1
|
Martella C, Waast L, Pique C. [Tax, the puppet master of HTLV-1 transcription]. Med Sci (Paris) 2022; 38:359-365. [PMID: 35485896 DOI: 10.1051/medsci/2022039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Retroviruses exploit the RNA polymerase II transcription machinery for the transcription of their genes. This is the case of Human T-lymphotropic virus type 1 (HTLV-1), the retrovirus responsible for adult T-cell leukemia and for various inflammatory diseases. HTLV-1 transcription is under the control of the viral protein Tax, which exhibits an original mode of action since it does not rely on direct promoter interaction but rather on the recruitment of various cellular factors and cofactors of transcription. The factors that Tax recruits are involved in the initial step of promoter activation but also in the subsequent steps of the transcription process itself. This review describes this particular mechanism of viral transcription, from the epigenetic release of the viral promoter to the elongation of the neosynthesized viral silencing transcripts.
Collapse
Affiliation(s)
- Christophe Martella
- Équipe Rétrovirus, infection et latence, Université Paris Cité, Inserm U1016, CNRS UMR8104, Institut Cochin, 22 rue Méchain, 75014 Paris, France
| | - Laetitia Waast
- Équipe Rétrovirus, infection et latence, Université Paris Cité, Inserm U1016, CNRS UMR8104, Institut Cochin, 22 rue Méchain, 75014 Paris, France
| | - Claudine Pique
- Équipe Rétrovirus, infection et latence, Université Paris Cité, Inserm U1016, CNRS UMR8104, Institut Cochin, 22 rue Méchain, 75014 Paris, France
| |
Collapse
|
2
|
Bhaduri S, Ranjan N, Arya DP. An overview of recent advances in duplex DNA recognition by small molecules. Beilstein J Org Chem 2018; 14:1051-1086. [PMID: 29977379 PMCID: PMC6009268 DOI: 10.3762/bjoc.14.93] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
As the carrier of genetic information, the DNA double helix interacts with many natural ligands during the cell cycle, and is amenable to such intervention in diseases such as cancer biogenesis. Proteins bind DNA in a site-specific manner, not only distinguishing between the geometry of the major and minor grooves, but also by making close contacts with individual bases within the local helix architecture. Over the last four decades, much research has been reported on the development of small non-natural ligands as therapeutics to either block, or in some cases, mimic a DNA–protein interaction of interest. This review presents the latest findings in the pursuit of novel synthetic DNA binders. This article provides recent coverage of major strategies (such as groove recognition, intercalation and cross-linking) adopted in the duplex DNA recognition by small molecules, with an emphasis on major works of the past few years.
Collapse
Affiliation(s)
| | - Nihar Ranjan
- National Institute of Pharmaceutical Education and Research (NIPER), Raebareli 122003, India
| | - Dev P Arya
- NUBAD, LLC, 900B West Faris Rd., Greenville 29605, SC, USA.,Clemson University, Hunter Laboratory, Clemson 29634, SC, USA
| |
Collapse
|
3
|
Blackledge MS, Melander C. Programmable DNA-binding small molecules. Bioorg Med Chem 2013; 21:6101-14. [PMID: 23665141 DOI: 10.1016/j.bmc.2013.04.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/29/2013] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
Abstract
Aberrant gene expression is responsible for a myriad of human diseases from infectious diseases to cancer. Precise regulation of these genes via specific interactions with the DNA double helix could pave the way for novel therapeutics. Pyrrole-imidazole polyamides are small molecules capable of binding to pre-determined DNA sequences up to 16 base pairs with affinity and specificity comparable to natural transcription factors. In the three decades since their development, great strides have been made relating to synthetic accessibility and improved sequence specificity and binding affinity. This perspective presents a brief history of early seminal developments in the field and highlights recent reports of the utility of polyamides as both genetic modulators and molecular probes.
Collapse
Affiliation(s)
- Meghan S Blackledge
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8024, United States
| | | |
Collapse
|
4
|
Willis B, Arya DP. Triple recognition of B-DNA by a neomycin-Hoechst 33258-pyrene conjugate. Biochemistry 2010; 49:452-69. [PMID: 20000367 DOI: 10.1021/bi9016796] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent developments have indicated that aminoglycoside binding is not limited to RNA, but to nucleic acids that, like RNA, adopt conformations similar to its A-form. We further sought to expand the utility of aminoglycoside binding to B-DNA structures by conjugating neomycin, an aminoglycoside antibiotic, with the B-DNA minor groove binding ligand Hoechst 33258. Envisioning a dual groove binding mode, we have extended the potential recognition process to include a third, intercalative moiety. Similar conjugates, which vary in the number of binding moieties but maintain identical linkages to allow direct comparisons to be made, have also been prepared. We report herein novel neomycin- and Hoechst 33258-based conjugates developed in our laboratories for exploring the recognition potential with B-DNA. Spectroscopic studies such as UV melting, differential scanning calorimetry, isothermal fluorescence titrations, and circular dichroism together illustrate the triple recognition of the novel conjugate containing neomycin, Hoechst 33258, and pyrene. This study represents the first example of DNA molecular recognition capable of minor versus major groove recognition in conjunction with intercalation.
Collapse
Affiliation(s)
- Bert Willis
- Laboratories of Medicinal Chemistry, Clemson University, Clemson, South Carolina 29634, USA
| | | |
Collapse
|
5
|
Geiger TR, Sharma N, Kim YM, Nyborg JK. The human T-cell leukemia virus type 1 tax protein confers CBP/p300 recruitment and transcriptional activation properties to phosphorylated CREB. Mol Cell Biol 2008; 28:1383-92. [PMID: 18070920 PMCID: PMC2258755 DOI: 10.1128/mcb.01657-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/29/2007] [Accepted: 11/26/2007] [Indexed: 01/23/2023] Open
Abstract
The human T-cell leukemia virus-encoded oncoprotein Tax is a potent activator of viral transcription. Tax function is strictly dependent upon the cellular transcription factor CREB, and together they bind cAMP response elements within the viral promoter and mediate high-level viral transcription. Signal-dependent CREB phosphorylation at Ser(133) (pCREB) correlates with the activation of transcription. This activation has been attributed to recruitment of the coactivators CBP/p300 via physical interaction with the KIX domain. Here we show that the promoter-bound Tax/pCREB complex strongly recruits the recombinant, purified full-length coactivators CBP and p300. Additionally, the promoter-bound Tax/pCREB (but not Tax/CREB) complex recruits native p300 and potently activates transcription from chromatin templates. Unexpectedly, pCREB alone failed to detectably recruit the full-length coactivators, despite strong binding to KIX. These observations are in marked contrast to those in published studies that have characterized the physical interaction between KIX and pCREB and extrapolated these results to the full-length proteins. Consistent with our observation that pCREB is deficient for binding of CBP/p300, pCREB alone failed to support transcriptional activation. These data reveal that phosphorylation of CREB is not sufficient for CBP/p300 recruitment and transcriptional activation. The regulation of transcription by pCREB is therefore more complex than is generally recognized, and coregulators, such as Tax, likely play a critical role in the modulation of pCREB function.
Collapse
Affiliation(s)
- Timothy R Geiger
- Department of Biochemistry and Molecular Biology, Campus Box 1870, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | | | | | |
Collapse
|
6
|
Ramírez JA, Nyborg JK. Molecular characterization of HTLV-1 Tax interaction with the KIX domain of CBP/p300. J Mol Biol 2007; 372:958-969. [PMID: 17707401 PMCID: PMC2039700 DOI: 10.1016/j.jmb.2007.06.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/20/2007] [Accepted: 06/20/2007] [Indexed: 01/12/2023]
Abstract
The viral oncoprotein Tax mediates transcriptional activation of human T-cell leukemia virus type 1 (HTLV-1). Both Tax and the cellular transcription factor CREB bind to viral cyclic AMP response elements (vCREs) located in the viral promoter. Tax and serine 133 phosphorylated CREB (pCREB) bound to the HTLV-1 promoter facilitate viral transcription via the recruitment of the large cellular coactivators CBP/p300. While the interaction between the phosphorylated kinase inducible domain (pKID) of pCREB and the KIX domain of CBP/p300 has been well characterized, the molecular interactions between KIX, full-length Tax, and pCREB have not been examined. Here we biochemically characterized the interaction between Tax and KIX in a physiologically relevant complex containing pCREB and vCRE DNA. Our data show that Tax and pCREB simultaneously and independently bind two distinct surfaces on the KIX domain: Tax binds KIX at the previously characterized mixed-lineage leukemia (MLL) protein interaction surface while pCREB binds KIX at the pKID-KIX interface. These results provide evidence for a model in which Tax and pCREB bind distinct surfaces of KIX for effective CBP/p300 recruitment to the HTLV-1 promoter. We also show that MLL competes with Tax for KIX binding, suggesting a novel mechanism of Tax oncogenesis in which normal MLL function is disrupted by Tax.
Collapse
Affiliation(s)
- Julita A Ramírez
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Jennifer K Nyborg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.
| |
Collapse
|
7
|
Kim YM, Ramírez JA, Mick JE, Giebler HA, Yan JP, Nyborg JK. Molecular characterization of the Tax-containing HTLV-1 enhancer complex reveals a prominent role for CREB phosphorylation in Tax transactivation. J Biol Chem 2007; 282:18750-7. [PMID: 17449469 DOI: 10.1074/jbc.m700391200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Transcriptional activation of human T-cell leukemia virus type 1 (HTLV-1) is mediated by the viral oncoprotein Tax, which utilizes cellular transcriptional machinery to perform this function. The viral promoter carries three cyclic AMP-response elements (CREs), which are recognized by the cellular transcription factor cAMP-response element-binding protein (CREB). Tax binds to GC-rich sequences that immediately flank the CREs. The coactivator CREB-binding protein (CBP)/p300 binds to this promoter-bound ternary complex, which promotes the initiation of HTLV-1 transcription. Protein kinase A phosphorylation of CREB at serine 133 facilitates transcription from cellular CREs by recruiting CBP/p300 via its KIX domain. However, it remains controversial whether CREB phosphorylation plays a role in Tax transactivation. In this study, we biochemically characterized the quaternary complex formed by Tax, CREB, KIX, and the viral CRE by examining the individual molecular interactions that contribute to Tax stabilization in the complex. Our data show KIX, Ser(133)-phosphorylated CREB, and vCRE DNA are all required for stable Tax incorporation into the complex in vitro. Consonant with a fundamental role for CREB phosphorylation in Tax recruitment to the complex, we found that CREB is highly phosphorylated in a panel of HTLV-1-infected human T-cell lines. Significantly, we show that Tax is directly responsible for promoting elevated levels of CREB phosphorylation. Together, these data support a model in which Tax promotes CREB phosphorylation in vivo to ensure availability for Tax transactivation. Because pCREB has been implicated in leukemogenesis, enhancement of CREB phosphorylation by the virus may play a role in the etiology of adult T-cell leukemia.
Collapse
Affiliation(s)
- Young-Mi Kim
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | | | | | |
Collapse
|
8
|
Lemasson I, Lewis MR, Polakowski N, Hivin P, Cavanagh MH, Thébault S, Barbeau B, Nyborg JK, Mesnard JM. Human T-cell leukemia virus type 1 (HTLV-1) bZIP protein interacts with the cellular transcription factor CREB to inhibit HTLV-1 transcription. J Virol 2007; 81:1543-53. [PMID: 17151132 PMCID: PMC1797566 DOI: 10.1128/jvi.00480-06] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 05/16/2006] [Indexed: 12/27/2022] Open
Abstract
The complex human T-cell leukemia virus type 1 (HTLV-1) retrovirus encodes several proteins that are unique to the virus within its 3'-end region. Among them, the viral transactivator Tax and posttranscriptional regulator Rex are well characterized, and both positively regulate HTLV-1 viral expression. Less is known about the other regulatory proteins encoded in this region of the provirus, including the recently discovered HBZ protein. HBZ has been shown to negatively regulate basal and Tax-dependent HTLV-1 transcription through its ability to interact with specific basic-leucine zipper (bZIP) proteins. In the present study, we found that HBZ reduces HTLV-1 transcription and virion production. We then characterized the interaction between HBZ and the cellular transcription factor CREB. CREB plays a critical role in Tax-mediated HTLV-1 transcription by forming a complex with Tax that binds to viral cyclic AMP-response elements (CREs) located within the viral promoter. We found that HBZ and CREB interact in vivo and directly in vitro, and this interaction occurs through the bZIP domain of each protein. We also found that CREM-Ia and ATF-1, which share significant homology in their bZIP domains with the bZIP domain of CREB, interact with HBZ-bZIP. The interaction between CREB and HBZ prevents CREB binding to the viral CRE elements in vitro and in vivo, suggesting that the reduction in HTLV-1 transcription by HBZ is partly due to the loss of CREB at the promoter. We also found that HBZ displaces CREB from a cellular CRE, suggesting that HBZ may deregulate CREB-dependent cellular gene expression.
Collapse
Affiliation(s)
- Isabelle Lemasson
- East Carolina University, Department of Microbiology and Immunology, Brody School of Medicine, 600 Moye Blvd., Greenville, NC 27834, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jeong SJ, Lu H, Cho WK, Park HU, Pise-Masison C, Brady JN. Coactivator-associated arginine methyltransferase 1 enhances transcriptional activity of the human T-cell lymphotropic virus type 1 long terminal repeat through direct interaction with Tax. J Virol 2006; 80:10036-44. [PMID: 17005681 PMCID: PMC1617284 DOI: 10.1128/jvi.00186-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this study, we demonstrate that the coactivator-associated arginine methyltransferase 1 (CARM1), which methylates histone H3 and other proteins such as p300/CBP, is positively involved in the regulation of Tax transactivation. First, transfection studies demonstrated that overexpression of CARM1 wild-type protein resulted in increased Tax transactivation of the human T-cell lymphotropic virus type 1 (HTLV-1) long terminal repeat (LTR). In contrast, transfection of a catalytically inactive CARM1 methyltransferase mutant did not enhance Tax transactivation. CARM1 facilitated Tax transactivation of the CREB-dependent cellular GEM promoter. A direct physical interaction between HTLV-1 Tax and CARM1 was demonstrated using in vitro glutathione S-transferase-Tax binding assays, in vivo coimmunoprecipitation, and confocal microscopy experiments. Finally, chromatin immunoprecipitation analysis of the activated HTLV-1 LTR promoter showed the association of CARM1 and methylated histone H3 with the template DNA. In vitro, Tax facilitates the binding of CARM1 to the transcription complex. Together, our data provide evidence that CARM1 enhances Tax transactivation of the HTLV-1 LTR through a direct interaction between CARM1 and Tax and this binding promotes methylation of histone H3 (R2, R17, and R26).
Collapse
Affiliation(s)
- Soo-Jin Jeong
- Virus Tumor Biology Section, Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 41 Medlars Drive, Building 41, Room B302, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
10
|
Hiscott J, Nguyen TLA, Arguello M, Nakhaei P, Paz S. Manipulation of the nuclear factor-kappaB pathway and the innate immune response by viruses. Oncogene 2006; 25:6844-67. [PMID: 17072332 PMCID: PMC7100320 DOI: 10.1038/sj.onc.1209941] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Viral and microbial constituents contain specific motifs or pathogen-associated molecular patterns (PAMPs) that are recognized by cell surface- and endosome-associated Toll-like receptors (TLRs). In addition, intracellular viral double-stranded RNA is detected by two recently characterized DExD/H box RNA helicases, RIG-I and Mda-5. Both TLR-dependent and -independent pathways engage the IkappaB kinase (IKK) complex and related kinases TBK-1 and IKKvarepsilon. Activation of the nuclear factor kappaB (NF-kappaB) and interferon regulatory factor (IRF) transcription factor pathways are essential immediate early steps of immune activation; as a result, both pathways represent prime candidates for viral interference. Many viruses have developed strategies to manipulate NF-kappaB signaling through the use of multifunctional viral proteins that target the host innate immune response pathways. This review discusses three rapidly evolving areas of research on viral pathogenesis: the recognition and signaling in response to virus infection through TLR-dependent and -independent mechanisms, the involvement of NF-kappaB in the host innate immune response and the multitude of strategies used by different viruses to short circuit the NF-kappaB pathway.
Collapse
Affiliation(s)
- J Hiscott
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada.
| | | | | | | | | |
Collapse
|
11
|
Lemasson I, Polakowski NJ, Laybourn PJ, Nyborg JK. Tax-dependent displacement of nucleosomes during transcriptional activation of human T-cell leukemia virus type 1. J Biol Chem 2006; 281:13075-13082. [PMID: 16547351 DOI: 10.1074/jbc.m512193200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is integrated into the host cell DNA and assembled into nucleosomes. Within the repressive chromatin environment, the virally encoded Tax protein mediates the recruitment of the coactivators CREB-binding protein/p300 to the HTLV-1 promoter, located within the long terminal repeats (LTRs) of the provirus. These proteins carry acetyltransferase activity that is essential for strong transcriptional activation of the virus in the context of chromatin. Consistent with this, the amino-terminal tails of nucleosomal histones at the viral promoter are acetylated in Tax-expressing cells. We have developed a system in which we transfect Tax into cells carrying integrated copies of the HTLV-1 LTR driving the luciferase gene to analyze changes in "activating" histone modifications at the LTR. Unexpectedly, Tax transactivation led to an apparent reduction of these modifications at the HTLV-1 promoter and downstream region that correlates with a similar reduction in histone H3 and linker histone H1. Micrococcal nuclease protection analysis showed that less LTR-luciferase DNA is nucleosomal in Tax-expressing cells. Furthermore, nucleosome depletion correlated with RNA polymerase II recruitment and loss of SWI/SNF. The M47 Tax mutant, deficient in HTLV-1 transcriptional activation, was also defective for nucleosome depletion. Although this mutant formed complexes with CREB and p300 at the HTLV-1 promoter in vivo, it was unable to mediate RNA polymerase II recruitment or SWI/SNF displacement. These results support a model in which nucleosomes are depleted from the LTR and transcribed region during Tax-mediated transcriptional activation and correlate RNA polymerase II recruitment with nucleosome depletion.
Collapse
Affiliation(s)
- Isabelle Lemasson
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| | - Nicholas J Polakowski
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| | - Paul J Laybourn
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870.
| | - Jennifer K Nyborg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| |
Collapse
|
12
|
Younis I, Boris-Lawrie K, Green PL. Human T-cell leukemia virus open reading frame II encodes a posttranscriptional repressor that is recruited at the level of transcription. J Virol 2006; 80:181-91. [PMID: 16352542 PMCID: PMC1317543 DOI: 10.1128/jvi.80.1.181-191.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 10/03/2005] [Indexed: 01/06/2023] Open
Abstract
Human T-cell leukemia virus (HTLV) infection is a chronic, lifelong infection that is associated with the development of leukemia and neurological disease after a long latency period, and the mechanism by which the virus is able to evade host immune surveillance is elusive. Besides the structural and enzymatic proteins, HTLV encodes regulatory (Tax and Rex) and accessory (open reading frame I [ORF I] and ORF II) proteins. Tax activates viral and cellular transcription and promotes T-cell growth and malignant transformation. Rex acts posttranscriptionally to facilitate cytoplasmic expression of incompletely spliced viral mRNAs. Recently, we reported that the accessory gene products of HTLV-1 and HTLV-2 ORF II (p30II and p28II, respectively) are able to restrict viral replication. These proteins act as negative regulators of both Tax and Rex by binding to and retaining their mRNA in the nucleus, leading to reduced protein expression and virion production. Here, we show that p28II is recruited to the viral promoter in a Tax-dependent manner. After recruitment to the promoter, p28II or p30II then travels with the transcription elongation machinery until its target mRNA is synthesized. Experiments artificially directing these proteins to the promoter indicate that p28II, unlike HTLV-1 p30II, displays no transcriptional activity. Furthermore, the tethering of p28II directly to tax/rex mRNA resulted in repression of Tax function, which could be attributed to the ability of p28II to block TAP/p15-mediated enhancement of Tax expression. p28II-mediated reduction of viral replication in infected cells may permit survival of the cells by allowing escape from immune recognition, which is consistent with the critical role of HTLV accessory proteins in viral persistence in vivo.
Collapse
Affiliation(s)
- Ihab Younis
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Rd., Columbus, OH 43210, USA
| | | | | |
Collapse
|
13
|
Lairmore MD, Silverman L, Ratner L. Animal models for human T-lymphotropic virus type 1 (HTLV-1) infection and transformation. Oncogene 2005; 24:6005-15. [PMID: 16155607 PMCID: PMC2652704 DOI: 10.1038/sj.onc.1208974] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past 25 years, animal models of human T-lymphotropic virus type 1 (HTLV-1) infection and transformation have provided critical knowledge about viral and host factors in adult T-cell leukemia/lymphoma (ATL). The virus consistently infects rabbits, some non-human primates, and to a lesser extent rats. In addition to providing fundamental concepts in viral transmission and immune responses against HTLV-1 infection, these models have provided new information about the role of viral proteins in carcinogenesis. Mice and rats, in particular immunodeficient strains, are useful models to assess immunologic parameters mediating tumor outgrowth and therapeutic invention strategies against lymphoma. Genetically altered mice including both transgenic and knockout mice offer important models to test the role of specific viral and host genes in the development of HTLV-1-associated lymphoma. Novel approaches in genetic manipulation of both HTLV-1 and animal models are available to address the complex questions that remain about viral-mediated mechanisms of cell transformation and disease. Current progress in the understanding of the molecular events of HTLV-1 infection and transformation suggests that answers to these questions are approachable using animal models of HTLV-1-associated lymphoma.
Collapse
Affiliation(s)
- Michael D Lairmore
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210-1093, USA.
| | | | | |
Collapse
|
14
|
Anthony NG, Johnston BF, Khalaf AI, MacKay SP, Parkinson JA, Suckling CJ, Waigh RD. Short Lexitropsin that Recognizes the DNA Minor Groove at 5‘-ACTAGT-3‘: Understanding the Role of Isopropyl-thiazole. J Am Chem Soc 2004; 126:11338-49. [PMID: 15355117 DOI: 10.1021/ja030658n] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Isopropyl-thiazole ((iPr)Th) represents a new addition to the building blocks of nucleic acid minor groove-binding molecules. The DNA decamer duplex d(CGACTAGTCG)(2) is bound by a short lexitropsin of sequence formyl-PyPy(iPr)Th-Dp (where Py represents N-methyl pyrrole, (iPr)Th represents thiazole with an isopropyl group attached, and Dp represents dimethylaminopropyl). NMR data indicate ligand binding in the minor groove of DNA to the sequence 5'-ACT(5)AG(7)T-3' at a 2:1 ratio of ligand to DNA duplex. Ligand binding, assisted by the enhanced hydrophobicity of the (iPr)Th group, occurs in a head-to-tail fashion, the formyl headgroups being located toward the 5'-ends of the DNA sequence. Sequence reading is augmented through hydrogen bond formation between the exocyclic amine protons of G(7) and the (iPr)Th nitrogen, which lies on the minor groove floor. The B(I)/B(II) DNA backbone equilibrium is altered at the T(5) 3'-phosphate position to accommodate a B(II) configuration. The ligands bind in a staggered mode with respect to one another creating a six base pair DNA reading frame. The introduction of a new DNA sequence-reading element into the recognition jigsaw, combined with an extended reading frame for a small lexitropsin with enhanced hydrophobicity, holds great promise in the development of new, potentially commercially viable drug lead candidates for gene targeting.
Collapse
Affiliation(s)
- Nahoum G Anthony
- Department of Pure and Applied Chemistry, 295 Cathedral Street, Glasgow G1 1XL, UK
| | | | | | | | | | | | | |
Collapse
|
15
|
Melander C, Burnett R, Gottesfeld JM. Regulation of gene expression with pyrrole–imidazole polyamides. J Biotechnol 2004; 112:195-220. [PMID: 15288953 DOI: 10.1016/j.jbiotec.2004.03.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 02/23/2004] [Accepted: 03/19/2004] [Indexed: 10/26/2022]
Abstract
The pyrrole-imidazole (Py-Im) polyamides represent the only available class of small molecules that can be designed to recognize virtually any predetermined DNA sequence. These molecules have affinities and specificities that equal or exceed natural eukaryotic transcriptional regulatory proteins. Studies with model gene systems, and a variety of eukaryotic and viral transcription factors, have shown that these molecules are potent inhibitors of protein-DNA interactions. Polyamides have been shown to regulate gene expression in simple in vitro systems using defined DNA templates and nuclear extracts as a source of the transcriptional machinery. Activation of gene expression has also been achieved in vitro with polyamide-activator peptide conjugates. Most importantly, polyamides are cell permeable and localize in the nucleus in various cultured cell lines and are capable of down regulating target genes in these cells. Polyamides have been shown to bind to their target sites in chromosomal DNA and both gain- and loss-of-function have been observed by targeting repeated DNA sequences in developing Drosophila embryos.
Collapse
Affiliation(s)
- Christian Melander
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
16
|
Lemasson I, Polakowski NJ, Laybourn PJ, Nyborg JK. Transcription regulatory complexes bind the human T-cell leukemia virus 5' and 3' long terminal repeats to control gene expression. Mol Cell Biol 2004; 24:6117-26. [PMID: 15226416 PMCID: PMC434238 DOI: 10.1128/mcb.24.14.6117-6126.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that integrates randomly into the T-cell genome. Two long terminal repeats (LTRs) flank the integrated provirus. The upstream and downstream LTRs carry identical promoter sequences. Studies with other retroviruses suggest that the downstream promoter is silent and that RNA polymerases initiating at the upstream promoter proceed through the 3' LTR. In this study, we used the chromatin immunoprecipitation assay to compare the binding of transcription regulatory proteins at both the upstream and downstream promoters in HTLV-1-infected cell lines and adult T-cell leukemia-lymphoma cells. Unexpectedly, we detected a nearly equal distribution of activator (Tax, CREB, ATF-1, ATF-2, c-Fos, and c-Jun) and regulatory protein (CBP, p300, TAF(II)250, and polymerase II) binding at both the upstream and downstream promoters. Consistent with this observation, we found that the downstream promoter was transcriptionally active, suggesting that the two promoters are functionally equivalent. We also detected asymmetrical binding of histone deacetylases (HDAC-1, -2, and -3) at both promoters. All three HDACs strongly repressed Tax transactivation, and this repression correlated with displacement of Tax from the HTLV-1 promoter. These effects were reciprocal, as Tax expression reversed HDAC repression and displaced HDACs from the HTLV-1 promoter. These data suggest that HTLV-1 transcriptional regulation at both the 5' and 3' LTRs is mediated, in part, through the mutually exclusive binding of Tax and HDACs at the proviral promoters.
Collapse
Affiliation(s)
- Isabelle Lemasson
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | | | | | |
Collapse
|
17
|
Livengood JA, Nyborg JK. The high-affinity Sp1 binding site in the HTLV-1 promoter contributes to Tax-independent basal expression. Nucleic Acids Res 2004; 32:2829-37. [PMID: 15155851 PMCID: PMC419597 DOI: 10.1093/nar/gkh590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transcriptional activation of human T-cell leukemia virus type 1 (HTLV-1) requires many cellular proteins and the virally encoded transcription factor Tax. Tax binds the three viral cAMP-response elements (CREs) with ATF/CREB (activating transcription factor/cAMP-response element-binding protein) and recruits the cellular coactivators CBP/p300. HTLV-1 also utilizes other cellular transcription factors that bind to the promoter to regulate transcription. One of these factors, Sp1, has been shown to bind to the viral promoter at two elements; one located within the third viral CRE, and the second located between the second and third viral CREs. The functional significance of Sp1 binding at each of these regions of the viral promoter is not completely understood. We set out to characterize Sp1 binding and to evaluate the functional significance of Sp1, both in the absence and presence of Tax. We found that Sp1 binds preferentially to the element located between the second and third viral CREs, and modestly activates transcription in vitro and in vivo. Sp1 was detected at the integrated HTLV-1 promoter in vivo. Surprisingly, point mutagenesis of the strong Sp1 binding site rendered the HTLV-1 reporter plasmid insensitive to Sp1 activation, and dramatically reduced basal transcription in vivo. These data indicate a role for Sp1 in basal level transcription of HTLV-1.
Collapse
Affiliation(s)
- Jill A Livengood
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | |
Collapse
|
18
|
Abstract
Chemical substances that can recognize and bind DNA in a sequence-specific manner have enormous importance in modern biology and medicine. When covalently linked, hairpin polyamides made up of N-methylpyrrole (Py) and N-methylimidazole (Im) can bind to DNA in a sequence-specific manner. An Im opposite a Py recognizes and binds G:C from C:G, whereas a Py opposite an Im recognizes and binds to C:G. A Py-Py pair degenerately binds to T:A or A:T, whereas a hydroxypyrrole opposite a Py recognizes and binds to T:A from A:T, and vice versa. A variant in this recognition is the beta-alanine (beta-ala-beta-ala) pair, which also degenerately binds to A:T or T:A. The hairpin polyamides are cell permeable and bind to DNA at nanomolar concentrations, with binding coefficients similar to those of transcription factors. This review comprehensively discusses the current literature on using the sequence-specific recognition ability of the polyamides to study various DNA-protein interactions.
Collapse
Affiliation(s)
- Musti Sree Rama Chandra Murty
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Surugadai, Kanda, Chiyoda-ku, Tokyo 101-0062, Japan
| | | |
Collapse
|
19
|
Youn HG, Matsumoto J, Tanaka Y, Shimotohno K. SR-related protein TAXREB803/SRL300 is an important cellular factor for the transactivational function of human T-cell lymphotropic virus type 1 Tax. J Virol 2003; 77:10015-27. [PMID: 12941912 PMCID: PMC224568 DOI: 10.1128/jvi.77.18.10015-10027.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the human T-cell lymphotropic virus type 1 (HTLV-1) genes is transcriptionally activated by the cognate oncoprotein Tax which enhances the binding of the cyclin AMP-responsive element binding protein (CREB) to the Tax responsive element (TxRE) located in its long terminal repeat (LTR). TxRE is highly homologous to the cyclic AMP-responsive element (CRE) except for the GC-rich sequence flanking the CRE. We cloned the cDNA for a cellular factor, TAXREB803, of which the DNA-binding domain bound to TxRE and the binding was dependent on the 3' GC-rich sequence in TxRE. TAXREB803 is an SR-related protein composed of 2,752 amino acids including numerous arginine/serine (RS) motifs. TAXREB803 enhanced both the Tax dependent transcription and the CREB binding to TxRE in cooperation with Tax. The interaction of TAXREB803 and Tax was detected by coimmunoprecipitation assays as well as by indirect immunofluorescence assays. Significantly, Tax transactivation for the HTLV-1 LTR decreased dramatically when the expression level of the endogenous TAXREB803 was suppressed by the small interfering RNA. These results suggest that TAXREB803 functions as a transcriptional coactivator for Tax and plays a critical role in the expression of HTLV-1 genes.
Collapse
Affiliation(s)
- Hwang-Geum Youn
- Laboratory of Human Tumor Viruses, Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
20
|
Fechter EJ, Dervan PB. Allosteric inhibition of protein--DNA complexes by polyamide--intercalator conjugates. J Am Chem Soc 2003; 125:8476-85. [PMID: 12848553 DOI: 10.1021/ja030125e] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sequence-specific inhibition of essential protein-DNA contacts in the promoter of a gene is a central issue for the regulation of gene expression by chemical methods. Hairpin polyamides have been shown to inhibit protein-DNA complexes in some but not all cases. For example, polyamides co-occupy the same DNA sequence in the minor groove in the presence of major-groove binding bZip proteins. Four hairpin polyamide-acridine conjugates were synthesized and shown to bind the minor groove of DNA with high affinity in a sequence-specific manner. The polyamide-acridine conjugates were shown to unwind DNA (phi = 14-15 degrees), evidence for intercalation by the acridine moiety. Importantly, the polyamide-intercalator conjugates, which combine sequence-specific groove binding with proximal local unwinding, inhibit major-groove DNA binding by the GCN4 bZip protein. This class of DNA binding molecules creates a sequence-specific allosteric change in DNA structure and has the potential to be a general inhibitor of transcription factor binding independent of the specific protein-DNA structure.
Collapse
Affiliation(s)
- Eric J Fechter
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
21
|
Vashisht Gopal YN, Van Dyke MW. Combinatorial determination of sequence specificity for nanomolar DNA-binding hairpin polyamides. Biochemistry 2003; 42:6891-903. [PMID: 12779344 DOI: 10.1021/bi027373s] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Development of sequence-specific DNA-binding drugs is an important pharmacological goal, given the fact that numerous existing DNA-directed chemotherapeutic drugs rely on the strength and selectivity of their DNA interactions for therapeutic activity. Among the DNA-binding antibiotics, hairpin polyamides represent the only class of small molecules that can practically bind any predetermined DNA sequence. DNA recognition by these ligands depends on their side-by-side amino acid pairings in the DNA minor groove. Extensive studies have revealed that these molecules show extremely high affinity for sequence-directed, minor groove interaction. However, the specificity of such interactions in the presence of a large selection of sequences such as the human genome is not known. We used the combinatorial selection method restriction endonuclease protection, selection, and amplification (REPSA) to determine the DNA binding specificity of two hairpin polyamides, ImPyPyPy-gamma-PyPyPyPy-beta-Dp and ImPyPyPy-gamma-ImPyPyPy-beta-Dp, in the presence of more than 134 million different sequences. These were verified by restriction endonuclease protection assays and DNase I footprinting analysis. Our data showed that both hairpin polyamides preferentially selected DNA sequences having consensus recognition sites as defined by the Dervan pairing rules. These consensus sequences were rather degenerate, as expected, given that the stacked pyrrole-pyrrole amino acid pairs present in both polyamides are unable to discriminate between A.T and T.A base pairs. However, no individual sequence within these degenerate consensus sequences was preferentially selected by REPSA, indicating that these hairpin polyamides are truly consensus-specific DNA-binding ligands. We also discovered a preference for overlapping consensus binding sites among the sequences selected by the hairpin polyamide ImPyPyPy-gamma-PyPyPyPy-beta-Dp, and confirmed by DNase I footprinting that these complex sites provide higher binding affinity. These data suggest that multiple hairpin polyamides can cooperatively bind to their highest-affinity sites.
Collapse
Affiliation(s)
- Y N Vashisht Gopal
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | | |
Collapse
|
22
|
Abstract
Many diseases, such as cancer, are related to aberrant gene expression. Regulating transcription by chemical methods could be important in human medicine. Minor groove-binding polyamides offer one chemical approach to DNA recognition.
Collapse
Affiliation(s)
- Peter B Dervan
- Division of Chemistry and Chemical Engineering, and Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
23
|
Georges SA, Giebler HA, Cole PA, Luger K, Laybourn PJ, Nyborg JK. Tax recruitment of CBP/p300, via the KIX domain, reveals a potent requirement for acetyltransferase activity that is chromatin dependent and histone tail independent. Mol Cell Biol 2003; 23:3392-404. [PMID: 12724399 PMCID: PMC164760 DOI: 10.1128/mcb.23.10.3392-3404.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Robust transcription of human T-cell leukemia virus type 1 (HTLV-1) genome requires the viral transactivator Tax. Although Tax has been previously shown to interact with the KIX domain of CBP/p300 in vitro, the precise functional relevance of this interaction remains unclear. Using two distinct approaches to interrupt the physical interaction between Tax and KIX, we find that Tax transactivation from chromatin templates is strongly dependent on CBP/p300 recruitment via the KIX domain. Additionally, we find that the primary functional contribution of CBP/p300 to Tax transactivation resides in the intrinsic acetyltransferase activity of the coactivators. These studies unexpectedly uncover a specific requirement for CBP/p300 acetyltransferase activity on chromatin templates assembled with nucleosomes lacking their amino-terminal tails. Together, these data indicate that the KIX domain of CBP/p300 is essential for targeting the acetyltransferase activity of the coactivator to the Tax-CREB (Tax/CREB) complex. Significantly, these observations reveal the presence of one or more CBP/p300 acetyltransferase targets that function specifically on chromatin templates, are independent of the histone tails, and are critical to Tax transactivation.
Collapse
Affiliation(s)
- Sara A Georges
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | | | | | | | | | |
Collapse
|
24
|
Hiraiwa N, Yabuta T, Yoritomi K, Hiraiwa M, Tanaka Y, Suzuki T, Yoshida M, Kannagi R. Transactivation of the fucosyltransferase VII gene by human T-cell leukemia virus type 1 Tax through a variant cAMP-responsive element. Blood 2003; 101:3615-21. [PMID: 12506041 DOI: 10.1182/blood-2002-07-2301] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human T-cell leukemic virus type 1 (HTLV-1)-infected T cells express the fucosyltransferase (Fuc-T) VII gene involved in the biosynthesis of the leukocyte sialyl Lewis X, which may be related to tissue infiltration in patients with malignant adult T-cell leukemia. HTLV-1 induces Fuc-T VII transcription through the viral transactivator Tax, although the underlying molecular mechanism remains unknown. In the present study, we analyzed the role of the cis-activating element in Tax activation using reporter constructs bearing the 5'-regulatory region of Fuc-T VII in Jurkat T cells. A sequence (GGCTGTGGGGGCGTCATATTGCCCTGG) covering a half-palindromic cyclic adenosine monophosphate (cAMP)-responsive element (CRE) was found to be required for Tax activation of the Fuc-T VII promoter. We further demonstrated that transcription factors of the CRE-binding protein (CREB)/activating transcription factor (ATF) family bind to this CRE-like sequence and that Tax binds in association with CREB and the coactivator CREB-binding protein (CBP) in Jurkat T cells. This element, containing the G+C-rich flanking sequences, is homologous to the Tax-responsive viral CREs in the HTLV-1 long terminal repeat (LTR)-promoter. Furthermore, CREM alpha, an isoform of CREB deficient in the glutamine-rich domains, was found to activate the Fuc-T VII promoter in a phosphorylation-independent manner, similar to the viral CRE in HTLV-1 LTR but in contrast to the phosphorylation-dependent activation of the cellular CREs by Tax. These findings indicate that the Fuc-T VII promoter is transactivated by Tax in concert with CBP through a CRE-like sequence in a manner similar to that of viral CRE in HTLV-1 LTR.
Collapse
Affiliation(s)
- Nozomu Hiraiwa
- Division of Molecular Pathology, Aichi Cancer Center, Chikusa-ku, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Tzagarakis-Foster C, Geleziunas R, Lomri A, An J, Leitman DC. Estradiol represses human T-cell leukemia virus type 1 Tax activation of tumor necrosis factor-alpha gene transcription. J Biol Chem 2002; 277:44772-7. [PMID: 12237295 DOI: 10.1074/jbc.m205355200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adult T-cell leukemia is caused by human T-cell leukemia virus type I (HTLV-I). The HTLV-I Tax protein is essential for clinical manifestations because it activates viral and cellular gene transcription. Tax enhances production of tumor necrosis factor-alpha (TNF-alpha), which may lead to bone and joint destruction. Because estrogens might prevent osteoporosis by repressing TNF-alpha gene transcription, we investigated whether estrogens inhibit the transcriptional effects of Tax on the TNF-alpha promoter. Tax activated the -1044, -163, and -125 TNF-alpha promoters by 9-25-fold but not the -82 promoter, demonstrating that Tax activation requires the -125 to -82 region, known as the TNF response element (TNF-RE). Three copies of the TNF-RE upstream of the minimal thymidine kinase promoter conferred a similar magnitude of activation by Tax. We demonstrated that c-Jun, NFkappaB, p50, and p65 interact with and activate the TNF-RE by using mutational analysis of the TNF-RE, Tax mutants that selectively activate NFkappaB or the cAMP-response element binding protein/activating transcription factor pathway, and gel shift assays with nuclear extracts. Estradiol markedly repressed Tax-activated transcription of the TNF-alpha gene with estrogen receptor (ER) alpha or beta. Nuclear extracts from U2OS cells stably transfected with ER(alpha) demonstrated that ERs interact with the TNF-RE. Our studies provide evidence that ERs repress Tax-activated TNF-alpha transcription by interacting with a c-Jun and NFkappaB platform on the TNF-RE. Estrogens may ameliorate bone and inflammatory joint diseases in patients infected with HTLV-I by repressing transcription of the TNF-alpha gene.
Collapse
Affiliation(s)
- Christina Tzagarakis-Foster
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco 94143-0556, USA
| | | | | | | | | |
Collapse
|
26
|
Kido K, Doerks A, Lochelt M, Flügel RM. Identification and functional characterization of an intragenic DNA binding site for the spumaretroviral trans-activator in the human p57Kip2 gene. J Biol Chem 2002; 277:12032-9. [PMID: 11815601 DOI: 10.1074/jbc.m108747200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the human cyclin-dependent protein kinase inhibitor p57(Kip2) gene was previously shown to be specifically and strongly activated by the retroviral trans-activator Bel1 of human foamy virus by means of expression profiling, Northern, and Western blot analysis. Here we report that Bel1-mediated trans-activation was conferred by a Bel1 response element (BRE) located in the second exon of p57(Kip2). The intragenic Kip2-BRE was capable of trans-activating the luciferase reporter gene upon cotransfection with Bel1. In electrophoretic mobility shift assays using 293T nuclear extracts or a purified glutathione S-transferase (GST) small middle dotBel1 fusion protein, we identified the 55-nucleotide-long Kip2-BRE site that mainly consists of three direct repeats of 14-mers partially homologous to a functionally active BRE in the viral internal promoter. The specificity of the transactivator-DNA binding was shown by using mutated and shortened Kip2-BRE oligodeoxynucleotides in competition experiments with the authentic viral internal promoter and by Bel1-specific antibody that led to a supershift of the nuclear protein small middle dotKip2-BRE and GST small middle dotBel1 small middle dotKip2-BRE complex. The data indicate that Bel1 can directly bind to BRE sites. The cellular Kip2-BRE can be used to predict those human genes that are directly or indirectly activated by the Bel1 trans-activator.
Collapse
Affiliation(s)
- Kenji Kido
- Division of Retroviral Gene Expression, Research Program Applied Tumor Virology, German Cancer Research Center, Im Neuenheimer Feld 242, 69009 Heidelberg, Germany
| | | | | | | |
Collapse
|
27
|
Livengood JA, Scoggin KES, Van Orden K, McBryant SJ, Edayathumangalam RS, Laybourn PJ, Nyborg JK. p53 Transcriptional activity is mediated through the SRC1-interacting domain of CBP/p300. J Biol Chem 2002; 277:9054-61. [PMID: 11782467 DOI: 10.1074/jbc.m108870200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor p53 recruits the cellular coactivator CBP/p300 to mediate the transcriptional activation of target genes. In this study, we identify a novel p53-interacting region in CBP/p300, which we call CR2, located near the carboxyl terminus. The 95-amino acid CR2 region (amino acids 2055--2150) is located adjacent to the C/H3 domain and corresponds precisely with the minimal steroid receptor coactivator 1 (SRC1)-interacting domain of CBP (also called IBiD). We show that the region of p53 that participates in the CR2 interaction resides within the first 107 amino acids of the protein. p53 binds strongly to the CR2 domain of both CBP and the highly homologous coactivator p300. Importantly, an in-frame deletion of CR2 within the full-length p300 protein strongly compromises p300-mediated p53 transcriptional activation from a chromatin template in vitro. The identification of the p53-interacting CR2 domain in CBP/p300 prompted us to ask if the human T-cell leukemia virus (HTLV-I) Tax protein, which also interacts with CR2, competes with p53 for binding to this domain. We show that p53 and Tax exhibit mutually exclusive binding to the CR2 region, possibly contributing to the previously reported Tax repression of p53 function. Together, these studies identify and molecularly characterize a new p53 binding site on CBP/p300 that participates in coactivator-mediated p53 transcription function. The identity of the p53.CR2 interaction indicates that at least three distinct sites on CBP/p300 may participate in mediating p53 transactivation.
Collapse
Affiliation(s)
- Jill A Livengood
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Ehley JA, Melander C, Herman D, Baird EE, Ferguson HA, Goodrich JA, Dervan PB, Gottesfeld JM. Promoter scanning for transcription inhibition with DNA-binding polyamides. Mol Cell Biol 2002; 22:1723-33. [PMID: 11865052 PMCID: PMC135605 DOI: 10.1128/mcb.22.6.1723-1733.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When targeted to sequences adjacent to a TATA element, pyrrole-imidazole (Py-Im) polyamides inhibit the DNA binding activity of TATA box binding protein (TBP) and basal transcription by RNA polymerase II. In the present study, we scanned the human immunodeficiency virus type 1 promoter for polyamide inhibition of TBP binding and transcription using a series of DNA constructs in which a polyamide binding site was placed at various distances from the TATA box. Polyamide interference with either TBP-DNA or TFIID-TFIIA-DNA contacts both upstream and downstream of the TATA element resulted in inhibition of transcription. Our results define important protein-DNA interactions outside of the TATA element and suggest that transcription inhibition of selected gene promoters can be achieved with polyamides that target unique sequences within these promoters at a distance from the TATA element. Our studies also demonstrate the utility of the Py-Im polyamides for discovery of functionally important protein-DNA contacts involved in transcription.
Collapse
Affiliation(s)
- Jennifer A Ehley
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Georges SA, Kraus WL, Luger K, Nyborg JK, Laybourn PJ. p300-mediated tax transactivation from recombinant chromatin: histone tail deletion mimics coactivator function. Mol Cell Biol 2002; 22:127-37. [PMID: 11739728 PMCID: PMC134225 DOI: 10.1128/mcb.22.1.127-137.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient transcription of the human T-cell leukemia virus type 1 (HTLV-1) genome requires Tax, a virally encoded oncogenic transcription factor, in complex with the cellular transcription factor CREB and the coactivators p300/CBP. To examine Tax transactivation in vitro, we used a chromatin assembly system that included recombinant core histones. The addition of Tax, CREB, and p300 to the HTLV-1 promoter assembled into chromatin activated transcription several hundredfold. Chromatin templates selectively lacking amino-terminal histone tails demonstrated enhanced transcriptional activation by Tax and CREB, with significantly reduced dependence on p300 and acetyl coenzyme A (acetyl-CoA). Interestingly, Tax/CREB activation from the tailless chromatin templates retained a substantial requirement for acetyl-CoA, indicating a role for acetyl-CoA beyond histone acetylation. These data indicate that during Tax transcriptional activation, the amino-terminal histone tails are the major targets of p300 and that tail deletion and acetylation are functionally equivalent.
Collapse
Affiliation(s)
- Sara A Georges
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | | | |
Collapse
|
30
|
Nicot C, Mahieux R, Pise-Masison C, Brady J, Gessain A, Yamaoka S, Franchini G. Human T-cell lymphotropic virus type 1 Tax represses c-Myb-dependent transcription through activation of the NF-kappaB pathway and modulation of coactivator usage. Mol Cell Biol 2001; 21:7391-402. [PMID: 11585920 PMCID: PMC99912 DOI: 10.1128/mcb.21.21.7391-7402.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The proto-oncogene c-myb is essential for a controlled balance between cell growth and differentiation. Aberrant c-Myb activity has been reported for numerous human cancers, and enforced c-Myb transcription can transform cells of lymphoid origin by stimulating cellular proliferation and inhibiting apoptotic pathways. Here we demonstrate that activation of the NF-kappaB pathway by the HTLV-1 Tax protein leads to transcriptional inactivation of c-Myb. This conclusion was supported by the fact that Tax mutants unable to stimulate the NF-kappaB pathway could not inhibit c-Myb transactivating functions. In addition, inhibition of Tax-mediated NF-kappaB activation by coexpression of IkappaBalpha restored c-Myb transcription, and Tax was unable to block c-Myb transcription in a NEMO knockout cell line. Importantly, physiological stimuli, such as signaling with the cellular cytokines tumor necrosis factor alpha, interleukin 1 beta (IL-1beta), and lipopolysaccharide, also inhibited c-Myb transcription. These results uncover a new link between extracellular signaling and c-Myb-dependent transcription. The mechanism underlying NF-kappaB-mediated repression was identified as sequestration of the coactivators CBP/p300 by RelA. Interestingly, an amino-terminal deletion form of p300 lacking the C/H1 and KIX domains and unable to bind RelA retained the ability to stimulate c-Myb transcription and prevented NF-kappaB-mediated repression.
Collapse
Affiliation(s)
- C Nicot
- Section of Animal Models and Retroviral Vaccines, Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Thomson SR, Johnson SE. Isolation and characterization of chicken TaxREB107, a putative DNA binding protein abundantly expressed in muscle. Gene 2001; 278:81-8. [PMID: 11707324 DOI: 10.1016/s0378-1119(01)00732-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myogenic regulatory factors (MRFs) are vital transcription factors that act at multiple points during development to establish the skeletal muscle phenotype. This class of muscle-restricted, basic helix-loop-helix (bHLH) proteins acts in concert with additional transcriptional modulators to precisely control muscle gene expression. We have isolated the chicken homologue of Tax responsive element binding protein 107 (TaxREB107). The cDNA is 83% homologous at the amino acid level to human and mouse TaxREB107 and contains a centrally located leucine zipper motif. Northern analysis demonstrated that the gene is expressed in multiple tissues including skeletal muscle. Immunofluorescent staining revealed that the cTaxREB107 protein is located in both the nuclear and cytoplasmic compartments. Distinct localization to the nucleoli supports the evidence that TaxREB107 is a ribosomal protein. Because TaxREB proteins also are implicated in transcriptional regulation, we overexpressed cTaxREB107 in embryonic myoblasts. cTaxREB107 increased troponin I reporter gene activity as well as MRF-directed transcription from a multimerized skeletal muscle E-box reporter gene (4Rtk-luc). However, cotransfection of expression plasmids coding for MyoD and cTaxREB107 did not produce an increase in 4Rtk-luc suggesting that cTaxREB107 enhances myogenic gene transcription through a means independent of a physical association with MyoD. In conclusion, our results define a role for cTaxREB107 during avian myogenesis as a positive modulator of skeletal muscle gene expression.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Cell Nucleus/metabolism
- Chickens/genetics
- Cytoplasm/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins/genetics
- Gene Expression
- Gene Expression Regulation, Developmental
- Humans
- Luciferases/genetics
- Luciferases/metabolism
- Mice
- Molecular Sequence Data
- Muscles/cytology
- Muscles/embryology
- Muscles/metabolism
- MyoD Protein/genetics
- MyoD Protein/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transcription, Genetic
Collapse
Affiliation(s)
- S R Thomson
- Department of Poultry Science, The Pennsylvania State University, 206 Henning, University Park, PA 16802, USA
| | | |
Collapse
|
32
|
Zhang W, Nisbet JW, Albrecht B, Ding W, Kashanchi F, Bartoe JT, Lairmore MD. Human T-lymphotropic virus type 1 p30(II) regulates gene transcription by binding CREB binding protein/p300. J Virol 2001; 75:9885-95. [PMID: 11559821 PMCID: PMC114560 DOI: 10.1128/jvi.75.20.9885-9895.2001] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2001] [Accepted: 07/18/2001] [Indexed: 11/20/2022] Open
Abstract
The highly conserved coadapters CREB binding protein (CBP) and p300 form complexes with CREB as well as other DNA binding transcription factors to modulate chromatin remodeling and thus transcription. Human T-lymphotropic virus type 1 (HTLV-1) transcription is controlled, in part, by the CREB/ATF family of transcription factors which bind promoter sequences and function as complexes with the viral oncogenic protein Tax. We have reported that the nuclear localizing protein p30(II) of HTLV-1 functions as a transcription factor, differentially modulates CREB-responsive promoters, and is critical for maintenance of proviral loads in rabbits. In this study, we tested whether p30(II) directly interacts with CBP/p300 to modulate gene transcription. Gal4(BD)-p30(II)-mediated transactivation was enhanced following exogenous expression of p300 and was competitively repressed by the p300 binding protein, adenovirus E1A, and E1ACR2 (mutated for retinoblastoma binding but retaining p300 binding). In contrast, E1ACR1 (mutated for p300 binding) failed to alter Gal4(BD)-p30(II)-mediated transactivation. In addition, Gal4(BD)-p30(II)-mediated transactivation was competitively inhibited by the cotransfection of CMV-p30(II)-HA and CMV-Tax but could be rescued by exogenous p300. Importantly, we demonstrate that p30(II) colocalizes with p300 in cell nuclei and directly binds to CBP/p300 in cells. Deletion mutants of CBP/p300 were used to localize the site critical for binding p30(II) to a highly conserved KIX region. DNA binding assays confirmed the interference of p30(II) with the assembly of CREB-Tax-p300/CBP multiprotein complexes on 21-bp repeat oligonucleotides in vitro. Collectively, our results demonstrate that CBP/p300 is a cellular protein target for HTLV-1 p30(II) and mediates its transcriptional effects in vivo.
Collapse
Affiliation(s)
- W Zhang
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Arthur James Cancer Hospital and Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Ruckes T, Saul D, Van Snick J, Hermine O, Grassmann R. Autocrine antiapoptotic stimulation of cultured adult T-cell leukemia cells by overexpression of the chemokine I-309. Blood 2001; 98:1150-9. [PMID: 11493464 DOI: 10.1182/blood.v98.4.1150] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adult T-cell leukemia (ATL) is an aggressive malignancy of CD4(+) T cells caused by the human T-cell leukemia virus type 1 (HTLV-1). The viral leukemogenesis is critically dependent on its oncoprotein Tax because the protein as well as the virus can immortalize primary human lymphocytes to permanent growth. As a transcriptional transactivator, Tax can stimulate the expression of distinct cellular genes. Alterations in the expression levels of unknown growth-relevant genes may contribute to the changed growth properties of Tax-immortalized and leukemic cells. To identify genes that are linked to Tax transformation and ATL leukemogenesis, this study systematically compared the gene expression of cultured cells from patients with acute ATL with that of stimulated peripheral blood T lymphocytes. Several overexpressed RNAs that encode signal transduction functions were identified. These include a dual-specific protein phosphatase (PAC1), an interferon-inducible factor (ISG15), a basic helix-loop-helix transcription factor (DEC-1), and the secreted antiapoptotic chemokine I-309. The ATL cell culture supernatants contained an antiapoptotic activity that could be specifically inhibited by antibodies directed against I-309. Inhibition of I-309 receptor (CCR8) signaling by pertussis toxin increased the apoptosis rate of ATL cell cultures in the presence and absence of external apoptotic stimuli. Both the I-309--specific antiapoptotic activity and the proapoptotic effect of inhibitors of I-309 signaling suggest the existence of an antiapoptotic autocrine loop in ATL cells. Thus, the overexpression of this chemokine may inhibit apoptosis in ATL cells and could substantially contribute to their growth. (Blood. 2001;98:1150-1159)
Collapse
MESH Headings
- Apoptosis/drug effects
- Autocrine Communication/drug effects
- Autocrine Communication/physiology
- Cell Division/drug effects
- Chemokine CCL1
- Chemokines, CC/metabolism
- Chemokines, CC/pharmacology
- Chemotactic Factors/metabolism
- Chemotactic Factors/pharmacology
- Gene Expression
- Humans
- Leukemia, T-Cell/etiology
- Leukemia, T-Cell/genetics
- Leukemia, T-Cell/pathology
- Leukemia-Lymphoma, Adult T-Cell/etiology
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Polymerase Chain Reaction
- RNA, Messenger/analysis
- Receptors, CCR8
- Receptors, Chemokine/metabolism
- Transfection
- Tumor Cells, Cultured
- fas Receptor/pharmacology
Collapse
Affiliation(s)
- T Ruckes
- Institut für Klinische und Molekulare Virologie, Erlangen, Germany
| | | | | | | | | |
Collapse
|
34
|
Abstract
Polyamide ligands comprised of pyrrole, imidazole and hydroxypyrrole rings have been developed over the past decade which can be used to target many different, predetermined DNA sequences through recognition of functional groups in the minor groove. The design principles for these ligands are described with a description of the characterization of their binding. Variations containing linked recognition modules have been described which allow high affinity and specificity recognition of DNA sequences of over 15 base pairs. Recent applications of these ligands in affecting biological response through competition with proteins for DNA binding sites are reviewed.
Collapse
Affiliation(s)
- D E Wemmer
- Department of Chemistry, University of California Berkeley and Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| |
Collapse
|
35
|
Jammi NV, Beal PA. Phosphorylation of the RNA-dependent protein kinase regulates its RNA-binding activity. Nucleic Acids Res 2001; 29:3020-9. [PMID: 11452027 PMCID: PMC55795 DOI: 10.1093/nar/29.14.3020] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The RNA-dependent protein kinase (PKR) is an interferon-induced, RNA-activated enzyme that phosphorylates the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha), inhibiting the function of the eIF2 complex and continued initiation of translation. When bound to an activating RNA and ATP, PKR undergoes autophosphorylation reactions at multiple serine and threonine residues. This autophosphorylation reaction stimulates the eIF2alpha kinase activity of PKR. The binding of certain viral RNAs inhibits the activation of PKR. Wild-type PKR is obtained as a highly phosphorylated protein when overexpressed in Escherichia coli. We report here that treatment of the isolated phosphoprotein with the catalytic subunit of protein phosphatase 1 dephosphorylates the enzyme. The in vitro autophosphorylation and eIF2alpha kinase activities of the dephosphorylated enzyme are stimulated by addition of RNA. Thus, inactivation by phosphatase treatment of autophosphorylated PKR obtained from overexpression in bacteria generates PKR in a form suitable for in vitro analysis of the RNA-induced activation mechanism. Furthermore, we used gel mobility shift assays, methidiumpropyl-EDTA.Fe footprinting and affinity chromatography to demonstrate differences in the RNA-binding properties of phospho- and dephosphoPKR. We found that dephosphorylation of PKR increases binding affinity of the enzyme for both kinase activating and inhibiting RNAs. These results are consistent with an activation mechanism that includes release of the activating RNA upon autophosphorylation of PKR prior to phosphorylation of eIF2alpha.
Collapse
Affiliation(s)
- N V Jammi
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
36
|
Van PL, Yim KW, Jin DY, Dapolito G, Kurimasa A, Jeang KT. Genetic evidence of a role for ATM in functional interaction between human T-cell leukemia virus type 1 Tax and p53. J Virol 2001; 75:396-407. [PMID: 11119608 PMCID: PMC113932 DOI: 10.1128/jvi.75.1.396-407.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2000] [Accepted: 09/22/2000] [Indexed: 12/17/2022] Open
Abstract
Recent evidence from several investigators suggest that the human T-cell leukemia virus type 1 Tax oncoprotein represses the transcriptional activity of the tumor suppressor protein, p53. An examination of published findings reveals serious controversy as to the mechanism(s) utilized by Tax to inhibit p53 activity and whether the same mechanism is used by Tax in adherent and suspension cells. Here, we have investigated Tax-p53 interaction simultaneously in adherent epithelial (HeLa and Saos) and suspension T-lymphocyte (Jurkat) cells. Our results indicate that Tax activity through the CREB/CREB-binding protein (CBP), but not NF-kappaB, pathway is needed to repress the transcriptional activity of p53 in all tested cell lines. However, we did find that while CBP binding by Tax is necessary, it is not sufficient for inhibiting p53 function. Based on knockout cell studies, we correlated a strong genetic requirement for the ATM, but not protein kinase-dependent DNA, protein in conferring a Tax-p53-repressive phenotype.
Collapse
Affiliation(s)
- P L Van
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
37
|
Wagner A, Doerks A, Aboud M, Alonso A, Tokino T, Flügel RM, Löchelt M. Induction of cellular genes is mediated by the Bel1 transactivator in foamy virus-infected human cells. J Virol 2000; 74:4441-7. [PMID: 10775579 PMCID: PMC111964 DOI: 10.1128/jvi.74.10.4441-4447.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To gain insight into human foamy virus (HFV; also called spumaretrovirus)-induced alterations of cellular genes, the expression profiles of defined genes in HFV-infected primary human cells were analyzed by cDNA array assays. Several distinct cellular genes activated by HFV infection were identified; the identities of the cellular genes were confirmed by RNA blot analyses. Compared with mock-infected controls, the concentrations of cellular Kip2, Egr-1, COUP-TF1, insulin-like growth factor II (IGF-II), and EphB3 mRNAs were significantly increased in HFV-infected cells and showed a gene-specific and time-dependent induction. Immunoblot analyses with antibodies against some of the cellular gene products revealed increased levels of the corresponding proteins. To investigate mechanisms of HFV-induced alterations in cellular gene expression, the capacity of known HFV genes to increase expression of defined cellular genes was analyzed by transient expression experiments. Plasmids that encode the HFV Bel1 transcriptional transactivator were necessary and sufficient to strongly increase expression of p57Kip2, IGF-II, and EphB3 genes in 293T cells. Potential mechanisms and consequences of activation of cellular genes during HFV infection and Bel1 transactivation of the Kip2 gene are discussed.
Collapse
Affiliation(s)
- A Wagner
- Abteilung Retrovirale Genexpression, Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
A current goal in molecular medicine is the development of new strategies to interfere with gene expression in living cells in the hope that novel therapies for human disease will result from these efforts. This review focuses on small-molecule or chemical approaches to manipulate gene expression by modulating either transcription of messenger RNA-coding genes or protein translation. The molecules under study include natural products, designed ligands, and compounds identified through functional screens of combinatorial libraries. The cellular targets for these molecules include DNA, messenger RNA, and the protein components of the transcription, RNA processing, and translational machinery. Studies with model systems have shown promise in the inhibition of both cellular and viral gene transcription and mRNA utilization. Moreover, strategies for both repression and activation of gene transcription have been described. These studies offer promise for treatment of diseases of pathogenic (viral, bacterial, etc.) and cellular origin (cancer, genetic diseases, etc.).
Collapse
Affiliation(s)
- J M Gottesfeld
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
39
|
Newbound GC, O'Rourke JP, Collins ND, Andrews JM, DeWille J, Lairmore MD. Repression of tax-mediated human t-lymphotropic virus type 1 transcription by inducible cAMP early repressor (ICER) protein in peripheral blood mononuclear Cells. J Med Virol 2000. [DOI: 10.1002/1096-9071(200010)62:2<286::aid-jmv22>3.0.co;2-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Abstract
CREB binding protein (CBP) is a cellular coactivator protein that regulates essentially all known pathways of gene expression. The transcriptional coactivator properties of CBP are utilized by at least 25 different transcription factors representing nearly all known classes of DNA binding proteins. Once bound to their target genes, these transcription factors are believed to tether CBP to the promoter, leading to activated transcription. CBP functions to stimulate transcription through direct recruitment of the general transcription machinery as well as acetylation of both histone and transcription factor substrates. Recent observations indicate that a critical dosage of CBP is required for normal development and tumor suppression, and that perturbations in CBP concentrations may disrupt cellular homeostasis. Furthermore, there is accumulating evidence that CBP deregulation plays a direct role in hematopoietic malignancies. However, the molecular events linking CBP deregulation and malignant transformation are unclear. Further insight into the function of CBP, and its role as a tumor suppressor, can be gained through recent studies of the human T-cell leukemia virus, type I (HTLV-I) Tax oncoprotein. Tax is known to utilize CBP to stimulate transcription from the viral promoter. However, recent data suggest that as a consequence of the Tax-CBP interaction, many cellular transcription factor pathways may be deregulated. Tax disruption of CBP function may play a key role in transformation of the HTLV-I-infected cell. Thus, Tax derailment of CBP may lend important information about the tumor suppressor properties of CBP and serve as a model for the role of CBP in hematopoietic malignancies.
Collapse
Affiliation(s)
- Karen Van Orden
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870
| | - Jennifer K. Nyborg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870
- Address correspondence to Jennifer K. Nyborg, Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870. Tel: (970) 491-0420; Fax: (970) 491-0494; E-mail:
| |
Collapse
|