1
|
He D, Zhang M, Li Y, Liu F, Ban B. Insights into the ANKRD11 variants and short-stature phenotype through literature review and ClinVar database search. Orphanet J Rare Dis 2024; 19:292. [PMID: 39135054 PMCID: PMC11318275 DOI: 10.1186/s13023-024-03301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Ankyrin repeat domain containing-protein 11 (ANKRD11), a transcriptional factor predominantly localized in the cell nucleus, plays a crucial role in the expression regulation of key genes by recruiting chromatin remodelers and interacting with specific transcriptional repressors or activators during numerous biological processes. Its pathogenic variants are strongly linked to the pathogenesis and progression of multisystem disorder known as KBG syndrome. With the widespread application of high-throughput DNA sequencing technologies in clinical medicine, numerous pathogenic variants in the ANKRD11 gene have been reported. Patients with KBG syndrome usually exhibit a broad phenotypic spectrum with a variable degree of severity, even if having identical variants. In addition to distinctive dental, craniofacial and neurodevelopmental abnormalities, patients often present with skeletal anomalies, particularly postnatal short stature. The relationship between ANKRD11 variants and short stature is not well-understood, with limited knowledge regarding its occurrence rate or underlying biological mechanism involved. This review aims to provide an updated analysis of the molecular spectrum associated with ANKRD11 variants, investigate the prevalence of the short stature among patients harboring these variants, evaluate the efficacy of recombinant human growth hormone in treating children with short stature and ANKRD11 variants, and explore the biological mechanisms underlying short stature from both scientific and clinical perspectives. Our investigation indicated that frameshift and nonsense were the most frequent types in 583 pathogenic or likely pathogenic variants identified in the ANKRD11 gene. Among the 245 KBGS patients with height data, approximately 50% displayed short stature. Most patients showed a positive response to rhGH therapy, although the number of patients receiving treatment was limited. ANKRD11 deficiency potentially disrupts longitudinal bone growth by affecting the orderly differentiation of growth plate chondrocytes. Our review offers crucial insights into the association between ANKRD11 variants and short stature and provides valuable guidance for precise clinical diagnosis and treatment of patients with KBG syndrome.
Collapse
Affiliation(s)
- Dongye He
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China.
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, China.
| | - Mei Zhang
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| | - Yanying Li
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| | - Fupeng Liu
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, China
| | - Bo Ban
- Department of Endocrinology, Genetics and Metabolism, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272029, China.
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, China.
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China.
| |
Collapse
|
2
|
Kazansky Y, Cameron D, Mueller HS, Demarest P, Zaffaroni N, Arrighetti N, Zuco V, Kuwahara Y, Somwar R, Ladanyi M, Qu R, de Stanchina E, Dela Cruz FS, Kung AL, Gounder MM, Kentsis A. Overcoming Clinical Resistance to EZH2 Inhibition Using Rational Epigenetic Combination Therapy. Cancer Discov 2024; 14:965-981. [PMID: 38315003 PMCID: PMC11147720 DOI: 10.1158/2159-8290.cd-23-0110] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
Epigenetic dependencies have become evident in many cancers. On the basis of antagonism between BAF/SWI-SNF and PRC2 in SMARCB1-deficient sarcomas, we recently completed the clinical trial of the EZH2 inhibitor tazemetostat. However, the principles of tumor response to epigenetic therapy in general, and tazemetostat in particular, remain unknown. Using functional genomics and diverse experimental models, we define molecular mechanisms of tazemetostat resistance in SMARCB1-deficient tumors. We found distinct acquired mutations that converge on the RB1/E2F axis and decouple EZH2-dependent differentiation and cell-cycle control. This allows tumor cells to escape tazemetostat-induced G1 arrest, suggests a general mechanism for effective therapy, and provides prospective biomarkers for therapy stratification, including PRICKLE1. On the basis of this, we develop a combination strategy to circumvent tazemetostat resistance using bypass targeting of AURKB. This offers a paradigm for rational epigenetic combination therapy suitable for translation to clinical trials for epithelioid sarcomas, rhabdoid tumors, and other epigenetically dysregulated cancers. SIGNIFICANCE Genomic studies of patient epithelioid sarcomas and rhabdoid tumors identify mutations converging on a common pathway for response to EZH2 inhibition. Resistance mutations decouple drug-induced differentiation from cell-cycle control. We identify an epigenetic combination strategy to overcome resistance and improve durability of response, supporting its investigation in clinical trials. See related commentary by Paolini and Souroullas, p. 903. This article is featured in Selected Articles from This Issue, p. 897.
Collapse
Affiliation(s)
- Yaniv Kazansky
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Cameron
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helen S. Mueller
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Phillip Demarest
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Qu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Filemon S. Dela Cruz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew L. Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mrinal M. Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
3
|
Kazansky Y, Cameron D, Mueller HS, Demarest P, Zaffaroni N, Arrighetti N, Zuco V, Kuwahara Y, Somwar R, Ladanyi M, Qu R, De Stanchina E, Dela Cruz FS, Kung AL, Gounder M, Kentsis A. Overcoming clinical resistance to EZH2 inhibition using rational epigenetic combination therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527192. [PMID: 36798379 PMCID: PMC9934575 DOI: 10.1101/2023.02.06.527192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Essential epigenetic dependencies have become evident in many cancers. Based on the functional antagonism between BAF/SWI/SNF and PRC2 in SMARCB1-deficient sarcomas, we and colleagues recently completed the clinical trial of the EZH2 inhibitor tazemetostat. However, the principles of tumor response to epigenetic therapy in general, and tazemetostat in particular, remain unknown. Using functional genomics of patient tumors and diverse experimental models, we sought to define molecular mechanisms of tazemetostat resistance in SMARCB1-deficient sarcomas and rhabdoid tumors. We found distinct classes of acquired mutations that converge on the RB1/E2F axis and decouple EZH2-dependent differentiation and cell cycle control. This allows tumor cells to escape tazemetostat-induced G1 arrest despite EZH2 inhibition, and suggests a general mechanism for effective EZH2 therapy. This also enables us to develop combination strategies to circumvent tazemetostat resistance using cell cycle bypass targeting via AURKB, and synthetic lethal targeting of PGBD5-dependent DNA damage repair via ATR. This reveals prospective biomarkers for therapy stratification, including PRICKLE1 associated with tazemetostat resistance. In all, this work offers a paradigm for rational epigenetic combination therapy suitable for immediate translation to clinical trials for epithelioid sarcomas, rhabdoid tumors, and other epigenetically dysregulated cancers.
Collapse
|
4
|
Yuan M, Barefoot ME, Peterson K, Campbell MJ, Blancato JK, Chen M, Schmidt MO, Kiliti AJ, Fang HB, Wellstein A, Riegel AT, Sharif GM. Loss of ANCO1 Expression Regulates Chromatin Accessibility and Drives Progression of Early-Stage Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:11505. [PMID: 37511268 PMCID: PMC10380654 DOI: 10.3390/ijms241411505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Mutations in the gene ankyrin repeat domain containing 11 (ANKRD11/ANCO1) play a role in neurodegenerative disorders, and its loss of heterozygosity and low expression are seen in some cancers. Here, we show that low ANCO1 mRNA and protein expression levels are prognostic markers for poor clinical outcomes in breast cancer and that loss of nuclear ANCO1 protein expression predicts lower overall survival of patients with triple-negative breast cancer (TNBC). Knockdown of ANCO1 in early-stage TNBC cells led to aneuploidy, cellular senescence, and enhanced invasion in a 3D matrix. The presence of a subpopulation of ANCO1-depleted cells enabled invasion of the overall cell population in vitro and they converted more rapidly to invasive lesions in a xenograft mouse model. In ANCO1-depleted cells, ChIP-seq analysis showed a global increase in H3K27Ac signals that were enriched for AP-1, TEAD, STAT3, and NFκB motifs. ANCO1-regulated H3K27Ac peaks had a significantly higher overlap with known breast cancer enhancers compared to ANCO1-independent ones. H3K27Ac engagement was associated with transcriptional activation of genes in the PI3K-AKT, epithelial-mesenchymal transition (EMT), and senescence pathways. In conclusion, ANCO1 has hallmarks of a tumor suppressor whose loss of expression activates breast-cancer-specific enhancers and oncogenic pathways that can accelerate the early-stage progression of breast cancer.
Collapse
Affiliation(s)
- Meng Yuan
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Megan E. Barefoot
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Kendell Peterson
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Moray J. Campbell
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jan K. Blancato
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Manjing Chen
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC 20057, USA
| | - Marcel O. Schmidt
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Amber J. Kiliti
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Hong-Bin Fang
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC 20057, USA
| | - Anton Wellstein
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Anna T. Riegel
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Ghada M. Sharif
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
5
|
Babaei-Jadidi R, Kashfi H, Alelwani W, Karimi Bakhtiari A, Kattan SW, Mansouri OA, Mukherjee A, Lobo DN, Nateri AS. Anti-miR-135/SPOCK1 axis antagonizes the influence of metabolism on drug response in intestinal/colon tumour organoids. Oncogenesis 2022; 11:4. [PMID: 35046388 PMCID: PMC8770633 DOI: 10.1038/s41389-021-00376-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Little is known about the role of microRNAs (miRNAs) in rewiring the metabolism within tumours and adjacent non-tumour bearing normal tissue and their potential in cancer therapy. This study aimed to investigate the relationship between deregulated miRNAs and metabolic components in murine duodenal polyps and non-polyp-derived organoids (mPOs and mNPOs) from a double-mutant ApcMinFbxw7∆G mouse model of intestinal/colorectal cancer (CRC). We analysed the expression of 373 miRNAs and 12 deregulated metabolic genes in mPOs and mNPOs. Our findings revealed miR-135b might target Spock1. Upregulation of SPOCK1 correlated with advanced stages of CRCs. Knockdown of miR-135b decreased the expression level of SPOCK1, glucose consumption and lactic secretion in CRC patient-derived tumours organoids (CRC tPDOs). Increased SPOCK1 induced by miR-135b overexpression promoted the Warburg effect and consequently antitumour effect of 5-fluorouracil. Thus, combination with miR-135b antisense nucleotides may represent a novel strategy to sensitise CRC to the chemo-reagent based treatment.
Collapse
Affiliation(s)
- Roya Babaei-Jadidi
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Hossein Kashfi
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Walla Alelwani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ashkan Karimi Bakhtiari
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Shahad W Kattan
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- Medical Laboratory Department, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Omniah A Mansouri
- Department of Biology, University of Jeddah, College of Science, Jeddah, 21959, Saudi Arabia
| | - Abhik Mukherjee
- Histopathology, BioDiscovery Institute, School of Medicine, University of Nottingham, NG7 2UH, Nottingham, UK
| | - Dileep N Lobo
- Nottingham Digestive Diseases Centre, National Nottingham Digestive Diseases Centre, National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Abdolrahman S Nateri
- Cancer Genetics & Stem Cell Group, BioDiscovery Institute, Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
6
|
Parulekar A, Choksi A, Taye N, Totakura KVS, Firmal P, Kundu GC, Chattopadhyay S. SMAR1 suppresses the cancer stem cell population via hTERT repression in colorectal cancer cells. Int J Biochem Cell Biol 2021; 141:106085. [PMID: 34551340 DOI: 10.1016/j.biocel.2021.106085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
One of the hallmarks of a cancer cell is the ability for indefinite proliferation leading to the immortalization of the cell. Activation of several signaling pathways leads to the immortalization of cancer cells via the reactivation of enzyme telomerase (hTERT). hTERT is active in germ cells, stem cells and also cancer cells. An earlier report from our lab suggests that SMAR1, a tumor suppressor protein, is significantly downregulated in the higher grades of colorectal cancers. Our study identifies SMAR1 as a transcriptional repressor of hTERT. We find that SMAR1 interacts with HDAC1/mSin3a co-repressor complex at the hTERT promoter and brings about HDAC1-mediated transcriptional repression of the promoter. Most solid tumors including colorectal cancer reactivate hTERT expression as it confers several advantages to the cancer cells like increased proliferation and angiogenesis. One of these non-canonical functions of hTERT is inducing the pool of cancer stem cell population. We find that in the CD133HighCD44High cancer stem cells population, SMAR1 expression is highly diminished leading to elevated hTERT expression. We also find that knockdown of SMAR1 promotes total CD133+CD44+ population and impart enhanced sphere-forming ability to the colorectal cancer cells. SMAR1 also inhibits invasion and metastasis in colorectal cancer cell lines via repression of hTERT. Our study provides evidence that downregulation of SMAR1 causes activation of hTERT leading to an increase in the cancer stem cell phenotype in colorectal cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Gopal C Kundu
- National Centre for Cell Science, Pune, India; Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Samit Chattopadhyay
- National Centre for Cell Science, Pune, India; Birla Institute of Technology and Science, Goa, India.
| |
Collapse
|
7
|
Choksi A, Parulekar A, Pant R, Shah VK, Nimma R, Firmal P, Singh S, Kundu GC, Shukla S, Chattopadhyay S. Tumor suppressor SMAR1 regulates PKM alternative splicing by HDAC6-mediated deacetylation of PTBP1. Cancer Metab 2021; 9:16. [PMID: 33863392 PMCID: PMC8052847 DOI: 10.1186/s40170-021-00252-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Highly proliferating cancer cells exhibit the Warburg effect by regulation of PKM alternative splicing and promoting the expression of PKM2. Majority of the alternative splicing events are known to occur in the nuclear matrix where various MARBPs actively participate in the alternative splicing events. SMAR1, being a MARBP and an important tumor suppressor, is known to regulate the splicing of various cancer-associated genes. This study focuses on the regulation of PKM alternative splicing and inhibition of the Warburg effect by SMAR1. METHODS Immunohistochemistry was performed in breast cancer patient samples to establish the correlation between SMAR1 and PKM isoform expression. Further, expression of PKM isoforms upon modulation in SMAR1 expression in breast cancer cell lines was quantified by qRT-PCR and western blot. The acetylation status of PTBP1 was estimated by immunoprecipitation along with its enrichment on PKM pre-mRNA by CLIP in SMAR1 knockdown conditions. The role of SMAR1 in tumor metabolism and tumorigenesis was explored by in vitro enzymatic assays and functional assays upon SMAR1 knockdown. Besides, in vivo tumor formation by injecting adeno-SMAR1-transduced MDA-MB-231 cells in NOD/SCID mice was performed. RESULTS The expression profile of SMAR1 and PKM isoforms in breast cancer patients revealed that SMAR1 has an inverse correlation with PKM2 and a positive correlation with PKM1. Further quantitative PKM isoform expression upon modulation in SMAR1 expression also reflects that SMAR1 promotes the expression of PKM1 over tumorigenic isoform PKM2. SMAR1 deacetylates PTBP1 via recruitment of HDAC6 resulting in reduced enrichment of PTBP1 on PKM pre-mRNA. SMAR1 inhibits the Warburg effect, tumorigenic potential of cancer cells, and in vivo tumor generation in a PKM2-dependent manner. CONCLUSIONS SMAR1 regulates PKM alternative splicing by causing HDAC6-dependent deacetylation of PTBP1, resulting in reduced enrichment of PTBP1 on PKM pre-mRNA. Additionally, SMAR1 suppresses glucose utilization and lactate production via repression of PKM2 expression. This suggests that tumor suppressor SMAR1 inhibits tumor cell metabolism and tumorigenic properties of cancer cells via regulation of PKM alternative splicing.
Collapse
Affiliation(s)
| | | | - Richa Pant
- National Centre for Cell Science, Pune, 411007, India
| | | | | | | | - Smriti Singh
- Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Gopal C Kundu
- National Centre for Cell Science, Pune, 411007, India.,Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, 751024, India
| | - Sanjeev Shukla
- Indian Institute of Science Education and Research, Bhopal, 462066, India
| | - Samit Chattopadhyay
- National Centre for Cell Science, Pune, 411007, India. .,Birla Institute of Technology and Science, Pilani - K K Birla Goa Campus, Goa, 403726, India.
| |
Collapse
|
8
|
Alam A, Taye N, Patel S, Thube M, Mullick J, Shah VK, Pant R, Roychowdhury T, Banerjee N, Chatterjee S, Bhattacharya R, Roy R, Mukhopadhyay A, Mogare D, Chattopadhyay S. SMAR1 favors immunosurveillance of cancer cells by modulating calnexin and MHC I expression. Neoplasia 2019; 21:945-962. [PMID: 31422285 PMCID: PMC6706529 DOI: 10.1016/j.neo.2019.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/17/2019] [Indexed: 01/17/2023] Open
Abstract
Down-regulation or loss of MHC class I expression is a major mechanism used by cancer cells to evade immunosurveillance and increase their oncogenic potential. MHC I mediated antigen presentation is a complex regulatory process, controlled by antigen processing machinery (APM) dictating immune response. Transcriptional regulation of the APM that can modulate gene expression profile and their correlation to MHC I mediated antigen presentation in cancer cells remain enigmatic. Here, we reveal that Scaffold/Matrix-Associated Region 1- binding protein (SMAR1), positively regulates MHC I surface expression by down-regulating calnexin, an important component of antigen processing machinery (APM) in cancer cells. SMAR1, a bonafide MAR binding protein acts as a transcriptional repressor of several oncogenes. It is down-regulated in higher grades of cancers either through proteasomal degradation or through loss of heterozygosity (LOH) at the Chr.16q24.3 locus where the human homolog of SMAR1 (BANP) has been mapped. It binds to a short MAR region of the calnexin promoter forming a repressor complex in association with GATA2 and HDAC1. A reverse correlation between SMAR1 and calnexin was thus observed in SMAR1-LOH cells and also in tissues from breast cancer patients. To further extrapolate our findings, influenza A (H1N1) virus infection assay was performed. Upon viral infection, the levels of SMAR1 significantly increased resulting in reduced calnexin expression and increased MHC I presentation. Taken together, our observations establish that increased expression of SMAR1 in cancers can positively regulate MHC I surface expression thereby leading to higher chances of tumor regression and elimination of cancer cells.
Collapse
Affiliation(s)
- Aftab Alam
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Nandaraj Taye
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Sonal Patel
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Milind Thube
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Jayati Mullick
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | | | - Richa Pant
- National Centre for Cell Science, Pune, Maharashtra, India
| | | | | | | | | | - Rini Roy
- Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata, India
| | | | - Devraj Mogare
- National Centre for Cell Science, Pune, Maharashtra, India
| | - Samit Chattopadhyay
- National Centre for Cell Science, Pune, Maharashtra, India; Indian Institute of Chemical Biology, Kolkata, India.
| |
Collapse
|
9
|
Li QH, Yu M, Ding YL, Chen YX. ANKRD33 is overexpressed in gastric adenocarcinoma and predictive for poor prognosis. Biosci Biotechnol Biochem 2019; 83:2075-2081. [PMID: 31314707 DOI: 10.1080/09168451.2019.1642100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The aim of the current study was to investigate and discuss the function of ANKRD33 gene in the pathogenesis of gastric adenocarcinoma. The marked up-regulated expression of ANKRD33 gene in gastric adenocarcinoma tissues compared to normal tissues was found by bioinformatics analysis. Kaplan-Meier analysis revealed that high expression of ANKRD33 is correlated with lower overall survival of gastric adenocarcinoma patients. The results of qPCR revealed that mRNA expression level of ANKRD33 was dramatically higher in AGS, SGC7901, and BGC823 cell lines than that in the GES1 cells. Knockdown of ANKRD33 remarkably inhibited the viability, invasion, and migration of AGS and BGC823 cells. Furthermore, the ratio of p-AKT/AKT and p-mTOR/mTOR was significantly decreased in AGS cells which transfected with si- ANKRD33. All the above results illustrated that ANKRD33 would act as a tumor forwarder in gastric adenocarcinoma development and have a high potential to be a marker molecule in the diagnosis and treatment of gastric tumors.
Collapse
Affiliation(s)
- Quan-Hui Li
- Department of Gastrointestinal Surgery, The Second Hospital of ShanDong University , Jinan , P.R. China
| | - Miao Yu
- Department of Colorectal & Anal Surgery, The Second Hospital of ShanDong University , Jinan , P.R. China
| | - Yin-Lu Ding
- Department of Gastrointestinal Surgery, The Second Hospital of ShanDong University , Jinan , P.R. China
| | - Yu-Xin Chen
- Department of General Surgery, Qilu Hospital Affiliated to ShanDong University , Jinan , Shandong , P.R. China
| |
Collapse
|
10
|
Tupurani MA, Padala C, Puranam K, Galimudi RK, Kupsal K, Shyamala N, Gantala S, Kummari R, Chinta SK, Hanumanth SR. Association of CYBA gene (-930 A/G and 242 C/T) polymorphisms with oxidative stress in breast cancer: a case-control study. PeerJ 2018; 6:e5509. [PMID: 30310735 PMCID: PMC6174867 DOI: 10.7717/peerj.5509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
Background Oxidative stress (OS) is a key characteristic feature in cancer initiation and progression. Among multiple cancers, NADPH oxidase (NOX) dependent free radical production is implicated in oxidative stress. P22phox, a subunit of NADPH oxidase encoded by the CYBA gene has functional polymorphisms associated with various complex diseases. The present study was aimed to examine the importance and association of the functional polymorphisms of CYBA gene (-930 A/G and 242 C/T) with the oxidative stress in breast cancer (BC) development and progression. Materials and Methods We have performed a case-control study on 300 breast cancer patients and 300 healthy individuals as controls to examine the role of CYBA gene -930 A/G and 242 C/T single nucleotide polymorphisms (SNPs) using As-PCR and PCR-RFLP assays and its association with OS as measured by plasma MDA levels. Linkage disequilibrium (LD) plots were generated using Haploviewtool and Multifactor dimensionality reduction (MDR) analysis was applied to assess high-order interactions between the SNPs. The Insilco analysis has been performed to predict the effect of SNPs on the gene regulation using online tools. Results We have found that genotype frequencies of CYBA gene -930 A/G and 242C/T polymorphism were significantly different between controls and BC patients (p < 0.05). The haplotype combination -930G/242C and -930G/242T were associated with 1.44 & 1.56 folds increased risk for breast cancer respectively. Further, the MDA levels were higher in the patients carrying -930G/242C and -930G/242T haplotype (p < 0.001). Our results have been substantiated by Insilco analysis. Conclusion Results of the present study suggest that GG genotype of -930 A/G polymorphism, -930G/242C and -930G/242T haplotypes of CYBA gene polymorphisms have shown association with higher MDA levels in breast cancer patients, signify that elevated oxidative stress might aid in increased risk for breast cancer initiation and progression.
Collapse
Affiliation(s)
- Mohini A Tupurani
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, India
| | - Chiranjeevi Padala
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, India
| | - Kaushik Puranam
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, India
| | - Rajesh K Galimudi
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, India
| | - Keerthi Kupsal
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, India
| | - Nivas Shyamala
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, India
| | - Srilatha Gantala
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, India
| | - Ramanjaneyulu Kummari
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, India
| | - Sanjeeva K Chinta
- Department of Radiation Oncology, MNJ Institute of Oncology Regional Cancer Center, Hyderabad, Telangana, India
| | - Surekha R Hanumanth
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, India
| |
Collapse
|
11
|
Tan Y, Liu D, Gong J, Liu J, Huo J. The role of F-box only protein 31 in cancer. Oncol Lett 2018; 15:4047-4052. [PMID: 29556284 PMCID: PMC5844145 DOI: 10.3892/ol.2018.7816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/20/2017] [Indexed: 12/14/2022] Open
Abstract
F-box only protein 31 (FBXO31), initially identified in 2005, is a novel subunit of the S-phase kinase associated protein 1-Cullin 1-F-box ubiquitin ligase. As with other F-box proteins, FBXO31 may interact with several proteins to promote their ubquitination and subsequent degradation in an F-box-dependent manner. It has been revealed that FBXO31 serves a crucial role in DNA damage response and tumorigenesis. However, the expression and function of FBXO31 varies in different types of human cancer. To the best of our knowledge, the present review is the first to summarize the role of FBXO31 in different types of human cancer and determine its underlying mechanisms, thereby paving the road for the design of FBXO31-targeted anticancer therapies.
Collapse
Affiliation(s)
- Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jian Gong
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jia Liu
- Center of Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jirong Huo
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
12
|
Cdc20 directs proteasome-mediated degradation of the tumor suppressor SMAR1 in higher grades of cancer through the anaphase promoting complex. Cell Death Dis 2017; 8:e2882. [PMID: 28617439 PMCID: PMC5520925 DOI: 10.1038/cddis.2017.270] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/25/2017] [Accepted: 05/09/2017] [Indexed: 12/24/2022]
Abstract
The Tumor suppressor SMAR1 (scaffold matrix attachment region binding protein 1) has a crucial role in maintaining genomic stability, cell cycle progression and apoptosis.Our previous finding showed that it is highly suppressed in higher grade of cancer. However, the underlying mechanism of this suppression was not well understood. In this study, we show that SMAR1 expression levels are controlled at the proteasomal level by five RING finger E3 ubiquitin ligases including, Cdc20, a substrate receptor of ubiquitin ligase APC/C complex. We found that Cdc20 binds and promotes proteasomal degradation of SMAR1 in a D-box motif dependent manner. Further, our results demonstrated that Cdc20 promotes proteasomal degradation of SMAR1 through K48-linked specific polyubiquitylation, and that short hairpin RNA mediated inactivation of Cdc20 leads to significant stabilization of SMAR1. These findings suggest that Cdc20 is responsible for maintaining the cellular levels of SMAR1. However, since Cdc20 fails to target SMAR1 upon exposure to genotoxic stresses, SMAR1 helps to maintain genomic stability under these conditions through its DNA damage repair activity. Interestingly, Cdc20-mediated degradation of SMAR1 promotes cell migration and invasion.The reciprocal relationship of the duo is evident in breast cancer cell lines as well as in patient samples, suggesting that Cdc20 functions as an important negative regulator of SMAR1 in higher grades of cancer. Our study reveals for the first time, the molecular mechanism associated with lower levels of expression of the important tumor suppressor SMAR1 in higher grades of breast cancer.
Collapse
|
13
|
Liu D, Xia H, Wang F, Chen C, Long J. MicroRNA-210 interacts with FBXO31 to regulate cancer proliferation cell cycle and migration in human breast cancer. Onco Targets Ther 2016; 9:5245-55. [PMID: 27601917 PMCID: PMC5003082 DOI: 10.2147/ott.s110969] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In this study, we investigated the functional correlation between microRNA-210 (miR-210) and gene of F-box protein 31 (FBXO31) in regulating breast cancer. METHODS Dual-luciferase assay and quantitative real-time polymerase chain reaction were used to investigate the binding of miR-210 with FBXO31 and their expression patterns in breast cancer. miR-210 was inhibited in breast cancer T47D and MCF-7 cells to assess its effect on cancer proliferation, cell cycle progression, and migration. FBXO31 was also downregulated in breast cancer cells to examine its effect on miR-210-mediated breast cancer regulation. The interaction between miR-210 and FBXO31 was further investigated by examining the effect of overexpressing miR-210 on FBXO31-induced suppression of breast cancer proliferation. RESULTS FBXO31 was the downstream target gene of miR-210 in breast cancer. miR-210 and FBXO31 are inversely expressed in breast cancer cell lines. miR-210 downregulation reduced cancer progression, induced cell cycle arrest, and inhibited cancer migration in T47D and MCF-7 cells. Tumor suppression by miR-210 downregulation was reversed by downregulating FBXO31. In FBXO31-overexpressed breast cancer cells, upregulating miR-210 also reversed the tumor-suppressive effect of FBXO31 on breast cancer proliferation. CONCLUSION Our work demonstrated that the expression pattern and tumor regulatory functions of miR-210 and FBXO31 are inversely correlated in breast cancer.
Collapse
Affiliation(s)
- Dayue Liu
- Department of Surgery, Breast Disease Center
| | - Haoming Xia
- Department of Surgery, Breast Disease Center
| | - Fang Wang
- Department of Medicinal Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Cui Chen
- Department of Medicinal Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jianting Long
- Department of Medicinal Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
14
|
Nuclear matrix-associated protein SMAR1 regulates alternative splicing via HDAC6-mediated deacetylation of Sam68. Proc Natl Acad Sci U S A 2015; 112:E3374-83. [PMID: 26080397 DOI: 10.1073/pnas.1418603112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pre-mRNA splicing is a complex regulatory nexus modulated by various trans-factors and their posttranslational modifications to create a dynamic transcriptome through alternative splicing. Signal-induced phosphorylation and dephosphorylation of trans-factors are known to regulate alternative splicing. However, the role of other posttranslational modifications, such as deacetylation/acetylation, methylation, and ubiquitination, that could modulate alternative splicing in either a signal-dependent or -independent manner remain enigmatic. Here, we demonstrate that Scaffold/matrix-associated region-binding protein 1 (SMAR1) negatively regulates alternative splicing through histone deacetylase 6 (HDAC6)-mediated deacetylation of RNA-binding protein Sam68 (Src-associated substrate during mitosis of 68 kDa). SMAR1 is enriched in nuclear splicing speckles and associates with the snRNAs that are involved in splice site recognition. ERK-MAPK pathway that regulates alternative splicing facilitates ERK-1/2-mediated phosphorylation of SMAR1 at threonines 345 and 360 and localizes SMAR1 to the cytoplasm, preventing its interaction with Sam68. We showed that endogenously, SMAR1 through HDAC6 maintains Sam68 in a deacetylated state. However, knockdown or ERK-mediated phosphorylation of SMAR1 releases the inhibitory SMAR1-HDAC6-Sam68 complex, facilitating Sam68 acetylation and alternative splicing. Furthermore, loss of heterozygosity at the Chr.16q24.3 locus in breast cancer cells, wherein the human homolog of SMAR1 (BANP) has been mapped, enhances Sam68 acetylation and CD44 variant exon inclusion. In addition, tail-vein injections in mice with human breast cancer MCF-7 cells depleted for SMAR1 showed increased CD44 variant exon inclusion and concomitant metastatic propensity, confirming the functional role of SMAR1 in regulation of alternative splicing. Thus, our results reveal the complex molecular mechanism underlying SMAR1-mediated signal-dependent and -independent regulation of alternative splicing via Sam68 deacetylation.
Collapse
|
15
|
Gong H, Wu TT, Clarke EM. Pathway-gene identification for pancreatic cancer survival via doubly regularized Cox regression. BMC SYSTEMS BIOLOGY 2014; 8 Suppl 1:S3. [PMID: 24565114 PMCID: PMC4080266 DOI: 10.1186/1752-0509-8-s1-s3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Recent global genomic analyses identified 69 gene sets and 12 core signaling pathways genetically altered in pancreatic cancer, which is a highly malignant disease. A comprehensive understanding of the genetic signatures and signaling pathways that are directly correlated to pancreatic cancer survival will help cancer researchers to develop effective multi-gene targeted, personalized therapies for the pancreatic cancer patients at different stages. A previous work that applied a LASSO penalized regression method, which only considered individual genetic effects, identified 12 genes associated with pancreatic cancer survival. Results In this work, we integrate pathway information into pancreatic cancer survival analysis. We introduce and apply a doubly regularized Cox regression model to identify both genes and signaling pathways related to pancreatic cancer survival. Conclusions Four signaling pathways, including Ion transport, immune phagocytosis, TGFβ (spermatogenesis), regulation of DNA-dependent transcription pathways, and 15 genes within the four pathways are identified and verified to be directly correlated to pancreatic cancer survival. Our findings can help cancer researchers design new strategies for the early detection and diagnosis of pancreatic cancer.
Collapse
|
16
|
Bai R, Li D, Shi Z, Fang X, Ge W, Zheng S. Clinical significance of Ankyrin repeat domain 12 expression in colorectal cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:35. [PMID: 23718802 PMCID: PMC3689078 DOI: 10.1186/1756-9966-32-35] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/14/2013] [Indexed: 12/22/2022]
Abstract
Background Ankyrin repeat domain 12 (ANKRD12), is encoding a 224 kDa nuclear protein and most conserved at its N-terminal ankyrin repeats region and the C-terminal co-activator interacting domain. The aim of this study was to investigate the ANKRD12 mRNA expression in colorectal cancer (CRC) tumor tissues and the normal adjacent mucosa and its potential relevance to clinicopathological characteristics and prognosis. Methods Surgical specimens of tumor tissues (n = 68) and adjacent normal mucosa (n = 51) were obtained from CRC patients. The ANKRD12 mRNA expression was measured by quantitative real time reverse transcriptase polymerase chain reaction. The relationship between ANKRD12 mRNA expression and clinicopathological features was analyzed by appropriate statistics. Kaplan–Meier analysis and Cox proportional hazards regression models were used to investigate the correlation between ANKRD12 expression and prognosis of CRC patients. Results The relative mRNA expression of ANKRD12 were significantly lower in CRC tumor tissues than in the normal adjacent mucosa (P < 0.001), and the cases with low ANKRD12 expression showed a higher frequency of liver metastasis (P = 0.015). Kaplan–Meier analysis indicated that patients (CRC without liver metastasis) with low ANKRD12 expression had poor overall survival (P = 0.041). Multivariate analysis showed that low ANKRD12 expression was an independent predictor of overall survival. Conclusion This study revealed that ANKRD12 mRNA were down regulated in CRC tumor tissues and low ANKRD12 expression was correlated with liver metastasis and poor survival of CRC patients.
Collapse
|
17
|
Zheykova TV, Golubenko MV, Buikin SV, Botkina OY, Tsimbaliuk IV, Maksimov VN, Voevoda MI, Puzyrev VP. Association between 242C>T polymorphism of NADPH oxidase p22phox gene (CYBA) and longevity in Russian population. RUSS J GENET+ 2013. [DOI: 10.1134/s1022795413020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood 2012; 120:2280-9. [PMID: 22855598 DOI: 10.1182/blood-2012-03-419937] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are aggressive malignancies of mature T lymphocytes with 5-year overall survival rates of only ∼ 35%. Improvement in outcomes has been stymied by poor understanding of the genetics and molecular pathogenesis of PTCL, with a resulting paucity of molecular targets for therapy. We developed bioinformatic tools to identify chromosomal rearrangements using genome-wide, next-generation sequencing analysis of mate-pair DNA libraries and applied these tools to 16 PTCL patient tissue samples and 6 PTCL cell lines. Thirteen recurrent abnormalities were identified, of which 5 involved p53-related genes (TP53, TP63, CDKN2A, WWOX, and ANKRD11). Among these abnormalities were novel TP63 rearrangements encoding fusion proteins homologous to ΔNp63, a dominant-negative p63 isoform that inhibits the p53 pathway. TP63 rearrangements were seen in 11 (5.8%) of 190 PTCLs and were associated with inferior overall survival; they also were detected in 2 (1.2%) of 164 diffuse large B-cell lymphomas. As TP53 mutations are rare in PTCL compared with other malignancies, our findings suggest that a constellation of alternate genetic abnormalities may contribute to disruption of p53-associated tumor suppressor function in PTCL.
Collapse
|
19
|
Kostianets O, Shyian M, Sergiy D, Antoniuk S, Gout I, Filonenko V, Kiyamova R. Serological Analysis of SEREX-Defined Medullary Breast Carcinoma-Associated Antigens. Cancer Invest 2012; 30:519-27. [DOI: 10.3109/07357907.2012.697231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Hungermann D, Schmidt H, Natrajan R, Tidow N, Poos K, Reis-Filho JS, Brandt B, Buerger H, Korsching E. Influence of whole arm loss of chromosome 16q on gene expression patterns in oestrogen receptor-positive, invasive breast cancer. J Pathol 2011; 224:517-28. [PMID: 21706489 DOI: 10.1002/path.2938] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/15/2011] [Accepted: 05/09/2011] [Indexed: 01/05/2023]
Abstract
A whole chromosome arm loss of 16q belongs to the most frequent and earliest chromosomal alterations in invasive and in situ breast cancers of all common subtypes. Besides E-cadherin, several putative tumour suppressor genes residing on 16q in breast cancer have been investigated. However, the significance of these findings has remained unclear. Thus, other mechanisms leading to gene loss of function (eg haploinsufficiency, or distortion of multiple regulative subnetworks) remain to be tested as a hypothesis. To define the effect on gene expression of whole-arm loss of chromosome 16q in invasive breast cancer, we performed global gene expression analysis on a series of 18 genetically extensively characterized invasive ductal breast carcinomas and verified the results by quantitative real-time PCR (qRT-PCR). The distribution of the differential genes across the genome and their expression status was studied. A second approach by qRT-PCR in an independent series of 30 breast carcinomas helped to narrow down the observed effect. Whole-arm chromosome 16q losses, irrespective of other chromosomal changes, are associated with decreased expression of a number of candidate genes located on 16q (eg CDA08, CGI-128, SNTB2, NQO1, SF3B3, KIAA0174, ATBF1, GABARAPL2, KARS, GCSH, MBTPS1 and ZDHHC7) in breast carcinomas with a low degree of genetic instability. qRT-PCR provided evidence to suggest that the expression of these genes was reduced in a gene dosage-dependent manner. The differential expression of the candidate genes according to the chromosomal 16q-status vanished in genetically advanced breast cancer cases and changed ER status. These results corroborate previous reports about the importance of whole-arm loss of chromosome 16q in breast carcinogenesis and give evidence for the first time that haploinsufficiency, in the sense of a gene dosage effect, might be an important contributing factor in the early steps of breast carcinogenesis.
Collapse
|
21
|
Malonia SK, Sinha S, Lakshminarasimhan P, Singh K, Jalota-Badhwar A, Rampalli S, Kaul-Ghanekar R, Chattopadhyay S. Gene regulation by SMAR1: Role in cellular homeostasis and cancer. Biochim Biophys Acta Rev Cancer 2010; 1815:1-12. [PMID: 20709157 DOI: 10.1016/j.bbcan.2010.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 08/04/2010] [Accepted: 08/06/2010] [Indexed: 12/22/2022]
Abstract
Changes in the composition of nuclear matrix associated proteins contribute to alterations in nuclear structure, one of the major phenotypes of malignant cancer cells. The malignancy-induced changes in this structure lead to alterations in chromatin folding, the fidelity of genome replication and gene expression programs. The nuclear matrix forms a scaffold upon which the chromatin is organized into periodic loop domains called matrix attachment regions (MAR) by binding to various MAR binding proteins (MARBPs). Aberrant expression of MARBPs modulates the chromatin organization and disrupt transcriptional network that leads to oncogenesis. Dysregulation of nuclear matrix associated MARBPs has been reported in different types of cancers. Some of these proteins have tumor specific expression and are therefore considered as promising diagnostic or prognostic markers in few cancers. SMAR1 (scaffold/matrix attachment region binding protein 1), is one such nuclear matrix associated protein whose expression is drastically reduced in higher grades of breast cancer. SMAR1 gene is located on human chromosome 16q24.3 locus, the loss of heterozygosity (LOH) of which has been reported in several types of cancers. This review elaborates on the multiple roles of nuclear matrix associated protein SMAR1 in regulating various cellular target genes involved in cell growth, apoptosis and tumorigenesis.
Collapse
|
22
|
Ankyrin repeats-containing cofactors interact with ADA3 and modulate its co-activator function. Biochem J 2008; 413:349-57. [PMID: 18377363 DOI: 10.1042/bj20071484] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ANCO (ankyrin repeats-containing cofactor)-1 and ANCO-2 are a family of unique transcriptional co-regulators with dual properties: they interact with both the co-activators and the co-repressors [Zhang, Yeung, Li, Tsai, Dinh, Wu, Li and Chen (2004) J. Biol. Chem. 279, 33799-33805]. Specifically, ANCO-1 is thought to recruit HDACs (histone deacetylases) to the p160 co-activator to repress transcriptional activation by nuclear receptors. In the present study, we provide new evidence to suggest further that ANCO-1 and ANCO-2 also interact with the co-activator ADA3 (alteration/deficiency in activation 3). The interaction occurs between the conserved C-terminal domain of ANCO-1 and the N-terminal transactivation domain of ADA3. Several subunits of the P/CAF {p300/CBP [CREB (cAMP-response-element-binding protein)-binding protein]-associated factor} complex, including ADA3, ADA2alpha/beta and P/CAF, showed co-localization with ANCO-1 nuclear dots, indicating an in vivo association of ANCO-1 with the P/CAF complex. Furthermore, a transient reporter assay revealed that both ANCO-1 and ANCO-2 repress ADA3-mediated transcriptional co-activation on nuclear receptors, whereas ANCO-1 stimulated p53-mediated transactivation. These data suggest that ADA3 is a newly identified target of the ANCO proteins, which may modulate co-activator function in a transcription-factor-specific manner.
Collapse
|
23
|
Abstract
Although not directly related, circumstances do occur in forensic investigations whereby cancer studies and forensic science cross paths. This review takes a look at the circumstances under which this may occur, and investigates some potential problems that can arise when tumor tissue is submitted for DNA profile analysis. A background to the underlying molecular biology of tumors is described, highlighting the genetic instabilities that are observed in DNA sequences of similar or identical primary structure to the short tandem repeat markers used in forensic DNA profiling kits.
Collapse
|
24
|
Gratias S, Rieder H, Ullmann R, Klein-Hitpass L, Schneider S, Bölöni R, Kappler M, Lohmann DR. Allelic Loss in a Minimal Region on Chromosome 16q24 Is Associated with Vitreous Seeding of Retinoblastoma. Cancer Res 2007; 67:408-16. [PMID: 17210724 DOI: 10.1158/0008-5472.can-06-1317] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In addition to RB1 gene mutations, retinoblastomas frequently show gains of 1q and 6p and losses of 16q. To identify suppressor genes on 16q, we analyzed 22 short tandem repeat loci in 58 patients with known RB1 mutations. A subset of tumors was also investigated by conventional and matrix comparative genomic hybridization. In 40 of 58 (69%) tumors, we found no loss of heterozygosity (LOH) at any 16q marker. LOH was detected in 18 of 58 (31%) tumors, including five with allelic imbalance at some markers. In one tumor LOH was only observed at 16q24. As the parental origin of allele loss was unbiased, an imprinted locus is unlikely to be involved. Analysis of gene expression by microarray hybridization and quantitative RT real-time PCR did not identify a candidate suppressor in 16q24. Cadherin 13 (CDH13), CBFA2T3, and WFDC1, which are candidate suppressors in other tumor entities with 16q24 loss, did not show loss of expression. In addition, mutation and methylation analysis showed no somatic alteration of CDH13. Results in all tumors with chromosome 16 alterations define a single minimal deleted region of 5.7 Mb in the telomeric part of 16q24 with the centromeric boundary defined by retention of heterozygosity for a single nucleotide variant in exon 10 of CDH13 (Mb 82.7). Interestingly, clinical presentation of tumors with and without 16q alterations was distinct. Specifically, almost all retinoblastomas with 16q24 loss showed diffuse intraocular seeding. This suggests that genetic alterations in the minimal deleted region are associated with impaired cell-to-cell adhesion.
Collapse
Affiliation(s)
- Sandrine Gratias
- Institut für Humangenetik, Institut für Zellbiologie, and Augenklinik, Universitätsklinikum Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang A, Li CW, Tsai SC, Chen JD. Subcellular localization of ankyrin repeats cofactor-1 regulates its corepressor activity. J Cell Biochem 2007; 101:1301-15. [PMID: 17286281 DOI: 10.1002/jcb.21251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ankyrin repeats cofactor-1 (ANCO-1) was recently identified as a novel nuclear receptor corepressor that regulates receptor-mediated transcription through interactions with p160 coactivators and histone deacetylases. Interestingly, exogenously expressed ANCO-1 is localized at distinct subnuclear domains. The relevance of these subnuclear domains and the mechanisms of nucleocytoplasmic translocation of ANCO-1 have not been determined. We report here the identification of an N-terminal signaling motif that is essential for both nuclear/subnuclear localization and transcription corepressor function of ANCO-1. This N-terminal motif at residues 80-86 of ANCO-1 constitutes a classical nuclear localization signal (NLS1). Disruption of NLS1 causes complete cytoplasmic accumulation of the full-length ANCO-1, and abolishes its corepressor function on receptor-mediated transcription. A second NLS (NLS2) is found at the C-terminal residues 2384-2390; however, its disruption abolishes only nuclear localization of isolated C-terminal fragments. We also identify a leucine-rich nuclear export signal (NES) at residues 2415-2424 of ANCO-1, and show that both the NLSs and NES sequences are capable of mediating nuclear import and export of heterologous protein, respectively. In addition, attachment of the NES sequence to a transcription factor impairs its activation function. These results suggest that ANCO-1 subnuclear localization is regulated by both nuclear import and export signals, and that proper subcellular localization of ANCO-1 is essential for its corepressor function.
Collapse
Affiliation(s)
- Aihua Zhang
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA
| | | | | | | |
Collapse
|
26
|
Engelmark MT, Ivansson EL, Magnusson JJ, Gustavsson IM, Beskow AH, Magnusson PKE, Gyllensten UB. Identification of susceptibility loci for cervical carcinoma by genome scan of affected sib-pairs. Hum Mol Genet 2006; 15:3351-60. [PMID: 17035246 DOI: 10.1093/hmg/ddl411] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cervical cancer is caused by a combination of environmental and genetic risk factors. Infection by oncogenic types of human papillomavirus is recognized as the major environmental risk factor and epidemiological studies indicate that host genetic factors predispose to disease development. A number of genetic susceptibility factors have been proposed, but with exception of the human leukocyte antigen CHLA, class II, have not shown consistent results among studies. We have performed the first genomewide linkage scan using 278 affected sib-pairs to identify loci involved in susceptibility to cervical cancer. A two-step qualitative non-parametric linkage analysis using 387 microsatellites with an average spacing of 10.5 cM revealed excess allelic sharing at nine regions on eight chromosomes. These regions were further analysed with 125 markers to increase the map density to 1.28 cM. Nominal significant linkage was found for three of the nine loci [9q32 (maximum lod-score, MLS) =1.95, P<0.002), 12q24 (MLS=1.25, P<0.015) and 16q24 (MLS=1.35, P<0.012)]. These three regions have previously been connected to human cancers that share characteristics with cervical carcinoma, such as esophageal cancer and Hodgkin's lymphoma. A number of candidate genes involved in defence against viral infections, immune response and tumour suppression are found in these regions. One such gene is the thymic stromal co-transporter (TSCOT). Analyses of TSCOT single nucleotide polymorphisms further strengthen the linkage to this region (MLS=2.40, P<0.001). We propose that the 9q32 region contains susceptibility locus for cervical cancer and that TSCOT is a candidate gene potentially involved in the genetic predisposition to this disease.
Collapse
Affiliation(s)
- Malin T Engelmark
- Department of Genetics and Pathology, Section of Medical Genetics, Rudbeck Laboratory, University of Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
27
|
Kumar R, Manning J, Spendlove HE, Kremmidiotis G, McKirdy R, Lee J, Millband DN, Cheney KM, Stampfer MR, Dwivedi PP, Morris HA, Callen DF. ZNF652, A Novel Zinc Finger Protein, Interacts with the Putative Breast Tumor Suppressor CBFA2T3 to Repress Transcription. Mol Cancer Res 2006; 4:655-65. [PMID: 16966434 DOI: 10.1158/1541-7786.mcr-05-0249] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcriptional repressor CBFA2T3 is a putative breast tumor suppressor. To define the role of CBFA2T3, we used a segment of this protein as bait in a yeast two-hybrid screen and identified a novel uncharacterized protein, ZNF652. In general, primary tumors and cancer cell lines showed lower expression of ZNF652 than normal tissues. Together with the location of this gene on the long arm of chromosome 17q, a region of frequent loss of heterozygosity in cancer, these results suggest a possible role of ZNF652 in tumorigenesis. In silico analysis of this protein revealed that it contains multiple classic zinc finger domains that are predicted to bind DNA. Coimmunoprecipitation assays showed that ZNF652 strongly interacts with CBFA2T3 and this interaction occurs through the COOH-terminal 109 amino acids of ZNF652. In contrast, there was a weak interaction of ZNF652 with CBFA2T1 and CBFA2T2, the other two members of this ETO family. Transcriptional reporter assays further confirmed the strength and selectivity of the ZNF652-CBFA2T3 interaction. The transcriptional repression of growth factor independent-1 (GFI-1), a previously characterized ETO effector zinc finger protein, was shown to be enhanced by CBFA2T1, but to a lesser extent by CBFA2T2 and CBFA2T3. We therefore suggest that each of the various gene effector zinc finger proteins may specifically interact with one or more of the ETO proteins to generate a defined range of transcriptional repressor complexes.
Collapse
Affiliation(s)
- Raman Kumar
- Breast Cancer Genetics Group, Dame Roma Mitchell Cancer Research Laboratories, Hanson Institute, Institute of Medical and Veterinary Science, Frome Road, Adelaide, SA 5000, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rakha EA, Green AR, Powe DG, Roylance R, Ellis IO. Chromosome 16 tumor-suppressor genes in breast cancer. Genes Chromosomes Cancer 2006; 45:527-35. [PMID: 16518845 DOI: 10.1002/gcc.20318] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Loss of heterozygosity on the long arm of chromosome 16 is one of the most frequent genetic events in breast cancer, suggesting the presence of one or more classic tumor-suppressor genes (TSGs). It has been shown that E-cadherin is the TSG on 16q in lobular tumors. In a search for the target genes in more frequently occurring low-grade nonlobular tumors, the smallest region of overlap (SRO) in this area of the genome has been exhaustively searched for. However, the results have demonstrated remarkable complexity, and so a clear consensus on identification of the SRO boundaries has not been reached. Several genes in the vicinity of these SROs have been scrutinized as putative TSGs in breast cancer, but so far, none has fulfilled the criteria for target genes. This review discusses the complexity of the 16q region and the different approaches that have been, are being, and will be used to detect the target genes in this area.
Collapse
Affiliation(s)
- Emad A Rakha
- Department of Histopathology, the Breast Unit, Nottingham City Hospital NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | | | | | | | | |
Collapse
|
29
|
Mahadevan D, Spier C, Della Croce K, Miller S, George B, Riley C, Warner S, Grogan TM, Miller TP. Transcript profiling in peripheral T-cell lymphoma, not otherwise specified, and diffuse large B-cell lymphoma identifies distinct tumor profile signatures. Mol Cancer Ther 2006; 4:1867-79. [PMID: 16373702 DOI: 10.1158/1535-7163.mct-05-0146] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To glean biological differences and similarities of peripheral T-cell lymphoma-not otherwise specified [PTCL-NOS] to diffuse large B-cell lymphoma (DLBCL), a transcriptosome analysis was done on five PTCL-NOS and four DLBCL patients and validated by quantitative real-time reverse transcription-PCR on 10 selected genes. Normal peripheral blood T cells, peripheral blood B cells, and lymph node were used as controls. The resultant gene expression profile delineated distinct "tumor profile signatures" for PTCL-NOS and DLBCL. Several highly overexpressed genes in both PTCL-NOS and DLBCL involve the immune network, stroma, angiogenesis, and cell survival cascades that make important contributions to lymphomagenesis. Inflammatory chemokines and their receptors likely play a central role in these complex interrelated pathways: CCL2 and CXCR4 in PTCL-NOS and CCL5 and CCR1 in DLBCL. Highly overexpressed oncogenes unique to PTCL-NOS are SPI1, STK6, alpha-PDGFR, and SH2D1A, whereas in DLBCL they are PIM1, PIM2, LYN, BCL2A1, and RAB13. Oncogenes common to both lymphomas are MAFB, MET, NF-kappaB2, LCK, and LYN. Several tumor suppressors are also down-regulated (TPTE, MGC154, PTCH, ST5, and SUI1). This study illustrates the relevance of tumor-stroma immune trafficking and identified potential novel prognostic markers and targets for therapeutic intervention.
Collapse
MESH Headings
- Base Sequence
- DNA Primers
- Gene Expression Profiling
- Humans
- Immunohistochemistry
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/pathology
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/pathology
- Oligonucleotide Array Sequence Analysis
- Oncogenes
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Daruka Mahadevan
- Department of Medicine, Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kumar R, Neilsen PM, Crawford J, McKirdy R, Lee J, Powell JA, Saif Z, Martin JM, Lombaerts M, Cornelisse CJ, Cleton-Jansen AM, Callen DF. FBXO31 is the chromosome 16q24.3 senescence gene, a candidate breast tumor suppressor, and a component of an SCF complex. Cancer Res 2006; 65:11304-13. [PMID: 16357137 DOI: 10.1158/0008-5472.can-05-0936] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A BAC located in the 16q24.3 breast cancer loss of heterozygosity region was previously shown to restore cellular senescence when transferred into breast tumor cell lines. We have shown that FBXO31, although located just distal to this BAC, can induce cellular senescence in the breast cancer cell line MCF-7 and is the likely candidate senescence gene. FBXO31 has properties consistent with a tumor suppressor, because ectopic expression of FBXO31 in two breast cancer cell lines inhibited colony growth on plastic and inhibited cell proliferation in the MCF-7 cell line. In addition, compared with the relative expression in normal breast, levels of FBXO31 were down-regulated in breast tumor cell lines and primary tumors. FBXO31 was cell cycle regulated in the breast cell lines MCF-10A and SKBR3 with maximal expression from late G(2) to early G(1) phase. Ectopic expression of FBXO31 in the breast cancer cell line MDA-MB-468 resulted in the accumulation of cells at the G(1) phase of the cell cycle. FBXO31 contains an F-box domain and is associated with the proteins Skp1, Roc-1, and Cullin-1, suggesting that FBXO31 is a component of a SCF ubiquitination complex. We propose that FBXO31 functions as a tumor suppressor by generating SCF(FBXO31) complexes that target particular substrates, critical for the normal execution of the cell cycle, for ubiquitination and subsequent degradation.
Collapse
Affiliation(s)
- Raman Kumar
- Breast Cancer Genetics Group, Dame Roma Mitchell Cancer Research Laboratories, Department of Medicine, University of Adelaide and Hanson Institute, Institute of Medical and Veterinary Science Adelaide, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rampalli S, Pavithra L, Bhatt A, Kundu TK, Chattopadhyay S. Tumor suppressor SMAR1 mediates cyclin D1 repression by recruitment of the SIN3/histone deacetylase 1 complex. Mol Cell Biol 2005; 25:8415-29. [PMID: 16166625 PMCID: PMC1265755 DOI: 10.1128/mcb.25.19.8415-8429.2005] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Matrix attachment region binding proteins have been shown to play an important role in gene regulation by altering chromatin in a stage- and tissue-specific manner. Our previous studies report that SMAR1, a matrix-associated protein, regresses B16-F1-induced tumors in mice. Here we show SMAR1 targets the cyclin D1 promoter, a gene product whose dysregulation is attributed to breast malignancies. Our studies reveal that SMAR1 represses cyclin D1 gene expression, which can be reversed by small interfering RNA specific to SMAR1. We demonstrate that SMAR1 interacts with histone deacetylation complex 1, SIN3, and pocket retinoblastomas to form a multiprotein repressor complex. This interaction is mediated by the SMAR1(160-350) domain. Our data suggest SMAR1 recruits a repressor complex to the cyclin D1 promoter that results in deacetylation of chromatin at that locus, which spreads to a distance of at least the 5 kb studied upstream of the cyclin D1 promoter. Interestingly, we find that the high induction of cyclin D1 in breast cancer cell lines can be correlated to the decreased levels of SMAR1 in these lines. Our results establish the molecular mechanism exhibited by SMAR1 to regulate cyclin D1 by modification of chromatin.
Collapse
Affiliation(s)
- Shravanti Rampalli
- National Center for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | | | | | | | | |
Collapse
|
32
|
van Wezel T, Lombaerts M, van Roon EH, Philippo K, Baelde HJ, Szuhai K, Cornelisse CJ, Cleton-Jansen AM. Expression analysis of candidate breast tumour suppressor genes on chromosome 16q. Breast Cancer Res 2005; 7:R998-1004. [PMID: 16280054 PMCID: PMC1410740 DOI: 10.1186/bcr1337] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 09/08/2005] [Accepted: 09/26/2005] [Indexed: 12/04/2022] Open
Abstract
Introduction Chromosome arm 16q is the second most frequent target of loss of heterozygosity in breast cancer and is, therefore, a candidate to contain one or more classic tumour suppressor genes (TSGs). E-cadherin at 16q22 was identified as a TSG in lobular breast cancer, but TSGs in ductal breast cancer remain elusive. Several genes have been suggested as potential candidates (e.g. CBFA2T3, CTCF and WWOX) but no inactivating mutations could be identified in these genes and they thus fail to fit the classic two-hit model for a TSG. With the completion of the human transcriptome, new candidate genes can be distinguished. Besides mutational inactivation, a TSG could, at least in a subset of the tumours, be transcriptionally suppressed or even inactivated. Studying candidate genes for expression and somatic mutations could thus identify the TSGs. Methods Possible candidates CBFA2T3, TERF2 and TERF2IP, FBXL8 and LRRC29 and FANCA were studied for insertion and deletion mutations and for expression differences using quantitative RT-PCR in a panel of tumour cell lines and primary tumours with and without loss of 16q. Results None of the genes showed mutations or obvious expression differences. FANCA expression increased with tumour grade. Conclusion Apparently, the underlying genetics at chromosome 16q are complex or the TSGs remain to be identified. Multiple mechanisms, such as mutations, promoter hypermethylation or haploinsufficiency, might lead to the inactivation of a TSG.
Collapse
Affiliation(s)
- Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Albiniusdreef 2, 2333ZA Leiden, The Netherlands
| | - Marcel Lombaerts
- Department of Pathology, Leiden University Medical Center, Albiniusdreef 2, 2333ZA Leiden, The Netherlands
| | - Eddy H van Roon
- Department of Pathology, Leiden University Medical Center, Albiniusdreef 2, 2333ZA Leiden, The Netherlands
| | - Katja Philippo
- Department of Pathology, Leiden University Medical Center, Albiniusdreef 2, 2333ZA Leiden, The Netherlands
| | - Hans J Baelde
- Department of Pathology, Leiden University Medical Center, Albiniusdreef 2, 2333ZA Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Human and Clinical Genetics, Leiden University Medical Center, Albiniusdreef 2, 2333ZA Leiden, The Netherlands
| | - Cees J Cornelisse
- Department of Pathology, Leiden University Medical Center, Albiniusdreef 2, 2333ZA Leiden, The Netherlands
| | - Anne-Marie Cleton-Jansen
- Department of Pathology, Leiden University Medical Center, Albiniusdreef 2, 2333ZA Leiden, The Netherlands
| |
Collapse
|
33
|
Jalota A, Singh K, Pavithra L, Kaul-Ghanekar R, Jameel S, Chattopadhyay S. Tumor suppressor SMAR1 activates and stabilizes p53 through its arginine-serine-rich motif. J Biol Chem 2005; 280:16019-29. [PMID: 15701641 DOI: 10.1074/jbc.m413200200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Various stresses and DNA-damaging agents trigger transcriptional activity of p53 by post-translational modifications, making it a global regulatory switch that controls cell proliferation and apoptosis. Earlier we have shown that the novel MAR-associated protein SMAR1 interacts with p53. Here we delineate the minimal domain of SMAR1 (the arginine-serine-rich domain) that is phosphorylated by protein kinase C family proteins and is responsible for p53 interaction, activation, and stabilization within the nucleus. SMAR1-mediated stabilization of p53 is brought about by inhibiting Mdm2-mediated degradation of p53. We also demonstrate that this arginine-serine (RS)-rich domain triggers the various cell cycle modulating proteins that decide cell fate. Furthermore, phenotypic knock-down experiments using small interfering RNA showed that SMAR1 is required for activation and nuclear retention of p53. The level of phosphorylated p53 was significantly increased in the thymus of SMAR1 transgenic mice, showing in vivo significance of SMAR1 expression. This is the first report that demonstrates the mechanism of action of the MAR-binding protein SMAR1 in modulating the activity of p53, often referred to as the "guardian of the genome."
Collapse
Affiliation(s)
- Archana Jalota
- National Center for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | | | | | | | | | | |
Collapse
|
34
|
Kim BY, Lee JG, Park S, Ahn JY, Ju YJ, Chung JH, Han CJ, Jeong SH, Yeom YI, Kim S, Lee YS, Kim CM, Eom EM, Lee DH, Choi KY, Cho MH, Suh KS, Choi DW, Lee KH. Feature genes of hepatitis B virus-positive hepatocellular carcinoma, established by its molecular discrimination approach using prediction analysis of microarray. Biochim Biophys Acta Mol Basis Dis 2004; 1739:50-61. [PMID: 15607117 DOI: 10.1016/j.bbadis.2004.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 07/12/2004] [Accepted: 07/20/2004] [Indexed: 01/25/2023]
Abstract
Recent introduction of a learning algorithm for cDNA microarray analysis has permitted to select feature set to accurately distinguish human cancers according to their pathological judgments. Here, we demonstrate that hepatitis B virus-positive hepatocellular carcinoma (HCC) could successfully be identified from non-tumor liver tissues by supervised learning analysis of gene expression profiling. Through learning and cross-validating HCC sample set, we could identify an optimized set of 44 genes to discriminate the status of HCC from non-tumor liver tissues. In an analysis of other blind-tested HCC sample sets, this feature set was found to be statistically significant, indicating the reproducibility of our molecular discrimination approach with the defined genes. One prominent finding was an asymmetrical distribution pattern of expression profiling in HCC, in which the number of down-regulated genes was greater than that of up-regulated genes. In conclusion, the present findings indicate that application of learning algorithm to HCC may establish a reliable feature set of genes to be useful for therapeutic target of HCC, and that the asymmetric expression pattern may emphasize the importance of suppressed genes in HCC.
Collapse
Affiliation(s)
- Bu-Yeo Kim
- Laboratory of Molecular Oncology, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-Dong, Nowon-Ku, Seoul 139-706, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kaur GP, Reddy DE, Zimonjic DB, de Riel JK, Athwal RS. Functional identification of a BAC clone from 16q24 carrying a senescence gene SEN16 for breast cancer cells. Oncogene 2004; 24:47-54. [PMID: 15558027 DOI: 10.1038/sj.onc.1208175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have identified an 85 kb BAC clone, 346J21, that carries a cell senescence gene (SEN16), previously mapped to 16q24.3. Transfer and retention of 346J21 in breast cancer cell lines leads to growth arrest after 8-10 cell doublings, accompanied by the appearance of characteristic senescent cell morphology and senescence-associated acid beta-galactosidase activity. Loss of transferred BAC results in reversion to the immortal growth phenotype of the parental cancer cell lines. BAC 346J21 restores senescence in the human breast cancer cell lines, MCF.7 and MDA-MB468, and the rat mammary tumor cell line LA7, but not in the human glioblastoma cell line T98G. We postulate that inactivation of both copies of SEN16 is required for the immortalization of breast epithelial cells at an early stage of tumorigenesis. Positional mapping of 346J21 shows that SEN16 is distinct from other candidate tumor suppressor genes reported at 16q24.
Collapse
Affiliation(s)
- Gursurinder Pal Kaur
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | | | |
Collapse
|
36
|
Bais AJ, Gardner AE, McKenzie OLD, Callen DF, Sutherland GR, Kremmidiotis G. Aberrant CBFA2T3B gene promoter methylation in breast tumors. Mol Cancer 2004; 3:22. [PMID: 15301688 PMCID: PMC516017 DOI: 10.1186/1476-4598-3-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 08/10/2004] [Indexed: 12/31/2022] Open
Abstract
Background The CBFA2T3 locus located on the human chromosome region 16q24.3 is frequently deleted in breast tumors. CBFA2T3 gene expression levels are aberrant in breast tumor cell lines and the CBFA2T3B isoform is a potential tumor suppressor gene. In the absence of identified mutations to further support a role for this gene in tumorigenesis, we explored whether the CBFA2T3B promoter region is aberrantly methylated and whether this correlates with expression. Results Aberrant hypo and hypermethylation of the CBFA2T3B promoter was detected in breast tumor cell lines and primary breast tumor samples relative to methylation index interquartile ranges in normal breast counterpart and normal whole blood samples. A statistically significant inverse correlation between aberrant CBFA2T3B promoter methylation and gene expression was established. Conclusion CBFA2T3B is a potential breast tumor suppressor gene affected by aberrant promoter methylation and gene expression. The methylation levels were quantitated using a second-round real-time methylation-specific PCR assay. The detection of both hypo and hypermethylation is a technicality regarding the methylation methodology.
Collapse
Affiliation(s)
- Anthony J Bais
- Bionomics Limited, Thebarton, Adelaide, SA 5031, Australia
- Department of Haematology and Genetic Pathology, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Alison E Gardner
- Department of Cytogenetics and Molecular Genetics, Women's and Children's Hospital, North Adelaide, Adelaide, SA 5006, Australia
| | - Olivia LD McKenzie
- Department of Cytogenetics and Molecular Genetics, Women's and Children's Hospital, North Adelaide, Adelaide, SA 5006, Australia
| | - David F Callen
- Department of Cytogenetics and Molecular Genetics, Women's and Children's Hospital, North Adelaide, Adelaide, SA 5006, Australia
- Dame Roma Mitchell Cancer Research Labs, Hanson Institute, Adelaide, SA 5000, Australia
| | - Grant R Sutherland
- Department of Cytogenetics and Molecular Genetics, Women's and Children's Hospital, North Adelaide, Adelaide, SA 5006, Australia
- Department of Paediatrics, University of Adelaide, Adelaide, SA 5005, Australia
| | - Gabriel Kremmidiotis
- Bionomics Limited, Thebarton, Adelaide, SA 5031, Australia
- Department of Paediatrics, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
37
|
Zhang A, Yeung PL, Li CW, Tsai SC, Dinh GK, Wu X, Li H, Chen JD. Identification of a novel family of ankyrin repeats containing cofactors for p160 nuclear receptor coactivators. J Biol Chem 2004; 279:33799-805. [PMID: 15184363 DOI: 10.1074/jbc.m403997200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the p160 nuclear receptor coactivators interact with liganded nuclear receptors to enhance transcription of target genes. Here we identify a novel family of ankyrin repeats containing cofactors (ANCOs) that interact with the p160 coactivators. ANCO-1 binds to the conserved Per-Arnt-Sim (PAS) region of the p160 coactivators. It encodes a large nuclear protein with five ankyrin repeats, and parts of its sequences have been reported as nasopharyngeal carcinoma susceptibility protein and medulloblastoma antigen. Immunofluorescence staining reveals discrete nuclear foci of ANCO-1 that are distinct from known nuclear structures. Intriguingly, ANCO-1 also colocalizes and interacts with histone deacetylases. Transient reporter gene assay shows that ANCO-1 expression inhibits ligand-dependent transactivation by both steroid and nonsteroid nuclear receptors. Taken together, we have identified a novel family of ankyrin repeats containing cofactors that may recruit histone deacetylases to the p160 coactivators/nuclear receptor complex to inhibit ligand-dependent transactivation.
Collapse
Affiliation(s)
- Aihua Zhang
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Miller BJ, Wang D, Krahe R, Wright FA. Pooled analysis of loss of heterozygosity in breast cancer: a genome scan provides comparative evidence for multiple tumor suppressors and identifies novel candidate regions. Am J Hum Genet 2003; 73:748-67. [PMID: 13680524 PMCID: PMC1180599 DOI: 10.1086/378522] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2003] [Accepted: 07/07/2003] [Indexed: 01/24/2023] Open
Abstract
Somatic loss of heterozygosity (LOH) has been widely reported in breast cancer as a means of identifying putative tumor-suppressor genes. However, individual studies have rarely spanned more than a single chromosome, and the varying criteria used to declare LOH complicate efforts to formally differentiate regions of consistent versus sporadic (random) loss. We report here the compilation of an extensive database from 151 published LOH studies of breast cancer, with summary data from >15,000 tumors and primary allelotypes from >4,300 tumors. Allelic loss was evaluated at 1,168 marker loci, with large variation in the density of informative observations across the genome. Using studies in which primary allelotype information was available, we employed a likelihood-based approach with a formal chromosomal instability and selection model. The approach seeks direct evidence for preferential loss at each locus compared with nearby loci, accounts for heterogeneity across studies, and enables the direct comparison of candidate regions across the genome. Striking preferential loss was observed (in descending order of significance) in specific regions of chromosomes 7q, 16q, 13q, 17p, 8p, 21q, 3p, 18q, 2q, and 19p, as well as other regions, in many cases coinciding with previously identified candidate genes or known fragile sites. Many of these observations were not possible from any single LOH study, and our results suggest that many previously reported LOH results are not systematic or reproducible. Our approach provides a comparative framework for further investigation of regions exhibiting LOH and identifies broad genomic regions for which there exist few data.
Collapse
Affiliation(s)
- Brian J. Miller
- College of Medicine and Public Health and Program in Human Cancer Genetics, The Ohio State University, Columbus; Department of Biostatistics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill; and Section of Cancer Genetics, Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston
| | - Daolong Wang
- College of Medicine and Public Health and Program in Human Cancer Genetics, The Ohio State University, Columbus; Department of Biostatistics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill; and Section of Cancer Genetics, Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston
| | - Ralf Krahe
- College of Medicine and Public Health and Program in Human Cancer Genetics, The Ohio State University, Columbus; Department of Biostatistics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill; and Section of Cancer Genetics, Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston
| | - Fred A. Wright
- College of Medicine and Public Health and Program in Human Cancer Genetics, The Ohio State University, Columbus; Department of Biostatistics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill; and Section of Cancer Genetics, Department of Molecular Genetics, The University of Texas M. D. Anderson Cancer Center, Houston
| |
Collapse
|