was closely correlated with TNM staging, tumor differentiation and lymph node metastasis (P < 0.01), but not related to the patients' gender and age (P > 0.05). Notably, PPM1D expression in metastatic ESCC patients was markedly higher than that in non-metastatic ESCC patients (P < 0.01), and the ESCC patients with high PPM1D expression predicted poor prognosis. Multivariate assay demonstrated that PPM1D and lymph node metastasis were considered as independent prognostic factors for the ESCC patients. These findings suggest PPM1D plays a pivotal important role in onset and progression of ESCC, and may be a new biomarker for metastasis and prognosis of the ESCC patients.
Collapse
Affiliation(s)
- Ke Li
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127th Dongming Rd, Zhengzhou, Henan Province, 450008, People's Republic of China
| | - Ying Liu
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127th Dongming Rd, Zhengzhou, Henan Province, 450008, People's Republic of China
| | - Shuning Xu
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127th Dongming Rd, Zhengzhou, Henan Province, 450008, People's Republic of China
| | - Jufeng Wang
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127th Dongming Rd, Zhengzhou, Henan Province, 450008, People's Republic of China.
| |
Collapse
|
13
|
Rasmussen MK, Nielsen J, Kjellerup RB, Andersen SM, Rittig AH, Johansen C, Iversen L, Gesser B. Protein phosphatase 2Cδ/Wip1 regulates phospho-p90RSK2 activity in lesional psoriatic skin. J Inflamm Res 2017; 10:169-180. [PMID: 29290690 PMCID: PMC5735993 DOI: 10.2147/jir.s152869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objectives P90 ribosomal S6 kinase (RSK) 1 and 2 are serine/threonine protein kinases believed to mediate proliferation and apoptosis via the extracellular signal-regulated kinases (ERK1/2) signaling pathway. Macrophage migration inhibitory factor (MIF) and epidermal growth factor (EGF) are activators of this pathway and are elevated in the serum of patients with psoriasis compared with healthy controls. Studies on COS-7 cell cultures have shown that protein phosphatase 2Cδ (PP2Cδ) decreases the activity of RSK2 following EGF stimulation. We therefore hypothesize that PP2Cδ regulates RSK2 activity in psoriasis. Methods In paired biopsies from nonlesional (NL) and lesional (L) skins, we analyzed the level of RSK1, 2 phosphorylation and the expression of PP2Cδ isoforms, integrin-linked kinase-associated serine/threonine phosphatase (ILKAP) and wild-type p53-induced phosphatase 1 (Wip1) by Western blotting, immunofluorescence and coimmunoprecipitation with monoclonal antibody for RSK2. The induction of Wip1 by MIF or EGF was studied in cultured normal human keratinocytes. Results The protein level of RSK1, 2 phosphorylated at T573/T577 was significantly increased in L compared with NL psoriatic skin, while phosphorylation at S380/S386 was reduced in L compared with NL psoriatic skin when assayed by Western blotting and immunofluorescence microscopy. ILKAP expression was significantly higher in L than in NL skin, whereas Wip1 was expressed in similar amounts but showed increased coimmunoprecipitation with RSK2 in L compared with NL psoriatic skin. In cultured normal human keratinocytes stimulated with MIF, Wip1 phosphorylation and Wip1 expression were increased after 24 hours, but not when costimulated with dimethyl fumarate (DMF). The increased coimmunoprecipitation of Wip1 with RSK2 was significantly induced by EGF or MIF activation at 24 hours and could be significantly inhibited by DMF or the ERK1/2 inhibitor PD98059. Conclusion The complex formation of Wip1 with RSK2 indicates a direct interaction reducing P-RSK2 (S386) activation in L skin and indicates that Wip1 has a role in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Mads K Rasmussen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Jakob Nielsen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Stine M Andersen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne H Rittig
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Borbala Gesser
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
14
|
Liu KM, Zhang HH, Wang YN, Wang LM, Chen HY, Long CF, Zhang LF, Zhang HB, Yan HB. Wild-type p53-induced Phosphatase 1 Deficiency Exacerbates Myocardial Infarction-induced Ischemic Injury. Chin Med J (Engl) 2017; 130:1333-1341. [PMID: 28524834 PMCID: PMC5455044 DOI: 10.4103/0366-6999.206353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Myocardial infarction (MI) is a major disease burden. Wild-type p53-induced phosphatase 1 (Wip1) has been studied extensively in the context of cancer and the regulation of different types of stem cells, but the role of Wip1 in cardiac adaptation to MI is unknown. We investigated the significance of Wip1 in a mouse model of MI. METHODS The study began in June 2014 and was completed in July 2016. We compared Wip1-knockout (Wip1-KO) mice and wild-type (WT) mice to determine changes in cardiac function and survival in response to MI. The heart weight/body weight (HW/BW) ratio and cardiac function were measured before MI. Mouse MI was established by ligating the left anterior descending (LAD) coronary artery under 1.5% isoflurane anesthesia. After MI, survival of the mice was observed for 4 weeks. Cardiac function was examined by echocardiography. The HW/BW ratio was analyzed, and cardiac hypertrophy was measured by wheat germ agglutinin staining. Hematoxylin and eosin (H&E) staining was used to determine the infarct size. Gene expression of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) was assessed by quantitative real-time polymerase chain reaction (qPCR), and the levels of signal transducers and activators of transcription 3 (stat3) and phosphor-stat3 (p-stat3) were also analyzed by Western blotting. Kaplan-Meier survival analysis, log-rank test, unpaired t-test, and one-way analysis of variance (ANOVA) were used for statistical analyses. RESULTS Wip1-KO mice had a marginally increased HW/BW ratio and slightly impaired cardiac function before LAD ligation. After MI, Wip1-deficient mice exhibited increased mortality (57.14% vs. 29.17%; n = 24 [WT], n = 35 [Wip1-KO], P< 0.05), increased cardiac hypertrophy (HW/BW ratio: 7 days: 7.25 ± 0.36 vs. 5.84 ± 0.18, n = 10, P< 0.01, and 4 weeks: 6.05 ± 0.17 vs. 5.87 ± 0.24, n = 10, P > 0.05; cross-sectional area: 7 days: 311.80 ± 8.29 vs. 268.90 ± 11.15, n = 6, P< 0.05, and 4 weeks: 308.80 ± 11.26 vs. 317.00 ± 13.55, n = 6, P > 0.05), and reduced cardiac function (ejection fraction: 7 days: 29.37 ± 1.38 vs. 34.72 ± 1.81, P< 0.05, and 4 weeks: 19.06 ± 2.07 vs. 26.37 ± 2.95, P< 0.05; fractional shortening: 7 days: 13.72 ± 0.71 vs. 16.50 ± 0.94, P< 0.05, and 4 weeks: 8.79 ± 1.00 vs. 12.48 ± 1.48, P< 0.05; n = 10 [WT], n = 15 [Wip1-KO]). H&E staining revealed a larger infarct size in Wip1-KO mice than in WT mice (34.79% ± 2.44% vs. 19.55% ± 1.48%, n = 6, P< 0.01). The expression of IL-6 and p-stat3 was downregulated in Wip1-KO mice (IL-6: 1.71 ± 0.27 vs. 4.46 ± 0.79, n = 6, P< 0.01; and p-stat3/stat3: 1.15 ± 0.15 vs. 1.97 ± 0.23, n = 6, P< 0.05). CONCLUSION The results suggest that Wip1 could protect the heart from MI-induced ischemic injury.
Collapse
Affiliation(s)
- Ke-Mei Liu
- Department of Coronary Artery Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hai-Hong Zhang
- Department of Physiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ya-Nan Wang
- Department of Physiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lian-Mei Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100029, China
| | - Hong-Yu Chen
- Department of Physiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Cai-Feng Long
- Department of Physiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lian-Feng Zhang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing 100021, China
| | - Hong-Bing Zhang
- Department of Physiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hong-Bing Yan
- Department of Coronary Artery Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
15
|
Torii S, Yoshida T, Arakawa S, Honda S, Nakanishi A, Shimizu S. Identification of PPM1D as an essential Ulk1 phosphatase for genotoxic stress-induced autophagy. EMBO Rep 2016; 17:1552-1564. [PMID: 27670885 DOI: 10.15252/embr.201642565] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 09/04/2016] [Indexed: 12/26/2022] Open
Abstract
Autophagy is an evolutionary conserved process that degrades subcellular constituents. Unlike starvation-induced autophagy, the molecular mechanism of genotoxic stress-induced autophagy has not yet been fully elucidated. In this study, we analyze the molecular mechanism of genotoxic stress-induced autophagy and identify an essential role of dephosphorylation of the Unc51-like kinase 1 (Ulk1) at Ser637, which is catalyzed by the protein phosphatase 1D magnesium-dependent delta isoform (PPM1D). We show that after exposure to genotoxic stress, PPM1D interacts with and dephosphorylates Ulk1 at Ser637 in a p53-dependent manner. The PPM1D-dependent Ulk1 dephosphorylation triggers Ulk1 puncta formation and induces autophagy. This happens not only in mouse embryonic fibroblasts but also in primary thymocytes, where the genetic ablation of PPM1D reduces the dephosphorylation of Ulk1 at Ser637, inhibits autophagy, and accelerates apoptosis induced by X-ray irradiation. This acceleration of apoptosis is caused mainly by the inability of the autophagic machinery to degrade the proapoptotic molecule Noxa. These findings indicate that the PPM1D-Ulk1 axis plays a pivotal role in genotoxic stress-induced autophagy.
Collapse
Affiliation(s)
- Satoru Torii
- Department of Pathological Cell Biology, Medical Research Institute Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tatsushi Yoshida
- Department of Pathological Cell Biology, Medical Research Institute Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoko Arakawa
- Department of Pathological Cell Biology, Medical Research Institute Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shinya Honda
- Department of Pathological Cell Biology, Medical Research Institute Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akira Nakanishi
- Department of Molecular Genetics, Medical Research Institute Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
16
|
He ZY, Hu WY, Zhang M, Yang ZZ, Zhu HM, Xing D, Ma QH, Xiao ZC. Wip1 phosphatase modulates both long-term potentiation and long-term depression through the dephosphorylation of CaMKII. Cell Adh Migr 2016; 10:237-47. [PMID: 27158969 DOI: 10.4161/19336918.2014.994916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Synaptic plasticity is an important mechanism that underlies learning and cognition. Protein phosphorylation by kinases and dephosphorylation by phosphatases play critical roles in the activity-dependent alteration of synaptic plasticity. In this study, we report that Wip1, a protein phosphatase, is essential for long-term potentiation (LTP) and long-term depression (LTD) processes. Wip1-deletion suppresses LTP and enhances LTD in the hippocampus CA1 area. Wip1 deficiency-induced aberrant elevation of CaMKII T286/287 and T305 phosphorylation underlies these dysfunctions. Moreover, we showed that Wip1 modulates CaMKII dephosphorylation. Wip1(-/-) mice exhibit abnormal GluR1 membrane expression, which could be reversed by the application of a CaMKII inhibitor, indicating that Wip1/CaMKII signaling is crucial for synaptic plasticity. Together, our results demonstrate that Wip1 phosphatase plays a vital role in regulating hippocampal synaptic plasticity by modulating the phosphorylation of CaMKII.
Collapse
Affiliation(s)
- Zhi-Yong He
- a MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou , China.,b The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University , Kunming , China.,c Department of Anatomy and Developmental Biology , Monash University , Clayton , Melbourne , Australia
| | - Wei-Yan Hu
- b The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University , Kunming , China.,c Department of Anatomy and Developmental Biology , Monash University , Clayton , Melbourne , Australia.,e School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University , Kunming , China
| | - Ming Zhang
- b The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University , Kunming , China
| | - Zara Zhuyun Yang
- b The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University , Kunming , China.,c Department of Anatomy and Developmental Biology , Monash University , Clayton , Melbourne , Australia
| | - Hong-Mei Zhu
- b The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University , Kunming , China.,c Department of Anatomy and Developmental Biology , Monash University , Clayton , Melbourne , Australia
| | - Da Xing
- a MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou , China
| | - Quan-Hong Ma
- a MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou , China.,d Institute of Neuroscience, Suzhou University , Soochow , China
| | - Zhi-Cheng Xiao
- b The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University , Kunming , China.,c Department of Anatomy and Developmental Biology , Monash University , Clayton , Melbourne , Australia
| |
Collapse
|
17
|
Wang B, Li D, Sidler C, Rodriguez-Juarez R, Singh N, Heyns M, Ilnytskyy Y, Bronson RT, Kovalchuk O. A suppressive role of ionizing radiation-responsive miR-29c in the development of liver carcinoma via targeting WIP1. Oncotarget 2016; 6:9937-50. [PMID: 25888625 PMCID: PMC4496408 DOI: 10.18632/oncotarget.3157] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/15/2015] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide, and it has been linked to radiation exposure. As a well-defined oncogene, wild-type p53-induced phosphatase 1 (WIP1) plays an inhibitory role in several tumor suppressor pathways, including p53. WIP1 is amplified and overexpressed in many malignancies, including HCC. However, the underlying mechanisms remain largely unknown. Here, we show that low-dose ionizing radiation (IR) induces miR-29c expression in female mouse liver, while inhibiting its expression in HepG2, a human hepatocellular carcinoma cell line which is used as a model system in this study. miR-29c expression is downregulated in human hepatocellular carcinoma cells, which is inversely correlated with WIP1 expression. miR-29c attenuates luciferase activity of a reporter harboring the 3'UTR binding motif of WIP1 mRNA. Ectopic expression of miR-29c significantly represses cell proliferation and induces apoptosis and G1 arrest in HepG2. In contrast, the knockdown of miR-29c greatly enhances HepG2 cell proliferation and suppresses apoptosis. The biological effects of miR-29c may be mediated by its target WIP1 which regulates p53 activity via dephosphorylation at Ser-15. Finally, fluorescence in situ hybridization (FISH) and immunohistochemical analyses indicate that miR-29c is downregulated in 50.6% of liver carcinoma tissues examined, whereas WIP1 is upregulated in 45.4% of these tissues. The expression of miR-29c inversely correlates with that of WIP1 in HCC. Our results suggest that the IR-responsive miR-29c may function as a tumor suppressor that plays a crucial role in the development of liver carcinoma via targeting WIP1, therefore possibly representing a target molecule for therapeutic intervention for this disease.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada.,Department of Biochemistry, Qiqihar Medical University, Qiqihar, P.R. China
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada.,Department of Biochemistry, Qiqihar Medical University, Qiqihar, P.R. China
| | - Corinne Sidler
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | | | - Natasha Singh
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Mieke Heyns
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Roderick T Bronson
- The Dana Farber/Harvard Comprehensive Cancer Center, Boston, Massachusetts, USA
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
18
|
Bastan R, Eskandari N, Sabzghabaee AM, Manian M. Serine/Threonine phosphatases: classification, roles and pharmacological regulation. Int J Immunopathol Pharmacol 2015; 27:473-84. [PMID: 25572726 DOI: 10.1177/039463201402700402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Phosphatases are important enzymes in a variety of biochemical pathways in different cells which they catalyze opposing reactions of phosphorylation and dephosphorylation, which may modulate the function of crucial signaling proteins in different cells. This is an important mechanism in the regulation of intracellular signal transduction pathways in many cells. Phosphatases play a key role in regulating signal transduction. It is known that phosphatases are specific for cleavage of either serine-threonine or tyrosine phosphate groups. To date, numerous compounds have been identified. This paper reviews the classification, roles and pharmacological of protein serine/threonine phosphates.
Collapse
Affiliation(s)
- R Bastan
- Department of Human Vaccine, Razi-Karaj Institute, Karaj, Iran
| | - N Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - A M Sabzghabaee
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - M Manian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Liu S, Qi L, Han W, Wan X, Jiang S, Li Y, Xie Y, Liu L, Zeng F, Liu Z, Zu X. Overexpression of wip1 is associated with biologic behavior in human clear cell renal cell carcinoma. PLoS One 2014; 9:e110218. [PMID: 25334029 PMCID: PMC4198297 DOI: 10.1371/journal.pone.0110218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/09/2014] [Indexed: 12/28/2022] Open
Abstract
Wild-type p53-induced phosphatase (Wip1 or PPM1D) has been reported to be aberrantly expressed in various cancers and correlated with the malignant behavior of cancer cells. However, the function of Wip1 in RCC remains unclear. The present study investigated its abnormal expression and dysfunctions in clear cell renal cell carcinoma (ccRCC) in vitro. With the combination of immunohistochemistry, western blotting, immunofluorescence, qRT-PCR, and cell proliferation, migration and invasion assays, we found that levels of Wip1 mRNA and protein were dramatically increased in human ccRCC tissues (P<0.001 for both), and upregulation of Wip1 was significantly associated with depth of invasion (P<0.001), Distant metastasis (P = 0.001), lymph node status (P<0.001) and Fuhrman grade (P<0.001). Wip1 knockdown inhibited the proliferation, migration and invasion of 786-O and RLC-310 cells, whereas Wip1 overexpression promoted the growth and aggressive phenotype of 786-O and RLC-310 cells in vitro. The uni- and multivariate analyses indicated that expression of Wip1 was an independent predictor for survival of ccRCC patients (P = 0.003, P = 0.027 respectively). Wip1- negative patients had a higher tumor-free/overall survival rate than patients with high Wip1 expression (P = 0.001, P = 0.002 respectively). Overexpression of Wip1 is useful in the prediction of survival in ccRCC patients.
Collapse
Affiliation(s)
- Sulai Liu
- Department of Urology, Xiangya Hospital, The Central South University, Changsha, Hunan, China
| | - Lin Qi
- Department of Urology, Xiangya Hospital, The Central South University, Changsha, Hunan, China
- * E-mail:
| | - Weqing Han
- Department of Urology, The Affiliated Tumor Hospital of Xiangya Medical School, The Central South University, Changsha, China
| | - Xinxing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shusuan Jiang
- Department of Urology, The Affiliated Tumor Hospital of Xiangya Medical School, The Central South University, Changsha, China
| | - Yuan Li
- Department of Urology, Xiangya Hospital, The Central South University, Changsha, Hunan, China
| | - Yu Xie
- Department of Urology, The Affiliated Tumor Hospital of Xiangya Medical School, The Central South University, Changsha, China
| | - Longfei Liu
- Department of Urology, Xiangya Hospital, The Central South University, Changsha, Hunan, China
| | - Fuhua Zeng
- Department of Urology, The Affiliated Tumor Hospital of Xiangya Medical School, The Central South University, Changsha, China
| | - Zhizhong Liu
- Department of Urology, The Affiliated Tumor Hospital of Xiangya Medical School, The Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, The Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Zhu Y, Demidov ON, Goh AM, Virshup DM, Lane DP, Bulavin DV. Phosphatase WIP1 regulates adult neurogenesis and WNT signaling during aging. J Clin Invest 2014; 124:3263-73. [PMID: 24911145 DOI: 10.1172/jci73015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/29/2014] [Indexed: 12/21/2022] Open
Abstract
The number of newly formed neurons declines rapidly during aging, and this decrease in neurogenesis is associated with decreased function of neural stem/progenitor cells (NPCs). Here, we determined that a WIP1-dependent pathway regulates NPC differentiation and contributes to the age-associated decline of neurogenesis. Specifically, we found that WIP1 is expressed in NPCs of the mouse subventricular zone (SVZ) and aged animals with genetically enhanced WIP1 expression exhibited higher NPC numbers and neuronal differentiation compared with aged WT animals. Additionally, augmenting WIP1 expression in aged animals markedly improved neuron formation and rescued a functional defect in fine odor discrimination in aged mice. We identified the WNT signaling pathway inhibitor DKK3 as a key downstream target of WIP1 and found that expression of DKK3 in the SVZ is restricted to NPCs. Using murine reporter strains, we determined that DKK3 inhibits neuroblast formation by suppressing WNT signaling and Dkk3 deletion or pharmacological activation of the WNT pathway improved neuron formation and olfactory function in aged mice. We propose that WIP1 controls DKK3-dependent inhibition of neuronal differentiation during aging and suggest that regulating WIP1 levels could prevent certain aspects of functional decline of the aging brain.
Collapse
|
21
|
Wip1 suppresses apoptotic cell death through direct dephosphorylation of BAX in response to γ-radiation. Cell Death Dis 2013; 4:e744. [PMID: 23907458 PMCID: PMC3763429 DOI: 10.1038/cddis.2013.252] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/01/2013] [Accepted: 06/06/2013] [Indexed: 12/13/2022]
Abstract
Wild-type p53-induced phosphatase 1 (Wip1) is a p53-inducible serine/threonine phosphatase that switches off DNA damage checkpoint responses by the dephosphorylation of certain proteins (i.e. p38 mitogen-activated protein kinase, p53, checkpoint kinase 1, checkpoint kinase 2, and uracil DNA glycosylase) involved in DNA repair and the cell cycle checkpoint. Emerging data indicate that Wip1 is amplified or overexpressed in various human tumors, and its detection implies a poor prognosis. In this study, we show that Wip1 interacts with and dephosphorylates BAX to suppress BAX-mediated apoptosis in response to γ-irradiation in prostate cancer cells. Radiation-resistant LNCaP cells showed dramatic increases in Wip1 levels and impaired BAX movement to the mitochondria after γ-irradiation, and these effects were reverted by a Wip1 inhibitor. These results show that Wip1 directly interacts with and dephosphorylates BAX. Dephosphorylation occurs at threonines 172, 174 and 186, and BAX proteins with mutations at these sites fail to translocate efficiently to the mitochondria following cellular γ-irradiation. Overexpression of Wip1 and BAX, but not phosphatase-dead Wip1, in BAX-deficient cells strongly reduces apoptosis. Our results suggest that BAX dephosphorylation of Wip1 phosphatase is an important regulator of resistance to anticancer therapy. This study is the first to report the downregulation of BAX activity by a protein phosphatase.
Collapse
|
22
|
Crescenzi E, Raia Z, Pacifico F, Mellone S, Moscato F, Palumbo G, Leonardi A. Down-regulation of wild-type p53-induced phosphatase 1 (Wip1) plays a critical role in regulating several p53-dependent functions in premature senescent tumor cells. J Biol Chem 2013; 288:16212-16224. [PMID: 23612976 DOI: 10.1074/jbc.m112.435149] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Premature or drug-induced senescence is a major cellular response to chemotherapy in solid tumors. The senescent phenotype develops slowly and is associated with chronic DNA damage response. We found that expression of wild-type p53-induced phosphatase 1 (Wip1) is markedly down-regulated during persistent DNA damage and after drug release during the acquisition of the senescent phenotype in carcinoma cells. We demonstrate that down-regulation of Wip1 is required for maintenance of permanent G2 arrest. In fact, we show that forced expression of Wip1 in premature senescent tumor cells induces inappropriate re-initiation of mitosis, uncontrolled polyploid progression, and cell death by mitotic failure. Most of the effects of Wip1 may be attributed to its ability to dephosphorylate p53 at Ser(15) and to inhibit DNA damage response. However, we also uncover a regulatory pathway whereby suppression of p53 Ser(15) phosphorylation is associated with enhanced phosphorylation at Ser(46), increased p53 protein levels, and induction of Noxa expression. On the whole, our data indicate that down-regulation of Wip1 expression during premature senescence plays a pivotal role in regulating several p53-dependent aspects of the senescent phenotype.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, via S. Pansini, 5, 80131 Naples, Italy
| | - Zelinda Raia
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, "Federico II" University of Naples, via S. Pansini, 5, 80131 Naples, Italy
| | - Francesco Pacifico
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, via S. Pansini, 5, 80131 Naples, Italy
| | - Stefano Mellone
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, via S. Pansini, 5, 80131 Naples, Italy
| | - Fortunato Moscato
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, via S. Pansini, 5, 80131 Naples, Italy
| | - Giuseppe Palumbo
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, "Federico II" University of Naples, via S. Pansini, 5, 80131 Naples, Italy
| | - Antonio Leonardi
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, "Federico II" University of Naples, via S. Pansini, 5, 80131 Naples, Italy.
| |
Collapse
|
23
|
Zane L, Yasunaga J, Mitagami Y, Yedavalli V, Tang SW, Chen CY, Ratner L, Lu X, Jeang KT. Wip1 and p53 contribute to HTLV-1 Tax-induced tumorigenesis. Retrovirology 2012; 9:114. [PMID: 23256545 PMCID: PMC3532233 DOI: 10.1186/1742-4690-9-114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/15/2012] [Indexed: 01/07/2023] Open
Abstract
Background Human T-cell Leukemia Virus type 1 (HTLV-1) infects 20 million individuals world-wide and causes Adult T-cell Leukemia/Lymphoma (ATLL), a highly aggressive T-cell cancer. ATLL is refractory to treatment with conventional chemotherapy and fewer than 10% of afflicted individuals survive more than 5 years after diagnosis. HTLV-1 encodes a viral oncoprotein, Tax, that functions in transforming virus-infected T-cells into leukemic cells. All ATLL cases are believed to have reduced p53 activity although only a minority of ATLLs have genetic mutations in their p53 gene. It has been suggested that p53 function is inactivated by the Tax protein. Results Using genetically altered mice, we report here that Tax expression does not achieve a functional equivalence of p53 inactivation as that seen with genetic mutation of p53 (i.e. a p53−/− genotype). Thus, we find statistically significant differences in tumorigenesis between Tax+p53+/+versus Tax+p53−/− mice. We also find a role contributed by the cellular Wip1 phosphatase protein in tumor formation in Tax transgenic mice. Notably, Tax+Wip1−/− mice show statistically significant reduced prevalence of tumorigenesis compared to Tax+Wip1+/+ counterparts. Conclusions Our findings provide new insights into contributions by p53 and Wip1 in the in vivo oncogenesis of Tax-induced tumors in mice.
Collapse
Affiliation(s)
- Linda Zane
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fernandez F, Soon I, Li Z, Kuan TC, Min DH, Wong ESM, Demidov ON, Paterson MC, Dawe G, Bulavin DV, Xiao ZC. Wip1 phosphatase positively modulates dendritic spine morphology and memory processes through the p38MAPK signaling pathway. Cell Adh Migr 2012; 6:333-43. [PMID: 22983193 DOI: 10.4161/cam.20892] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dendritic spine morphology is modulated by protein kinase p38, a mitogen-activated protein (MAPK), in the hippocampus. Protein p38MAPK is a substrate of wip1, a protein phosphatase. The role of wip1 in the central nervous system (CNS) has never been explored. Here, we report a novel function of wip1 in dendritic spine morphology and memory processes. Wip1 deficiency decreases dendritic spine size and density in pyramidal neurons of the hippocampal CA1 region. Simultaneously, impairments in object recognition tasks and contextual memory occur in wip1 deficient mice, but are reversed in wip1/p38 double mutant mice. Thus, our findings demonstrate that wip1 modulates dendritic morphology and memory processes through the p38MAPK signaling pathway. In addition to the well-characterized role of the wip1/p38MAPK in cell death and differentiation, we revealed the novel contribution of wip1 to cognition and dendritic spine morphology, which may suggest new approaches to treating neurodegenerative disorders.
Collapse
|
25
|
Park JY, Song JY, Kim HM, Han HS, Seol HS, Jang SJ, Choi J. p53-Independent expression of wild-type p53-induced phosphatase 1 (Wip1) in methylmethane sulfonate-treated cancer cell lines and human tumors. Int J Biochem Cell Biol 2012; 44:896-904. [PMID: 22405851 DOI: 10.1016/j.biocel.2012.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/08/2012] [Accepted: 02/15/2012] [Indexed: 01/03/2023]
Abstract
Wild-type p53-induced phosphatase 1 (Wip1, PPM1D) is induced by p53 in response to various stressors and dephosphorylates cellular target proteins involved in DNA repair and cell cycle checkpoint pathways. The Wip1 gene is frequently amplified or overexpressed in human cancers, promoting tumor growth by switching off major checkpoint kinases and p53. To explore wild-type p53-independent Wip1 induction, Wip1 promoter activity and its transcript level were evaluated by luciferase assay and real-time PCR, after methylmethane sulfonate (MMS) treatment in breast cancer cell lines and p53-null cell lines. Wip1 promoter activities in response to UV irradiation and various anti-cancer agents were compared between wild-type and a p53-response element (p53RE) mutated construct. Wip1 expression and its effects were examined in primary non-small cell lung cancer (NSCLC) and colon tumor cells by using Wip1-specific siRNA. MMS induced Wip1 promoter activity in Hs578T, MDA-MB-231, and SK-BR-3 cells expressing DNA binding-deficient p53 mutants. A549-E6 and HCT116 (p53(-/-)) cells retained substantial Wip1 induction. Wip1 promoter activity was reduced, but not eliminated, in cells expressing a promoter containing a mutated p53-response element. Wip1 induction was not blocked by SB202190 or SP600125. MMS increased Wip1 expression in primary non-small cell lung cancer cells expressing a p53 R175H mutant. Our data indicate that Wip1 is induced in the absence of functional p53, like p38 MAPK and JNK, as a stress response terminator.
Collapse
Affiliation(s)
- Ji-Young Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical center, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Zhu YH, Bulavin DV. Wip1-dependent signaling pathways in health and diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:307-25. [PMID: 22340722 DOI: 10.1016/b978-0-12-396456-4.00001-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Spatial and temporal regulation of protein phosphorylation is key to the control of different molecular networks. This regulation is achieved in part through dephosphorylation of numerous signaling molecules, and emerging evidence highlights the importance of a new member of the PP2C family of phosphatase, Wild-type p53 induced phosphatase 1 (Wip1), in regulating stress-induced and DNA damage-induced networks. In recent years, analysis of Wip1 has focused primarily on its role in tumorigenesis because of its overexpression in human tumors and a profound tumor-resistant phenotype of Wip1-deficient mice. Recently, Wip1 has also been shown to play an important role in several physiological processes including adult neurogenesis and organismal aging. This review addresses how Wip1 phosphatase regulates different signaling networks in a spatial and temporal manner and how these differences contribute to various biological outcomes in the context of physiological and pathological conditions.
Collapse
Affiliation(s)
- Yun-Hua Zhu
- Cell Cycle Control and Tumorigenesis Group, Institute of Molecular and Cell Biology, Proteos, Singapore
| | | |
Collapse
|
27
|
The oncogenic phosphatase PPM1D confers cisplatin resistance in ovarian carcinoma cells by attenuating checkpoint kinase 1 and p53 activation. Oncogene 2011; 31:2175-86. [DOI: 10.1038/onc.2011.399] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Wang P, Rao J, Yang H, Zhao H, Yang L. PPM1D silencing by lentiviral-mediated RNA interference inhibits proliferation and invasion of human glioma cells. ACTA ACUST UNITED AC 2011; 31:94-99. [PMID: 21336731 DOI: 10.1007/s11596-011-0157-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Indexed: 12/20/2022]
Abstract
To construct a lentiviral shRNA vector targeting human protein phosphatase 1D magnesium-dependent (PPM1D) gene and detect its effectiveness of gene silencing in human gliomas, specific siRNA targets with short hairpin frame were designed and synthesized. DNA oligo was cloned into the pFU-GW-iRNA lentiviral expression vector, and then PCR and sequencing analyses were conducted to verify the constructs. After the verified plasmids were transfected into 293T cells, the lentivirus was produced and the titer of virus was determined. Real-time quantitative PCR and Western blot were performed to detect the PPM1D expression level in the infected glioma cells. PCR and Western blot analyses revealed the optimal interfering target, and the virus with a titer of 6×10(8) TU/mL was successfully packaged. The PPM1D expression in human glioma cells was knocked down at both mRNA and protein levels by virus infection. The expression of PPM1D mRNA and protein was decreased by 76.3% and 87.0% respectively as compared with control group. The multiple functions of human glioma cells after PPM1D RNA interference were detected by flow cytometry and cell counting kit-8 (CCK-8). Efficient down-regulation of PPM1D resulted in significantly increased cell apoptosis and reduced cell proliferation and invasion potential in U87-MG cells. We have successfully constructed the lentiviral shRNA expression vector capable of stable PPM1D gene silencing at both mRNA and protein levels in glioma cells. And our data gave evidence that the reduced cell growth observed after PPM1D silencing in glioma cells was at least partly due to increased apoptotic cell death.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Rao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haifeng Yang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Yang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
29
|
Cha H, Lowe JM, Li H, Lee JS, Belova GI, Bulavin DV, Fornace AJ. Wip1 directly dephosphorylates gamma-H2AX and attenuates the DNA damage response. Cancer Res 2010; 70:4112-22. [PMID: 20460517 DOI: 10.1158/0008-5472.can-09-4244] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The integrity of DNA is constantly challenged throughout the life of a cell by both endogenous and exogenous stresses. A well-organized rapid damage response and proficient DNA repair, therefore, become critically important for maintaining genomic stability and cell survival. When DNA is damaged, the DNA damage response (DDR) can be initiated by alterations in chromosomal structure and histone modifications, such as the phosphorylation of the histone H2AX (the phosphorylated form is referred to as gamma-H2AX). gamma-H2AX plays a crucial role in recruiting DDR factors to damage sites for accurate DNA repair. On repair completion, gamma-H2AX must then be reverted to H2AX by dephosphorylation for attenuation of the DDR. Here, we report that the wild-type p53-induced phosphatase 1 (Wip1) phosphatase, which is often overexpressed in a variety of tumors, effectively dephosphorylates gamma-H2AX in vitro and in vivo. Ectopic expression of Wip1 significantly reduces the level of gamma-H2AX after ionizing as well as UV radiation. Forced premature dephosphorylation of gamma-H2AX by Wip1 disrupts recruitment of important DNA repair factors to damaged sites and delays DNA damage repair. Additionally, deletion of Wip1 enhances gamma-H2AX levels in cells undergoing constitutive oncogenic stress. Taken together, our studies show that Wip1 is an important mammalian phosphatase for gamma-H2AX and shows an additional mechanism for Wip1 in the tumor surveillance network.
Collapse
Affiliation(s)
- Hyukjin Cha
- Department of Biochemistry, Georgetown University, Washington, District of Columbia 20057-1468, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Song JY, Han HS, Sabapathy K, Lee BM, Yu E, Choi J. Expression of a homeostatic regulator, Wip1 (wild-type p53-induced phosphatase), is temporally induced by c-Jun and p53 in response to UV irradiation. J Biol Chem 2010; 285:9067-76. [PMID: 20093361 DOI: 10.1074/jbc.m109.070003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Wild-type p53-induced phosphatase (Wip1) is induced by p53 in response to stress, which results in the dephosphorylation of proteins (i.e. p38 MAPK, p53, and uracil DNA glycosylase) involved in DNA repair and cell cycle checkpoint pathways. p38 MAPK-p53 signaling is a unique way to induce Wip1 in response to stress. Here, we show that c-Jun directly binds to and activates the Wip1 promoter in response to UV irradiation. The binding of p53 to the promoter occurs earlier than that of c-Jun. In experiments, mutation of the p53 response element (p53RE) or c-Jun consensus sites reduced promoter activity in both non-stressed and stressed A549 cells. Overexpression of p53 significantly decreased Wip1 expression in HCT116 p53(+/+) cells but increased it in HCT116 p53(-/-) cells. Adenovirus-mediated p53 overexpression greatly decreased JNK activity. Up-regulation of Wip1 via the p38 MAPK-p53 and JNK-c-Jun pathways is specific, as demonstrated by our findings that p38 MAPK and JNK inhibitors affected the expression of the Wip1 protein, whereas an ERK inhibitor did not. c-Jun activation occurred much more quickly, and to a greater extent, in A549-E6 cells than in A549 cells, with delayed but fully induced Wip1 expression. These data indicate that Wip1 is activated via both the JNK-c-Jun and p38 MAPK-p53 signaling pathways and that temporal induction of Wip1 depends largely on the balance between c-Jun and p53, which compete for JNK binding. Moreover, our results suggest that JNK-c-Jun-mediated Wip1 induction could serve as a major signaling pathway in human tumors in response to frequent p53 mutation.
Collapse
Affiliation(s)
- Ji-young Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-2 dong, Songpa-gu, Seoul 138-736, Korea
| | | | | | | | | | | |
Collapse
|
31
|
Zhu YH, Zhang CW, Lu L, Demidov ON, Sun L, Yang L, Bulavin DV, Xiao ZC. Wip1 Regulates the Generation of New Neural Cells in the Adult Olfactory Bulb through p53-Dependent Cell Cycle Control. Stem Cells 2009; 27:1433-42. [PMID: 19489034 DOI: 10.1002/stem.65] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yun-Hua Zhu
- Department of Clinical Research, Singapore General Hospital, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Han HS, Yu E, Song JY, Park JY, Jang SJ, Choi J. The estrogen receptor alpha pathway induces oncogenic Wip1 phosphatase gene expression. Mol Cancer Res 2009; 7:713-23. [PMID: 19435816 DOI: 10.1158/1541-7786.mcr-08-0247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wild-type p53-induced phosphatase (Wip1) is a serine/threonine phosphatase induced by DNA-damaging agents. This enzyme dephosphorylates several cell cycle regulating proteins, including p53, p38 mitogen-activated protein kinase, Chk1, and Chk2, resulting in negative feedback regulation of p38-p53 signaling after damage repair. Moreover, the Wip1 gene may be amplified or overexpressed, especially in hormone-regulated organs, and Wip1 gene amplification has been correlated with poor prognosis in hormone-related malignancies, including ovarian cancers. We therefore investigated the link between estrogen signaling and Wip1 expression. We identified seven putative estrogen response elements within 3 kb of the Wip1 promoter. We also found that estradiol (E(2)) treatment produced a 3-fold increase in endogenous Wip1 mRNA and protein expression in MCF7 cells. Direct binding of estrogen receptor (ER)alpha to the Wip1 promoter after E(2) treatment was confirmed by a chromatin immunoprecipitation assay using ERalpha antibody and an electrophoretic mobility shift assay. Wip1 overexpression induced by adenovirus and E(2) facilitated the proliferation of serum-starved ZR-75-1 cells, with cell proliferation induced by overexpressed Wip1 approximately 25% higher than that induced by E(2). Wip1 phosphatase activity was essential for cell cycle progression. Wip1 stimulated the transcriptional activity of its own promoter through E(2)-ERalpha signaling. In addition, Wip1 overexpression induced Rb phosphorylation during cancer cell proliferation. These results indicate that Wip1 up-regulation is important in the pathogenesis of p53(+) and ER(+) breast cancer through the inactivation of p53 by dephosphorylation and the amplification of subsequent estrogenic effects through the E(2)-ERalpha-Wip1 pathway.
Collapse
Affiliation(s)
- Hye-Sook Han
- Department of Pathology, University of Ulsan College of Medicine, 388-1 Pungnap-2 dong, Songpa-gu, Seoul 138-736, Republic of Korea
| | | | | | | | | | | |
Collapse
|
33
|
Rossi M, Demidov ON, Anderson CW, Appella E, Mazur SJ. Induction of PPM1D following DNA-damaging treatments through a conserved p53 response element coincides with a shift in the use of transcription initiation sites. Nucleic Acids Res 2008; 36:7168-80. [PMID: 19015127 PMCID: PMC2602757 DOI: 10.1093/nar/gkn888] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PPM1D (Wip1), a type PP2C phosphatase, is expressed at low levels in most normal tissues but is overexpressed in several types of cancers. In cells containing wild-type p53, the levels of PPM1D mRNA and protein increase following exposure to genotoxic stress, but the mechanism of regulation by p53 was unknown. PPM1D also has been identified as a CREB-regulated gene due to the presence of a cyclic AMP response element (CRE) in the promoter. Transient transfection and chromatin immunoprecipitation experiments in HCT116 cells were used to characterize a conserved p53 response element located in the 5' untranslated region (UTR) of the PPM1D gene that is required for the p53-dependent induction of transcription from the human PPM1D promoter. CREB binding to the CRE contributes to the regulation of basal expression of PPM1D and directs transcription initiation at upstream sites. Following exposure to ultraviolet (UV) or ionizing radiation, the abundance of transcripts with short 5' UTRs increased in cells containing wild-type p53, indicating increased utilization of downstream transcription initiation sites. In cells containing wild-type p53, exposure to UV resulted in increased PPM1D protein levels even when PPM1D mRNA levels remained constant, indicating post-transcriptional regulation of PPM1D protein levels.
Collapse
Affiliation(s)
- Matteo Rossi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
34
|
Chuman Y, Kurihashi W, Mizukami Y, Nashimoto T, Yagi H, Sakaguchi K. PPM1D430, a novel alternative splicing variant of the human PPM1D, can dephosphorylate p53 and exhibits specific tissue expression. J Biochem 2008; 145:1-12. [PMID: 18845566 DOI: 10.1093/jb/mvn135] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PPM1D is a PPM1 type protein phosphatase and is induced in response to DNA damage. PPM1D-deficient mice show defects in spermatogenesis and lymphoid cell functions but the mechanisms underlying these phenotypes remain unknown. In our current study, we identify and characterize an alternative splicing variant (denoted PPM1D430) of human PPM1D at both the mRNA and protein level. PPM1D430 comprises the common 420 residues of the known PPM1D protein (PPM1D605) and contains a stretch of PPM1D430-specific 10 amino acids. Semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that PPM1D430 mRNA is also induced in response to the genotoxic stress in a p53-dependent manner. In vitro phosphatase analysis and PPM1D430-specific RNA interference analysis further indicated that PPM1D430 can dephosphorylate Ser15 of human p53 both in vitro and in vivo. On the other hand, expression profiling of this gene by RT-PCR analysis of a human tissue cDNA panel revealed that PPM1D430 is expressed exclusively in testes and in leucocytes whereas PPM1D605 is ubiquitous. In addition, PPM1D430 shows a different subcellular localization pattern and protein stability when compared with PPM1D605 under some conditions. Our current findings thus suggest that PPM1D430 may exert specific functions in immune response and/or spermatogenesis.
Collapse
Affiliation(s)
- Yoshiro Chuman
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Lu X, Nguyen TA, Moon SH, Darlington Y, Sommer M, Donehower LA. The type 2C phosphatase Wip1: an oncogenic regulator of tumor suppressor and DNA damage response pathways. Cancer Metastasis Rev 2008; 27:123-35. [PMID: 18265945 PMCID: PMC2362138 DOI: 10.1007/s10555-008-9127-x] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Wild-type p53-induced phosphatase 1, Wip1 (or PPM1D), is unusual in that it is a serine/threonine phosphatase with oncogenic activity. A member of the type 2C phosphatases (PP2Cδ), Wip1 has been shown to be amplified and overexpressed in multiple human cancer types, including breast and ovarian carcinomas. In rodent primary fibroblast transformation assays, Wip1 cooperates with known oncogenes to induce transformed foci. The recent identification of target proteins that are dephosphorylated by Wip1 has provided mechanistic insights into its oncogenic functions. Wip1 acts as a homeostatic regulator of the DNA damage response by dephosphorylating proteins that are substrates of both ATM and ATR, important DNA damage sensor kinases. Wip1 also suppresses the activity of multiple tumor suppressors, including p53, ATM, p16INK4a and ARF. We present evidence that the suppression of p53, p38 MAP kinase, and ATM/ATR signaling pathways by Wip1 are important components of its oncogenicity when it is amplified and overexpressed in human cancers.
Collapse
Affiliation(s)
- Xiongbin Lu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
36
|
Pärssinen J, Alarmo EL, Karhu R, Kallioniemi A. PPM1D silencing by RNA interference inhibits proliferation and induces apoptosis in breast cancer cell lines with wild-type p53. ACTA ACUST UNITED AC 2008; 182:33-9. [PMID: 18328948 DOI: 10.1016/j.cancergencyto.2007.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 12/14/2007] [Indexed: 01/07/2023]
Abstract
PPM1D is an oncogene that is amplified and overexpressed in many human tumors, including breast cancer. It functions as a negative regulator of the p38 MAP kinase-p53 signaling pathway and is also proposed to participate in other critical cell survival pathways. To define the functional significance of PPM1D specifically in breast cancer, we used RNA interference to inhibit PPM1D expression in BT-474, MCF7, and ZR-75-1 breast cancer cell lines harboring amplification and increased expression of PPM1D. Efficient downregulation of PPM1D resulted in significantly reduced cell proliferation in MCF7 and ZR-75-1 cells carrying wild-type p53 but not in BT-474 carrying mutant p53, which indicates that the antiproliferative effect of PPM1D silencing is dependent on the p53 status of the cells. This result is in excellent agreement with the notion that PPM1D activation is an alternative mechanism for p53 inactivation. Additionally, our data indicate that the reduced cell growth observed after PPM1D silencing is due at least in part to increased apoptotic cell death. Our findings demonstrate that PPM1D is involved in the regulation of cell proliferation in breast cancer in a p53-dependent manner and that overexpression of PPM1D contributes to malignant phenotype by promoting sustained cell growth and cell survival.
Collapse
Affiliation(s)
- Jenita Pärssinen
- Institute of Medical Technology, University of Tampere, FIN-33014 University of Tampere, Finland
| | | | | | | |
Collapse
|
37
|
Pärssinen J, Alarmo EL, Khan S, Karhu R, Vihinen M, Kallioniemi A. Identification of differentially expressed genes after PPM1D silencing in breast cancer. Cancer Lett 2007; 259:61-70. [PMID: 17977650 DOI: 10.1016/j.canlet.2007.09.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/19/2007] [Accepted: 09/23/2007] [Indexed: 01/07/2023]
Abstract
Amplification and overexpression of PPM1D (protein phosphatase magnesium-dependent 1 delta) has been observed in various cancer cell lines and primary tumors and has also been associated with cancers of poor prognosis. In addition to the negative feedback regulation of p38-p53 signaling, PPM1D inhibits other tumor suppressor activities and is involved in the control of DNA damage and repair pathways. To elucidate the functional significance of PPM1D in breast cancer, we employed RNA interference to downregulate PPM1D expression in BT-474, MCF7, and ZR-75-1 breast cancer cell lines and then investigated the effects of PPM1D silencing on global gene expression patterns and signaling pathways using oligonucleotide microarrays. We identified 1798 differentially expressed (at least a two-fold change) gene elements with functions related to key cellular processes, such as regulation of cell cycle, assembly of various intracellular structures and components, and regulation of signaling pathways and metabolic cascades. For instance, genes involved in apoptosis (NR4A1, RAB25, PLK1), formation of nucleosome structure (HIST1H2AC, HIST1H2BF, HIST1H2BO, HIST1H1D), and hormone related activities (NR4A1, ESR1, STC1) were among the differentially expressed genes. Overall, our findings suggest that PPM1D contributes to breast cancer associated phenotypic characteristics by directly or indirectly affecting several important cellular signaling pathways.
Collapse
Affiliation(s)
- Jenita Pärssinen
- Laboratory of Cancer Genetics, Tampere University Hospital, FI-33014 University of Tampere, Finland
| | | | | | | | | | | |
Collapse
|
38
|
Lu X, Ma O, Nguyen TA, Jones SN, Oren M, Donehower LA. The Wip1 Phosphatase acts as a gatekeeper in the p53-Mdm2 autoregulatory loop. Cancer Cell 2007; 12:342-54. [PMID: 17936559 DOI: 10.1016/j.ccr.2007.08.033] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 07/23/2007] [Accepted: 08/29/2007] [Indexed: 12/11/2022]
Abstract
The tumor suppressor p53 is a transcription factor that responds to cellular stresses by initiating cell cycle arrest or apoptosis. One transcriptional target of p53 is Mdm2, an E3 ubiquitin ligase that interacts with p53 to promote its proteasomal degradation in a negative feedback regulatory loop. Here we show that the wild-type p53-induced phosphatase 1 (Wip1), or PPM1D, downregulates p53 protein levels by stabilizing Mdm2 and facilitating its access to p53. Wip1 interacts with and dephosphorylates Mdm2 at serine 395, a site phosphorylated by the ATM kinase. Dephosphorylated Mdm2 has increased stability and affinity for p53, facilitating p53 ubiquitination and degradation. Thus, Wip1 acts as a gatekeeper in the Mdm2-p53 regulatory loop by stabilizing Mdm2 and promoting Mdm2-mediated proteolysis of p53.
Collapse
Affiliation(s)
- Xiongbin Lu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Hickson JA, Fong B, Watson PH, Watson AJ. PP2Cδ (Ppm1d, WIP1), an endogenous inhibitor of p38 MAPK, is regulated along WithTrp53 andCdkn2a following p38 MAPK inhibition during mouse preimplantation development. Mol Reprod Dev 2007; 74:821-34. [PMID: 17219434 DOI: 10.1002/mrd.20688] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Preimplantation embryos utilize mitogen-activated protein kinase signaling (MAPK) pathways to relay signals from the external environment to prepare appropriate responses and adaptations to a changing milieu. It is therefore important to investigate how MAPK pathways are regulated during preimplantation development. This study was conducted to investigate whether PP2Cdelta (Ppm1d, WIP1) is expressed during mouse preimplantation development and to determine the influences of p38 MAPK inhibition on expression of Trp53 (p53), Ppm1d, (WIP1), and Cdkn2a (p16) during mouse preimplantation development. Our results indicate that Trp53, Ppm1d, and Cdkn2a mRNAs and TRP53 and PP2Cdelta proteins are expressed throughout mouse preimplantation development. Treatment of 2-cell embryos with SB220025 (potent inhibitor of p38 MAPK alpha/beta/MAPK 14/11) significantly increased Trp53, Ppm1d and Cdkn2a and Mapk14 mRNA levels at 12 and 24 hr. Treatment of 8-cell embryos with SB220025 for 12 hr increased Trp53, Ppm1d, and Cdkn2a mRNA levels, but not Mapk14 mRNA levels. Treatment of 8-cell embryos for 24 hr increased Trp53, and Ppm1d mRNA levels, but decreased Cdkn2a and Mapk14 mRNA levels. Therefore, blockade of p38 MAPK activity is associated with embryo stage specific influences on Trp53, Ppm1d, Cdkn2a, and Mapk14 expression during mouse preimplantation development. These results define downstream targets of p38 MAPK during preimplantation development and indicate that the p38 MAPK pathway regulates Trp53, Ppm1d, and Cdkn2a expression. This study increases our understanding of the mechanisms controlling preimplantation development and of the interactions between preimplantation embryos and their culture environments.
Collapse
Affiliation(s)
- Jenny A Hickson
- Department of Physiology and Pharmacology, The University of Western Ontario, Lawson Health Research Institute, 5th Floor Victoria Research Laboratories, London, Ontario, Canada
| | | | | | | |
Collapse
|
40
|
Nannenga B, Lu X, Dumble M, Van Maanen M, Nguyen TA, Sutton R, Kumar TR, Donehower LA. Augmented cancer resistance and DNA damage response phenotypes in PPM1D null mice. Mol Carcinog 2006; 45:594-604. [PMID: 16652371 DOI: 10.1002/mc.20195] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The p53-induced serine/threonine phosphatase, protein phosphatase 1D magnesium-dependent, delta isoform (PPM1D) (or wild-type p53-induced phosphatase 1 (Wip1)), exhibits oncogenic activity in vitro and in vivo. It behaves as an oncogene in rodent fibroblast transformation assays and is amplified and overexpressed in several human tumor types. It may contribute to oncogenesis through functional inactivation of p53. Here, we show that the oncogenic function of PPM1D is associated with its phosphatase activity. While overexpressed PPM1D may be oncogenic, PPM1D null mice are resistant to spontaneous tumors over their entire lifespan. This cancer resistance may be based in part on an augmented stress response following DNA damage. PPM1D null mice treated with ionizing radiation display increased p53 protein levels and increased phosphorylation of p38 MAP kinase, p53, checkpoint kinase 1 (Chk1), and checkpoint kinase 2 (Chk2) in their tissues compared to their wild-type (WT) counterparts. Male PPM1D null mice show a modest reduction in longevity, reduced serum insulin-like growth factor 1 (IGF-1) levels, and reduced body weight compared to WT mice. The PPM1D null mouse phenotypes indicate that PPM1D has a homeostatic role in abrogating the DNA damage response and may regulate aspects of male longevity.
Collapse
Affiliation(s)
- Bonnie Nannenga
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Schito ML, Demidov ON, Saito S, Ashwell JD, Appella E. Wip1 Phosphatase-Deficient Mice Exhibit Defective T Cell Maturation Due To Sustained p53 Activation. THE JOURNAL OF IMMUNOLOGY 2006; 176:4818-25. [PMID: 16585576 DOI: 10.4049/jimmunol.176.8.4818] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The PP2C phosphatase Wip1 dephosphorylates p38 and blocks UV-induced p53 activation in cultured human cells. Although the level of TCR-induced p38 MAPK activity is initially comparable between Wip1-/- and wild-type thymocytes, phosphatase-deficient cells failed to down-regulate p38 MAPK activity after 6 h. Analysis of young Wip1-deficient mice showed that they had fewer splenic T cells. Their thymi were smaller, contained significantly fewer cells, and failed to undergo age-dependent involution compared with wild-type animals. Analysis of thymocyte subset numbers by flow cytometry suggested that cell numbers starting at the double-negative (DN)4 stage are significantly reduced in Wip1-deficient mice, and p53 activity is elevated in cell-sorted DN4 and double-positive subpopulations. Although apoptosis and proliferation was normal in Wip1-/- DN4 cells, they appeared to be in cell cycle arrest. In contrast, a significantly higher percentage of apoptotic cells were found in the double-positive population, and down-regulation of thymocyte p38 MAPK activation by anti-CD3 was delayed. To examine the role of p38 MAPK in early thymic subpopulations, fetal thymic organ cultures cultured in the presence/absence of a p38 MAPK inhibitor did not correct the thymic phenotype. In contrast, the abnormal thymic phenotype of Wip1-deficient mice was reversed in the absence of p53. These data suggest that Wip1 down-regulates p53 activation in the thymus and is required for normal alphabeta T cell development.
Collapse
Affiliation(s)
- Marco L Schito
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
42
|
Proia DA, Nannenga BW, Donehower LA, Weigel NL. Dual roles for the phosphatase PPM1D in regulating progesterone receptor function. J Biol Chem 2005; 281:7089-101. [PMID: 16352595 DOI: 10.1074/jbc.m511839200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although protein phosphatase magnesium-dependent 1 delta (PPM1D) was initially characterized as a p53-regulated phosphatase responsible for inactivation of p38 MAPK and consequent inactivation of p53, its overexpression and amplification in human breast cancers led us to assess its role in steroid hormone action. We found that PPM1D stimulated the activity of several nuclear receptors including the progesterone receptor (PR) and estrogen receptor. Although p38 MAPK inhibited PR activity, PPM1D stimulation of PR activity was greater than that achieved by a chemical inhibitor of p38 MAPK, SB202190. This suggests an additional novel function for PPM1D. Consistent with this, the transcriptional activity of endogenous PR in MCF-7 breast cancer cells was preferentially inhibited by small interfering RNA for PPM1D; SB202190 failed to reverse the inhibition. Although PPM1D phosphatase activity was required for stimulation of transcriptional activity, the activity of a PR phosphorylation site null mutant was enhanced by PPM1D, indicating that PR is not the direct target. Additional studies revealed that PPM1D enhanced the intrinsic activity of p160 coactivators such as steroid receptor coactivator-1 and promoted the interaction between PR and steroid receptor coactivator-1 in a mammalian two-hybrid assay. Neither activity was induced by SB202190. Although PPM1D stimulated PR activity in part through inhibition of p38 MAPK, its primary action is novel and independent of p38 MAPK. Thus, we speculate that PPM1D promotes breast tumor growth both by inhibiting p53 activity and by enhancing steroid hormone receptor action.
Collapse
Affiliation(s)
- David A Proia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
43
|
Yamaguchi H, Minopoli G, Demidov ON, Chatterjee DK, Anderson CW, Durell SR, Appella E. Substrate specificity of the human protein phosphatase 2Cdelta, Wip1. Biochemistry 2005; 44:5285-94. [PMID: 15807522 DOI: 10.1021/bi0476634] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Wip1, the wild-type p53-induced phosphatase, selectively dephosphorylates a threonine residue on p38 MAPK and mediates a negative feedback loop of the p38 MAPK-p53 signaling pathway. To identify the substrate specificity of Wip1, we prepared a recombinant human Wip1 catalytic domain (rWip1) and measured kinetic parameters for phosphopeptides containing the dephosphorylation sites in p38alpha and in a new substrate, UNG2. rWip1 showed properties that were comparable to those of PP2Calpha or full-length Wip1 in terms of affinity for Mg(2+), insensitivity to okadaic acid, and threonine dephosphorylation. The substrate specificity constant k(cat)/K(m) for a diphosphorylated peptide with a pTXpY sequence was 6-8-fold higher than that of a monophosphorylated peptide with a pTXY sequence, while PP2Calpha showed a preference for monophosphorylated peptides. Although individual side chains before and after the pTXpY sequence of the substrate did not have a significant effect on rWip1 activity, a chain length of at least five residues, including the pTXpY sequence, was important for substrate recognition by rWip1. Moreover, the X residue in the pTXpY sequence affected affinity for rWip1 and correlated with selectivity for MAPKs. These findings suggest that substrate recognition by Wip1 is centered toward a very narrow region around the pTXpY sequence. Three-dimension homology models of Wip1 with bound substrate peptides were constructed, and site-directed mutagenesis was performed to confirm the importance of specific residues for substrate recognition. The results of our study should be useful for predicting new physiological substrates and for designing specific Wip1 inhibitors.
Collapse
Affiliation(s)
- Hiroshi Yamaguchi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Lu X, Nannenga B, Donehower LA. PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev 2005; 19:1162-74. [PMID: 15870257 PMCID: PMC1132003 DOI: 10.1101/gad.1291305] [Citation(s) in RCA: 313] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ATM (ataxia-telangiectasia mutated) and ATR (ataxia-telangiectasia and Rad3-related) kinases respond to DNA damage by phosphorylating cellular target proteins that activate DNA repair pathways and cell cycle checkpoints in order to maintain genomic integrity. Here we show that the oncogenic p53-induced serine/threonine phosphatase, PPM1D (or Wip1), dephosphorylates two ATM/ATR targets, Chk1 and p53. PPM1D binds Chk1 and dephosphorylates the ATR-targeted phospho-Ser 345, leading to decreased Chk1 kinase activity. PPM1D also dephosphorylates p53 at phospho-Ser 15. PPM1D dephosphorylations are correlated with reduced cellular intra-S and G2/M checkpoint activity in response to DNA damage induced by ultraviolet and ionizing radiation. Thus, a primary function of PPM1D may be to reverse the p53 and Chk1-induced DNA damage and cell cycle checkpoint responses and return the cell to a homeostatic state following completion of DNA repair. These homeostatic functions may be partially responsible for the oncogenic effects of PPM1D when it is amplified and overexpressed in human tumors.
Collapse
Affiliation(s)
- Xiongbin Lu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
45
|
In vitro, in vivo, and in silico analyses of the antitumor activity of 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazoles. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1565.3.12] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Phortress is a novel, potent, and selective experimental antitumor agent. Its mechanism of action involves induction of CYP1A1-catalyzed biotransformation of 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203) to generate electrophilic species, which covalently bind to DNA, exacting lethal damage to sensitive tumor cells, in vitro and in vivo. Herein, we investigate the effects of DNA adduct formation on cellular DNA integrity and progression through cell cycle and examine whether a relevant pharmacodynamic end point may be exploited to probe the clinical mechanism of action of Phortress and predict tumor response. Single cell gel electrophoresis (SCGE) was applied to quantify DNA damage and cell cycle analyses conducted upon 5F 203 treatment of benzothiazole-sensitive MCF-7 and inherently resistant MDA-MB-435 breast carcinoma cells. Following treatment of xenograft-bearing mice and mice possessing hollow fiber implants containing MCF-7 or MDA-MB-435 cells with Phortress (20 mg/kg, i.p., 24 hours), tumor cells and xenografts were recovered for analyses by SCGE. Dose- and time-dependent DNA single and double strand breaks occurred exclusively in sensitive cells following treatment with 5F 203 in vitro (10 nmol/L–10 μmol/L; 24–72 hours). In vivo, Phortress-sensitive and Phortress-resistant tumor cells were distinct; moreover, DNA damage in xenografts, following treatment of mice with Phortress, could be determined. Interrogation of the mechanism of action of 5F 203 in silico by self-organizing map-based cluster analyses revealed modulation of phosphatases and kinases associated with cell cycle regulation, corroborating observations of selective cell cycle perturbation by 5F 203 in sensitive cells. By conducting SCGE, tumor sensitivity to Phortress, an agent currently undergoing clinical evaluation, may be determined.
Collapse
|
46
|
Lu X, Bocangel D, Nannenga B, Yamaguchi H, Appella E, Donehower LA. The p53-induced oncogenic phosphatase PPM1D interacts with uracil DNA glycosylase and suppresses base excision repair. Mol Cell 2004; 15:621-34. [PMID: 15327777 DOI: 10.1016/j.molcel.2004.08.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 05/24/2004] [Accepted: 06/08/2004] [Indexed: 01/07/2023]
Abstract
The wild-type p53-induced phosphatase PPM1D (or Wip1) is a serine/threonine phosphatase that is transcriptionally upregulated by p53 following ultraviolet and ionizing radiation. PPM1D is an oncogene in transformation assays and is amplified or overexpressed in several human tumor types. Here, we demonstrate that PPM1D interacts with the nuclear isoform of uracil DNA glycosylase, UNG2, and suppresses base excision repair (BER). Point mutations that inactivate PPM1D phosphatase activity abrogate BER suppression, indicating that dephosphorylation by PPM1D is important for BER inhibition. We have identified UNG2 phosphorylation sites at threonines 6 and 126 that exhibit enhanced phosphorylation following UV irradiation. The UV-induced phosphorylated forms of UNG2 are more active than nonphosphorylated forms in mediating uracil-associated DNA cleavage. PPM1D dephosphorylation of UNG2 at phosphothreonine 6 is associated with reduced UNG2 activity. Thus, PPM1D may inhibit BER by dephosphorylating UNG2 to facilitate its inactivation after completion of DNA repair.
Collapse
Affiliation(s)
- Xiongbin Lu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
47
|
Chu R, Lim H, Brumfield L, Liu H, Herring C, Ulintz P, Reddy JK, Davison M. Protein profiling of mouse livers with peroxisome proliferator-activated receptor alpha activation. Mol Cell Biol 2004; 24:6288-97. [PMID: 15226431 PMCID: PMC434239 DOI: 10.1128/mcb.24.14.6288-6297.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARalpha) is important in the induction of cell-specific pleiotropic responses, including the development of liver tumors, when it is chronically activated by structurally diverse synthetic ligands such as Wy-14,643 or by unmetabolized endogenous ligands resulting from the disruption of the gene encoding acyl coenzyme A (CoA) oxidase (AOX). Alterations in gene expression patterns in livers with PPARalpha activation were delineated by using a proteomic approach to analyze liver proteins of Wy-14,643-treated and AOX(-/-) mice. We identified 46 differentially expressed proteins in mouse livers with PPARalpha activation. Up-regulated proteins, including acetyl-CoA acetyltransferase, farnesyl pyrophosphate synthase, and carnitine O-octanoyltransferase, are involved in fatty acid metabolism, whereas down-regulated proteins, including ketohexokinase, formiminotransferase-cyclodeaminase, fructose-bisphosphatase aldolase B, sarcosine dehydrogenase, and cysteine sulfinic acid decarboxylase, are involved in carbohydrate and amino acid metabolism. Among stress response and xenobiotic metabolism proteins, selenium-binding protein 2 and catalase showed a dramatic approximately 18-fold decrease in expression and a modest approximately 6-fold increase in expression, respectively. In addition, glycine N-methyltransferase, pyrophosphate phosphohydrolase, and protein phosphatase 1D were down-regulated with PPARalpha activation. These observations establish proteomic profiles reflecting a common and predictable pattern of differential protein expression in livers with PPARalpha activation. We conclude that livers with PPARalpha activation are transcriptionally geared towards fatty acid combustion.
Collapse
Affiliation(s)
- Ruiyin Chu
- Department of Functional Genomics, Aventis Pharmaceuticals, Inc., Bridgewater, New Jersey 08807, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Bulavin DV, Phillips C, Nannenga B, Timofeev O, Donehower LA, Anderson CW, Appella E, Fornace AJ. Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat Genet 2004; 36:343-50. [PMID: 14991053 DOI: 10.1038/ng1317] [Citation(s) in RCA: 335] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 01/26/2004] [Indexed: 12/13/2022]
Abstract
Modulation of tumor suppressor activities may provide new opportunities for cancer therapy. Here we show that disruption of the gene Ppm1d encoding Wip1 phosphatase activated the p53 and p16 (also called Ink4a)-p19 (also called ARF) pathways through p38 MAPK signaling and suppressed in vitro transformation of mouse embryo fibroblasts (MEFs) by oncogenes. Disruption of the gene Cdkn2a (encoding p16 and p19), but not of Trp53 (encoding p53), reconstituted cell transformation in Ppm1d-null MEFs. In vivo, deletion of Ppm1d in mice bearing mouse mammary tumor virus (MMTV) promoter-driven oncogenes Erbb2 (also called c-neu) or Hras1 impaired mammary carcinogenesis, whereas reduced expression of p16 and p19 by methylation-induced silencing or inactivation of p38 MAPK correlated with tumor appearance. We conclude that inactivation or depletion of the Wip1 phosphatase with resultant p38 MAPK activation suppresses tumor appearance by modulating the Cdkn2a tumor-suppressor locus.
Collapse
Affiliation(s)
- Dmitry V Bulavin
- Gene Response Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Choi J, Nannenga B, Demidov ON, Bulavin DV, Cooney A, Brayton C, Zhang Y, Mbawuike IN, Bradley A, Appella E, Donehower LA. Mice deficient for the wild-type p53-induced phosphatase gene (Wip1) exhibit defects in reproductive organs, immune function, and cell cycle control. Mol Cell Biol 2002; 22:1094-105. [PMID: 11809801 PMCID: PMC134641 DOI: 10.1128/mcb.22.4.1094-1105.2002] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Wip1 gene is a serine/threonine phosphatase that is induced in a p53-dependent manner by DNA-damaging agents. We show here that Wip1 message is expressed in moderate levels in all organs, but is present at very high levels in the testes, particularly in the postmeiotic round spermatid compartment of the seminiferous tubules. We have confirmed that Wip1 mRNA is induced by ionizing radiation in mouse tissues in a p53-dependent manner. To further determine the normal biological function of Wip1 in mammalian organisms, we have generated Wip1-deficient mice. Wip1 null mice are viable but show a variety of postnatal abnormalities, including variable male runting, male reproductive organ atrophy, reduced male fertility, and reduced male longevity. Mice lacking Wip1 show increased susceptibility to pathogens and diminished T- and B-cell function. Fibroblasts derived from Wip1 null embryos have decreased proliferation rates and appear to be compromised in entering mitosis. The data are consistent with an important role for Wip1 in spermatogenesis, lymphoid cell function, and cell cycle regulation.
Collapse
Affiliation(s)
- Jene Choi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Seroussi E, Shani N, Ben-Meir D, Chajut A, Divinski I, Faier S, Gery S, Karby S, Kariv-Inbal Z, Sella O, Smorodinsky NI, Lavi S. Uniquely conserved non-translated regions are involved in generation of the two major transcripts of protein phosphatase 2Cbeta. J Mol Biol 2001; 312:439-51. [PMID: 11563908 DOI: 10.1006/jmbi.2001.4967] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Partial cDNAs of different isoforms of protein phosphatase 2Cbeta (PP2Cbeta or PPM1B) have been characterized in mammals. We disclose here the full cDNAs of two major PP2Cbeta isoforms from human, rat and mouse. These cDNAs (2.6 and 3.3 kb) are able to encode 53 kDa (PP2Cbetal) and 43 kDa (PP2Cbetas) polypeptides, respectively. The isoforms are co-expressed ubiquitously with the highest level in skeletal muscle, as assessed by Northern-blot analysis. Western and in situ analyses using monoclonal antibodies against PP2Cbeta confirmed the existence of two isoforms in the cytoplasm. Comparative sequence analysis revealed that both cDNAs consist of six exons with an alternate usage of the 3' exons that underlies the differences between them. The genomic structure of PP2Cbeta is similar to that of other PP2C paralogs and includes a non-coding first exon followed by a large intron and a large second exon that encoded most of the catalytic domain. Both variants of the ending exon include large non-coding regions. All non-translated regions (NTRs) are highly conserved between the orthologous genes, indicating their regulatory function. The 5'-NTR is long (379 bp), includes upstream start codons and is predicted to contain stable secondary structures. Such features inhibit translation initiation by the scanning mechanism. Introduction of this NTR element into a bi-luciferase expression-cassette enabled expression of the second cistron, suggesting that it might serve as an internal ribosome entry site, or it contains a cryptic promoter. Overexpression of PP2Cbeta under CMV-promoter in 293 cells led to cell-growth arrest or cell death.
Collapse
Affiliation(s)
- E Seroussi
- Institute of Animal Science, Volcani Center, Bet-Dagan, 50250, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|