1
|
McGary LC, Regan GL, Bearne SL. Reactive architecture profiling with a methyl acyl phosphate electrophile. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140945. [PMID: 37536394 DOI: 10.1016/j.bbapap.2023.140945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Activity-based protein profiling has facilitated the study of the activity of enzymes in proteomes, inhibitor development, and identification of enzymes that share mechanistic and active-site architectural features. Since methyl acyl phosphate monoesters act as electrostatically selective anionic electrophiles for the covalent modification of nucleophiles that reside adjacent to cationic sites in proteins, we synthesized methyl hex-5-ynoyl phosphate (MHP) to broadly target such protein architectures. After treating the soluble proteome of Paucimonas lemoignei with MHP, biotinylating the resulting acylated proteins using click chemistry, enriching the protein adducts using streptavidin, and analyzing the proteins by LC-MS/MS, a set of 240 enzymes and 132 non-enzyme proteins were identified for a wide spectrum of biological processes and from all 7 enzyme classes. Among those enzymes identified, β-hydroxybutyrate dehydrogenase (PlHBDH) and CTP synthase (E. coli orthologue, EcCTPS) were purified as recombinant enzymes and their rates of inactivation and sites of modification by MHP and methyl acetyl phosphate (MAP) were characterized. MHP reacted more slowly with these proteins than MAP but exhibited greater specificity, despite its lack of multiple binding determinants. Generally, MAP modified more surface residues than MHP. MHP specifically modified Ser 146, Lys 156, and Lys 163 at the active site of PlHBDH. MHP and MAP modified numerous residues of EcCTPS with CTP furnishing the greatest level of protection against MHP- and MAP-dependent modification and inactivation, respectively, followed by ATP and glutamine. Overall, MHP served as an effective probe to identify proteins that are potentially amenable to inhibition by methyl acyl phosphates.
Collapse
Affiliation(s)
- Laura C McGary
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Gemma L Regan
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
2
|
Lin X, Huang L, Liang H, Hou C, Ling X, Chen Y, Yang P, Wu Q, Zhao H, Wu S, Zhan R, Ma D, Yang J. Genome-wide identification and functional characterization of borneol dehydrogenases in Wurfbainia villosa. PLANTA 2023; 258:69. [PMID: 37608037 DOI: 10.1007/s00425-023-04221-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
MAIN CONCLUSION Genome-wide screening of short-chain dehydrogenases/reductases (SDR) family reveals functional diversification of borneol dehydrogenase (BDH) in Wurfbainia villosa. Wurfbainia villosa is an important medicinal plant, the fruits of which accumulate abundant terpenoids, especially bornane-type including borneol and camphor. The borneol dehydrogenase (BDH) responsible for the conversion of borneol to camphor in W. villosa remains unknown. BDH is one member of short-chain dehydrogenases/reductases (SDR) family. Here, a total of 115 classical WvSDR genes were identified through genome-wide screening. These WvSDRs were unevenly distributed on different chromosomes. Seven candidate WvBDHs based on phylogenetic analysis and expression levels were selected for cloning. Of them, four BDHs can catalyze different configurations of borneol and other monoterpene alcohol substrates to generate the corresponding oxidized products. WvBDH1 and WvBDH2, preferred (+)-borneol to (-)-borneol, producing the predominant ( +)-camphor. WvBDH3 yielded approximate equivalent amount of (+)-camphor and (-)-camphor, in contrast, WvBDH4 generated exclusively (+)-camphor. The metabolic profiles of the seeds showed that the borneol and camphor present were in the dextrorotatory configuration. Enzyme kinetics and expression pattern in different tissues suggested WvBDH2 might be involved in the biosynthesis of camphor in W. villosa. All results will increase the understanding of functional diversity of BDHs.
Collapse
Affiliation(s)
- Xiaojing Lin
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Linxuan Huang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Huilin Liang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Chen Hou
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510006, People's Republic of China
- Guangdong Academy of Forestry, Guangzhou, 510006, People's Republic of China
| | - Xuli Ling
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yuanxia Chen
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Peng Yang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Qingwen Wu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Haiying Zhao
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Sirong Wu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Ruoting Zhan
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Dongming Ma
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Jinfen Yang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Ministry of Education), Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
3
|
Zhao W, Liu M, Qin Y, Bing H, Zhang F, Zhao G. Characterization and functional of four mutants of hydroxy fatty acid dehydrogenase from Lactobacillus plantarum p-8. FEMS Microbiol Lett 2022; 369:6633657. [PMID: 35798009 DOI: 10.1093/femsle/fnac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/25/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
In this study, the hydroxy fatty acid dehydrogenase CLA-DH from Lactobacillus plantarum p-8 and its four mutant variants were expressed in Escherichia coli Rosetta (DE3). UV spectrophotometry was employed to verify the catalytic power of the purified CLA-DH to convert ricinoleic acid into 12-oxo-cis-9-octadecenoic acid in the presence of oxidized nicotinamide adenine dinucleotide (NAD+). The optimum reaction temperature for CLA-DH was 45°C, with a maintained stability between 20°C and 40°C. The optimal pH for CLA-DH catalytic activity was 6.0-7.0, with a maintained stability at a pH range of 6.0-8.0. In addition, Fe3+ promoted enzyme activity, whereas Cu2+, Zn2+, and Fe2+ inhibited enzyme activity (P < 0.05). The Km, Vmax, Kcat, and Kcat/Km of CLA-DH were determined as 2.19 ± 0.34 μM, 2.06 ± 0.28 μM min-1, 2.00 ± 0.27 min-1, and 0.92 ± 0.02 min-1μM-1, respectively. Site-directed mutagenesis and molecular dynamics simulations demonstrated that both Tyr156 and Ser143 residues play significant roles in the catalysis of CLA-DH, and its solubility is affected by Lys160 and Asp63. Moreover, Gas chromatography determined that recombinant CLA-DH could be successfully applied to Conjugated linoleic acids production.
Collapse
Affiliation(s)
- Wei Zhao
- College of Life Sciences, Inner Mongolia Agricultural University, 29 Erdos Street, Hohhot 010011, China.,College of Food Science, Shanxi Normal University, 339 Taiyu Road, Taiyuan 030031, China
| | - Meiqi Liu
- College of Life Sciences, Inner Mongolia Agricultural University, 29 Erdos Street, Hohhot 010011, China
| | - Yali Qin
- College of Life Sciences, Inner Mongolia Agricultural University, 29 Erdos Street, Hohhot 010011, China
| | - Han Bing
- College of Life Sciences, Inner Mongolia Agricultural University, 29 Erdos Street, Hohhot 010011, China
| | - Feng Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, 29 Erdos Street, Hohhot 010011, China
| | - Guofen Zhao
- College of Life Sciences, Inner Mongolia Agricultural University, 29 Erdos Street, Hohhot 010011, China
| |
Collapse
|
4
|
Helfrich F, Scheidig AJ. Structural and catalytic characterization of Blastochloris viridis and Pseudomonas aeruginosa homospermidine synthases supports the essential role of cation-π interaction. Acta Crystallogr D Struct Biol 2021; 77:1317-1335. [PMID: 34605434 PMCID: PMC8489232 DOI: 10.1107/s2059798321008937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Polyamines influence medically relevant processes in the opportunistic pathogen Pseudomonas aeruginosa, including virulence, biofilm formation and susceptibility to antibiotics. Although homospermidine synthase (HSS) is part of the polyamine metabolism in various strains of P. aeruginosa, neither its role nor its structure has been examined so far. The reaction mechanism of the nicotinamide adenine dinucleotide (NAD+)-dependent bacterial HSS has previously been characterized based on crystal structures of Blastochloris viridis HSS (BvHSS). This study presents the crystal structure of P. aeruginosa HSS (PaHSS) in complex with its substrate putrescine. A high structural similarity between PaHSS and BvHSS with conservation of the catalytically relevant residues is demonstrated, qualifying BvHSS as a model for mechanistic studies of PaHSS. Following this strategy, crystal structures of single-residue variants of BvHSS are presented together with activity assays of PaHSS, BvHSS and BvHSS variants. For efficient homospermidine production, acidic residues are required at the entrance to the binding pocket (`ionic slide') and near the active site (`inner amino site') to attract and bind the substrate putrescine via salt bridges. The tryptophan residue at the active site stabilizes cationic reaction components by cation-π interaction, as inferred from the interaction geometry between putrescine and the indole ring plane. Exchange of this tryptophan for other amino acids suggests a distinct catalytic requirement for an aromatic interaction partner with a highly negative electrostatic potential. These findings substantiate the structural and mechanistic knowledge on bacterial HSS, a potential target for antibiotic design.
Collapse
Affiliation(s)
- F. Helfrich
- Zoological Institute, University of Kiel, Am Botanischen Garten 1–9, 24118 Kiel, Germany
| | - Axel J. Scheidig
- Zoological Institute, University of Kiel, Am Botanischen Garten 1–9, 24118 Kiel, Germany
| |
Collapse
|
5
|
Mallipeddi PL, Zhang Y, Li H, Markowitz SD, Posner B. Structural Insights into Novel 15-Prostaglandin Dehydrogenase Inhibitors. Molecules 2021; 26:molecules26195903. [PMID: 34641449 PMCID: PMC8512612 DOI: 10.3390/molecules26195903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
We discovered SW033291 in a high throughput chemical screen aimed at identifying 15-prostaglandin dehydrogenase (15-PGDH) modulators. The compound exhibited inhibitory activity in in vitro biochemical and cell-based assays of 15-PGDH activity. We subsequently demonstrated that this compound, and several analogs thereof, are effective in in vivo mouse models of bone marrow transplant, colitis, and liver regeneration, where increased levels of PGE2 positively potentiate tissue regeneration. To better understand the binding of SW033291, we carried out docking studies for both the substrate, PGE2, and an inhibitor, SW033291, to 15-PGDH. Our models suggest similarities in the ways that PGE2 and SW033291 interact with key residues in the 15-PGDH-NAD+ complex. We carried out molecular dynamics simulations (MD) of SW033291 bound to this complex, in order to understand the dynamics of the binding interactions for this compound. The butyl side chain (including the sulfoxide) of SW033291 participates in crucial binding interactions that are similar to those observed for the C15-OH and the C16-C20 alkyl chain of PGE2. In addition, interactions with residues Ser138, Tyr151, and Gln148 play key roles in orienting and stabilizing SW033291 in the binding site and lead to enantioselectivity for the R-enantiomer. Finally, we compare the binding mode of (R)-S(O)-SW033291 with the binding interactions of published 15-PGDH inhibitors.
Collapse
Affiliation(s)
- Prema L. Mallipeddi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Yongyou Zhang
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (Y.Z.); (H.L.); (S.D.M.)
| | - Hongyun Li
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (Y.Z.); (H.L.); (S.D.M.)
| | - Sanford D. Markowitz
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (Y.Z.); (H.L.); (S.D.M.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
6
|
Yuan T, Werman JM, Yin X, Yang M, Garcia-Diaz M, Sampson NS. Enzymatic β-Oxidation of the Cholesterol Side Chain in Mycobacterium tuberculosis Bifurcates Stereospecifically at Hydration of 3-Oxo-cholest-4,22-dien-24-oyl-CoA. ACS Infect Dis 2021; 7:1739-1751. [PMID: 33826843 PMCID: PMC8204306 DOI: 10.1021/acsinfecdis.1c00069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
The unique ability
of Mycobacterium tuberculosis (Mtb) to utilize host
lipids such as cholesterol for survival, persistence,
and virulence has made the metabolic pathway of cholesterol an area
of great interest for therapeutics development. Herein, we identify
and characterize two genes from the Cho-region (genomic locus responsible
for cholesterol catabolism) of the Mtb genome, chsH3 (Rv3538) and chsB1 (Rv3502c). Their protein products
catalyze two sequential stereospecific hydration and dehydrogenation
steps in the β-oxidation of the cholesterol side chain. ChsH3
favors the 22S hydration of 3-oxo-cholest-4,22-dien-24-oyl-CoA
in contrast to the previously reported EchA19 (Rv3516), which catalyzes
formation of the (22R)-hydroxy-3-oxo-cholest-4-en-24-oyl-CoA
from the same enoyl-CoA substrate. ChsB1 is stereospecific and catalyzes
dehydrogenation of the ChsH3 product but not the EchA19 product. The
X-ray crystallographic structure of the ChsB1 apo-protein was determined
at a resolution of 2.03 Å, and the holo-enzyme with bound NAD+ cofactor was determined at a resolution of 2.21 Å. The
homodimeric structure is representative of a classical NAD+-utilizing short-chain type alcohol dehydrogenase/reductase, including
a Rossmann-fold motif, but exhibits a unique substrate binding site
architecture that is of greater length and width than its homologous
counterparts, likely to accommodate the bulky steroid substrate. Intriguingly,
Mtb utilizes hydratases from the MaoC-like family in sterol side-chain
catabolism in contrast to fatty acid β-oxidation in other species
that utilize the evolutionarily distinct crotonase family of hydratases.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Joshua M. Werman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Xingyu Yin
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, New York 11794-5215, United States
| | - Meng Yang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651, United States
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
7
|
Shang YP, Chen Q, Li AT, Quan S, Xu JH, Yu HL. Attenuated substrate inhibition of a haloketone reductase via structure-guided loop engineering. J Biotechnol 2020; 308:141-147. [PMID: 31866427 DOI: 10.1016/j.jbiotec.2019.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/26/2019] [Accepted: 12/18/2019] [Indexed: 11/25/2022]
Abstract
Substrate inhibition of enzymes is one of the main obstacles encountered frequently in industrial biocatalysis. Haloketone reductase SsCR was seriously inhibited by substrate 2,2',4'-trichloroacetophenone. In this study, two essential loops were found that have a relationship with substrate binding by conducting X-ray crystal structure analysis. Three key residues were selected from the tips of the loops and substituted with amino acids with lower hydrophobicity to weaken the hydrophobic interactions that bridge the two loops, resulting in a remarkable reduction of substrate inhibition. Among these variants, L211H showed a significant attenuation of substrate inhibition, with a Ki of 16 mM, which was 16 times that of the native enzyme. The kinetic parameter kcat/Km of L211H was 3.1 × 103 s-1 mM-1, showing the comparable catalytic efficiency to that of the wild-type enzyme (WT). At the substrate loading of 100 mM, the space time yield of variant L211H in asymmetric reduction of the haloketone was 3-fold higher than that of the WT.
Collapse
Affiliation(s)
- Yue-Peng Shang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China.
| | - Ai-Tao Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang, Wuhan, 430062, China
| | - Shu Quan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
8
|
Zhang N, Zoltner M, Leung KF, Scullion P, Hutchinson S, del Pino RC, Vincent IM, Zhang YK, Freund YR, Alley MRK, Jacobs RT, Read KD, Barrett MP, Horn D, Field MC. Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles. PLoS Pathog 2018; 14:e1006850. [PMID: 29425238 PMCID: PMC5823473 DOI: 10.1371/journal.ppat.1006850] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/22/2018] [Accepted: 01/03/2018] [Indexed: 12/22/2022] Open
Abstract
Recent development of benzoxaborole-based chemistry gave rise to a collection of compounds with great potential in targeting diverse infectious diseases, including human African Trypanosomiasis (HAT), a devastating neglected tropical disease. However, further medicinal development is largely restricted by a lack of insight into mechanism of action (MoA) in pathogenic kinetoplastids. We adopted a multidisciplinary approach, combining a high-throughput forward genetic screen with functional group focused chemical biological, structural biology and biochemical analyses, to tackle the complex MoAs of benzoxaboroles in Trypanosoma brucei. We describe an oxidative enzymatic pathway composed of host semicarbazide-sensitive amine oxidase and a trypanosomal aldehyde dehydrogenase TbALDH3. Two sequential reactions through this pathway serve as the key underlying mechanism for activating a series of 4-aminomethylphenoxy-benzoxaboroles as potent trypanocides; the methylamine parental compounds as pro-drugs are transformed first into intermediate aldehyde metabolites, and further into the carboxylate metabolites as effective forms. Moreover, comparative biochemical and crystallographic analyses elucidated the catalytic specificity of TbALDH3 towards the benzaldehyde benzoxaborole metabolites as xenogeneic substrates. Overall, this work proposes a novel drug activation mechanism dependent on both host and parasite metabolism of primary amine containing molecules, which contributes a new perspective to our understanding of the benzoxaborole MoA, and could be further exploited to improve the therapeutic index of antimicrobial compounds. Human African Trypanomiasis (HAT) is among a list of Neglected Tropical Diseases (NTDs) that impose devastating burdens on both public health and economy of some of the most unprivileged societies across the world. To secure the long-term global control of the disease, it is critical to understand the mechanisms underlying the interactions of drugs and drug candidates with the causative agents as well as resistance potentially arising from use of the compounds. We demonstrated here a metabolic enzymatic cascade dependent on a host-pathogen interaction that determines potency against T. brucei of a series of benzoxaborole compounds. More importantly, this pathway represents a metabolic interaction network between host and pathogen, illuminating an important perspective on understanding mechanism of action.
Collapse
Affiliation(s)
- Ning Zhang
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Martin Zoltner
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ka-Fai Leung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Paul Scullion
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sebastian Hutchinson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ricardo C. del Pino
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Isabel M. Vincent
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Yong-Kang Zhang
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Yvonne R. Freund
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Michael R. K. Alley
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Robert T. Jacobs
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Kevin D. Read
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael P. Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mark C. Field
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
A conserved threonine prevents self-intoxication of enoyl-thioester reductases. Nat Chem Biol 2017; 13:745-749. [PMID: 28504678 DOI: 10.1038/nchembio.2375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 02/13/2017] [Indexed: 01/17/2023]
Abstract
Enzymes are highly specific biocatalysts, yet they can promote unwanted side reactions. Here we investigated the factors that direct catalysis in the enoyl-thioester reductase Etr1p. We show that a single conserved threonine is essential to suppress the formation of a side product that would otherwise act as a high-affinity inhibitor of the enzyme. Substitution of this threonine with isosteric valine increases side-product formation by more than six orders of magnitude, while decreasing turnover frequency by only one order of magnitude. Our results show that the promotion of wanted reactions and the suppression of unwanted side reactions operate independently at the active site of Etr1p, and that the active suppression of side reactions is highly conserved in the family of medium-chain dehydrogenases/reductases (MDRs). Our discovery emphasizes the fact that the active destabilization of competing transition states is an important factor during catalysis that has implications for the understanding and the de novo design of enzymes.
Collapse
|
10
|
Hofmann L, Tsybovsky Y, Alexander NS, Babino D, Leung NY, Montell C, Banerjee S, von Lintig J, Palczewski K. Structural Insights into the Drosophila melanogaster Retinol Dehydrogenase, a Member of the Short-Chain Dehydrogenase/Reductase Family. Biochemistry 2016; 55:6545-6557. [PMID: 27809489 DOI: 10.1021/acs.biochem.6b00907] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The 11-cis-retinylidene chromophore of visual pigments isomerizes upon interaction with a photon, initiating a downstream cascade of signaling events that ultimately lead to visual perception. 11-cis-Retinylidene is regenerated through enzymatic transformations collectively called the visual cycle. The first and rate-limiting enzymatic reaction within this cycle, i.e., the reduction of all-trans-retinal to all-trans-retinol, is catalyzed by retinol dehydrogenases. Here, we determined the structure of Drosophila melanogaster photoreceptor retinol dehydrogenase (PDH) isoform C that belongs to the short-chain dehydrogenase/reductase (SDR) family. This is the first reported structure of a SDR that possesses this biologically important activity. Two crystal structures of the same enzyme grown under different conditions revealed a novel conformational change of the NAD+ cofactor, likely representing a change during catalysis. Amide hydrogen-deuterium exchange of PDH demonstrated changes in the structure of the enzyme upon dinucleotide binding. In D. melanogaster, loss of PDH activity leads to photoreceptor degeneration that can be partially rescued by transgenic expression of human RDH12. Based on the structure of PDH, we analyzed mutations causing Leber congenital amaurosis 13 in a homology model of human RDH12 to obtain insights into the molecular basis of RDH12 disease-causing mutations.
Collapse
Affiliation(s)
- Lukas Hofmann
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Yaroslav Tsybovsky
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nathan S Alexander
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Darwin Babino
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nicole Y Leung
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Surajit Banerjee
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14850, United States.,Northeastern Collaborative Access Team, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Johannes von Lintig
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
11
|
Jiao XC, Zhang YJ, Chen Q, Pan J, Xu JH. A green-by-design system for efficient bio-oxidation of an unnatural hexapyranose into chiral lactone for building statin side-chains. Catal Sci Technol 2016. [DOI: 10.1039/c6cy01085g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An improved dehydrogenase LeADHI87F/N235H/P236H was co-expressed with a NADPH oxidase in E. coli for bio-oxidation of a key statin side-chain precursor.
Collapse
Affiliation(s)
- Xue-Cheng Jiao
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yu-Jun Zhang
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Centre for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
12
|
Abstract
Mutants of Lactobacillus kefir short-chain alcohol dehydrogenase, used here as ketoreductases (KREDs), enantioselectively reduce the pharmaceutically relevant substrates 3-thiacyclopentanone and 3-oxacyclopentanone. These substrates differ by only the heteroatom (S or O) in the ring, but the KRED mutants reduce them with different enantioselectivities. Kinetic studies show that these enzymes are more efficient with 3-thiacyclopentanone than with 3-oxacyclopentanone. X-ray crystal structures of apo- and NADP(+)-bound selected mutants show that the substrate-binding loop conformational preferences are modified by these mutations. Quantum mechanical calculations and molecular dynamics (MD) simulations are used to investigate the mechanism of reduction by the enzyme. We have developed an MD-based method for studying the diastereomeric transition state complexes and rationalize different enantiomeric ratios. This method, which probes the stability of the catalytic arrangement within the theozyme, shows a correlation between the relative fractions of catalytically competent poses for the enantiomeric reductions and the experimental enantiomeric ratio. Some mutations, such as A94F and Y190F, induce conformational changes in the active site that enlarge the small binding pocket, facilitating accommodation of the larger S atom in this region and enhancing S-selectivity with 3-thiacyclopentanone. In contrast, in the E145S mutant and the final variant evolved for large-scale production of the intermediate for the antibiotic sulopenem, R-selectivity is promoted by shrinking the small binding pocket, thereby destabilizing the pro-S orientation.
Collapse
|
13
|
Osuna S, Jiménez-Osés G, Noey EL, Houk KN. Molecular dynamics explorations of active site structure in designed and evolved enzymes. Acc Chem Res 2015; 48:1080-9. [PMID: 25738880 DOI: 10.1021/ar500452q] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This Account describes the use of molecular dynamics (MD) simulations to reveal how mutations alter the structure and organization of enzyme active sites. As proposed by Pauling about 70 years ago and elaborated by many others since then, biocatalysis is efficient when functional groups in the active site of an enzyme are in optimal positions for transition state stabilization. Changes in mechanism and covalent interactions are often critical parts of enzyme catalysis. We describe our explorations of the dynamical preorganization of active sites using MD, studying the fluctuations between active and inactive conformations normally concealed to static crystallography. MD shows how the various arrangements of active site residues influence the free energy of the transition state and relates the populations of the catalytic conformational ensemble to the enzyme activity. This Account is organized around three case studies from our laboratory. We first describe the importance of dynamics in evaluating a series of computationally designed and experimentally evolved enzymes for the Kemp elimination, a popular subject in the enzyme design field. We find that the dynamics of the active site is influenced not only by the original sequence design and subsequent mutations but also by the nature of the ligand present in the active site. In the second example, we show how microsecond MD has been used to uncover the role of remote mutations in the active site dynamics and catalysis of a transesterase, LovD. This enzyme was evolved by Tang at UCLA and Codexis, Inc., and is a useful commercial catalyst for the production of the drug simvastatin. X-ray analysis of inactive and active mutants did not reveal differences in the active sites, but relatively long time scale MD in solution showed that the active site of the wild-type enzyme preorganizes only upon binding of the acyl carrier protein (ACP) that delivers the natural acyl group to the active site. In the absence of bound ACP, a noncatalytic arrangement of the catalytic triad is dominant. Unnatural truncated substrates are inactive because of the lack of protein-protein interactions provided by the ACP. Directed evolution is able to gradually restore the catalytic organization of the active site by motion of the protein backbone that alters the active site geometry. In the third case, we demonstrate the key role of MD in combination with crystallography to identify the origins of substrate-dependent stereoselectivities in a number of Codexis-engineered ketoreductases, one of which is used commercially for the production of the antibiotic sulopenem. Here, mutations alter the shape of the active site as well as the accessibility of water to different regions of it. Each of these examples reveals something different about how mutations can influence enzyme activity and shows that directed evolution, like natural evolution, can increase catalytic activity in a variety of remarkable and often subtle ways.
Collapse
Affiliation(s)
- Sílvia Osuna
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, Campus Montilivi s/n, 17071 Girona, Spain
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Gonzalo Jiménez-Osés
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Elizabeth L. Noey
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K. N. Houk
- Department
of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
14
|
Lerchner A, Jarasch A, Meining W, Schiefner A, Skerra A. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity. Biotechnol Bioeng 2013; 110:2803-14. [PMID: 23686719 DOI: 10.1002/bit.24956] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/21/2013] [Accepted: 04/29/2013] [Indexed: 11/10/2022]
Abstract
The NADP⁺-dependent alcohol dehydrogenase from Ralstonia sp. (RasADH) belongs to the protein superfamily of short-chain dehydrogenases/reductases (SDRs). As an enzyme that accepts different types of substrates--including bulky-bulky as well as small-bulky secondary alcohols or ketones--with high stereoselectivity, it offers potential as a biocatalyst for industrial biotechnology. To understand substrate and cosubstrate specificities of RasADH we determined the crystal structure of the apo-enzyme as well as its NADP⁺-bound state with resolutions down to 2.8 Å. RasADH displays a homotetrameric quaternary structure that can be described as a dimer of homodimers while in each subunit a seven-stranded parallel β-sheet, flanked by three α-helices on each side, forms a Rossmann fold-type dinucleotide binding domain. Docking of the well-known substrate (S)-1-phenylethanol clearly revealed the structural determinants of stereospecificity. To favor practical RasADH application in the context of established cofactor recycling systems, for example, those involving an NADH-dependent amino acid dehydrogenase, we attempted to rationally change its cosubstrate specificity from NADP⁺ to NAD⁺ utilizing the structural information that NADP⁺ specificity is largely governed by the residues Asn15, Gly37, Arg38, and Arg39. Furthermore, an extensive sequence alignment with homologous dehydrogenases that have different cosubstrate specificities revealed a modified general SDR motif ASNG (instead of NNAG) at positions 86-89 of RasADH. Consequently, we constructed mutant enzymes with one (G37D), four (N15G/G37D/R38V/R39S), and six (N15G/G37D/R38V/R39S/A86N/S88A) amino acid exchanges. RasADH (N15G/G37D/R38V/R39S) was better able to accept NAD⁺ while showing much reduced catalytic efficiency with NADP⁺, leading to a change in NADH/NADPH specificity by a factor of ∼3.6 million.
Collapse
Affiliation(s)
- Alexandra Lerchner
- Munich Center for Integrated Protein Science, CIPS-M, and Lehrstuhl für Biologische Chemie, Technische Universität München, 85350, Freising-Weihenstephan, Germany
| | | | | | | | | |
Collapse
|
15
|
Hwang CC, Chang YH, Lee HJ, Wang TP, Su YM, Chen HW, Liang PH. The catalytic roles of P185 and T188 and substrate-binding loop flexibility in 3α-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni. PLoS One 2013; 8:e63594. [PMID: 23717450 PMCID: PMC3662788 DOI: 10.1371/journal.pone.0063594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/04/2013] [Indexed: 11/18/2022] Open
Abstract
3α-Hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni reversibly catalyzes the oxidation of androsterone with NAD(+) to form androstanedione and NADH. Structurally the substrate-binding loop of the residues, T188-K208, is unresolved, while binding with NAD(+) causes the appearance of T188-P191 in the binary complex. This study determines the functional roles of the flexible substrate-binding loop in conformational changes and enzyme catalysis. A stopped-flow study reveals that the rate-limiting step in the reaction is the release of the NADH. The mutation at P185 in the hinge region and T188 in the loop causes a significant increase in the Kd value for NADH by fluorescence titration. A kinetic study of the mutants of P185A, P185G, T188A and T188S shows an increase in k(cat), K(androsterone) and K(iNAD) and equal primary isotope effects of (D)V and (D) (V/K). Therefore, these mutants increase the dissociation of the nucleotide cofactor, thereby increasing the rate of release of the product and producing the rate-limiting step in the hydride transfer. Simulated molecular modeling gives results that are consistent with the conformational change in the substrate-binding loop after NAD(+) binding. These results indicate that P185, T188 and the flexible substrate-binding loop are involved in binding with the nucleotide cofactor and with androsterone and are also involved in catalysis.
Collapse
Affiliation(s)
- Chi-Ching Hwang
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Wuxiuer Y, Winberg JO, Sylte I. Comparative molecular dynamic simulations of wild type and Thr114Val mutated Scaptodrosophila lebanonensis alcohol dehydrogenase. J Biomol Struct Dyn 2013; 32:465-76. [PMID: 23528031 DOI: 10.1080/07391102.2013.776502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Enzyme kinetics studies have shown that Scaptodrosophila lebanonensis alcohol dehydrogenase (SlADH) and other drosophilid alcohol dehydrogenases function by a compulsory-ordered mechanism where the coenzyme binds to the free enzyme, and that a proton is released upon formation of the binary enzyme-NAD(+) complex. A proton relay mechanism for the proton abstraction has been suggested that includes an eight-membered chain of water molecules connecting the active site with the bulk solvent. Thr114 bridges between two water molecules in the water chain. In a previous structural and enzyme kinetic study of a Thr114 Val mutant of SlADH, we showed that an intact water chain is essential for full enzyme activity. In the present study, comparative molecular dynamic (MD) simulations of the wild type and the SlADH(T114V) were performed. The simulations showed differences in hydrogen bonding properties and dynamics between the wild type and the SlADH(T114V). Differences in molecular dynamical behaviour were seen in the loop of importance for binding the nicotinamide part of NAD(+), in the region important for binding the adenine part of NAD(+), and in the region of the amino acid at position 114. The substrates also had more freedom for conformational changes in active site of the wild type SlADH than of the SlADH(T114V). The differences in hydrogen bonding properties and MDs between the wild type and mutant could not have been observed from the X-ray crystal structures only.
Collapse
Affiliation(s)
- Yimingjiang Wuxiuer
- a Faculty of Health Sciences, Department of Medical Biology , University of Tromsø , NO-9037, Tromsø , Norway
| | | | | |
Collapse
|
17
|
Mayoral JG, Leonard KT, Nouzova M, Noriega FG, Defelipe LA, Turjanski AG. Functional analysis of a mosquito short-chain dehydrogenase cluster. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 82:96-115. [PMID: 23238893 PMCID: PMC3697000 DOI: 10.1002/arch.21078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The short-chain dehydrogenases (SDR) constitute one of the oldest and largest families of enzymes with over 46,000 members in sequence databases. About 25% of all known dehydrogenases belong to the SDR family. SDR enzymes have critical roles in lipid, amino acid, carbohydrate, hormone, and xenobiotic metabolism as well as in redox sensor mechanisms. This family is present in archaea, bacteria, and eukaryota, emphasizing their versatility and fundamental importance for metabolic processes. We identified a cluster of eight SDRs in the mosquito Aedes aegypti (AaSDRs). Members of the cluster differ in tissue specificity and developmental expression. Heterologous expression produced recombinant proteins that had diverse substrate specificities, but distinct from the conventional insect alcohol (ethanol) dehydrogenases. They are all NADP⁺-dependent and they have S-enantioselectivity and preference for secondary alcohols with 8-15 carbons. Homology modeling was used to build the structure of AaSDR1 and two additional cluster members. The computational study helped explain the selectivity toward the (10S)-isomers as well as the reduced activity of AaSDR4 and AaSDR9 for longer isoprenoid substrates. Similar clusters of SDRs are present in other species of insects, suggesting similar selection mechanisms causing duplication and diversification of this family of enzymes.
Collapse
Affiliation(s)
- Jaime G Mayoral
- Department of Biological Sciences, Florida International University, Miami, Florida, USA
| | | | | | | | | | | |
Collapse
|
18
|
Vardi-Kilshtain A, Major DT, Kohen A, Engel H, Doron D. Hybrid Quantum and Classical Simulations of the Formate Dehydrogenase Catalyzed Hydride Transfer Reaction on an Accurate Semiempirical Potential Energy Surface. J Chem Theory Comput 2012; 8:4786-96. [DOI: 10.1021/ct300628e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexandra Vardi-Kilshtain
- Department
of Chemistry and the Lise Meitner-Minerva Center of Computational
Quantum Chemistry, Bar-Ilan University,
Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department
of Chemistry and the Lise Meitner-Minerva Center of Computational
Quantum Chemistry, Bar-Ilan University,
Ramat-Gan 52900, Israel
| | - Amnon Kohen
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Hamutal Engel
- Department
of Chemistry and the Lise Meitner-Minerva Center of Computational
Quantum Chemistry, Bar-Ilan University,
Ramat-Gan 52900, Israel
| | - Dvir Doron
- Department
of Chemistry and the Lise Meitner-Minerva Center of Computational
Quantum Chemistry, Bar-Ilan University,
Ramat-Gan 52900, Israel
| |
Collapse
|
19
|
Nishioka T, Yasutake Y, Nishiya Y, Tamura T. Structure-guided mutagenesis for the improvement of substrate specificity ofBacillus megateriumglucose 1-dehydrogenase IV. FEBS J 2012; 279:3264-75. [DOI: 10.1111/j.1742-4658.2012.08713.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Bezsudnova EY, Boyko KM, Polyakov KM, Dorovatovskiy PV, Stekhanova TN, Gumerov VM, Ravin NV, Skryabin KG, Kovalchuk MV, Popov VO. Structural insight into the molecular basis of polyextremophilicity of short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Thermococcus sibiricus. Biochimie 2012; 94:2628-38. [PMID: 22885278 DOI: 10.1016/j.biochi.2012.07.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/27/2012] [Indexed: 02/04/2023]
Abstract
Biochemical analysis of enantioselective short-chain alcohol dehydrogenase from the hyperthermophilic archaeon Thermococcus sibiricus (TsAdh319) revealed unique polyextremophilic properties of the enzyme - half-life of 1 h at 100 °C, tolerance to high salt (up to 4 M) and organic solvents (50% v/v) concentrations. To elucidate the molecular basis of TsAdh319 polyextremophilicity, we determined the crystal structure of the enzyme in a binary complex with 5-hydroxy-NADP at 1.68 Å resolution. TsAdh319 has a tetrameric structure both in the crystals and in solution with an intersubunit disulfide bond. The substrate-binding pocket is hydrophobic, spacious and open that is consistent with the observed promiscuity in substrate specificity of TsAdh319. The present study revealed an extraordinary number of charged residues on the surface of TsAdh319, 70% of which were involved in ion pair interactions. Further we compared the structure of TsAdh319 with the structures of other homologous short-chain dehydrogenases/reductases (SDRs) from thermophilic and mesophilic organisms. We found that TsAdh319 has the highest arginine and aspartate + glutamate contents compared to the counterparts. The frequency of occurrence of salt bridges on the surface of TsAdh319 is the highest among the SDRs under consideration. No differences in the proline, tryptophan, and phenylalanine contents are observed; the compactness of the protein core of TsAdh319, the monomer and tetramer organization do not differ from that of the counterparts. We suggest that the unique thermostability of TsAdh319 is associated with the rigidity and simultaneous "resilience" of the structure provided by a compact hydrophobic core and a large number of surface ion pairs. An extensive salt bridge network also might maintain the structural integrity of TsAdh319 in high salinity.
Collapse
Affiliation(s)
- Ekaterina Y Bezsudnova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Pr. 33, Moscow 119071, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wuxiuer Y, Morgunova E, Cols N, Popov A, Karshikoff A, Sylte I, Gonzàlez-Duarte R, Ladenstein R, Winberg JO. An intact eight-membered water chain in drosophilid alcohol dehydrogenases is essential for optimal enzyme activity. FEBS J 2012; 279:2940-56. [PMID: 22741949 DOI: 10.1111/j.1742-4658.2012.08675.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All drosophilid alcohol dehydrogenases contain an eight-member water chain connecting the active site with the solvent at the dimer interface. A similar water chain has also been shown to exist in other short-chain dehydrogenase/reductase (SDR) enzymes, including therapeutically important SDRs. The role of this water chain in the enzymatic reaction is unknown, but it has been proposed to be involved in a proton relay system. In the present study, a connecting link in the water chain was removed by mutating Thr114 to Val114 in Scaptodrosophila lebanonensis alcohol dehydrogenase (SlADH). This threonine is conserved in all drosophilid alcohol dehydrogenases but not in other SDRs. X-ray crystallography of the SlADH(T114V) mutant revealed a broken water chain, the overall 3D structure of the binary enzyme-NAD(+) complex was almost identical to the wild-type enzyme (SlADH(wt) ). As for the SlADH(wt) , steady-state kinetic studies revealed that catalysis by the SlADH(T114V) mutant was consistent with a compulsory ordered reaction mechanism where the co-enzyme binds to the free enzyme. The mutation caused a reduction of the k(on) velocity for NAD(+) and its binding strength to the enzyme, as well as the rate of hydride transfer (k) in the ternary enzyme-NAD(+) -alcohol complex. Furthermore, it increased the pK(a) value of the group in the binary enzyme-NAD(+) complex that regulates the k(on) velocity of alcohol and alcohol-competitive inhibitors. Overall, the results indicate that an intact water chain is essential for optimal enzyme activity and participates in a proton relay system during catalysis.
Collapse
Affiliation(s)
- Yimingjiang Wuxiuer
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Insights into subtle conformational differences in the substrate-binding loop of fungal 17β-hydroxysteroid dehydrogenase: a combined structural and kinetic approach. Biochem J 2011; 441:151-60. [DOI: 10.1042/bj20110567] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The 17β-HSD (17β-hydroxysteroid dehydrogenase) from the filamentous fungus Cochliobolus lunatus (17β-HSDcl) is a NADP(H)-dependent enzyme that preferentially catalyses the interconversion of inactive 17-oxo-steroids and their active 17β-hydroxy counterparts. 17β-HSDcl belongs to the SDR (short-chain dehydrogenase/reductase) superfamily. It is currently the only fungal 17β-HSD member that has been described and represents one of the model enzymes of the cP1 classical subfamily of NADPH-dependent SDR enzymes. A thorough crystallographic analysis has been performed to better understand the structural aspects of this subfamily and provide insights into the evolution of the HSD enzymes. The crystal structures of the 17β-HSDcl apo, holo and coumestrol-inhibited ternary complex, and the active-site Y167F mutant reveal subtle conformational differences in the substrate-binding loop that probably modulate the catalytic activity of 17β-HSDcl. Coumestrol, a plant-derived non-steroidal compound with oestrogenic activity, inhibits 17β-HSDcl [IC50 2.8 μM; at 100 μM substrate (4-oestrene-3,17-dione)] by occupying the putative steroid-binding site. In addition to an extensive hydrogen-bonding network, coumestrol binding is stabilized further by π–π stacking interactions with Tyr212. A stopped-flow kinetic experiment clearly showed the coenzyme dissociation as the slowest step of the reaction and, in addition to the low steroid solubility, it prevents the accumulation of enzyme–coenzyme–steroid ternary complexes.
Collapse
|
23
|
Doron D, Major DT, Kohen A, Thiel W, Wu X. Hybrid Quantum and Classical Simulations of the Dihydrofolate Reductase Catalyzed Hydride Transfer Reaction on an Accurate Semi-Empirical Potential Energy Surface. J Chem Theory Comput 2011; 7:3420-37. [PMID: 26598171 DOI: 10.1021/ct2004808] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dihydrofolate reductase (DHFR) catalyzes the reduction of 7,8-dihydrofolate by nicotinamide adenine dinucleotide phosphate hydride (NADPH) to form 5,6,7,8-tetrahydrofolate and oxidized nicotinamide. DHFR is a small, flexible, monomeric protein with no metals or SS bonds and serves as one of the enzymes commonly used to examine basic aspects in enzymology. In the current work, we present extensive benchmark calculations for several model reactions in the gas phase that are relevant to the DHFR catalyzed hydride transfer. To this end, we employ G4MP2 and CBS-QB3 ab initio calculations as well as numerous density functional theory methods. Using these results, we develop two specific reaction parameter (SRP) Hamiltonians based on the semiempirical AM1 method. The first generation SRP Hamiltonian does not account for dispersion, while the second generation SRP accounts for dispersion implicitly via the AM1 core-repulsion functions. These SRP semiempirical Hamiltonians are subsequently used in hybrid quantum mechanics/molecular mechanics simulations of the DHFR catalyzed reaction. Finally, kinetic isotope effects are computed using a mass-perturbation-based path-integral approach.
Collapse
Affiliation(s)
- Dvir Doron
- Department of Chemistry, The Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University , Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry, The Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University , Ramat-Gan 52900, Israel
| | - Amnon Kohen
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Xin Wu
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
24
|
Hernández-Tobías A, Julián-Sánchez A, Piña E, Riveros-Rosas H. Natural alcohol exposure: Is ethanol the main substrate for alcohol dehydrogenases in animals? Chem Biol Interact 2011; 191:14-25. [DOI: 10.1016/j.cbi.2011.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/01/2011] [Accepted: 02/01/2011] [Indexed: 01/30/2023]
|
25
|
Wang N, Shi H, Yao Q, Zhou Y, Kang L, Chen H, Chen K. Cloning, expression and characterization of alcohol dehydrogenases in the silkworm Bombyx mori. Genet Mol Biol 2011; 34:240-3. [PMID: 21734824 PMCID: PMC3115317 DOI: 10.1590/s1415-47572011000200013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/17/2011] [Indexed: 11/22/2022] Open
Abstract
Alcohol dehydrogenases (ADH) are a class of enzymes that catalyze the reversible oxidation of alcohols to corresponding aldehydes or ketones, by using either nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP), as coenzymes. In this study, a short-chain ADH gene was identified in Bombyx mori by 5'-RACE PCR. This is the first time the coding region of BmADH has been cloned, expressed, purified and then characterized. The cDNA fragment encoding the BmADH protein was amplified from a pool of silkworm cDNAs by PCR, and then cloned into E. coli expression vector pET-30a(+). The recombinant His-tagged BmADH protein was expressed in E. coli BL21 (DE3), and then purified by metal chelating affinity chromatography. The soluble recombinant BmADH, produced at low-growth temperature, was instrumental in catalyzing the ethanol-dependent reduction of NAD(+), thereby indicating ethanol as one of the substrates of BmADH.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, P.R. China
| | | | | | | | | | | | | |
Collapse
|
26
|
Zhang R, Geng Y, Xu Y, Zhang W, Wang S, Xiao R. Carbonyl reductase SCRII from Candida parapsilosis catalyzes anti-Prelog reaction to (S)-1-phenyl-1,2-ethanediol with absolute stereochemical selectivity. BIORESOURCE TECHNOLOGY 2011; 102:483-489. [PMID: 20833539 DOI: 10.1016/j.biortech.2010.08.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 08/11/2010] [Accepted: 08/13/2010] [Indexed: 05/29/2023]
Abstract
An (S)-specific carbonyl reductase (SCRII) was purified to homogeneity from Candida parapsilosis by following an anti-Prelog reducing activity of 2-hydroxyacetophenone. Peptide mass fingerprinting analysis shows SCRII belongs to short-chain dehydrogenase/reductase family. Its coding gene was cloned and overexpressed in Escherichia coli. The recombinant SCRII displays the similar enzymatic characterization and catalytic properties to SCR. It catalyzes the enantioselective reduction of 2-hydroxyacetophenone to (S)-1-phenyl-1,2-ethanediol with excellent optical purity of 100% in higher yield than SCR. Based on the sequence-structure alignment, several single-point mutations inside or adjacent to the substrate-binding loop or active site were designed. With respect to recombinant native SCRII, the A220 and E228 mutations almost lost enantioselectivity towards 2-hydroxyacetophenone reduction. The catalytic efficiencies (kcat/Km) for the A220 or E228 variants are <7% that of the unmutated enzyme. This work provides an excellent catalyst for enantiopure alcohol preparation and the lethal mutations of A220 and E228 suggest their importance in substrate-binding and/or catalysis.
Collapse
Affiliation(s)
- Rongzhen Zhang
- National Key Laboratory for Food Science, Jiangnan University, Wuxi 214122, PR China
| | | | | | | | | | | |
Collapse
|
27
|
Evolution of enzymatic activities of testis-specific short-chain dehydrogenase/reductase in Drosophila. J Mol Evol 2010; 71:241-9. [PMID: 20809353 DOI: 10.1007/s00239-010-9384-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
The testis-specific gene Jingwei (jgw) is a newly evolved short-chain dehydrogenase/reductase in Drosophila. Preliminary substrate screening indicated that JGW prefers long-chain primary alcohols as substrates, including several exotic alcohols such as farnesol and geraniol. Using steady-state kinetics analyses and molecular docking, we not only confirmed JGW's substrate specificity, but also demonstrated that the new enzymatic activities of JGW evolved extensively after exon-shuffling from a preexisting enzyme. Analysis of JGW orthologs in sister species shows that subsequent evolutionary changes following the birth of JGW altered substrate specificities and enzyme stabilities. Our results lend support to a general mechanism for the evolution of a new enzyme, in which catalytic chemistry evolves first followed by diversification of substrate utilization.
Collapse
|
28
|
Engineering cofactor preference of ketone reducing biocatalysts: A mutagenesis study on a γ-diketone reductase from the yeast Saccharomyces cerevisiae serving as an example. Int J Mol Sci 2010; 11:1735-58. [PMID: 20480039 PMCID: PMC2871135 DOI: 10.3390/ijms11041735] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 03/24/2010] [Accepted: 04/06/2010] [Indexed: 11/18/2022] Open
Abstract
The synthesis of pharmaceuticals and catalysts more and more relies on enantiopure chiral building blocks. These can be produced in an environmentally benign and efficient way via bioreduction of prochiral ketones catalyzed by dehydrogenases. A productive source of these biocatalysts is the yeast Saccharomyces cerevisiae, whose genome also encodes a reductase catalyzing the sequential reduction of the γ-diketone 2,5-hexanedione furnishing the diol (2S,5S)-hexanediol and the γ-hydroxyketone (5S)-hydroxy-2-hexanone in high enantio- as well as diastereoselectivity (ee and de >99.5%). This enzyme prefers NADPH as the hydrogen donating cofactor. As NADH is more stable and cheaper than NADPH it would be more effective if NADH could be used in cell-free bioreduction systems. To achieve this, the cofactor binding site of the dehydrogenase was altered by site-directed mutagenesis. The results show that the rational approach based on a homology model of the enzyme allowed us to generate a mutant enzyme having a relaxed cofactor preference and thus is able to use both NADPH and NADH. Results obtained from other mutants are discussed and point towards the limits of rationally designed mutants.
Collapse
|
29
|
Weckbecker A, Gröger H, Hummel W. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 120:195-242. [PMID: 20182929 DOI: 10.1007/10_2009_55] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dehydrogenases which depend on nicotinamide coenzymes are of increasing interest for the preparation of chiral compounds, either by reduction of a prochiral precursor or by oxidative resolution of their racemate. The regeneration of oxidized and reduced nicotinamide cofactors is a very crucial step because the use of these cofactors in stoichiometric amounts is too expensive for application. There are several possibilities to regenerate nicotinamide cofactors: established methods such as formate/formate dehydrogenase (FDH) for the regeneration of NADH, recently developed electrochemical methods based on new mediator structures, or the application of gene cloning methods for the construction of "designed" cells by heterologous expression of appropriate genes.A very promising approach is enzymatic cofactor regeneration. Only a few enzymes are suitable for the regeneration of oxidized nicotinamide cofactors. Glutamate dehydrogenase can be used for the oxidation of NADH as well as NADPH while L: -lactate dehydrogenase is able to oxidize NADH only. The reduction of NAD(+) is carried out by formate and FDH. Glucose-6-phosphate dehydrogenase and glucose dehydrogenase are able to reduce both NAD(+) and NADP(+). Alcohol dehydrogenases (ADHs) are either NAD(+)- or NADP(+)-specific. ADH from horse liver, for example, reduces NAD(+) while ADHs from Lactobacillus strains catalyze the reduction of NADP(+). These enzymes can be applied by their inclusion in whole cell biotransformations with an NAD(P)(+)-dependent primary reaction to achieve in situ the regeneration of the consumed cofactor.Another efficient method for the regeneration of nicotinamide cofactors is the electrochemical approach. Cofactors can be regenerated directly, for example at a carbon anode, or indirectly involving mediators such as redox catalysts based on transition-metal complexes.An increasing number of examples in technical scale applications are known where nicotinamide dependent enzymes were used together with cofactor regenerating enzymes.
Collapse
Affiliation(s)
- Andrea Weckbecker
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University of Düsseldorf, Research Centre Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | | | | |
Collapse
|
30
|
Chang YH, Huang TJ, Chuang LY, Hwang CC. Role of S114 in the NADH-induced conformational change and catalysis of 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1459-66. [PMID: 19520191 DOI: 10.1016/j.bbapap.2009.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/01/2009] [Accepted: 06/03/2009] [Indexed: 12/24/2022]
Abstract
3alpha-Hydroxysteroid dehydrogenase/carbonyl reductase reversibly catalyzes the oxidation of androsterone with NAD(+) to form androstanedione and NADH. In this study, we characterize the role of the conserved residue S114 in cofactor binding and catalysis, using site-directed mutagenesis, steady-state kinetics, fluorescence quenching and anisotropy measurements. The catalytic efficiency of V/K(NADH)Et for wild-type and S114A is 1.5 x10(7) and 3.8 x 10(3) M(-1) s(-1), respectively, suggesting that NADH association to wild-type and S114A mutant enzymes involves two steps, a bimolecular binding step and isomerization. The binding of NADH into a hydrophobic pocket in the active site of wild-type and S114A mutant enzymes restricts its motion and shields the fluorescence quenching from solvent, with an increase in the fluorescence intensity and a blue shift at the maximum wavelength. Furthermore, the binding of NADH leads to the protein fluorescence quenching, mainly due to fluorescence resonance energy transfer to NADH. S114A mutant enzyme decreases 3100-fold in V/Et with no apparent change in K(m) for substrates. Addition of NADH to S114A mutant enzyme induces a secondary structural change. These results suggest that S114 is important to maintain the correct conformation for the nucleotide binding and facilitate the reaction. Substitution of alanine for S114 eliminates the hydrogen bonding interaction with P185, causing a conformational change in a nonproductive binding of NADH and a significant loss of activity.
Collapse
Affiliation(s)
- Yi-Hsun Chang
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80731, Taiwan
| | | | | | | |
Collapse
|
31
|
Stojan J, Brunskole M, Rižner TL. Simultaneous binding of coenzyme and two ligand molecules into the active site of fungal trihydroxynaphthalene reductase. Chem Biol Interact 2009; 178:268-73. [DOI: 10.1016/j.cbi.2008.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/11/2008] [Accepted: 11/12/2008] [Indexed: 11/26/2022]
|
32
|
Medium- and short-chain dehydrogenase/reductase gene and protein families : the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 2009; 65:3895-906. [PMID: 19011750 PMCID: PMC2792337 DOI: 10.1007/s00018-008-8588-y] [Citation(s) in RCA: 661] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Short-chain dehydrogenases/reductases (SDRs) constitute a large family of NAD(P)(H)-dependent oxidoreductases, sharing sequence motifs and displaying similar mechanisms. SDR enzymes have critical roles in lipid, amino acid, carbohydrate, cofactor, hormone and xenobiotic metabolism as well as in redox sensor mechanisms. Sequence identities are low, and the most conserved feature is an α/β folding pattern with a central beta sheet flanked by 2–3 α-helices from each side, thus a classical Rossmannfold motif for nucleotide binding. The conservation of this element and an active site, often with an Asn-Ser-Tyr-Lys tetrad, provides a platform for enzymatic activities encompassing several EC classes, including oxidoreductases, epimerases and lyases. The common mechanism is an underlying hydride and proton transfer involving the nicotinamide and typically an active site tyrosine residue, whereas substrate specificity is determined by a variable C-terminal segment. Relationships exist with bacterial haloalcohol dehalogenases, which lack cofactor binding but have the active site architecture, emphasizing the versatility of the basic fold in also generating hydride transfer-independent lyases. The conserved fold and nucleotide binding emphasize the role of SDRs as scaffolds for an NAD(P)(H) redox sensor system, of importance to control metabolic routes, transcription and signalling.
Collapse
|
33
|
Meijers R, Cedergren-Zeppezauer E. A variety of electrostatic interactions and adducts can activate NAD(P) cofactors for hydride transfer. Chem Biol Interact 2008; 178:24-8. [PMID: 19028476 DOI: 10.1016/j.cbi.2008.10.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/14/2008] [Accepted: 10/15/2008] [Indexed: 11/17/2022]
Abstract
In NAD(P)-dependent enzymes the coenzyme gives or takes a hydride ion, but how the nicotinamide ring is activated to form the transition state for hydride transfer is not clear. On the basis of ultra-high resolution X-ray crystal structures of liver alcohol dehydrogenase (LADH) in complex with NADH and a number of substrate analogues we proposed that the activation of NADH is an integral part of the enzyme mechanism of aldehyde reduction [R. Meijers, R.J. Morris, H.W. Adolph, A. Merli, V.S. Lamzin, E.S. Cedergren-Zeppezauer, On the enzymatic activation of NADH, The Journal of Biological Chemistry 276(12) (2001) 9316-9321, %U http://www.ncbi.nlm.nih.gov/pubmed/11134046; R. Meijers, H.-W. Adolph, Z. Dauter, K.S. Wilson, V.S. Lamzin, E.S. Cedergren-Zeppezauer, Structural evidence for a ligand coordination switch in liver alcohol dehydrogenase, Biochemistry 46(18) (2007) 5446-5454, %U http://www.ncbi.nlm.nih.gov/pubmed/17429946]. We observed a nicotinamide with a severely distorted pyridine ring and a water molecule in close proximity to the ring. Quantum chemical calculations indicated that (de)protonation of the water molecule can be directly coupled to activation of NADH for hydride transfer. A systematic search of the Protein Data Bank (PDB) for atoms that come within van der Waals distance of the pyridine ring of the nicotinamide reveals that a large number of NAD(P)-containing protein complexes are involved in electrostatic interactions with the enzymatic environment. Using the deposited diffraction data to analyze the cofactor and its surroundings, we observe several adducts between protein atoms and the pyridine ring that were not previously reported. This further indicates that the enzymatic activation of NAD(P) induced by electrostatic interactions is an essential part of the hydride transfer mechanism.
Collapse
Affiliation(s)
- Rob Meijers
- Synchrotron Soleil, L'Orme des Merisiers, Saint Aubin, France.
| | | |
Collapse
|
34
|
Hoffmann F, Maser E. Carbonyl Reductases and Pluripotent Hydroxysteroid Dehydrogenases of the Short-chain Dehydrogenase/reductase Superfamily. Drug Metab Rev 2008; 39:87-144. [PMID: 17364882 DOI: 10.1080/03602530600969440] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Carbonyl reduction of aldehydes, ketones, and quinones to their corresponding hydroxy derivatives plays an important role in the phase I metabolism of many endogenous (biogenic aldehydes, steroids, prostaglandins, reactive lipid peroxidation products) and xenobiotic (pharmacologic drugs, carcinogens, toxicants) compounds. Carbonyl-reducing enzymes are grouped into two large protein superfamilies: the aldo-keto reductases (AKR) and the short-chain dehydrogenases/reductases (SDR). Whereas aldehyde reductase and aldose reductase are AKRs, several forms of carbonyl reductase belong to the SDRs. In addition, there exist a variety of pluripotent hydroxysteroid dehydrogenases (HSDs) of both superfamilies that specifically catalyze the oxidoreduction at different positions of the steroid nucleus and also catalyze, rather nonspecifically, the reductive metabolism of a great number of nonsteroidal carbonyl compounds. The present review summarizes recent findings on carbonyl reductases and pluripotent HSDs of the SDR protein superfamily.
Collapse
Affiliation(s)
- Frank Hoffmann
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Brunswiker Strasse, Kiel, 10, 24105, Germany
| | | |
Collapse
|
35
|
Krupenko SA. FDH: an aldehyde dehydrogenase fusion enzyme in folate metabolism. Chem Biol Interact 2008; 178:84-93. [PMID: 18848533 DOI: 10.1016/j.cbi.2008.09.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
Abstract
FDH (10-formyltetrahydrofolate dehydrogenase, Aldh1L1, EC 1.5.1.6) converts 10-formyltetrahydrofolate (10-formyl-THF) to tetrahydrofolate and CO(2) in a NADP(+)-dependent reaction. It is a tetramer of four identical 902 amino acid residue subunits. The protein subunit is a product of a natural fusion of three unrelated genes and consists of three distinct domains. The N-terminal domain of FDH (residues 1-310) carries the folate binding site and shares sequence homology and structural topology with other enzymes utilizing 10-formyl-THF as a substrate. In vitro it functions as 10-formyl-THF hydrolase, and evidence indicate that this activity is a part of the overall FDH mechanism. The C-terminal domain of FDH (residues 400-902) originated from an aldehyde dehydrogenase-related gene and is capable of oxidation of short-chain aldehydes to corresponding acids. Similar to classes 1 and 2 aldehyde dehydrogenases, this domain exists as a tetramer and defines the oligomeric structure of the full-length enzyme. The two catalytic domains are connected by an intermediate linker (residues 311-399), which is a structural and functional homolog of carrier proteins possessing a 4'-phosphopantetheine prosthetic group. In the FDH mechanism, the intermediate linker domain transfers a formyl, covalently attached to the sulfhydryl group of the phosphopantetheine arm, from the N-terminal domain to the C-terminal domain. The overall FDH mechanism is a coupling of two sequential reactions, a hydrolase and a formyl dehydrogenase, bridged by a substrate transfer step. In this mechanism, one domain provides the folate binding site and a hydrolase catalytic center to remove the formyl group from the folate substrate, another provides a transfer vehicle between catalytic centers and the third one contributes the dehydrogenase machinery further oxidizing formyl to CO(2).
Collapse
Affiliation(s)
- Sergey A Krupenko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
36
|
Zhang R, Zhu G, Zhang W, Cao S, Ou X, Li X, Bartlam M, Xu Y, Zhang XC, Rao Z. Crystal structure of a carbonyl reductase from Candida parapsilosis with anti-Prelog stereospecificity. Protein Sci 2008; 17:1412-23. [PMID: 18566346 PMCID: PMC2492817 DOI: 10.1110/ps.035089.108] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 04/15/2008] [Accepted: 04/21/2008] [Indexed: 10/21/2022]
Abstract
A novel short-chain (S)-1-phenyl-1,2-ethanediol dehydrogenase (SCR) from Candida parapsilosis exhibits coenzyme specificity for NADPH over NADH. It catalyzes an anti-Prelog type reaction to reduce 2-hydroxyacetophenone into (S)-1-phenyl-1,2-ethanediol. The coding gene was overexpressed in Escherichia coli and the purified protein was crystallized. The crystal structure of the apo-form was solved to 2.7 A resolution. This protein forms a homo-tetramer with a broken 2-2-2 symmetry. The overall fold of each SCR subunit is similar to that of the known structures of other homologous alcohol dehydrogenases, although the latter usually form tetramers with perfect 2-2-2 symmetries. Additionally, in the apo-SCR structure, the entrance of the NADPH pocket is blocked by a surface loop. In order to understand the structure-function relationship of SCR, we carried out a number of mutagenesis-enzymatic analyses based on the new structural information. First, mutations of the putative catalytic Ser-Tyr-Lys triad confirmed their functional role. Second, truncation of an N-terminal 31-residue peptide indicated its role in oligomerization, but not in catalytic activity. Similarly, a V270D point mutation rendered the SCR as a dimer, rather than a tetramer, without affecting the enzymatic activity. Moreover, the S67D/H68D double-point mutation inside the coenzyme-binding pocket resulted in a nearly 10-fold increase and a 20-fold decrease in the k(cat) /K(M) value when NADH and NADPH were used as cofactors, respectively, with k(cat) remaining essentially the same. This latter result provides a new example of a protein engineering approach to modify the coenzyme specificity in SCR and short-chain dehydrogenases/reductases in general.
Collapse
Affiliation(s)
- Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhong H, Bowen JP. Theoretical study of stereoselective reduction controlled by NADH analogs. J Mol Graph Model 2008; 24:1-9. [PMID: 15936963 DOI: 10.1016/j.jmgm.2005.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/08/2005] [Accepted: 04/08/2005] [Indexed: 11/26/2022]
Abstract
The potential energy surfaces (PES) of 2-methyl-4-(R)-methyl-1,4-dihydropyridine-3-carboxamide (4R-DM, 1), 2-methyl-4-(S)-methyl-1,4-dihydropyridine-3-carboxamide (4S-DM, 2) and 2-methyl-1,4-dihydropyridine-3-carboxamide (MM, 3) have been explored with ab initio calculations at the RHF/6-311G(**) and MP2/6-311G(**) levels of theory. In agreement with previous experimental and computational results, the PES provides three minima for each of the above molecules. The calculations reported herein indicate that the cisoid conformation is most favorable in gas phase and hydrophobic environments. Nevertheless, the preference of the cis conformation can be controlled by different solvents. The most favorable conformation in methanol, water, and probably in the polar (or water medicated) enzyme active sites, however, would be the one in which the carbonyl group is in a transoid position and is syn to Hsyn. In addition, our calculations suggest that the carbonyl group in the syn, rather than anti, position relative to Hsyn is preferred. These observations are in very good agreement with previous computational and experimental results. Our computational studies have provided an explanation as to why the transoid conformation is preferred in enzyme active sites as well as in many other NADH mimics. Furthermore, these new data imply that the stereoselectivity of NADH analogs can be controlled by means of changing solvents in which the reaction is carried out.
Collapse
Affiliation(s)
- Haizhen Zhong
- Center for Drug Design, Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA
| | | |
Collapse
|
38
|
Fournier D, Poirier D, Mazumdar M, Lin SX. Design and synthesis of bisubstrate inhibitors of type 1 17beta-hydroxysteroid dehydrogenase: overview and perspectives. Eur J Med Chem 2008; 43:2298-306. [PMID: 18372081 DOI: 10.1016/j.ejmech.2008.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 01/22/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
Type 1 17beta-hydroxysteroid dehydrogenase (17beta-HSD1) is a key steroidogenic enzyme that catalyses the reduction of steroid estrone into the most potent endogenous estrogen estradiol using the cofactor NAD(P)H. Bisubstrate inhibition is a good way to enhance the potency of inhibitors of cofactor-assisted enzymes. The design of a bisubstrate inhibitor of 17beta-HSD1, the estradiol/adenosine hybrid EM-1745, is reviewed and strategies for future designs of inhibitors are proposed.
Collapse
Affiliation(s)
- D Fournier
- Oncology and Molecular Endocrinology Research Center, CHUQ - Pavillon CHUL and Université Laval, 2705 Boulevard Laurier, Québec G1V 4G2, Canada
| | | | | | | |
Collapse
|
39
|
Theoretical calculations of the catalytic triad in short-chain alcohol dehydrogenases/reductases. Biophys J 2007; 94:1412-27. [PMID: 17981907 DOI: 10.1529/biophysj.107.111096] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three highly conserved active site residues (Ser, Tyr, and Lys) of the family of short-chain alcohol dehydrogenases/reductases (SDRs) were demonstrated to be essential for catalytic activity and have been denoted the catalytic triad of SDRs. In this study computational methods were adopted to study the ionization properties of these amino acids in SDRs from Drosophila melanogaster and Drosophila lebanonensis. Three enzyme models, with different ionization scenarios of the catalytic triad that might be possible when inhibitors bind to the enzyme cofactor complex, were constructed. The binding of the two alcohol competitive inhibitors were studied using automatic docking by the Internal Coordinate Mechanics program, molecular dynamic (MD) simulations with the AMBER program package, calculation of the free energy of ligand binding by the linear interaction energy method, and the hydropathic interactions force field. The calculations indicated that deprotonated Tyr acts as a strong base in the binary enzyme-NAD(+) complex. Molecular dynamic simulations for 5 ns confirmed that deprotonated Tyr is essential for anchoring and orientating the inhibitors at the active site, which might be a general trend for the family of SDRs. The findings here have implications for the development of therapeutically important SDR inhibitors.
Collapse
|
40
|
Wymore T, Deerfield DW, Hempel J. Mechanistic implications of the cysteine-nicotinamide adduct in aldehyde dehydrogenase based on quantum mechanical/molecular mechanical simulations. Biochemistry 2007; 46:9495-506. [PMID: 17655326 PMCID: PMC2529467 DOI: 10.1021/bi700555g] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent computer simulations of the cysteine nucleophilic attack on propanal in human mitochondrial aldehyde dehydrogenase (ALDH2) yielded an unexpected result: the chemically reasonable formation of a dead-end cysteine-cofactor adduct when NAD+ was in the "hydride transfer" position. More recently, this adduct found independent crystallographic support in work on formyltetrahydrofolate dehydrogenase, work which further found evidence of the same adduct on re-examination of deposited electron densities of ALDH2. Although the experimental data showed that this adduct was reversible, several mechanistic questions arise from the fact that it forms at all. Here, we present results from further quantum mechanical/molecular mechanical (QM/MM) simulations toward understanding the mechanistic implications of adduct formation. These simulations revealed formation of the oxyanion thiohemiacetal intermediate only when the nicotinamide ring of NAD+ is oriented away from the active site, contrary to prior arguments. In contrast, and in seeming paradox, when NAD is oriented to receive the hydride, disassociation of the oxyanion intermediate to form the dead-end adduct is more thermodynamically favored than maintaining the oxyanion intermediate necessary for catalysis to proceed. However, this disassociation to the adduct could be avoided through proton transfer from the enzyme to the intermediate. Our results continue to indicate that the unlikely source of this proton is the Cys302 main chain amide.
Collapse
Affiliation(s)
- Troy Wymore
- National Resource for Biomedical Supercomputing, Pittsburgh, Pennsylvania 15213, USA.
| | | | | |
Collapse
|
41
|
Meijers R, Adolph HW, Dauter Z, Wilson KS, Lamzin VS, Cedergren-Zeppezauer ES. Structural evidence for a ligand coordination switch in liver alcohol dehydrogenase. Biochemistry 2007; 46:5446-54. [PMID: 17429946 DOI: 10.1021/bi6023594] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of substrate analogues as inhibitors provides a way to understand and manipulate enzyme function. Here we report two 1 A resolution crystal structures of liver alcohol dehydrogenase in complex with NADH and two inhibitors: dimethyl sulfoxide and isobutyramide. Both structures present a dynamic state of inhibition. In the dimethyl sulfoxide complex structure, the inhibitor is caught in transition on its way to the active site using a flash-freezing protocol and a cadmium-substituted enzyme. One inhibitor molecule is partly located in the first and partly in the second coordination sphere of the active site metal. A hydroxide ion bound to the active site metal lies close to the pyridine ring of NADH, which is puckered in a twisted boat conformation. The cadmium ion is coordinated by both the hydroxide ion and the inhibitor molecule, providing structural evidence of a coordination switch at the active site metal ion. The structure of the isobutyramide complex reveals the partial formation of an adduct between the isobutyramide inhibitor and NADH. It provides evidence of the contribution of a shift from the keto to the enol tautomer during aldehyde reduction. The different positions of the inhibitors further refine the knowledge of the dynamics of the enzyme mechanism and explain how the crowded active site can facilitate the presence of a substrate and a metal-bound hydroxide ion.
Collapse
Affiliation(s)
- Rob Meijers
- European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Federal Republic of Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Hoffmann F, Sotriffer C, Evers A, Xiong G, Maser E. Understanding oligomerization in 3α-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni: An in silico approach and evidence for an active protein. J Biotechnol 2007; 129:131-9. [PMID: 17258342 DOI: 10.1016/j.jbiotec.2006.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 10/05/2005] [Accepted: 12/23/2005] [Indexed: 10/23/2022]
Abstract
3alpha-Hydroxysteroid dehydrogenase/carbonyl reductase (3alpha-HSD/CR) from Comamonas testosteroni belongs to the short chain dehydrogenase/reductase (SDR) protein superfamily and catalyzes the oxidoreduction of a variety of steroid substrates, including the steroid antibiotic fusidic acid. The enzyme also mediates the carbonyl reduction of non-steroidal aldehydes and ketones such as a novel insecticide. It is suggested that 3alpha-HSD/CR contributes to the bioremediation of natural and synthetic toxicants by C. testosteroni. Crystallization and structure analysis showed that 3alpha-HSD/CR is active as a dimer. Dimerization takes place via an interface axis which has exclusively been observed in homotetrameric SDRs but never in the structure of a homodimeric SDR. The formation of a tetramer is blocked in 3alpha-HSD/CR by the presence of a predominantly alpha-helical subdomain which is missing in all other SDRs of known structure. For example, 3alpha/20beta-HSD from Streptomyces hydrogenans exhibits two main subunit interfaces arranged about two non-crystallographic two-fold axes which are perpendicular to each other and referred to as P and Q. This mode of dimerization is, however, sterically impossible in 3alpha-HSD/CR because of a 28 amino acids insertion into the classical Rossmann-fold motif between strand betaE and helix alphaF. This insertion is masking helices alphaE and alphaF, thus preventing the formation of a four helix bundle and enables the dimerization via a P-axis interface. This type of dimerization in SDRs has never been observed in a crystal structure so far. The aim of this study was to investigate whether the lack of this predominantly alpha-helical subdomain keeps 3alpha-HSD/CR to be an active enzyme and whether, by an in silico approach, the formation of a homotetramer or even a novel oligomerization mode can be expected. Redesign of this interface was performed on the basis of site directed mutagenesis and according to other SDR structures by an approach combining "in silico" and "wet chemistry". Simulations of sterical and structural effects after different mutations, by applying a combination of homology modelling and molecular dynamic simulations, provided an effective tool for extensive mutagenesis studies and indicated the possibility of tetramer formation of truncated 3alpha-HSD/CR. In addition, despite lacking the extra loop domain, mutant 3alpha-HSD/CR was shown to be active towards a variety of standard substrates.
Collapse
Affiliation(s)
- Frank Hoffmann
- Department of Pharmacology and Toxicology, Philipps University Marburg, Karl v Frisch Str 1, D-35033 Marburg, Germany
| | | | | | | | | |
Collapse
|
43
|
Tsybovsky Y, Donato H, Krupenko NI, Davies C, Krupenko SA. Crystal structures of the carboxyl terminal domain of rat 10-formyltetrahydrofolate dehydrogenase: implications for the catalytic mechanism of aldehyde dehydrogenases. Biochemistry 2007; 46:2917-29. [PMID: 17302434 DOI: 10.1021/bi0619573] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
10-Formyltetrahydrofolate dehydrogenase (FDH) catalyzes an NADP+-dependent dehydrogenase reaction resulting in conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. This reaction is a result of the concerted action of two catalytic domains of FDH, the amino-terminal hydrolase domain and the carboxyl-terminal aldehyde dehydrogenase domain. In addition to participation in the overall FDH mechanism, the C-terminal domain is capable of NADP+-dependent oxidation of short chain aldehydes to their corresponding acids. We have determined the crystal structure of the C-terminal domain of FDH and its complexes with oxidized and reduced forms of NADP. Compared to other members of the ALDH family, FDH demonstrates a new mode of binding of the 2'-phosphate group of NADP via a water-mediated contact with Gln600 that may contribute to the specificity of the enzyme for NADP over NAD. The structures also suggest how Glu673 can act as a general base in both acylation and deacylation steps of the reaction. In the apo structure, the general base Glu673 is positioned optimally for proton abstraction from the sulfur atom of Cys707. Upon binding of NADP+, the side chain of Glu673 is displaced from the active site by the nicotinamide ring and contacts a chain of highly ordered water molecules that may represent a pathway for translocation of the abstracted proton from Glu673 to the solvent. When reduced, the nicotinamide ring of NADP is displaced from the active site, restoring the contact between Cys707 and Glu673 and allowing the latter to activate the hydrolytic water molecule in deacylation.
Collapse
Affiliation(s)
- Yaroslav Tsybovsky
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
44
|
Kristan K, Adamski J, Rizner TL, Stojan J. His164 regulates accessibility to the active site in fungal 17β-hydroxysteroid dehydrogenase. Biochimie 2007; 89:63-71. [PMID: 17034927 DOI: 10.1016/j.biochi.2006.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 09/04/2006] [Indexed: 11/20/2022]
Abstract
17beta-Hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus (17beta-HSDcl) is an NADPH-dependent member of the short-chain dehydrogenase/ reductase superfamily. To study the catalytic properties of this enzyme, we prepared several specific mutations of 17beta-HSDcl (Tyr167Phe, His164Trp/Gly, Tyr212Ala). Wild-type 17beta-HSDcl and the 17beta-HSDcl mutants were evaluated by chromatographic, kinetic and thermodynamic means. The Tyr167Phe mutation resulted in a complete loss of enzyme activity, while substitution of His164 with Trp and Gly both resulted in higher specificity number (V/K) for the steroid substrates, which are mainly a consequence of easier accessibility of steroid substrates to the active-site hollow under optimized conditions. The Tyr212Ala mutant showed increased activity in the oxidative direction, which appears to be a consequence of increased NADPH dissociation. The kinetic characterizations and thermodynamic analyses also suggest that His164 and Tyr212 in 17beta-HSDcl have a role in the opening and closing of the active site of this enzyme and in the discrimination between oxidized and reduced coenzyme.
Collapse
Affiliation(s)
- Katja Kristan
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
45
|
Höffken HW, Duong M, Friedrich T, Breuer M, Hauer B, Reinhardt R, Rabus R, Heider J. Crystal structure and enzyme kinetics of the (S)-specific 1-phenylethanol dehydrogenase of the denitrifying bacterium strain EbN1. Biochemistry 2006; 45:82-93. [PMID: 16388583 DOI: 10.1021/bi051596b] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(S)-1-Phenylethanol dehydrogenase (PED) from the denitrifying bacterium strain EbN1 catalyzes the NAD+-dependent, stereospecific oxidation of (S)-1-phenylethanol to acetophenone and the biotechnologically interesting reverse reaction. This novel enzyme belongs to the short-chain alcohol dehydrogenase/aldehyde reductase family. The coding gene (ped) was heterologously expressed in Escherichia coli and the purified protein was crystallized. The X-ray structures of the apo-form and the NAD+-bound form were solved at a resolution of 2.1 and 2.4 A, respectively, revealing that the enzyme is a tetramer with two types of hydrophobic dimerization interfaces, similar to beta-oxoacyl-[acyl carrier protein] reductase (FabG) from E. coli. NAD+-binding is associated with a conformational shift of the substrate binding loop of PED from a crystallographically unordered "open" to a more ordered "closed" form. Modeling the substrate acetophenone into the active site revealed the structural prerequisites for the strong enantioselectivity of the enzyme and for the catalytic mechanism. Studies on the steady-state kinetics of PED indicated a highly positive cooperativity of both catalytic directions with respect to the substrates. This is contrasted by the behavior of FabG. Moreover, PED exhibits extensive regulation on the enzyme level, being inhibited by elevated concentrations of substrates and products, as well as the wrong enantiomer of 1-phenylethanol. These regulatory properties of PED are consistent with the presence of a putative "transmission module" between the subunits. This module consists of the C-terminal loops of all four subunits, which form a special interconnected structural domain and mediate close contact of the subunits, and of a phenylalanine residue in each subunit that reaches out between substrate-binding loop and C-terminal domain of an adjacent subunit. These elements may transmit the substrate-induced conformational change of the substrate binding loop from one subunit to the others in the tetrameric complex and thus mediate the cooperative behavior of PED.
Collapse
Affiliation(s)
- H Wolfgang Höffken
- BASF AG, Physical Chemistry and Informatics, 67056 Ludwigshafen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Guo K, Lukacik P, Papagrigoriou E, Meier M, Lee WH, Adamski J, Oppermann U. Characterization of Human DHRS6, an Orphan Short Chain Dehydrogenase/Reductase Enzyme. J Biol Chem 2006; 281:10291-7. [PMID: 16380372 DOI: 10.1074/jbc.m511346200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human DHRS6 is a previously uncharacterized member of the short chain dehydrogenases/reductase family and displays significant homologies to bacterial hydroxybutyrate dehydrogenases. Substrate screening reveals sole NAD(+)-dependent conversion of (R)-hydroxybutyrate to acetoacetate with K(m) values of about 10 mm, consistent with plasma levels of circulating ketone bodies in situations of starvation or ketoacidosis. The structure of human DHRS6 was determined at a resolution of 1.8 A in complex with NAD(H) and reveals a tetrameric organization with a short chain dehydrogenases/reductase-typical folding pattern. A highly conserved triad of Arg residues ("triple R" motif consisting of Arg(144), Arg(188), and Arg(205)) was found to bind a sulfate molecule at the active site. Docking analysis of R-beta-hydroxybutyrate into the active site reveals an experimentally consistent model of substrate carboxylate binding and catalytically competent orientation. GFP reporter gene analysis reveals a cytosolic localization upon transfection into mammalian cells. These data establish DHRS6 as a novel, cytosolic type 2 (R)-hydroxybutyrate dehydrogenase, distinct from its well characterized mitochondrial type 1 counterpart. The properties determined for DHRS6 suggest a possible physiological role in cytosolic ketone body utilization, either as a secondary system for energy supply in starvation or to generate precursors for lipid and sterol synthesis.
Collapse
Affiliation(s)
- Kunde Guo
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7LD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
47
|
Aufhammer SW, Warkentin E, Ermler U, Hagemeier CH, Thauer RK, Shima S. Crystal structure of methylenetetrahydromethanopterin reductase (Mer) in complex with coenzyme F420: Architecture of the F420/FMN binding site of enzymes within the nonprolyl cis-peptide containing bacterial luciferase family. Protein Sci 2005; 14:1840-9. [PMID: 15937276 PMCID: PMC2253363 DOI: 10.1110/ps.041289805] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 03/22/2005] [Accepted: 03/25/2005] [Indexed: 10/25/2022]
Abstract
Methylenetetratetrahydromethanopterin reductase (Mer) is involved in CO(2) reduction to methane in methanogenic archaea and catalyses the reversible reduction of methylenetetrahydromethanopterin (methylene-H(4)MPT) to methyl-H(4)MPT with coenzyme F(420)H(2), which is a reduced 5'-deazaflavin. Mer was recently established as a TIM barrel structure containing a nonprolyl cis-peptide bond but the binding site of the substrates remained elusive. We report here on the crystal structure of Mer in complex with F(420) at 2.6 A resolution. The isoalloxazine ring is present in a pronounced butterfly conformation, being induced from the Re-face of F(420) by a bulge that contains the non-prolyl cis-peptide bond. The bindingmode of F(420) is very similar to that in F(420)-dependent alcohol dehydrogenase Adf despite the low sequence identity of 21%. Moreover, binding of F(420) to the apoenzyme was only associated with minor conformational changes of the polypeptide chain. These findings allowed us to build an improved model of FMN into its binding site in bacterial luciferase, which belongs to the same structural family as Mer and Adf and also contains a nonprolyl cis-peptide bond in an equivalent position.
Collapse
|
48
|
Pfeiler E, Reed LK, Markow TA. Inhibition of alcohol dehydrogenase after 2-propanol exposure in different geographic races of Drosophila mojavensis: lack of evidence for selection at the Adh-2 locus. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:159-68. [PMID: 15726639 DOI: 10.1002/jez.b.21034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
High frequencies of the fast allele of alcohol dehydrogenase-2 (Adh-2F) are found in populations of Drosophila mojavensis that inhabit the Baja California peninsula (race BII) whereas the slow allele (Adh-2S) predominates at most other localities within the species' geographic range. Race BII flies utilize necrotic tissue of pitaya agria cactus (Stenocereus gummosus) which contains high levels of 2-propanol, whereas flies from most other localities utilize different cactus hosts in which 2-propanol levels are low. To test if 2-propanol acts as a selective force on Adh-2 genotype, or whether some other yet undetermined genetic factor is responsible, mature males of D. mojavensis lines derived from the Grand Canyon (race A) and Santa Catalina Island (race C), each with individuals homozygous for Adh-2F and Adh-2S, were exposed to 2-propanol for 24 h and ADH-2 specific activity was then determined on each genotype. Flies from five other localities homozygous for either the fast or slow allele also were examined. Results for all reported races of D. mojavensis were obtained. 2-propanol exposure inhibited ADH-2 specific activity in both genotypes from all localities, but inhibition was significantly less in two populations of race BII flies homozygous for Adh-2F. When F/F and S/S genotypes in flies from the same locality were compared, both genotypes showed high 2-propanol inhibition that was not statistically different, indicating that the F/F genotype alone does not provide a benefit against the inhibitory effects of 2-propanol. ADH-1 activity in female ovaries was inhibited less by 2-propanol than ADH-2. These results do not support the hypothesis that 2-propanol acts as a selective factor favoring the Adh-2F allele.
Collapse
Affiliation(s)
- Edward Pfeiler
- Centro de Investigación en Alimentación y Desarrollo, A.C., Unidad Guaymas, Apartado Postal 284, Guaymas, Sonora 85480, Mexico.
| | | | | |
Collapse
|
49
|
Matzkin LM. Activity variation in alcohol dehydrogenase paralogs is associated with adaptation to cactus host use in cactophilic Drosophila. Mol Ecol 2005; 14:2223-31. [PMID: 15910339 DOI: 10.1111/j.1365-294x.2005.02532.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Drosophila mojavensis and Drosophila arizonae are species of cactophilic flies that share a recent duplication of the alcohol dehydrogenase (Adh) locus. One paralog (Adh-2) is expressed in adult tissues and the other (Adh-1) in larvae and ovaries. Enzyme activity measurements of the ADH-2 amino acid polymorphism in D. mojavensis suggest that the Fast allozyme allele has a higher activity on 2-propanol than 1-propanol. The Fast allele was found at highest frequency in populations that utilize hosts with high proportions of 2-propanol, while the Slow allele is most frequent in populations that utilize hosts with high proportions of 1-propanol. This suggests that selection for ADH-2 allozyme alleles with higher activity on the most abundant alcohols is occurring in each D. mojavensis population. In the other paralog, ADH-1, significant differences between D. mojavensis and D. arizonae are associated with a previously shown pattern of adaptive protein evolution in D. mojavensis. Examination of protein sequences showed that a large number of amino acid fixations between the paralogs have occurred in catalytic residues. These changes are potentially responsible for the significant difference in substrate specificity between the paralogs. Both functional and sequence variation within and between paralogs suggests that Adh has played an important role in the adaptation of D. mojavensis and D. arizonae to their cactophilic life.
Collapse
Affiliation(s)
- Luciano M Matzkin
- Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York 11794-5245, USA.
| |
Collapse
|
50
|
Benach J, Winberg JO, Svendsen JS, Atrian S, Gonzàlez-Duarte R, Ladenstein R. Drosophila alcohol dehydrogenase: acetate-enzyme interactions and novel insights into the effects of electrostatics on catalysis. J Mol Biol 2005; 345:579-98. [PMID: 15581900 DOI: 10.1016/j.jmb.2004.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 09/29/2004] [Accepted: 10/11/2004] [Indexed: 11/19/2022]
Abstract
Drosophila alcohol dehydrogenase (DADH) is an NAD+-dependent enzyme that catalyzes the oxidation of alcohols to aldehydes/ketones and that is also able to further oxidize aldehydes to their corresponding carboxylic acids. The structure of the ternary enzyme-NADH-acetate complex of the slow alleloform of Drosophila melanogaster ADH (DmADH-S) was solved at 1.6 A resolution by X-ray crystallography. The coenzyme stereochemistry of the aldehyde dismutation reaction showed that the obtained enzyme-NADH-acetate complex reflects a productive ternary complex although no enzymatic reaction occurs. The stereochemistry of the acetate binding in the bifurcated substrate-binding site, along with previous stereochemical studies of aldehyde reduction and alcohol oxidation shows that the methyl group of the aldehyde in the reduction reaction binds to the R1 and in the oxidation reaction to the R2 sub-site. NMR studies along with previous kinetic studies show that the formed acetaldehyde intermediate in the oxidation of ethanol to acetate leaves the substrate site prior to the reduced coenzyme, and then binds to the newly formed enzyme-NAD+ complex. Here, we compare the three-dimensional structure of D.melanogaster ADH-S and a previous theoretically built model, evaluate the differences with the crystal structures of five Drosophila lebanonensis ADHs in numerous complexed forms that explain the substrate specificity as well as subtle kinetic differences between these two enzymes based on their crystal structures. We also re-examine the electrostatic influence of charged residues on the surface of the protein on the catalytic efficiency of the enzyme.
Collapse
Affiliation(s)
- Jordi Benach
- Center for Structural Biochemistry, Karolinska Institutet, 141 57 Huddinge, Sweden.
| | | | | | | | | | | |
Collapse
|