1
|
Ahn B, Moon D, Kim HS, Lee C, Cho NH, Choi HK, Kim D, Lee JY, Nam EJ, Won D, An HJ, Kwon SY, Shin SJ, Jung HR, Kwon D, Park H, Kim M, Cha YJ, Park H, Lee Y, Noh S, Lee YM, Choi SE, Kim JM, Sung SH, Park E. Histopathologic image-based deep learning classifier for predicting platinum-based treatment responses in high-grade serous ovarian cancer. Nat Commun 2024; 15:4253. [PMID: 38762636 PMCID: PMC11102549 DOI: 10.1038/s41467-024-48667-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/09/2024] [Indexed: 05/20/2024] Open
Abstract
Platinum-based chemotherapy is the cornerstone treatment for female high-grade serous ovarian carcinoma (HGSOC), but choosing an appropriate treatment for patients hinges on their responsiveness to it. Currently, no available biomarkers can promptly predict responses to platinum-based treatment. Therefore, we developed the Pathologic Risk Classifier for HGSOC (PathoRiCH), a histopathologic image-based classifier. PathoRiCH was trained on an in-house cohort (n = 394) and validated on two independent external cohorts (n = 284 and n = 136). The PathoRiCH-predicted favorable and poor response groups show significantly different platinum-free intervals in all three cohorts. Combining PathoRiCH with molecular biomarkers provides an even more powerful tool for the risk stratification of patients. The decisions of PathoRiCH are explained through visualization and a transcriptomic analysis, which bolster the reliability of our model's decisions. PathoRiCH exhibits better predictive performance than current molecular biomarkers. PathoRiCH will provide a solid foundation for developing an innovative tool to transform the current diagnostic pipeline for HGSOC.
Collapse
Affiliation(s)
- Byungsoo Ahn
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Damin Moon
- Artificial Intelligence Research Center, JLK Inc., Seoul, South Korea
| | - Hyun-Soo Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Chung Lee
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam Hoon Cho
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Heung-Kook Choi
- Artificial Intelligence Research Center, JLK Inc., Seoul, South Korea
| | - Dongmin Kim
- Artificial Intelligence Research Center, JLK Inc., Seoul, South Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Eun Ji Nam
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Dongju Won
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Hee Jung An
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Sun Young Kwon
- Department of Pathology, Keimyung University School of Medicine, Daegu, South Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Ra Jung
- Department of Pathology, Keimyung University School of Medicine, Daegu, South Korea
| | - Dohee Kwon
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Heejung Park
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Milim Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyunjin Park
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yangkyu Lee
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Songmi Noh
- Department of Diagnostic Pathology, Gangnam CHA Medical Center, CHA University College of Medicine, Seoul, South Korea
| | - Yong-Moon Lee
- Department of Pathology, Dankook University School of Medicine, Cheonan, South Korea
| | - Sung-Eun Choi
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Ji Min Kim
- Department of Pathology, Ewha Womans University, Seoul, South Korea
| | - Sun Hee Sung
- Department of Pathology, Ewha Womans University, Seoul, South Korea
| | - Eunhyang Park
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
2
|
Li Y, Zhou T, Zhuang J, Dai Y, Zhang X, Bai S, Zhao B, Tang X, Wu X, Chen Y. Effects of feeding restriction on skeletal muscle development and functional analysis of TNNI1 in New Zealand white rabbits. Anim Biotechnol 2023; 34:4435-4447. [PMID: 36520026 DOI: 10.1080/10495398.2022.2155662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While restricting nutrition can improve diseases related to the digestive tract, excessive restriction of food intake can also lead to malnutrition and delayed physical growth. Therefore, this brings the demand to study the effect and potential mechanism of restricted feeding on skeletal muscle development in rabbits. This study utilized hematoxylin-eosin (HE) staining to detect muscle fiber area which depicted significant reduction in skeletal muscle fiber upon 30% feed restriction (p < 0.05). The control group and 30% feed restricted group showed 615 deferentially expressed genes (DEGs). Through the GO and KEGG functional enrichment analysis demonstrated 28 DEGs related to muscle development. KEGG analysis showed enrichment of pathways including PI3K/Akt signaling pathway, MAPK signaling pathway, and Hedgehog signaling pathway. Further, the full length of troponin I1, slow skeletal type (TNNI1) was cloned. We studied the expression of skeletal muscle differentiation-related genes such as MyoD, Myf5 gene and Desmin. Specifically, the TNNI1 gene overexpression and knockdown studies were conducted. The over-expression of TNNI1 significantly enhanced the expression of the skeletal muscle development-related genes. Contrastingly, the silencing of TNNI1 gene reduced the expression significantly. These findings showed that TNNI1 may be a regulator for regulating the expression of muscle development-related genes.
Collapse
Affiliation(s)
- Yunpeng Li
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Tong Zhou
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Junyi Zhuang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Yingying Dai
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Shaocheng Bai
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Xianwei Tang
- Jiangsu Pizhou Orient Breeding Co., Ltd, Jiangsu, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| |
Collapse
|
3
|
Hindmarch CCT, Tian L, Xiong PY, Potus F, Bentley RET, Al-Qazazi R, Prins KW, Archer SL. An integrated proteomic and transcriptomic signature of the failing right ventricle in monocrotaline induced pulmonary arterial hypertension in male rats. Front Physiol 2022; 13:966454. [PMID: 36388115 PMCID: PMC9664166 DOI: 10.3389/fphys.2022.966454] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023] Open
Abstract
Aim: Pulmonary arterial hypertension (PAH) is an obstructive pulmonary vasculopathy that results in death from right ventricular failure (RVF). There is limited understanding of the molecular mechanisms of RVF in PAH. Methods: In a PAH-RVF model induced by injection of adult male rats with monocrotaline (MCT; 60 mg/kg), we performed mass spectrometry to identify proteins that change in the RV as a consequence of PAH induced RVF. Bioinformatic analysis was used to integrate our previously published RNA sequencing data from an independent cohort of PAH rats. Results: We identified 1,277 differentially regulated proteins in the RV of MCT rats compared to controls. Integration of MCT RV transcriptome and proteome data sets identified 410 targets that are concordantly regulated at the mRNA and protein levels. Functional analysis of these data revealed enriched functions, including mitochondrial metabolism, cellular respiration, and purine metabolism. We also prioritized 15 highly enriched protein:transcript pairs and confirmed their biological plausibility as contributors to RVF. We demonstrated an overlap of these differentially expressed pairs with data published by independent investigators using multiple PAH models, including the male SU5416-hypoxia model and several male rat strains. Conclusion: Multiomic integration provides a novel view of the molecular phenotype of RVF in PAH which includes dysregulation of pathways involving purine metabolism, mitochondrial function, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Charles Colin Thomas Hindmarch
- QCPU, Queen’s Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Lian Tian
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Ping Yu Xiong
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Francois Potus
- Pulmonary Hypertension Research Group, Centre de Recherche de l’Institut Universitaire de Cardiologie et Pneumologie de Quebec, Quebec City, QC, Canada
| | | | - Ruaa Al-Qazazi
- Department of Medicine, Queen’s University, Kingston, ON, Canada
| | - Kurt W. Prins
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Stephen L. Archer
- QCPU, Queen’s Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen’s University, Kingston, ON, Canada,Department of Medicine, Queen’s University, Kingston, ON, Canada,*Correspondence: Stephen L. Archer,
| |
Collapse
|
4
|
E L D, T J W, A R F, A B P, K M R, C P D, C R G, J E W, K V S, R J U, M SM. Cancer and Associated Therapies Impact the Skeletal Muscle Proteome. Front Physiol 2022; 13:879263. [PMID: 35694399 PMCID: PMC9184684 DOI: 10.3389/fphys.2022.879263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Both cancer and cancer associated therapies (CAT; including chemotherapy or concurrent chemoradiation) disrupt cellular metabolism throughout the body, including the regulation of skeletal muscle mass and function. Adjunct testosterone therapy during standard of care chemotherapy and chemoradiation modulates CAT-induced dysregulation of skeletal muscle metabolism and protects lean body mass during CAT. However, the extent to which the skeletal muscle proteome is altered under these therapeutic conditions is unknown. Objective: We probed the skeletal muscle proteome of cancer patients as an ancillary analysis following a randomized, double-blind, placebo-controlled phase II trial investigating the effect of adjunct testosterone on body composition in men and women with advanced cancers undergoing CAT. Methods: Men and women diagnosed with late stage (≥IIB) or recurrent head and neck or cervical cancer who were scheduled to receive standard of care CAT were administered an adjunct 7 weeks treatment of weekly intramuscular injections of either 100 mg testosterone (CAT+T, n = 7; 2M/5F) or placebo/saline (CAT+P, n = 6; 4M/2F). Biopsies were performed on the vastus lateralis before (PRE) and after (POST) the 7 weeks treatment. Extracted proteins were separated with 2-dimensional gel electrophoresis (2DE), and subjected to analyses of total protein abundance, phosphorylation and S-nitrosylation. Proteoforms showing significant 1.5 fold differences (t-test p ≤ 0.05) between PRE and POST timepoints were identified by mass spectroscopy (MS), and lists of altered proteins were subjected to Gene Set Enrichment Analysis (GSEA) to identify affected pathways. Results: A total of 756 distinct protein spots were identified. Of those spots, 102 were found to be altered in terms of abundance, phosphorylation, or S-nitrosylation, and identified by mass spectroscopy analysis to represent 58 unique proteins. Among the biological processes and pathways identified, CAT+P predominantly impacted metabolic processes, cell assembly, oxygen transport, and apoptotic signaling, while CAT+T impacted transcription regulation, muscle differentiation, muscle development, and contraction. Conclusion: Cancer and CAT significantly altered the skeletal muscle proteome in a manner suggestive of loss of structural integrity, reduced contractile function, and disrupted metabolism. Proteomic analysis suggests that the addition of adjunct testosterone minimized the structural and contractile influence of cancer and its associated therapies.
Collapse
Affiliation(s)
- Dillon E L
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Wright T J
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Filley A R
- Department of Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Pulliam A B
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Randolph K M
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Danesi C P
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Gilkison C R
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Wiktorowicz J E
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Soman K V
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Urban R J
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Sheffield-Moore M
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
5
|
Murgia M, Nogara L, Baraldo M, Reggiani C, Mann M, Schiaffino S. Protein profile of fiber types in human skeletal muscle: a single-fiber proteomics study. Skelet Muscle 2021; 11:24. [PMID: 34727990 PMCID: PMC8561870 DOI: 10.1186/s13395-021-00279-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Human skeletal muscle is composed of three major fiber types, referred to as type 1, 2A, and 2X fibers. This heterogeneous cellular composition complicates the interpretation of studies based on whole skeletal muscle lysate. A single-fiber proteomics approach is required to obtain a fiber-type resolved quantitative information on skeletal muscle pathophysiology. METHODS Single fibers were dissected from vastus lateralis muscle biopsies of young adult males and processed for mass spectrometry-based single-fiber proteomics. We provide and analyze a resource dataset based on relatively pure fibers, containing at least 80% of either MYH7 (marker of slow type 1 fibers), MYH2 (marker of fast 2A fibers), or MYH1 (marker of fast 2X fibers). RESULTS In a dataset of more than 3800 proteins detected by single-fiber proteomics, we selected 404 proteins showing a statistically significant difference among fiber types. We identified numerous type 1 or 2X fiber type-specific protein markers, defined as proteins present at 3-fold or higher levels in these compared to other fiber types. In contrast, we could detect only two 2A-specific protein markers in addition to MYH2. We observed three other major patterns: proteins showing a differential distribution according to the sequence 1 > 2A > 2X or 2X > 2A > 1 and type 2-specific proteins expressed in 2A and 2X fibers at levels 3 times greater than in type 1 fibers. In addition to precisely quantifying known fiber type-specific protein patterns, our study revealed several novel features of fiber type specificity, including the selective enrichment of components of the dystrophin and integrin complexes, as well as microtubular proteins, in type 2X fibers. The fiber type-specific distribution of some selected proteins revealed by proteomics was validated by immunofluorescence analyses with specific antibodies. CONCLUSION We here show that numerous muscle proteins, including proteins whose function is unknown, are selectively enriched in specific fiber types, pointing to potential implications in muscle pathophysiology. This reinforces the notion that single-fiber proteomics, together with recently developed approaches to single-cell proteomics, will be instrumental to explore and quantify muscle cell heterogeneity.
Collapse
Affiliation(s)
- Marta Murgia
- Department of Biomedical Science, University of Padova, 35121, Padova, Italy.
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany.
| | - Leonardo Nogara
- Department of Biomedical Science, University of Padova, 35121, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), 35121, Padova, Italy
| | - Martina Baraldo
- Department of Biomedical Science, University of Padova, 35121, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), 35121, Padova, Italy
| | - Carlo Reggiani
- Department of Biomedical Science, University of Padova, 35121, Padova, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, 6000, Koper, Slovenia
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
6
|
Cheung WW, Hao S, Zheng R, Wang Z, Gonzalez A, Zhou P, Hoffman HM, Mak RH. Targeting interleukin-1 for reversing fat browning and muscle wasting in infantile nephropathic cystinosis. J Cachexia Sarcopenia Muscle 2021; 12:1296-1311. [PMID: 34196133 PMCID: PMC8517356 DOI: 10.1002/jcsm.12744] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/05/2021] [Accepted: 06/08/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Ctns-/- mice, a mouse model of infantile nephropathic cystinosis, exhibit hypermetabolism with adipose tissue browning and profound muscle wasting. Inflammatory cytokines such as interleukin (IL)-1 trigger inflammatory cascades and may be an important cause for cachexia. We employed genetic and pharmacological approaches to investigate the effects of IL-1 blockade in Ctns-/- mice. METHODS We generated Ctns-/- Il1β-/- mice, and we treated Ctns-/- and wild-type control mice with IL-1 receptor antagonist, anakinra (2.5 mg/kg/day, IP) or saline as vehicle for 6 weeks. In each of these mouse lines, we characterized the cachexia phenotype consisting of anorexia, loss of weight, fat mass and lean mass, elevation of metabolic rate, and reduced in vivo muscle function (rotarod activity and grip strength). We quantitated energy homeostasis by measuring the protein content of uncoupling proteins (UCPs) and adenosine triphosphate in adipose tissue and skeletal muscle. We measured skeletal muscle fiber area and intramuscular fatty infiltration. We also studied expression of molecules regulating adipose tissue browning and muscle mass metabolism. Finally, we evaluated the impact of anakinra on the muscle transcriptome in Ctns-/- mice. RESULTS Skeletal muscle expression of IL-1β was significantly elevated in Ctns-/- mice relative to wild-type control mice. Cachexia was completely normalized in Ctns-/- Il1β-/- mice relative to Ctns-/- mice. We showed that anakinra attenuated the cachexia phenotype in Ctns-/- mice. Anakinra normalized UCPs and adenosine triphosphate content of adipose tissue and muscle in Ctns-/- mice. Anakinra attenuated aberrant expression of beige adipose cell biomarkers (UCP-1, CD137, Tmem26, and Tbx1) and molecules implicated in adipocyte tissue browning (Cox2/Pgf2α, Tlr2, Myd88, and Traf6) in inguinal white adipose tissue in Ctns-/- mice. Moreover, anakinra normalized gastrocnemius weight and fiber size and attenuated muscle fat infiltration in Ctns-/- mice. This was accompanied by correction of the increased muscle wasting signalling pathways (increased protein content of ERK1/2, JNK, p38 MAPK, and nuclear factor-κB p65 and mRNA expression of Atrogin-1 and Myostatin) and the decreased myogenesis process (decreased mRNA expression of MyoD and Myogenin) in the gastrocnemius muscle of Ctns-/- mice. Previously, we identified the top 20 differentially expressed skeletal muscle genes in Ctns-/- mice by RNAseq. Aberrant expression of these 20 genes have been implicated in muscle wasting, increased energy expenditure, and lipolysis. We showed that anakinra attenuated 12 of those top 20 differentially expressed muscle genes in Ctns-/- mice. CONCLUSIONS Anakinra may provide a targeted novel therapy for patients with infantile nephropathic cystinosis.
Collapse
Affiliation(s)
- Wai W. Cheung
- Division of Pediatric Nephrology, Department of Pediatrics, Rady Children's Hospital San DiegoUniversity of California, San DiegoLa JollaCAUSA
| | - Sheng Hao
- Department of Nephrology and Rheumatology, Shanghai Children's HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Ronghao Zheng
- Department of Pediatric Nephrology, Rheumatology, and Immunology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhen Wang
- Department of Pediatrics, Shanghai General HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Alex Gonzalez
- Division of Pediatric Nephrology, Department of Pediatrics, Rady Children's Hospital San DiegoUniversity of California, San DiegoLa JollaCAUSA
| | - Ping Zhou
- Sichuan Provincial Hospital for Women and ChildrenAffiliated Women and Children's Hospital of Chengdu Medical CollegeChengduChina
| | - Hal M. Hoffman
- Department of PediatricsUniversity of California, San DiegoLa JollaCAUSA
| | - Robert H. Mak
- Division of Pediatric Nephrology, Department of Pediatrics, Rady Children's Hospital San DiegoUniversity of California, San DiegoLa JollaCAUSA
| |
Collapse
|
7
|
Gonzalez A, Cheung WW, Perens EA, Oliveira EA, Gertler A, Mak RH. A Leptin Receptor Antagonist Attenuates Adipose Tissue Browning and Muscle Wasting in Infantile Nephropathic Cystinosis-Associated Cachexia. Cells 2021; 10:1954. [PMID: 34440723 PMCID: PMC8393983 DOI: 10.3390/cells10081954] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Mice lacking the functional cystinosin gene (Ctns-/-), a model of infantile nephropathic cystinosis (INC), exhibit the cachexia phenotype with adipose tissue browning and muscle wasting. Elevated leptin signaling is an important cause of chronic kidney disease-associated cachexia. The pegylated leptin receptor antagonist (PLA) binds to but does not activate the leptin receptor. We tested the efficacy of this PLA in Ctns-/- mice. We treated 12-month-old Ctns-/- mice and control mice with PLA (7 mg/kg/day, IP) or saline as a vehicle for 28 days. PLA normalized food intake and weight gain, increased fat and lean mass, decreased metabolic rate and improved muscle function. It also attenuated perturbations of energy homeostasis in adipose tissue and muscle in Ctns-/- mice. PLA attenuated adipose tissue browning in Ctns-/- mice. PLA increased gastrocnemius weight and fiber size as well as attenuated muscle fat infiltration in Ctns-/- mice. This was accompanied by correcting the increased expression of muscle wasting signaling while promoting the decreased expression of myogenesis in gastrocnemius of Ctns-/- mice. PLA attenuated aberrant expressed muscle genes that have been associated with muscle atrophy, increased energy expenditure and lipolysis in Ctns-/- mice. Leptin antagonism may represent a viable therapeutic strategy for adipose tissue browning and muscle wasting in INC.
Collapse
MESH Headings
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/pathology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acid Transport Systems, Neutral/metabolism
- Animals
- Body Composition/drug effects
- Cachexia/etiology
- Cachexia/metabolism
- Cachexia/pathology
- Cachexia/prevention & control
- Cystinosis/complications
- Cystinosis/drug therapy
- Cystinosis/metabolism
- Cystinosis/pathology
- Disease Models, Animal
- Hormone Antagonists/pharmacology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Atrophy/etiology
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Muscular Atrophy/prevention & control
- Receptors, Leptin/antagonists & inhibitors
- Receptors, Leptin/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Alex Gonzalez
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093-0831, USA; (A.G.); (W.W.C.); (E.A.P.); (E.A.O.)
| | - Wai W. Cheung
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093-0831, USA; (A.G.); (W.W.C.); (E.A.P.); (E.A.O.)
| | - Elliot A. Perens
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093-0831, USA; (A.G.); (W.W.C.); (E.A.P.); (E.A.O.)
| | - Eduardo A. Oliveira
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093-0831, USA; (A.G.); (W.W.C.); (E.A.P.); (E.A.O.)
- Health Sciences Postgraduate Program, School of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - Arieh Gertler
- Institute of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Robert H. Mak
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA 92093-0831, USA; (A.G.); (W.W.C.); (E.A.P.); (E.A.O.)
| |
Collapse
|
8
|
Metronomic 5-Fluorouracil Delivery Primes Skeletal Muscle for Myopathy but Does Not Cause Cachexia. Pharmaceuticals (Basel) 2021; 14:ph14050478. [PMID: 34067869 PMCID: PMC8156038 DOI: 10.3390/ph14050478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022] Open
Abstract
Skeletal myopathy encompasses both atrophy and dysfunction and is a prominent event in cancer and chemotherapy-induced cachexia. Here, we investigate the effects of a chemotherapeutic agent, 5-fluorouracil (5FU), on skeletal muscle mass and function, and whether small-molecule therapeutic candidate, BGP-15, could be protective against the chemotoxic challenge exerted by 5FU. Additionally, we explore the molecular signature of 5FU treatment. Male Balb/c mice received metronomic tri-weekly intraperitoneal delivery of 5FU (23 mg/kg), with and without BGP-15 (15 mg/kg), 6 times in total over a 15 day treatment period. We demonstrated that neither 5FU, nor 5FU combined with BGP-15, affected body composition indices, skeletal muscle mass or function. Adjuvant BGP-15 treatment did, however, prevent the 5FU-induced phosphorylation of p38 MAPK and p65 NF-B subunit, signalling pathways involved in cell stress and inflammatory signalling, respectively. This as associated with mitoprotection. 5FU reduced the expression of the key cytoskeletal proteins, desmin and dystrophin, which was not prevented by BGP-15. Combined, these data show that metronomic delivery of 5FU does not elicit physiological consequences to skeletal muscle mass and function but is implicit in priming skeletal muscle with a molecular signature for myopathy. BGP-15 has modest protective efficacy against the molecular changes induced by 5FU.
Collapse
|
9
|
Cloning and expression profiling of muscle regulator ANKRD2 in domestic chicken Gallus gallus. Histochem Cell Biol 2020; 154:383-396. [PMID: 32653935 DOI: 10.1007/s00418-020-01899-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
Striated muscle signaling protein and transcriptional regulator ANKRD2 participates in myogenesis, myogenic differentiation, muscle adaptation and stress response. It is preferentially expressed in slow, oxidative fibers of mammalian skeletal muscle. In this study, we report on characterization of chicken ANKRD2. The chicken ANKRD2 coding region contains 1002 bp and encodes a 334-amino acid protein which shares approximately 58% identity with human and mouse orthologs, mostly in the conserved region of ankyrin repeats. Comprehensive analysis of the ANKRD2 gene and protein expression in adult chicken demonstrated its predominant expression in red muscles of thigh and drumstick, compared to white muscle. It was not detected in heart and white pectoral muscle. Uneven expression of ANKRD2 in chicken skeletal muscles, observed by immunohistochemistry, was attributed to its selective expression in slow, oxidative, type I and fast, oxidative-glycolytic, type IIA myofibers. Association of chicken ANKRD2 with phenotypic differences between red and white muscles points to its potential role in the process of myofiber-type specification. In addition to expression in slow oxidative myofibers, as demonstrated for mammalian protein, chicken ANKRD2 was also detected in fast fibers with mixed oxidative and glycolytic metabolism. This finding suggests that ANKRD2 is responsive to metabolic differences between types of avian myofibers and orientates future studies towards investigation of its role in molecular mechanisms of myofiber-type-specific gene expression.
Collapse
|
10
|
Ankrd2 in Mechanotransduction and Oxidative Stress Response in Skeletal Muscle: New Cues for the Pathogenesis of Muscular Laminopathies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7318796. [PMID: 31428229 PMCID: PMC6681624 DOI: 10.1155/2019/7318796] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/02/2019] [Accepted: 05/19/2019] [Indexed: 12/11/2022]
Abstract
Ankrd2 (ankyrin repeats containing domain 2) or Arpp (ankyrin repeat, PEST sequence, and proline-rich region) is a member of the muscle ankyrin repeat protein family. Ankrd2 is mostly expressed in skeletal muscle, where it plays an intriguing role in the transcriptional response to stress induced by mechanical stimulation as well as by cellular reactive oxygen species. Our studies in myoblasts from Emery-Dreifuss muscular dystrophy 2, a LMNA-linked disease affecting skeletal and cardiac muscles, demonstrated that Ankrd2 is a lamin A-binding protein and that mutated lamins found in Emery-Dreifuss muscular dystrophy change the dynamics of Ankrd2 nuclear import, thus affecting oxidative stress response. In this review, besides describing the latest advances related to Ankrd2 studies, including novel discoveries on Ankrd2 isoform-specific functions, we report the main findings on the relationship of Ankrd2 with A-type lamins and discuss known and potential mechanisms involving defective Ankrd2-lamin A interplay in the pathogenesis of muscular laminopathies.
Collapse
|
11
|
Effect of lifelong carnitine supplementation on plasma and tissue carnitine status, hepatic lipid metabolism and stress signalling pathways and skeletal muscle transcriptome in mice at advanced age. Br J Nutr 2019; 121:1323-1333. [DOI: 10.1017/s0007114519000709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AbstractWhile strong evidence from clinical studies suggests beneficial effects of carnitine supplementation on metabolic health, serious safety concerns associated with carnitine supplementation have been raised from studies in mice. Considering that the carnitine doses in these mice studies were up to 100 times higher than those used in clinical studies, the present study aimed to address possible safety concerns associated with long-term supplementation of a carnitine dose used in clinical trials. Two groups of NMRI mice were fed either a control or a carnitine-supplemented diet (1 g/kg diet) from weaning to 19 months of age, and parameters of hepatic lipid metabolism and stress signalling and skeletal muscle gene expression were analysed in the mice at 19 months of age. Concentrations of free carnitine and acetylcarnitine in plasma and tissues were higher in the carnitine than in the control group (P<0·05). Plasma concentrations of free carnitine and acetylcarnitine were higher in mice at adult age (10 and 15 months) than at advanced age (19 months) (P<0·05). Hepatic mRNA and protein levels of genes involved in lipid metabolism and stress signalling and hepatic and plasma lipid concentrations did not differ between the carnitine and the control group. Skeletal muscle transcriptome analysis in 19-month-old mice revealed only a moderate regulation between carnitine and control group. Lifelong carnitine supplementation prevents an age-dependent impairment of plasma carnitine status, but safety concerns associated with long-term supplementation of carnitine at doses used in clinical trials can be considered as unfounded.
Collapse
|
12
|
Shao YH, Peng Z, Kong X, Wang B, Zhang H. Real-time ultrasound elastography evaluation of achilles tendon properties in patients with mild hemiplegic stroke after rehabilitation training. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2019; 38:713-723. [PMID: 30280400 DOI: 10.1002/jum.14755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE This study aims to evaluate the Achilles tendon's properties after rehabilitation training in patients with stroke using real-time ultrasound elastography. METHODS A total of 24 patients with mild hemiplegic stroke in the past 6 to 12 months and unilateral lower limb movement disorder were prospectively enrolled. All patients accepted 9-week rehabilitation training with the same schema. The 2-dimensional elastography and real-time elastography findings in the impaired and contralateral normal Achilles tendon were measured at pretraining and at 3, 6, and 9 weeks after training, which included tendon length, thickness, elasticity score (grade 1-3), and strain ratio of fat to tendon. The functional properties, which include the 10-meter walk test and timed up-and-go scores, were evaluated before and after the 9-week training. RESULTS The impaired Achilles tendon had a longer length (P = .002), lower frequency of grade 1 (P = .012), and lower strain ratio (P = .009) than the contralateral tendon before training. The impaired tendons at the third, sixth, and ninth weeks after training were compared to ones before training, respectively, which revealed shorter length, increased frequency of grade 1, and increased strain ratio. The first statistically significant changes in the length were observed at the sixth week, while such changes in elasticity score and strain ratio were observed at the ninth week. CONCLUSIONS Two-dimensional elastography and real-time elastography can provide valuable imaging markers for quantitatively evaluating the Achilles tendon's properties after rehabilitation training in patients with stroke.
Collapse
Affiliation(s)
- Yu-Hong Shao
- Department of Ultrasound, Peking University First Hospital, Beijing, 100034, China
| | - Ze Peng
- Department of Ultrasound, Peking University First Hospital, Beijing, 100034, China
| | - Xun Kong
- Department of Ultrasound, Peking University First Hospital, Beijing, 100034, China
| | - Bin Wang
- Department of Ultrasound, Peking University First Hospital, Beijing, 100034, China
| | - Hui Zhang
- Department of Ultrasound, Peking University First Hospital, Beijing, 100034, China
| |
Collapse
|
13
|
Galusca B, Verney J, Meugnier E, Ling Y, Edouard P, Feasson L, Ravelojaona M, Vidal H, Estour B, Germain N. Reduced fibre size, capillary supply and mitochondrial activity in constitutional thinness' skeletal muscle. Acta Physiol (Oxf) 2018; 224:e13097. [PMID: 29754437 DOI: 10.1111/apha.13097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 11/30/2022]
Abstract
AIM Constitutional thinness (CT) is a rare condition of natural low body weight, with no psychological issues, no marker of undernutrition and a resistance to weight gain. This study evaluated the skeletal muscle phenotype of CT women by comparison with a normal BMI control group. METHODS Ten CT women (BMI < 17.5 kg/m2 ) and 10 female controls (BMI: 18.5-25 kg/m2 ) underwent metabolic and hormonal assessment along with muscle biopsies to analyse the skeletal muscular fibres pattern, capillarity, enzymes activities and transcriptomics. RESULTS Constitutional thinness displayed similar energy balance metabolic and hormonal profile to controls. Constitutional thinness presented with lower mean area of all the skeletal muscular fibres (-24%, P = .01) and percentage of slow-twitch type I fibres (-25%, P = .02, respectively). Significant downregulation of the mRNA expression of several mitochondrial-related genes and triglycerides metabolism was found along with low cytochrome c oxidase (COX) activity and capillary network in type I fibres. Pre- and post-mitochondrial respiratory chain enzymes levels were found similar to controls. Transcriptomics also revealed downregulation of cytoskeletal-related genes. CONCLUSION Diminished type I fibres, decreased mitochondrial and metabolic activity suggested by these results are discordant with normal resting metabolic rate of CT subjects. Downregulated genes related to cytoskeletal proteins and myocyte differentiation could account for CT's resistance to weight gain.
Collapse
Affiliation(s)
- B. Galusca
- Division of Endocrinology, Diabetes, Metabolism and Eating Disorders; CHU Saint-Etienne; Saint-Etienne France
- Eating Disorders, Addictions & Extreme Bodyweight Research Group (TAPE) EA 7423; Jean Monnet University; Saint-Etienne France
| | - J. Verney
- Interuniversity Laboratory of Motricity & Biology (LIBM) EA 7424; Jean Monnet University; Saint-Etienne France
- Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological conditions (AME2P) EA 3533; Blaise Pascal University; Clermont-Ferrand France
| | - E. Meugnier
- CarMeN Laboratory, INSERM U1060, INRA U1397; INSA-Lyon, Faculté de Médecine Lyon-Sud; Université Lyon 1; Lyon University; Oullins France
| | - Y. Ling
- Eating Disorders, Addictions & Extreme Bodyweight Research Group (TAPE) EA 7423; Jean Monnet University; Saint-Etienne France
| | - P. Edouard
- Interuniversity Laboratory of Motricity & Biology (LIBM) EA 7424; Jean Monnet University; Saint-Etienne France
| | - L. Feasson
- Interuniversity Laboratory of Motricity & Biology (LIBM) EA 7424; Jean Monnet University; Saint-Etienne France
| | - M. Ravelojaona
- Interuniversity Laboratory of Motricity & Biology (LIBM) EA 7424; Jean Monnet University; Saint-Etienne France
| | - H. Vidal
- CarMeN Laboratory, INSERM U1060, INRA U1397; INSA-Lyon, Faculté de Médecine Lyon-Sud; Université Lyon 1; Lyon University; Oullins France
| | - B. Estour
- Division of Endocrinology, Diabetes, Metabolism and Eating Disorders; CHU Saint-Etienne; Saint-Etienne France
- Eating Disorders, Addictions & Extreme Bodyweight Research Group (TAPE) EA 7423; Jean Monnet University; Saint-Etienne France
| | - N. Germain
- Division of Endocrinology, Diabetes, Metabolism and Eating Disorders; CHU Saint-Etienne; Saint-Etienne France
- Eating Disorders, Addictions & Extreme Bodyweight Research Group (TAPE) EA 7423; Jean Monnet University; Saint-Etienne France
| |
Collapse
|
14
|
Boskovic S, Marín-Juez R, Jasnic J, Reischauer S, El Sammak H, Kojic A, Faulkner G, Radojkovic D, Stainier DYR, Kojic S. Characterization of zebrafish (Danio rerio) muscle ankyrin repeat proteins reveals their conserved response to endurance exercise. PLoS One 2018; 13:e0204312. [PMID: 30252882 PMCID: PMC6155536 DOI: 10.1371/journal.pone.0204312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/05/2018] [Indexed: 12/30/2022] Open
Abstract
Muscle proteins with ankyrin repeats (MARPs) ANKRD1 and ANKRD2 are titin-associated proteins with a putative role as transcriptional co-regulators in striated muscle, involved in the cellular response to mechanical, oxidative and metabolic stress. Since many aspects of the biology of MARPs, particularly exact mechanisms of their action, in striated muscle are still elusive, research in this field will benefit from novel animal model system. Here we investigated the MARPs found in zebrafish for protein structure, evolutionary conservation, spatiotemporal expression profiles and response to increased muscle activity. Ankrd1 and Ankrd2 show overall moderate conservation at the protein level, more pronounced in the region of ankyrin repeats, motifs indispensable for their function. The two zebrafish genes, ankrd1a and ankrd1b, counterparts of mammalian ANKRD1/Ankrd1, have different expression profiles during first seven days of development. Mild increase of ankrd1a transcript levels was detected at 72 hpf (1.74±0.24 fold increase relative to 24 hpf time point), while ankrd1b expression was markedly upregulated from 24 hpf onward and peaked at 72 hpf (92.18±36.95 fold increase relative to 24 hpf time point). Spatially, they exhibited non-overlapping expression patterns during skeletal muscle development in trunk (ankrd1a) and tail (ankrd1b) somites. Expression of ankrd2 was barely detectable. Zebrafish MARPs, expressed at a relatively low level in adult striated muscle, were found to be responsive to endurance exercise training consisting of two bouts of 3 hours of forced swimming daily, for five consecutive days. Three hours after the last exercise bout, ankrd1a expression increased in cardiac muscle (6.19±5.05 fold change), while ankrd1b and ankrd2 were upregulated in skeletal muscle (1.97±1.05 and 1.84±0.58 fold change, respectively). This study provides the foundation to establish zebrafish as a novel in vivo model for further investigation of MARPs function in striated muscle.
Collapse
Affiliation(s)
- Srdjan Boskovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Rubén Marín-Juez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jovana Jasnic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hadil El Sammak
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Dragica Radojkovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Snezana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
15
|
Pardo PS, Lopez MA, Mohamed JS, Boriek AM. Anisotropic mechanosensitive pathways in the diaphragm and their implications in muscular dystrophies. J Muscle Res Cell Motil 2017; 38:437-446. [PMID: 28986699 DOI: 10.1007/s10974-017-9483-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/13/2017] [Indexed: 11/24/2022]
Abstract
The diaphragm is the "respiratory pump;" the muscle that generates pressure to allow ventilation. Diaphragm muscles play a vital function and thus are subjected to continuous mechanical loading. One of its peculiarities is the ability to generate distinct mechanical and biochemical responses depending on the direction through which the mechanical forces applied to it. Contractile forces originated from its contractile components are transmitted to other structural components of its muscle fibers and the surrounding connective tissue. The anisotropic mechanical properties of the diaphragm are translated into biochemical signals that are directionally mechanosensitive by mechanisms that appear to be unique to this muscle. Here, we reviewed the current state of knowledge on the biochemical pathways regulated by mechanical signals emphasizing their anisotropic behavior in the normal diaphragm and analyzed how they are affected in muscular dystrophies.
Collapse
Affiliation(s)
- Patricia S Pardo
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Michael A Lopez
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Junaith S Mohamed
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Laboratory of Muscle Biology and Sarcopenia, Division of Exercise Physiology, Department of Human Performance, Center for Cardiovascular and Respiratory Sciences, West Virginia University, School of Medicine, Morgantown, WV, 26506, USA
| | - Aladin M Boriek
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Wang X, Zeng R, Xu H, Xu Z, Zuo B. The nuclear protein-coding gene ANKRD23 negatively regulates myoblast differentiation. Gene 2017; 629:68-75. [DOI: 10.1016/j.gene.2017.07.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 02/02/2023]
|
17
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
18
|
Wette SG, Smith HK, Lamb GD, Murphy RM. Characterization of muscle ankyrin repeat proteins in human skeletal muscle. Am J Physiol Cell Physiol 2017; 313:C327-C339. [PMID: 28615162 DOI: 10.1152/ajpcell.00077.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 12/23/2022]
Abstract
Muscle ankyrin repeat proteins (MARPs) are a family of titin-associated, stress-response molecules and putative transducers of stretch-induced signaling in skeletal muscle. In cardiac muscle, cardiac ankyrin repeat protein (CARP) and diabetes-related ankyrin repeat protein (DARP) reportedly redistribute from binding sites on titin to the nucleus following a prolonged stretch. However, it is unclear whether ankyrin repeat domain protein 2 (Ankrd 2) shows comparable stretch-induced redistribution to the nucleus. We measured the following in rested human skeletal muscle: 1) the absolute amount of MARPs and 2) the distribution of Ankrd 2 and DARP in both single fibers and whole muscle preparations. In absolute amounts, Ankrd 2 is the most abundant MARP in human skeletal muscle, there being ~3.1 µmol/kg, much greater than DARP and CARP (~0.11 and ~0.02 µmol/kg, respectively). All DARP was found to be tightly bound at cytoskeletal (or possibly nuclear) sites. In contrast, ~70% of the total Ankrd 2 is freely diffusible in the cytosol [including virtually all of the phosphorylated (p)Ankrd 2-Ser99 form], ~15% is bound to non-nuclear membranes, and ~15% is bound at cytoskeletal sites, likely at the N2A region of titin. These data are not consistent with the proposal that Ankrd 2, per se, or pAnkrd 2-Ser99 mediates stretch-induced signaling in skeletal muscle, dissociating from titin and translocating to the nucleus, because the majority of these forms of Ankrd 2 are already free in the cytosol. It will be necessary to show that the titin-associated Ankrd 2 is modified by stretch in some as-yet-unidentified way, distinct from the diffusible pool, if it is to act as a stretch-sensitive signaling molecule.
Collapse
Affiliation(s)
- Stefan G Wette
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Heather K Smith
- Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand
| | - Graham D Lamb
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia; and
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia;
| |
Collapse
|
19
|
Tiffany H, Sonkar K, Gage MJ. The insertion sequence of the N2A region of titin exists in an extended structure with helical characteristics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:1-10. [PMID: 27742555 DOI: 10.1016/j.bbapap.2016.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022]
Abstract
The giant sarcomere protein titin is the third filament in muscle and is integral to maintaining sarcomere integrity as well as contributing to both active and passive tension. Titin is a multi-domain protein that contains regions of repeated structural elements. The N2A region sits at the boundary between the proximal Ig region of titin that is extended under low force and the PEVK region that is extended under high force. Multiple binding interactions have been associated with the N2A region and it has been proposed that this region acts as a mechanical stretch sensor. The focus of this work is a 117 amino acid portion of the N2A region (N2A-IS), which resides between the proximal Ig domains and the PEVK region. Our work has shown that the N2A-IS region is predicted to contain helical structure in the center while both termini are predicted to be disordered. Recombinantly expressed N2A-IS protein contains 13% α-helical structure, as measured via circular dichroism. Additional α-helical structure can be induced with 2,2,2-trifluoroethanol, suggesting that there is transient helical structure that might be stabilized in the context of the entire N2A region. The N2A-IS region does not exhibit any cooperativity in either thermal or chemical denaturation studies while size exclusion chromatography and Fluorescence Resonance Energy Transfer demonstrates that the N2A-IS region has an extended structure. Combined, these results lead to a model of the N2A-IS region having a helical core with extended N- and C-termini.
Collapse
Affiliation(s)
- Holly Tiffany
- Department of Biology, Northern Arizona University, Flagstaff, AZ, United States
| | - Kanchan Sonkar
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, United States
| | - Matthew J Gage
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, United States; Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, AZ, United States; Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, United States.
| |
Collapse
|
20
|
Zhou T, Fleming JR, Franke B, Bogomolovas J, Barsukov I, Rigden DJ, Labeit S, Mayans O. CARP interacts with titin at a unique helical N2A sequence and at the domain Ig81 to form a structured complex. FEBS Lett 2016; 590:3098-110. [PMID: 27531639 DOI: 10.1002/1873-3468.12362] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/29/2016] [Accepted: 08/09/2016] [Indexed: 11/07/2022]
Abstract
The cardiac ankyrin repeat protein (CARP) is up-regulated in the myocardium during cardiovascular disease and in response to mechanical or toxic stress. Stress-induced CARP interacts with the N2A spring region of the titin filament to modulate muscle compliance. We characterize the interaction between CARP and titin-N2A and show that the binding site in titin spans the dual domain UN2A-Ig81. We find that the unique sequence UN2A is not structurally disordered, but that it has a stable, elongated α-helical fold that possibly acts as a constant force spring. Our findings portray CARP/titin-N2A as a structured node and help to rationalize the molecular basis of CARP mechanosensing in the sarcomeric I-band.
Collapse
Affiliation(s)
- Tiankun Zhou
- Department of Biology, University of Konstanz, Germany.,Institute of Integrative Biology, University of Liverpool, UK
| | - Jennifer R Fleming
- Department of Biology, University of Konstanz, Germany.,Institute of Integrative Biology, University of Liverpool, UK
| | | | - Julius Bogomolovas
- Department of Integrative Pathophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Igor Barsukov
- Institute of Integrative Biology, University of Liverpool, UK
| | - Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, UK
| | - Siegfried Labeit
- Department of Integrative Pathophysiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Olga Mayans
- Department of Biology, University of Konstanz, Germany. .,Institute of Integrative Biology, University of Liverpool, UK.
| |
Collapse
|
21
|
Differential expression and localization of Ankrd2 isoforms in human skeletal and cardiac muscles. Histochem Cell Biol 2016; 146:569-584. [PMID: 27393496 DOI: 10.1007/s00418-016-1465-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2016] [Indexed: 01/03/2023]
Abstract
Four human Ankrd2 transcripts, reported in the Ensembl database, code for distinct protein isoforms (360, 333, 327 and 300 aa), and so far, their existence, specific expression and localization patterns have not been studied in detail. Ankrd2 is preferentially expressed in the slow fibers of skeletal muscle. It is found in both the nuclei and the cytoplasm of skeletal muscle cells, and its localization is prone to change during differentiation and upon stress. Ankrd2 has also been detected in the heart, in ventricular cardiomyocytes and in the intercalated disks (ICDs). The main objective of this study was to distinguish between the Ankrd2 isoforms and to determine the contribution of each one to the general profile of Ankrd2 expression in striated muscles. We demonstrated that the known expression and localization pattern of Ankrd2 in striated muscle can be attributed to the isoform of 333 aa which is dominant in both tissues, while the designated cardiac and canonical isoform of 360 aa was less expressed in both tissues. The 360 aa isoform has a distinct nuclear localization in human skeletal muscle, as well as in primary myoblasts and myotubes. In contrast to the isoform of 333 aa, it was not preferentially expressed in slow fibers and not localized to the ICDs of human cardiomyocytes. Regulation of the expression of both isoforms is achieved at the transcriptional level. Our results set the stage for investigation of the specific functions and interactions of the Ankrd2 isoforms in healthy and diseased human striated muscles.
Collapse
|
22
|
Tsompanidis A, Vafiadaki E, Blüher S, Kalozoumi G, Sanoudou D, Mantzoros CS. Ciliary neurotrophic factor upregulates follistatin and Pak1, causes overexpression of muscle differentiation related genes and downregulation of established atrophy mediators in skeletal muscle. Metabolism 2016; 65:915-25. [PMID: 27173470 DOI: 10.1016/j.metabol.2016.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/01/2016] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The Ciliary Neurotrophic Factor (CNTF) is a pluripotent cytokine with anorexigenic actions in the hypothalamus that improves insulin sensitivity, increases energy expenditure and induces weight loss. Since CNTF also has an established myotrophic role, we sought to examine whether skeletal muscle contributes to the CNTF-induced metabolic improvement and identify the molecular mechanisms mediating these effects. METHODS We used a mouse model of diet-induced obesity, to which high or low CNTF doses were administered for 7days. Whole transcriptome expression levels were analyzed in dissected soleus muscles using microarrays and data were then confirmed using qRT-PCR. RESULTS We demonstrate that CNTF administration significantly downregulates leptin, while it upregulates follistatin and Pak1; a molecule associated with insulin sensitization in skeletal muscle. A significant overexpression of muscle differentiation related genes and downregulation of established atrophy mediators was observed. CONCLUSIONS The overall gene expression changes suggest an indirect, beneficial effect of CNTF on metabolism, energy expenditure and insulin sensitivity, exerted by the pronounced stimulation of muscle growth, with similarities to the described effect of follistatin and the activation of the Akt pathway in skeletal muscle.
Collapse
Affiliation(s)
- Alexandros Tsompanidis
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Susann Blüher
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Georgia Kalozoumi
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Shimoda Y, Matsuo K, Kitamura Y, Ono K, Ueyama T, Matoba S, Yamada H, Wu T, Chen J, Emoto N, Ikeda K. Diabetes-Related Ankyrin Repeat Protein (DARP/Ankrd23) Modifies Glucose Homeostasis by Modulating AMPK Activity in Skeletal Muscle. PLoS One 2015; 10:e0138624. [PMID: 26398569 PMCID: PMC4580461 DOI: 10.1371/journal.pone.0138624] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle is the major site for glucose disposal, the impairment of which closely associates with the glucose intolerance in diabetic patients. Diabetes-related ankyrin repeat protein (DARP/Ankrd23) is a member of muscle ankyrin repeat proteins, whose expression is enhanced in the skeletal muscle under diabetic conditions; however, its role in energy metabolism remains poorly understood. Here we report a novel role of DARP in the regulation of glucose homeostasis through modulating AMP-activated protein kinase (AMPK) activity. DARP is highly preferentially expressed in skeletal muscle, and its expression was substantially upregulated during myotube differentiation of C2C12 myoblasts. Interestingly, DARP-/- mice demonstrated better glucose tolerance despite similar body weight, while their insulin sensitivity did not differ from that in wildtype mice. We found that phosphorylation of AMPK, which mediates insulin-independent glucose uptake, in skeletal muscle was significantly enhanced in DARP-/- mice compared to that in wildtype mice. Gene silencing of DARP in C2C12 myotubes enhanced AMPK phosphorylation, whereas overexpression of DARP in C2C12 myoblasts reduced it. Moreover, DARP-silencing increased glucose uptake and oxidation in myotubes, which was abrogated by the treatment with AICAR, an AMPK activator. Of note, improved glucose tolerance in DARP-/- mice was abolished when mice were treated with AICAR. Mechanistically, gene silencing of DARP enhanced protein expression of LKB1 that is a major upstream kinase for AMPK in myotubes in vitro and the skeletal muscle in vivo. Together with the altered expression under diabetic conditions, our data strongly suggest that DARP plays an important role in the regulation of glucose homeostasis under physiological and pathological conditions, and thus DARP is a new therapeutic target for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Yoshiaki Shimoda
- Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602–8566, Japan
| | - Kiyonari Matsuo
- Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602–8566, Japan
| | - Youhei Kitamura
- Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602–8566, Japan
| | - Kazunori Ono
- Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602–8566, Japan
| | - Tomomi Ueyama
- Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602–8566, Japan
| | - Satoaki Matoba
- Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602–8566, Japan
| | - Hiroyuki Yamada
- Department of Cardiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii, Kawaramachi-Hirokoji, Kamigyo, Kyoto 602–8566, Japan
| | - Tongbin Wu
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Noriaki Emoto
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada, Kobe6588558, Japan
| | - Koji Ikeda
- Department of Clinical Pharmacy, Kobe Pharmaceutical University, 4-19-1 Motoyama-Kitamachi, Higashinada, Kobe6588558, Japan
- * E-mail:
| |
Collapse
|
24
|
Katzemich A, West RJH, Fukuzawa A, Sweeney ST, Gautel M, Sparrow J, Bullard B. Binding partners of the kinase domains in Drosophila obscurin and their effect on the structure of the flight muscle. J Cell Sci 2015; 128:3386-97. [PMID: 26251439 DOI: 10.1242/jcs.170639] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/27/2015] [Indexed: 01/15/2023] Open
Abstract
Drosophila obscurin (Unc-89) is a titin-like protein in the M-line of the muscle sarcomere. Obscurin has two kinase domains near the C-terminus, both of which are predicted to be inactive. We have identified proteins binding to the kinase domains. Kinase domain 1 bound Bällchen (Ball, an active kinase), and both kinase domains 1 and 2 bound MASK (a 400-kDa protein with ankyrin repeats). Ball was present in the Z-disc and M-line of the indirect flight muscle (IFM) and was diffusely distributed in the sarcomere. MASK was present in both the M-line and the Z-disc. Reducing expression of Ball or MASK by siRNA resulted in abnormalities in the IFM, including missing M-lines and multiple Z-discs. Obscurin was still present, suggesting that the kinase domains act as a scaffold binding Ball and MASK. Unlike obscurin in vertebrate skeletal muscle, Drosophila obscurin is necessary for the correct assembly of the IFM sarcomere. We show that Ball and MASK act downstream of obscurin, and both are needed for development of a well defined M-line and Z-disc. The proteins have not previously been identified in Drosophila muscle.
Collapse
Affiliation(s)
- Anja Katzemich
- Department of Biology, University of York, York YO10 5DD, UK
| | - Ryan J H West
- Department of Biology, University of York, York YO10 5DD, UK
| | - Atsushi Fukuzawa
- King's College BHF Centre, Cardiovascular Division, London SE1 1UL, UK
| | - Sean T Sweeney
- Department of Biology, University of York, York YO10 5DD, UK
| | - Mathias Gautel
- King's College BHF Centre, Cardiovascular Division, London SE1 1UL, UK
| | - John Sparrow
- Department of Biology, University of York, York YO10 5DD, UK
| | - Belinda Bullard
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
25
|
Liu XH, Bauman WA, Cardozo C. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity. Biochem Biophys Res Commun 2015; 464:208-13. [DOI: 10.1016/j.bbrc.2015.06.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/17/2015] [Indexed: 02/08/2023]
|
26
|
Zhong L, Chiusa M, Cadar AG, Lin A, Samaras S, Davidson JM, Lim CC. Targeted inhibition of ANKRD1 disrupts sarcomeric ERK-GATA4 signal transduction and abrogates phenylephrine-induced cardiomyocyte hypertrophy. Cardiovasc Res 2015; 106:261-71. [PMID: 25770146 DOI: 10.1093/cvr/cvv108] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 03/05/2015] [Indexed: 12/11/2022] Open
Abstract
AIMS Accumulating evidence suggest that sarcomere signalling complexes play a pivotal role in cardiomyocyte hypertrophy by communicating stress signals to the nucleus to induce gene expression. Ankyrin repeat domain 1 (ANKRD1) is a transcriptional regulatory protein that also associates with sarcomeric titin; however, the exact role of ANKRD1 in the heart remains to be elucidated. We therefore aimed to examine the role of ANKRD1 in cardiomyocyte hypertrophic signalling. METHODS AND RESULTS In neonatal rat ventricular myocytes, we found that ANKRD1 is part of a sarcomeric signalling complex that includes ERK1/2 and cardiac transcription factor GATA4. Treatment with hypertrophic agonist phenylephrine (PE) resulted in phosphorylation of ERK1/2 and GATA4 followed by nuclear translocation of the ANKRD1/ERK/GATA4 complex. Knockdown of Ankrd1 attenuated PE-induced phosphorylation of ERK1/2 and GATA4, inhibited nuclear translocation of the ANKRD1 complex, and prevented cardiomyocyte growth. Mice lacking Ankrd1 are viable with normal cardiac function. Chronic PE infusion in wild-type mice induced significant cardiac hypertrophy with reactivation of the cardiac fetal gene program which was completely abrogated in Ankrd1 null mice. In contrast, ANKRD1 does not play a role in haemodynamic overload as Ankrd1 null mice subjected to transverse aortic constriction developed cardiac hypertrophy comparable to wild-type mice. CONCLUSION Our study reveals a novel role for ANKRD1 as a selective regulator of PE-induced signalling whereby ANKRD1 recruits and localizes GATA4 and ERK1/2 in a sarcomeric macro-molecular complex to enhance GATA4 phosphorylation with subsequent nuclear translocation of the ANKRD1 complex to induce hypertrophic gene expression.
Collapse
Affiliation(s)
- Lin Zhong
- Department of Medicine, Cardiovascular Division, Vanderbilt University School of Medicine, 2220 Pierce Ave, Preston Research Building, Rm 332, Nashville, TN 37232, USA
| | - Manuel Chiusa
- Department of Medicine, Cardiovascular Division, Vanderbilt University School of Medicine, 2220 Pierce Ave, Preston Research Building, Rm 332, Nashville, TN 37232, USA
| | - Adrian G Cadar
- Department of Medicine, Cardiovascular Division, Vanderbilt University School of Medicine, 2220 Pierce Ave, Preston Research Building, Rm 332, Nashville, TN 37232, USA Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Angel Lin
- Department of Medicine, Cardiovascular Division, Vanderbilt University School of Medicine, 2220 Pierce Ave, Preston Research Building, Rm 332, Nashville, TN 37232, USA
| | - Susan Samaras
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jeffrey M Davidson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Research Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| | - Chee C Lim
- Department of Medicine, Cardiovascular Division, Vanderbilt University School of Medicine, 2220 Pierce Ave, Preston Research Building, Rm 332, Nashville, TN 37232, USA Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
27
|
Jasnic-Savovic J, Nestorovic A, Savic S, Karasek S, Vitulo N, Valle G, Faulkner G, Radojkovic D, Kojic S. Profiling of skeletal muscle Ankrd2 protein in human cardiac tissue and neonatal rat cardiomyocytes. Histochem Cell Biol 2015; 143:583-97. [PMID: 25585647 DOI: 10.1007/s00418-015-1307-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2014] [Indexed: 10/24/2022]
Abstract
Muscle-specific mechanosensors Ankrd2/Arpp (ankyrin repeat protein 2) and Ankrd1/CARP (cardiac ankyrin repeat protein) have an important role in transcriptional regulation, myofibrillar assembly, cardiogenesis and myogenesis. In skeletal muscle myofibrils, Ankrd2 has a structural role as a component of a titin associated stretch-sensing complex, while in the nucleus it exerts regulatory function as transcriptional co-factor. It is also involved in myogenic differentiation and coordination of myoblast proliferation. Although expressed in the heart, the role of Ankrd2 in the cardiac muscle is completely unknown. Recently, we have shown that hypertrophic and dilated cardiomyopathy pathways are altered upon Ankrd2 silencing suggesting the importance of this protein in cardiac tissue. Here we provide the underlying basis for the functional investigation of Ankrd2 in the heart. We confirmed reduced Ankrd2 expression levels in human heart in comparison with Ankrd1 using RNAseq and Western blot. For the first time we demonstrated that, apart from the sarcomere and nucleus, both proteins are localized to the intercalated disks of human cardiomyocytes. We further tested the expression and localization of endogenous Ankrd2 in rat neonatal cardiomyocytes, a well-established model for studying cardiac-specific proteins. Ankrd2 was found to be expressed in both the cytoplasm and nucleus, independently from maturation status of cardiomyocytes. In contrast to Ankrd1, it is not responsive to the cardiotoxic drug Doxorubicin, suggesting that different mechanisms govern their expression in cardiac cells.
Collapse
Affiliation(s)
- Jovana Jasnic-Savovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, PO Box 23, 11010, Belgrade, Serbia
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol 2014; 3:1645-87. [PMID: 24265241 DOI: 10.1002/cphy.c130009] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian skeletal muscles are composed of a variety of highly specialized fibers whose selective recruitment allows muscles to fulfill their diverse functional tasks. In addition, skeletal muscle fibers can change their structural and functional properties to perform new tasks or respond to new conditions. The adaptive changes of muscle fibers can occur in response to variations in the pattern of neural stimulation, loading conditions, availability of substrates, and hormonal signals. The new conditions can be detected by multiple sensors, from membrane receptors for hormones and cytokines, to metabolic sensors, which detect high-energy phosphate concentration, oxygen and oxygen free radicals, to calcium binding proteins, which sense variations in intracellular calcium induced by nerve activity, to load sensors located in the sarcomeric and sarcolemmal cytoskeleton. These sensors trigger cascades of signaling pathways which may ultimately lead to changes in fiber size and fiber type. Changes in fiber size reflect an imbalance in protein turnover with either protein accumulation, leading to muscle hypertrophy, or protein loss, with consequent muscle atrophy. Changes in fiber type reflect a reprogramming of gene transcription leading to a remodeling of fiber contractile properties (slow-fast transitions) or metabolic profile (glycolytic-oxidative transitions). While myonuclei are in postmitotic state, satellite cells represent a reserve of new nuclei and can be involved in the adaptive response.
Collapse
Affiliation(s)
- Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
29
|
Ojima K, Ono Y, Hata S, Noguchi S, Nishino I, Sorimachi H. Muscle-specific calpain-3 is phosphorylated in its unique insertion region for enrichment in a myofibril fraction. Genes Cells 2014; 19:830-41. [DOI: 10.1111/gtc.12181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Koichi Ojima
- Animal Products Research Division; NARO Institute of Livestock and Grassland Science; 2 Ikenodai Tsukuba Ibaraki 305-0901 Japan
- Calpain Project; Department of Advanced Science for Biomolecules; Tokyo Metropolitan Institute of Medical Science; 2-1-6 Kamikitazawa Setagaya-ku Tokyo 156-8506 Japan
| | - Yasuko Ono
- Calpain Project; Department of Advanced Science for Biomolecules; Tokyo Metropolitan Institute of Medical Science; 2-1-6 Kamikitazawa Setagaya-ku Tokyo 156-8506 Japan
| | - Shoji Hata
- Calpain Project; Department of Advanced Science for Biomolecules; Tokyo Metropolitan Institute of Medical Science; 2-1-6 Kamikitazawa Setagaya-ku Tokyo 156-8506 Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research; National Institute of Neuroscience; National Center of Neurology and Psychiatry; 4-1-1 Ogawa-Higashi Kodaira Tokyo 187-8502 Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research; National Institute of Neuroscience; National Center of Neurology and Psychiatry; 4-1-1 Ogawa-Higashi Kodaira Tokyo 187-8502 Japan
| | - Hiroyuki Sorimachi
- Calpain Project; Department of Advanced Science for Biomolecules; Tokyo Metropolitan Institute of Medical Science; 2-1-6 Kamikitazawa Setagaya-ku Tokyo 156-8506 Japan
| |
Collapse
|
30
|
Bang ML, Gu Y, Dalton ND, Peterson KL, Chien KR, Chen J. The muscle ankyrin repeat proteins CARP, Ankrd2, and DARP are not essential for normal cardiac development and function at basal conditions and in response to pressure overload. PLoS One 2014; 9:e93638. [PMID: 24736439 PMCID: PMC3988038 DOI: 10.1371/journal.pone.0093638] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/04/2014] [Indexed: 01/07/2023] Open
Abstract
Ankrd1/CARP, Ankrd2/Arpp, and Ankrd23/DARP belong to a family of stress inducible ankyrin repeat proteins expressed in striated muscle (MARPs). The MARPs are homologous in structure and localized in the nucleus where they negatively regulate gene expression as well as in the sarcomeric I-band, where they are thought to be involved in mechanosensing. Together with their strong induction during cardiac disease and the identification of causative Ankrd1 gene mutations in cardiomyopathy patients, this suggests their important roles in cardiac development, function, and disease. To determine the functional role of MARPs in vivo, we studied knockout (KO) mice of each of the three family members. Single KO mice were viable and had no apparent cardiac phenotype. We therefore hypothesized that the three highly homologous MARP proteins may have redundant functions in the heart and studied double and triple MARP KO mice. Unexpectedly, MARP triple KO mice were viable and had normal cardiac function both at basal levels and in response to mechanical pressure overload induced by transverse aortic constriction as assessed by echocardiography and hemodynamic studies. Thus, CARP, Ankrd2, and DARP are not essential for normal cardiac development and function at basal conditions and in response to mechanical pressure overload.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research, UOS Milan, National Research Council and Humanitas Clinical and Research Center, Rozzano (Milan), Italy
- * E-mail: (M-LB); (JC)
| | - Yusu Gu
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Nancy D. Dalton
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Kirk L. Peterson
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Kenneth R. Chien
- Department of Cell and Molecular Biology and Medicine, Karolinska Insititutet, Stockholm, Sweden
- Harvard University, Department of Stem Cell and Regenerative Biology, Cambridge, Massachusetts, United States of America
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (M-LB); (JC)
| |
Collapse
|
31
|
Martinelli VC, Kyle WB, Kojic S, Vitulo N, Li Z, Belgrano A, Maiuri P, Banks L, Vatta M, Valle G, Faulkner G. ZASP interacts with the mechanosensing protein Ankrd2 and p53 in the signalling network of striated muscle. PLoS One 2014; 9:e92259. [PMID: 24647531 PMCID: PMC3960238 DOI: 10.1371/journal.pone.0092259] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/19/2014] [Indexed: 01/31/2023] Open
Abstract
ZASP is a cytoskeletal PDZ-LIM protein predominantly expressed in striated muscle. It forms multiprotein complexes and plays a pivotal role in the structural integrity of sarcomeres. Mutations in the ZASP protein are associated with myofibrillar myopathy, left ventricular non-compaction and dilated cardiomyopathy. The ablation of its murine homologue Cypher results in neonatal lethality. ZASP has several alternatively spliced isoforms, in this paper we clarify the nomenclature of its human isoforms as well as their dynamics and expression pattern in striated muscle. Interaction is demonstrated between ZASP and two new binding partners both of which have roles in signalling, regulation of gene expression and muscle differentiation; the mechanosensing protein Ankrd2 and the tumour suppressor protein p53. These proteins and ZASP form a triple complex that appears to facilitate poly-SUMOylation of p53. We also show the importance of two of its functional domains, the ZM-motif and the PDZ domain. The PDZ domain can bind directly to both Ankrd2 and p53 indicating that there is no competition between it and p53 for the same binding site on Ankrd2. However there is competition for this binding site between p53 and a region of the ZASP protein lacking the PDZ domain, but containing the ZM-motif. ZASP is negative regulator of p53 in transactivation experiments with the p53-responsive promoters, MDM2 and BAX. Mutations in the ZASP ZM-motif induce modification in protein turnover. In fact, two mutants, A165V and A171T, were not able to bind Ankrd2 and bound only poorly to alpha-actinin2. This is important since the A165V mutation is responsible for zaspopathy, a well characterized autosomal dominant distal myopathy. Although the mechanism by which this mutant causes disease is still unknown, this is the first indication of how a ZASP disease associated mutant protein differs from that of the wild type ZASP protein.
Collapse
Affiliation(s)
| | - W. Buck Kyle
- Department of Paediatrics (Cardiology), Baylor College of Medicine, Houston, Texas, United States of America
| | - Snezana Kojic
- Laboratory of Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nicola Vitulo
- Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative, University of Padua, Padova, Italy
| | - Zhaohui Li
- Department of Paediatrics (Cardiology), Baylor College of Medicine, Houston, Texas, United States of America
| | - Anna Belgrano
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Paolo Maiuri
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Systems Cell Biology of Cell Polarity and Cell Division, Institut Curie, Paris, France
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Matteo Vatta
- Department of Paediatrics (Cardiology), Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medical and Molecular Genetics, University of Indiana, Indianapolis, Indiana, United States of America
| | - Giorgio Valle
- Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative, University of Padua, Padova, Italy
| | - Georgine Faulkner
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative, University of Padua, Padova, Italy
| |
Collapse
|
32
|
Post-exercise impact of ingested whey protein hydrolysate on gene expression profiles in rat skeletal muscle: activation of extracellular signal-regulated kinase 1/2 and hypoxia-inducible factor-1α. Br J Nutr 2014; 111:2067-78. [DOI: 10.1017/s0007114514000233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously shown that whey protein hydrolysate (WPH) causes a greater increase in muscle protein synthesis than does a mixture of amino acids that is identical in amino acid composition. The present study was conducted to investigate the effect of WPH on gene expression. Male Sprague–Dawley rats subjected to a 2 h swimming exercise were administered either a carbohydrate–amino acid diet or a carbohydrate–WPH diet immediately after exercise. At 1 h after exercise, epitrochlearis muscle mRNA was sampled and subjected to DNA microarray analysis. We found that ingestion of WPH altered 189 genes after considering the false discovery rate. Among the up-regulated genes, eight Gene Ontology (GO) terms were enriched, which included key elements such as Cd24, Ccl2, Ccl7 and Cxcl1 involved in muscle repair after exercise. In contrast, nine GO terms were enriched in gene sets that were down-regulated by the ingestion of WPH, and these GO terms fell into two clusters, ‘regulation of ATPase activity’ and ‘immune response’. Furthermore, we found that WPH activated two upstream proteins, extracellular signal-regulated kinase 1/2 (ERK1/2) and hypoxia-inducible factor-1α (HIF-1α), which might act as key factors for regulating gene expression. These results suggest that ingestion of WPH, compared with ingestion of a mixture of amino acids with an identical amino acid composition, induces greater changes in the post-exercise gene expression profile via activation of the proteins ERK1/2 and HIF-1α.
Collapse
|
33
|
Wu Y, Ruggiero CL, Bauman WA, Cardozo C. Ankrd1 is a transcriptional repressor for the androgen receptor that is downregulated by testosterone. Biochem Biophys Res Commun 2013; 437:355-60. [PMID: 23811403 DOI: 10.1016/j.bbrc.2013.06.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
The ankryn repeat domain proteins, Ankrd1 and Ankrd2, are expressed at the highest levels in skeletal muscle and heart where they are localized to the I band of the sarcomere through binding to titin and myopaladin. Ankrd1 and Ankrd2 migrate from the sarcomere to the nucleus when muscle is stressed, and act as coregulators for a growing number of transcription factors. Expression of Ankrd1 is altered by castration suggesting a link to androgen action. This investigation explored the effects of testosterone on Ankrd1 and Ankrd2 expression and determined whether Ankrd1 or Ankrd2 binds to or regulates the transcriptional activity of the androgen receptor (AR). Incubation of rat L6 myoblasts expressing the human AR (L6.AR) with testosterone reduced mRNA levels for Ankrd1 by approximately 50% and increased those for Ankrd2 by 20-fold. In reporter gene assays conducted with CHO cells co-transfected with an ARE-Luc reporter gene, Ankrd1 blocked the ability of testosterone to increase reporter gene activity while Ankrd2 had no effect. The effect of Ankrd1 and Ankrd2 on repression of the MAFbx promoter by testosterone was also tested in C2C12 cells using an MAFbx-Luc reporter gene (pMAF400-Luc); Ankrd1 blocked repression of pMAF400-Luc by testosterone while Ankrd2 did not. Co-immunoprecipitation studies revealed that Ankrd1 bound to the AR whereas Ankrd2 did not. The effect of Ankrd1 or Ankrd2 on changes in gene expression induced by testosterone in L6.AR cells was also evaluated. Incubation of L6.AR cells with testosterone modestly reduced myogenin mRNA levels but did not significantly alter those for mdm2, MEF2d, TnnI1, TnnI2, or p21. When cells were transfected with Ankrd1, testosterone markedly reduced mRNA levels for MEF2d, myogenin, p21 and TnnI1, increased those for TnnI2, but did not alter those for mdm2. When cells were transfected with Ankrd2, testosterone increased MEF2d and myogenin mRNA levels, having the opposite effect to cells transfected with Ankrd1; Ankrd2 did not change the effects of testosterone on TnnI1, TnnI2, p21, or mdm2 mRNA levels. In conclusion, testosterone regulates the expression of Ankrd1 and Ankrd2; Ankrd1 binds to and directly regulates the transcriptional activity of the AR whereas Ankrd2 does not; expression levels of both Ankrd1 and Ankrd2 modulate effects of testosterone on gene expression in cultured myoblasts.
Collapse
Affiliation(s)
- Yong Wu
- National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter Medical Center, Bronx, NY, United States
| | | | | | | |
Collapse
|
34
|
Wu T, Zhang Z, Yuan Z, Lo LJ, Chen J, Wang Y, Peng J. Distinctive genes determine different intramuscular fat and muscle fiber ratios of the longissimus dorsi muscles in Jinhua and landrace pigs. PLoS One 2013; 8:e53181. [PMID: 23301040 PMCID: PMC3536781 DOI: 10.1371/journal.pone.0053181] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/26/2012] [Indexed: 02/04/2023] Open
Abstract
Meat quality is determined by properties such as carcass color, tenderness and drip loss. These properties are closely associated with meat composition, which includes the types of muscle fiber and content of intramuscular fat (IMF). Muscle fibers are the main contributors to meat mass, while IMF not only contributes to the sensory properties but also to the plethora of physical, chemical and technological properties of meat. However, little is known about the molecular mechanisms that determine meat composition in different pig breeds. In this report we show that Jinhua pigs, a Chinese breed, contains much higher levels of IMF than do Landrace pigs, a Danish breed. We analyzed global gene expression profiles in the longissimus dorsi muscles in Jinhua and Landrace breeds at the ages of 30, 90 and 150 days. Cross-comparison analysis revealed that genes that regulate fatty acid biosynthesis (e.g., fatty acid synthase and stearoyl-CoA desaturase) are expressed at higher levels in Jinhua pigs whereas those that regulate myogenesis (e.g., myogenic factor 6 and forkhead box O1) are expressed at higher levels in Landrace pigs. Among those genes which are highly expressed in Jinhua pigs at 90 days (d90), we identified a novel gene porcine FLJ36031 (pFLJ), which functions as a positive regulator of fat deposition in cultured intramuscular adipocytes. In summary, our data showed that the up-regulation of fatty acid biosynthesis regulatory genes such as pFLJ and myogenesis inhibitory genes such as myostatin in the longissimus dorsi muscles of Jinhua pigs could explain why this local breed produces meat with high levels of IMF.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhenhai Zhang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Zhangqin Yuan
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Li Jan Lo
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jinrong Peng
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Chen B, Zhong L, Roush SF, Pentassuglia L, Peng X, Samaras S, Davidson JM, Sawyer DB, Lim CC. Disruption of a GATA4/Ankrd1 signaling axis in cardiomyocytes leads to sarcomere disarray: implications for anthracycline cardiomyopathy. PLoS One 2012; 7:e35743. [PMID: 22532871 PMCID: PMC3332030 DOI: 10.1371/journal.pone.0035743] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/23/2012] [Indexed: 01/07/2023] Open
Abstract
Doxorubicin (Adriamycin) is an effective anti-cancer drug, but its clinical usage is limited by a dose-dependent cardiotoxicity characterized by widespread sarcomere disarray and loss of myofilaments. Cardiac ankyrin repeat protein (CARP, ANKRD1) is a transcriptional regulatory protein that is extremely susceptible to doxorubicin; however, the mechanism(s) of doxorubicin-induced CARP depletion and its specific role in cardiomyocytes have not been completely defined. We report that doxorubicin treatment in cardiomyocytes resulted in inhibition of CARP transcription, depletion of CARP protein levels, inhibition of myofilament gene transcription, and marked sarcomere disarray. Knockdown of CARP with small interfering RNA (siRNA) similarly inhibited myofilament gene transcription and disrupted cardiomyocyte sarcomere structure. Adenoviral overexpression of CARP, however, was unable to rescue the doxorubicin-induced sarcomere disarray phenotype. Doxorubicin also induced depletion of the cardiac transcription factor GATA4 in cardiomyocytes. CARP expression is regulated in part by GATA4, prompting us to examine the relationship between GATA4 and CARP in cardiomyocytes. We show in co-transfection experiments that GATA4 operates upstream of CARP by activating the proximal CARP promoter. GATA4-siRNA knockdown in cardiomyocytes inhibited CARP expression and myofilament gene transcription, and induced extensive sarcomere disarray. Adenoviral overexpression of GATA4 (AdV-GATA4) in cardiomyocytes prior to doxorubicin exposure maintained GATA4 levels, modestly restored CARP levels, and attenuated sarcomere disarray. Interestingly, siRNA-mediated depletion of CARP completely abolished the Adv-GATA4 rescue of the doxorubicin-induced sarcomere phenotype. These data demonstrate co-dependent roles for GATA4 and CARP in regulating sarcomere gene expression and maintaining sarcomeric organization in cardiomyocytes in culture. The data further suggests that concurrent depletion of GATA4 and CARP in cardiomyocytes by doxorubicin contributes in large part to myofibrillar disarray and the overall pathophysiology of anthracycline cardiomyopathy.
Collapse
Affiliation(s)
- Billy Chen
- Molecular Medicine Program, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Lin Zhong
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Sarah F. Roush
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Laura Pentassuglia
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Xuyang Peng
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Susan Samaras
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jeffrey M. Davidson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Research Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United Sates of America
| | - Douglas B. Sawyer
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Chee Chew Lim
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
36
|
Barton ER. Mechanical Signal Transduction: Divergent Communication and the Potential Consequences for Masticatory Muscle. Semin Orthod 2012. [DOI: 10.1053/j.sodo.2011.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Roberts MD, Childs TE, Brown JD, Davis JW, Booth FW. Early depression of Ankrd2 and Csrp3 mRNAs in the polyribosomal and whole tissue fractions in skeletal muscle with decreased voluntary running. J Appl Physiol (1985) 2012; 112:1291-9. [PMID: 22282489 DOI: 10.1152/japplphysiol.01419.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The wheel-lock (WL) model for depressed ambulatory activity in rats has shown metabolic maladies ensuing within 53-173 h after WL begins. We sought to determine if WL beginning after 21-23 days of voluntary running in growing female Wistar rats affected the mRNA profile in the polyribosomal fraction from plantaris muscle shortly following WL. In experiment 1, WL occurred at 0200 and muscles were harvested at 0700 daily at 5 h (WL5h, n = 4), 29 h (WL29h, n = 4), or 53 h (WL53h, n = 4) after WL. Affymetrix Rat Gene 1.0 ST Arrays were used to test the initial question as to whether WL affects mRNA occupancy on skeletal muscle polyribosomes. Using a false discovery rate of 15%, no changes in mRNAs in the polyribosomal fraction were observed at WL29h and eight mRNAs (of over 8,200 identified targets) were altered at WL53h compared with WL5h. Interestingly, two of the six downregulated genes included ankyrin repeat domain 2 (Ankrd2) and cysteine-rich protein 3/muscle LIM protein (Csrp3), both of which encode mechanical stretch sensors and RT-PCR verified their WL-induced decline. In experiment 2, whole muscle mRNA and protein levels were analyzed for Ankrd2 and Csrp3 from the muscles of WL5h (4 original samples + 2 new), WL29h (4 original), WL53h (4 original + 2 new), as well as WL173 h (n = 6 new) and animals that never ran (SED, 4-5 new). Relative to WL5h controls, whole tissue Ankrd2 and Csrp3 mRNAs were lower (P < 0.05) at WL53h, WL173h, and SED; Ankrd2 protein tended to decrease at WL53h (P = 0.054) and Csrp3 protein was less in WL173h and SED rats (P < 0.05). In summary, unique early declines in Ankrd2 and Csrp3 mRNAs were identified with removal of voluntary running, which was subsequently followed by declines in Csrp3 protein levels during longer periods of wheel lock.
Collapse
Affiliation(s)
- Michael D Roberts
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
38
|
Drexler HCA, Ruhs A, Konzer A, Mendler L, Bruckskotten M, Looso M, Günther S, Boettger T, Krüger M, Braun T. On marathons and Sprints: an integrated quantitative proteomics and transcriptomics analysis of differences between slow and fast muscle fibers. Mol Cell Proteomics 2011; 11:M111.010801. [PMID: 22210690 DOI: 10.1074/mcp.m111.010801] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Skeletal muscle tissue contains slow as well as fast twitch muscle fibers that possess different metabolic and contractile properties. Although the distribution of individual proteins in fast and slow fibers has been investigated extensively, a comprehensive proteomic analysis, which is key for any systems biology approach to muscle tissues, is missing. Here, we compared the global protein levels and gene expression profiles of the predominantly slow soleus and fast extensor digitorum longus muscles using the principle of in vivo stable isotope labeling with amino acids based on a fully lysine-6 labeled SILAC-mouse. We identified 551 proteins with significant quantitative differences between slow soleus and fast extensor digitorum longus fibers out of >2000 quantified proteins, which greatly extends the repertoire of proteins differentially regulated between both muscle types. Most of the differentially regulated proteins mediate cellular contraction, ion homeostasis, glycolysis, and oxidation, which reflect the major functional differences between both muscle types. Comparison of proteomics and transcriptomics data uncovered the existence of fiber-type specific posttranscriptional regulatory mechanisms resulting in differential accumulation of Myosin-8 and α-protein kinase 3 proteins and mRNAs among others. Phosphoproteome analysis of soleus and extensor digitorum longus muscles identified 2573 phosphosites on 973 proteins including 1040 novel phosphosites. The in vivo stable isotope labeling with amino acids-mouse approach used in our study provides a comprehensive view into the protein networks that direct fiber-type specific functions and allows a detailed dissection of the molecular composition of slow and fast muscle tissues with unprecedented resolution.
Collapse
Affiliation(s)
- Hannes C A Drexler
- Max Planck Institute for Molecular Biomedicine, Röntgenstr 20, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kojic S, Radojkovic D, Faulkner G. Muscle ankyrin repeat proteins: their role in striated muscle function in health and disease. Crit Rev Clin Lab Sci 2011; 48:269-94. [DOI: 10.3109/10408363.2011.643857] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Belgrano A, Rakicevic L, Mittempergher L, Campanaro S, Martinelli VC, Mouly V, Valle G, Kojic S, Faulkner G. Multi-tasking role of the mechanosensing protein Ankrd2 in the signaling network of striated muscle. PLoS One 2011; 6:e25519. [PMID: 22016770 PMCID: PMC3189947 DOI: 10.1371/journal.pone.0025519] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 09/06/2011] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ankrd2 (also known as Arpp) together with Ankrd1/CARP and DARP are members of the MARP mechanosensing proteins that form a complex with titin (N2A)/calpain 3 protease/myopalladin. In muscle, Ankrd2 is located in the I-band of the sarcomere and moves to the nucleus of adjacent myofibers on muscle injury. In myoblasts it is predominantly in the nucleus and on differentiation shifts from the nucleus to the cytoplasm. In agreement with its role as a sensor it interacts both with sarcomeric proteins and transcription factors. METHODOLOGY/PRINCIPAL FINDINGS Expression profiling of endogenous Ankrd2 silenced in human myotubes was undertaken to elucidate its role as an intermediary in cell signaling pathways. Silencing Ankrd2 expression altered the expression of genes involved in both intercellular communication (cytokine-cytokine receptor interaction, endocytosis, focal adhesion, tight junction, gap junction and regulation of the actin cytoskeleton) and intracellular communication (calcium, insulin, MAPK, p53, TGF-β and Wnt signaling). The significance of Ankrd2 in cell signaling was strengthened by the fact that we were able to show for the first time that Nkx2.5 and p53 are upstream effectors of the Ankrd2 gene and that Ankrd1/CARP, another MARP member, can modulate the transcriptional ability of MyoD on the Ankrd2 promoter. Another novel finding was the interaction between Ankrd2 and proteins with PDZ and SH3 domains, further supporting its role in signaling. It is noteworthy that we demonstrated that transcription factors PAX6, LHX2, NFIL3 and MECP2, were able to bind both the Ankrd2 protein and its promoter indicating the presence of a regulatory feedback loop mechanism. CONCLUSIONS/SIGNIFICANCE In conclusion we demonstrate that Ankrd2 is a potent regulator in muscle cells affecting a multitude of pathways and processes.
Collapse
Affiliation(s)
- Anna Belgrano
- Muscle Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Ljiljana Rakicevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Lorenza Mittempergher
- Centro Ricerche Interdipartimentale Biotecnologie Innovative, University of Padova, Padova, Italy
| | - Stefano Campanaro
- Centro Ricerche Interdipartimentale Biotecnologie Innovative, University of Padova, Padova, Italy
| | - Valentina C. Martinelli
- Muscle Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Vincent Mouly
- Institut de Myologie, UM76, University Pierre et Marie Curie, Paris, France
| | - Giorgio Valle
- Centro Ricerche Interdipartimentale Biotecnologie Innovative, University of Padova, Padova, Italy
| | - Snezana Kojic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Georgine Faulkner
- Muscle Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Centro Ricerche Interdipartimentale Biotecnologie Innovative, University of Padova, Padova, Italy
| |
Collapse
|
41
|
Wang L, Lei M, Xiong Y. Molecular characterization and different expression patterns of the muscle ankyrin repeat protein (MARP) family during porcine skeletal muscle development in vitro and in vivo. Anim Biotechnol 2011; 22:87-99. [PMID: 21500110 DOI: 10.1080/10495398.2011.559562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CARP, ANKRD2, and DARP belong to the ankyrin repeat protein (MARP) family and play a critical role in the integration of cytoskeletal architecture, stress response, and transcriptional regulation. In this study, we cloned the cDNA and promoter sequences of porcine ankyrin repeat protein (MARP) gene family. RT-PCR analysis revealed that porcine CARP gene was predominantly expressed in heart. ANKRD2 was widely expressed in many tissues, a high expression level was observed in the skeletal muscle and heart. DARP gene was expressed specifically in skeletal muscle and heart. Moreover, the expression of CARP and ANKRD2 was significantly different in porcine skeletal muscle among different developmental stages and between the two breeds. Expression analysis in porcine satellite cells showed that CARP and ANKRD2 were induced in differentiated porcine satellite cells, suggesting a role of them in myogenic differentiation. This result suggests that the MARP gene family may be important genes for skeletal muscle growth and provides useful information for further studies on their roles in porcine skeletal muscle.
Collapse
Affiliation(s)
- Linjie Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, P.R. China.
| | | | | |
Collapse
|
42
|
Zhao H, Wu YN, Hwang M, Ren Y, Gao F, Gaebler-Spira D, Zhang LQ. Changes of calf muscle-tendon biomechanical properties induced by passive-stretching and active-movement training in children with cerebral palsy. J Appl Physiol (1985) 2011; 111:435-42. [PMID: 21596920 DOI: 10.1152/japplphysiol.01361.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Biomechanical properties of calf muscles and Achilles tendon may be altered considerably in children with cerebral palsy (CP), contributing to childhood disability. It is unclear how muscle fascicles and tendon respond to rehabilitation and contribute to improvement of ankle-joint properties. Biomechanical properties of the calf muscle fascicles of both gastrocnemius medialis (GM) and soleus (SOL), including the fascicle length and pennation angle in seven children with CP, were evaluated using ultrasonography combined with biomechanical measurements before and after a 6-wk treatment of passive-stretching and active-movement training. The passive force contributions from the GM and SOL muscles were separated using flexed and extended knee positions, and fascicular stiffness was calculated based on the fascicular force-length relation. Biomechanical properties of the Achilles tendon, including resting length, cross-sectional area, and stiffness, were also evaluated. The 6-wk training induced elongation of muscle fascicles (SOL: 8%, P = 0.018; GM: 3%, P = 0.018), reduced pennation angle (SOL: 10%, P = 0.028; GM: 5%, P = 0.028), reduced fascicular stiffness (SOL: 17%, P = 0.128; GM: 21%, P = 0.018), decreased tendon length (6%, P = 0.018), increased Achilles tendon stiffness (32%, P = 0.018), and increased Young's modulus (20%, P = 0.018). In vivo characterizations of calf muscles and Achilles tendon mechanical properties help us better understand treatment-induced changes of calf muscle-tendon and facilitate development of more effective treatments.
Collapse
Affiliation(s)
- Heng Zhao
- Rehabilitation Institute of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Laure L, Danièle N, Suel L, Marchand S, Aubert S, Bourg N, Roudaut C, Duguez S, Bartoli M, Richard I. A new pathway encompassing calpain 3 and its newly identified substrate cardiac ankyrin repeat protein is involved in the regulation of the nuclear factor-κB pathway in skeletal muscle. FEBS J 2010; 277:4322-37. [DOI: 10.1111/j.1742-4658.2010.07820.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Tee JM, Peppelenbosch MP. Anchoring skeletal muscle development and disease: the role of ankyrin repeat domain containing proteins in muscle physiology. Crit Rev Biochem Mol Biol 2010; 45:318-30. [PMID: 20515317 PMCID: PMC2942773 DOI: 10.3109/10409238.2010.488217] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The ankyrin repeat is a protein module with high affinity for other ankyrin repeats based on strong Van der Waals forces. The resulting dimerization is unusually resistant to both mechanical forces and alkanization, making this module exceedingly useful for meeting the extraordinary demands of muscle physiology. Many aspects of muscle function are controlled by the superfamily ankyrin repeat domain containing proteins, including structural fixation of the contractile apparatus to the muscle membrane by ankyrins, the archetypical member of the family. Additionally, other ankyrin repeat domain containing proteins critically control the various differentiation steps during muscle development, with Notch and developmental stage-specific expression of the members of the Ankyrin repeat and SOCS box (ASB) containing family of proteins controlling compartment size and guiding the various steps of muscle specification. Also, adaptive responses in fully formed muscle require ankyrin repeat containing proteins, with Myotrophin/V-1 ankyrin repeat containing proteins controlling the induction of hypertrophic responses following excessive mechanical load, and muscle ankyrin repeat proteins (MARPs) acting as protective mechanisms of last resort following extreme demands on muscle tissue. Knowledge on mechanisms governing the ordered expression of the various members of superfamily of ankyrin repeat domain containing proteins may prove exceedingly useful for developing novel rational therapy for cardiac disease and muscle dystrophies.
Collapse
Affiliation(s)
- Jin-Ming Tee
- Hubrecht Institute for Developmental Biology and Stem Cell Research-University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | |
Collapse
|
45
|
Abstract
MARP Protein Family: A Possible Role in Molecular Mechanisms of TumorigenesisThe MARP (muscle ankyrin repeat protein) family comprises three structurally similar proteins: CARP/Ankrd1, Ankrd2/Arpp and DARP/Ankrd23. They share four conserved copies of 33-residue ankyrin repeats and contain a nuclear localization signal, allowing the sorting of MARPs to the nucleus. They are found both in the nucleus and in the cytoplasm of skeletal and cardiac muscle cells, suggesting that MARPs shuttle within the cell enabling them to play a role in signal transduction in striated muscle. Expression of MARPs is altered under different pathological conditions. In skeletal muscle, CARP/Ankrd1 and Ankrd2/Arpp are up-regulated in muscle in patients suffering from Duchene muscular dystrophy, congenital myopathy and spinal muscular atrophy. Mutations inAnkrd1gene (coding CARP/Ankrd1) were identified in dilated and hypertrophic cardiomyopathies. Altered expression of MARPs is also observed in rhabdomyosarcoma, renal oncocytoma and ovarian cancer. In order to functionally characterize MARP family members CARP/Ankrd1 and Ankrd2/Arpp, we have found that both proteins interact with the tumor suppressor p53 bothin vivoandin vitroand that p53 up-regulates their expression. Our results implicate the potential role of MARPs in molecular mechanisms relevant to tumor response and progression.
Collapse
|
46
|
Shim KS, Park GH, Hwang IH, Yoon C, Na CS, Jung HJ, Choe HS. Proteomics Comparison of Longissimus Muscle between Hanwoo and Holstein Cattle. Korean J Food Sci Anim Resour 2010. [DOI: 10.5851/kosfa.2010.30.3.385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
47
|
Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise. Ann Phys Rehabil Med 2010; 53:319-41. [DOI: 10.1016/j.rehab.2010.04.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 04/16/2010] [Indexed: 10/19/2022]
|
48
|
Mohamed JS, Lopez MA, Cox GA, Boriek AM. Anisotropic regulation of Ankrd2 gene expression in skeletal muscle by mechanical stretch. FASEB J 2010; 24:3330-40. [PMID: 20442316 DOI: 10.1096/fj.10-158386] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The diaphragm muscles in vivo are subjected to mechanical forces both in the direction of the muscle fibers and in the direction transverse to the fibers. However, the effect of directional mechanical forces in skeletal muscle gene regulation is completely unknown. Here, we identified that stretch in the longitudinal and transverse directions to the diaphragm muscle fibers up-regulated Ankrd2 gene expression by two distinct signaling pathways in wild-type (WT) and mdm, a mouse model of muscular dystrophy with early-onset of progressive muscle-wasting. Stretch in the longitudinal direction activated both NF-kappaB and AP-1 transcription factors, whereas stretch in the transverse direction activated only AP-1 transcription factor. Interestingly, longitudinal stretch activated Ankrd2 promoter only by NF-kappaB, whereas transverse stretch activated Ankrd2 promoter by AP-1. Moreover, we found that longitudinal stretch activated Akt, which up-regulated Ankrd2 expression through NF-kappaB. However, transverse stretch activated Ras-GTP, Raf-1, and Erk1/2 proteins, which up-regulated Ankrd2 expression through AP-1. Surprisingly, the stretch-activated NF-kappaB and AP-1 signaling pathways was not involved in Ankrd2 regulation at the basal level, which was high in the mdm mouse diaphragm. Taken together, our data show the anisotropic regulation of Ankrd2 gene expression in the diaphragm muscles of WT and mdm mice via two distinct mechanosensitive signaling pathways.
Collapse
Affiliation(s)
- Junaith S Mohamed
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
49
|
Panguluri SK, Bhatnagar S, Kumar A, McCarthy JJ, Srivastava AK, Cooper NG, Lundy RF, Kumar A. Genomic profiling of messenger RNAs and microRNAs reveals potential mechanisms of TWEAK-induced skeletal muscle wasting in mice. PLoS One 2010; 5:e8760. [PMID: 20098732 PMCID: PMC2808241 DOI: 10.1371/journal.pone.0008760] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 12/24/2009] [Indexed: 12/30/2022] Open
Abstract
Background Skeletal muscle wasting is a devastating complication of several physiological and pathophysiological conditions. Inflammatory cytokines play an important role in the loss of skeletal muscle mass in various chronic diseases. We have recently reported that proinflammatory cytokine TWEAK is a major muscle-wasting cytokine. Emerging evidence suggests that gene expression is regulated not only at transcriptional level but also at post-transcriptional level through the expression of specific non-coding microRNAs (miRs) which can affect the stability and/or translation of target mRNA. However, the role of miRs in skeletal muscle wasting is unknown. Methodology/Principal Findings To understand the mechanism of action of TWEAK in skeletal muscle, we performed mRNA and miRs expression profile of control and TWEAK-treated myotubes. TWEAK increased the expression of a number of genes involved in inflammatory response and fibrosis and reduced the expression of few cytoskeletal gene (e.g. Myh4, Ankrd2, and TCap) and metabolic enzymes (e.g. Pgam2). Low density miR array demonstrated that TWEAK inhibits the expression of several miRs including muscle-specific miR-1-1, miR-1-2, miR-133a, miR-133b and miR-206. The expression of a few miRs including miR-146a and miR-455 was found to be significantly increased in response to TWEAK treatment. Ingenuity pathway analysis showed that several genes affected by TWEAK are known/putative targets of miRs. Our cDNA microarray data are consistent with miRs profiling. The levels of specific mRNAs and miRs were also found to be similarly regulated in atrophying skeletal muscle of transgenic mice (Tg) mice expressing TWEAK. Conclusions/Significance Our results suggest that TWEAK affects the expression of several genes and microRNAs involved in inflammatory response, fibrosis, extracellular matrix remodeling, and proteolytic degradation which might be responsible for TWEAK-induced skeletal muscle loss.
Collapse
Affiliation(s)
- Siva K. Panguluri
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Shephali Bhatnagar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Akhilesh Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - John J. McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Apurva K. Srivastava
- Laboratory of Human Toxicology and Pharmacology, Applied & Developmental Research Directorate SAIC-Frederick, National Cancer Institute, Frederick, Maryland, United States of America
| | - Nigel G. Cooper
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Robert F. Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
50
|
Ottenheijm CAC, Granzier H. Role of titin in skeletal muscle function and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 682:105-22. [PMID: 20824522 DOI: 10.1007/978-1-4419-6366-6_6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review covers recent developments in the titin field. Most recent reviews have discussed titin's role in cardiac function: here we will mainly focus on skeletal muscle, and discuss recent advances in the understanding of titin's role in skeletal muscle function and disease.
Collapse
|