1
|
Novikov DV, Vasilchikova EA, Vasilchikov PI. Prospects for the use of viral proteins for the construction of chimeric toxins. Arch Virol 2024; 169:208. [PMID: 39327316 DOI: 10.1007/s00705-024-06139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/28/2024]
Abstract
One of the actively developing areas of drug development is the creation of chimeric toxins, recombinant bifunctional molecules designed to affect target cells selectively. The prevalent approach involves fusing bacterial and plant toxins with molecules that facilitate targeted delivery. However, the therapeutic use of such toxins often encounters challenges associated with negative side effects. Concurrently, viruses encode proteins possessing toxin-like properties, exerting multiple effects on the vital activity of cells. In contrast to bacterial and plant toxins, the impact of viral proteins is typically milder, presenting a significant advantage by potentially reducing the likelihood of side effects. This review delineates the characteristics of extensively studied viral proteins with toxic and immunomodulatory properties and explores the prospects of incorporating them into chimeric toxins.
Collapse
Affiliation(s)
- D V Novikov
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russia
| | - E A Vasilchikova
- National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - P I Vasilchikov
- National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
| |
Collapse
|
2
|
Chandra P, Patra U, Mukhopadhyay U, Mukherjee A, Halder P, Koley H, Chawla-Sarkar M. Rotavirus non-structural protein 4 usurps host cellular RIPK1-RIPK3 complex to induce MLKL-dependent necroptotic cell death. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119745. [PMID: 38719029 DOI: 10.1016/j.bbamcr.2024.119745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
The dynamic interface between invading viral pathogens and programmed cell death (PCD) of the host is a finely regulated process. Host cellular demise at the end of the viral life cycle ensures the release of progeny virions to initiate new infection cycles. Rotavirus (RV), a diarrheagenic virus with double-stranded RNA genome, has been reported to trigger different types of PCD such as apoptosis and pyroptosis in a highly regulated way to successfully disseminate progeny virions. Recently our lab also showed that induction of MLKL-driven programmed necroptosis by RV. However, the host cellular machinery involved in RV-induced necroptosis and the upstream viral trigger responsible for it remained unaddressed. In the present study, the signalling upstream of MLKL-driven necroptosis has been delineated where the involvement of Receptor interacting serine/threonine kinase 3 (RIPK3) and 1 (RIPK1) from the host side and RV non-structural protein 4 (NSP4) as the viral trigger for necroptosis has been shown. Interestingly, RV-NSP4 was found to be an integral component of the necrosome complex by interacting with RIPK1, thereby bypassing the requirement of RIPK1 kinase activity. Subsequently, NSP4-driven elevated cytosolic Ca2+ concentration and Ca2+-binding to NSP4 lead further to RHIM domain-dependent RIPK1-RIPK3 interaction, RIPK3-dependent MLKL phosphorylation, and eventual necroptosis. Overall, this study presents the interplay between RV-NSP4 and the host cellular necrosome complex to induce necroptotic death of host cells.
Collapse
Affiliation(s)
- Pritam Chandra
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Upayan Patra
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Urbi Mukhopadhyay
- European Molecular Biology Laboratory, 71 Av. Des Martyrs, 38000 Grenoble, France
| | - Arpita Mukherjee
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India.
| |
Collapse
|
3
|
Velikzhanina EI, Sashina TA, Morozova OV, Epifanova NV, Novikova NA. [Variability of genes encoding nonstructural proteins of rotavirus А (Reoviridae: Rotavirus: Rotavirus A) genotype G9P[8] during the period of dominance in the territory of Nizhny Novgorod (central part of Russia) (2011-2020)]. Vopr Virusol 2023; 67:475-486. [PMID: 37264837 DOI: 10.36233/0507-4088-143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 06/03/2023]
Abstract
INTRODUCTION In Russia, rotavirus A is the main cause of severe viral gastroenteritis in young children. The molecular features that allow a rotavirus of a particular genotype to gain an evolutionary advantage remain unclear, therefore, the study of the genetic diversity of rotaviruses based on genes encoding nonstructural proteins (NSPs) responsible for the reproduction of the virus in the cell is an urgent task. OBJECTIVE To study the genetic diversity of rotaviruses of genotype G9P[8], which dominated Nizhny Novgorod in 20112020, based on genes encoding nonstructural proteins. MATERIALS AND METHODS Rotavirus-positive samples were subjected to PCR-genotyping and sequencing of NSP1 NSP5 genes. Phylogenetic analysis was carried out in the MEGA X program. RESULTS In the period 20112020, G9P[8] rotaviruses with four variants of the NSP2 gene were co-circulating in Nizhny Novgorod. New alleles were noted in 2012 (N1-a-III), 2016 (N1-a-IV) and in 2019 (N1-a-II). The appearance of new variants of other genes occurred in 2014 (E1-3, NSP4), 2018 (T1-a3-III, NSP3) and in 2019 (A1-b-II, NSP1). NSP2 gene had the most variable amino acid sequence (16 substitutions), 2 to 7 substitutions were observed in NSP1, NSP3 and NSP4, NSP5 was conservative. DISCUSSION The results obtained are consistent with the literature data and indicate the participation of NSP genes in maintaining the heterogeneity of the rotavirus population. CONCLUSION Until 2018, the genetic diversity of rotaviruses in Nizhny Novgorod was determined by the circulation of strains carrying several alleles of the NSP2 gene and conservative genes NSP1, NSP3NSP5. By the end of the study period, new variants of the genotype G9P[8] were formed in the population, carrying previously unknown combinations of alleles of nonstructural genes.
Collapse
Affiliation(s)
- E I Velikzhanina
- «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
| | - T A Sashina
- «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
| | - O V Morozova
- «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
| | - N V Epifanova
- «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
| | - N A Novikova
- «Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology»
| |
Collapse
|
4
|
Heide F, Stetefeld J. A Structural Analysis of Proteinaceous Nanotube Cavities and Their Applications in Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4080. [PMID: 36432365 PMCID: PMC9698212 DOI: 10.3390/nano12224080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Protein nanotubes offer unique properties to the materials science field that allow them to fulfill various functions in drug delivery, biosensors and energy storage. Protein nanotubes are chemically diverse, modular, biodegradable and nontoxic. Furthermore, although the initial design or repurposing of such nanotubes is highly complex, the field has matured to understand underlying chemical and physical properties to a point where applications are successfully being developed. An important feature of a nanotube is its ability to bind ligands via its internal cavities. As ligands of interest vary in size, shape and chemical properties, cavities have to be able to accommodate very specific features. As such, understanding cavities on a structural level is essential for their effective application. The objective of this review is to present the chemical and physical diversity of protein nanotube cavities and highlight their potential applications in materials science, specifically in biotechnology.
Collapse
Affiliation(s)
- Fabian Heide
- Correspondence: (F.H.); (J.S.); Tel.: +1-(204)-332-0853 (F.H.); +1-(204)-474-9731 (J.S.)
| | - Jörg Stetefeld
- Correspondence: (F.H.); (J.S.); Tel.: +1-(204)-332-0853 (F.H.); +1-(204)-474-9731 (J.S.)
| |
Collapse
|
5
|
Pei X, Wang J, Zheng H, Xiao Q, Wang A, Su W. Catalytically active inclusion bodies (CatIBs) induced by terminally attached self-assembling coiled-coil domains: To enhance the stability of (R)-hydroxynitrile lyase. Enzyme Microb Technol 2021; 153:109915. [PMID: 34670185 DOI: 10.1016/j.enzmictec.2021.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022]
Abstract
The catalytically-active inclusion bodies (CatIBs) represent a promising strategy for immobilizing enzyme without additional carriers and chemicals, which has aroused great attention in academic and industrial communities. In this work, we discovered two natural parallel right-handed coiled-coil tetramer peptides from PDB database by a structural mining strategy. The two self-assembling peptides, NSPdoT from rotavirus and HVdoT from human Vasodilator-stimulated phosphoprotein, efficiently induced the CatIBs formation of a (R)-Hydroxynitrile lyase from Arabidopsis thaliana (AtHNL) in Escherichia coli cells. This is convenient to simultaneously purify and immobilize the target proteins as biocatalysts. As expected, HVdoT-AtHNL and NSPdoT-AtHNL possessed drastically increased tolerance toward lower pH values, which will be very critical to synthesize cyanohydrins under acidic condition for suppressing the non-enzymatic side reaction. In addition. AtHNL-CatIBs are produced at high yield in host cells as bioactive microparticles, which exhibited high thermal and pH stabilities. Therefore, the CatIBs method represent a promising application for the immobilization of enzymes in the biocatalysis field.
Collapse
Affiliation(s)
- Xiaolin Pei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China; College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China.
| | - Jiapao Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Haoteng Zheng
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Qinjie Xiao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Anming Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
6
|
A Calcium Sensor Discovered in Bluetongue Virus Nonstructural Protein 2 Is Critical for Virus Replication. J Virol 2020; 94:JVI.01099-20. [PMID: 32759321 PMCID: PMC7527055 DOI: 10.1128/jvi.01099-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
After entering the host cells, viruses use cellular host factors to ensure a successful virus replication process. For replication in infected cells, members of the Reoviridae family form inclusion body-like structures known as viral inclusion bodies (VIB) or viral factories. Bluetongue virus (BTV) forms VIBs in infected cells through nonstructural protein 2 (NS2), a phosphoprotein. An important regulatory factor critical for VIB formation is phosphorylation of NS2. In our study, we discovered a characteristic calcium-binding EF-hand-like motif in NS2 and found that the calcium binding preferentially affects phosphorylation level of the NS2 and has a role in regulating VIB assembly. Many viruses use specific viral proteins to bind calcium ions (Ca2+) for stability or to modify host cell pathways; however, to date, no Ca2+ binding protein has been reported in bluetongue virus (BTV), the causative agent of bluetongue disease in livestock. Here, using a comprehensive bioinformatics screening, we identified a putative EF-hand-like Ca2+ binding motif in the carboxyl terminal region of BTV nonstructural phosphoprotein 2 (NS2). Subsequently, using a recombinant NS2, we demonstrated that NS2 binds Ca2+ efficiently and that Ca2+ binding was perturbed when the Asp and Glu residues in the motif were substituted by alanine. Using circular dichroism analysis, we found that Ca2+ binding by NS2 triggered a helix-to-coil secondary structure transition. Further, cryo-electron microscopy in the presence of Ca2+ revealed that NS2 forms helical oligomers which, when aligned with the N-terminal domain crystal structure, suggest an N-terminal domain that wraps around the C-terminal domain in the oligomer. Further, an in vitro kinase assay demonstrated that Ca2+ enhanced the phosphorylation of NS2 significantly. Importantly, mutations introduced at the Ca2+ binding site in the viral genome by reverse genetics failed to allow recovery of viable virus, and the NS2 phosphorylation level and assembly of viral inclusion bodies (VIBs) were reduced. Together, our data suggest that NS2 is a dedicated Ca2+ binding protein and that calcium sensing acts as a trigger for VIB assembly, which in turn facilitates virus replication and assembly. IMPORTANCE After entering the host cells, viruses use cellular host factors to ensure a successful virus replication process. For replication in infected cells, members of the Reoviridae family form inclusion body-like structures known as viral inclusion bodies (VIB) or viral factories. Bluetongue virus (BTV) forms VIBs in infected cells through nonstructural protein 2 (NS2), a phosphoprotein. An important regulatory factor critical for VIB formation is phosphorylation of NS2. In our study, we discovered a characteristic calcium-binding EF-hand-like motif in NS2 and found that the calcium binding preferentially affects phosphorylation level of the NS2 and has a role in regulating VIB assembly.
Collapse
|
7
|
Kumar D, Singh A, Kumar P, Uversky VN, Rao CD, Giri R. Understanding the penetrance of intrinsic protein disorder in rotavirus proteome. Int J Biol Macromol 2020; 144:892-908. [PMID: 31739058 PMCID: PMC7112477 DOI: 10.1016/j.ijbiomac.2019.09.166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 01/03/2023]
Abstract
Rotavirus is a major cause of severe acute gastroenteritis in the infants and young children. The past decade has evidenced the role of intrinsically disordered proteins/regions (IDPs)/(IDPRs) in viral and other diseases. In general, (IDPs)/(IDPRs) are considered as dynamic conformational ensembles that devoid of a specific 3D structure, being associated with various important biological phenomena. Viruses utilize IDPs/IDPRs to survive in harsh environments, to evade the host immune system, and to highjack and manipulate host cellular proteins. The role of IDPs/IDPRs in Rotavirus biology and pathogenicity are not assessed so far, therefore, we have designed this study to deeply look at the penetrance of intrinsic disorder in rotavirus proteome consisting 12 proteins encoded by 11 segments of viral genome. Also, for all human rotaviral proteins, we have deciphered molecular recognition features (MoRFs), which are disorder based binding sites in proteins. Our study shows the wide spread of intrinsic disorder in several rotavirus proteins, primarily the nonstructural proteins NSP3, NSP4, and NSP5 that are involved in viral replication, translation, viroplasm formation and/or maturation. This study may serve as a primer for understanding the role of IDPs/MoRFs in rotavirus biology, design of alternative therapeutic strategies, and development of disorder-based drugs.
Collapse
Affiliation(s)
- Deepak Kumar
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Ankur Singh
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Prateek Kumar
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - C Durga Rao
- SRM University, AP - Amaravati, Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522502, India.
| | - Rajanish Giri
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; BioX Center, Indian Institute of Technology Mandi, Himachal Pradesh, India.
| |
Collapse
|
8
|
Abid N, Chillemi G, Salemi M. Coding-Gene Coevolution Analysis of Rotavirus Proteins: A Bioinformatics and Statistical Approach. Genes (Basel) 2019; 11:genes11010028. [PMID: 31878331 PMCID: PMC7016848 DOI: 10.3390/genes11010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 01/12/2023] Open
Abstract
Rotavirus remains a major cause of diarrhea in infants and young children worldwide. The permanent emergence of new genotypes puts the potential effectiveness of vaccines under serious question. The distribution of unusual genotypes subject to viral fitness is influenced by interactions among viral proteins. The present work aimed at analyzing the genetic constellation and the coevolution of rotavirus coding genes for the available rotavirus genotypes. Seventy-two full genome sequences of different genetic constellations were analyzed using a genetic algorithm. The results revealed an extensive genome-wide covariance network among the 12 viral proteins. Altogether, the emergence of new genotypes represents a challenge to the outcome and success of vaccination and the coevolutionary analysis of rotavirus proteins may boost efforts to better understand the interaction networks of proteins during viral replication/transcription.
Collapse
Affiliation(s)
- Nabil Abid
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Rue Ibn Sina, Monastir 5000, Tunisia
- High Institute of Biotechnology of Sidi Thabet, Department of Biotechnology, University Manouba, BP-66, Ariana-Tunis 2020, Tunisia
- Correspondence: or ; Tel.: +216-92–974-000
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest systems, DIBAF, University of Tuscia, via S. Camillo de Lellis s.n.c., 01100 Viterbo, Italy;
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, CNR, Via Giovanni Amendola, 122/O, 70126 Bari, Italy
| | - Marco Salemi
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Emerging Pathogens Institute, P.O. Box 100009, Gainesville, FL 32610-3633, USA;
| |
Collapse
|
9
|
Ren L, Ding S, Song Y, Li B, Ramanathan M, Co J, Amieva MR, Khavari PA, Greenberg HB. Profiling of rotavirus 3'UTR-binding proteins reveals the ATP synthase subunit ATP5B as a host factor that supports late-stage virus replication. J Biol Chem 2019; 294:5993-6006. [PMID: 30770472 DOI: 10.1074/jbc.ra118.006004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/09/2019] [Indexed: 12/22/2022] Open
Abstract
Genome replication and virion assembly of segmented RNA viruses are highly coordinated events, tightly regulated by sequence and structural elements in the UTRs of viral RNA. This process is poorly defined and likely requires the participation of host proteins in concert with viral proteins. In this study, we employed a proteomics-based approach, named RNA-protein interaction detection (RaPID), to comprehensively screen for host proteins that bind to a conserved motif within the rotavirus (RV) 3' terminus. Using this assay, we identified ATP5B, a core subunit of the mitochondrial ATP synthase, as having high affinity to the RV 3'UTR consensus sequences. During RV infection, ATP5B bound to the RV 3'UTR and co-localized with viral RNA and viroplasm. Functionally, siRNA-mediated genetic depletion of ATP5B or other ATP synthase subunits such as ATP5A1 and ATP5O reduced the production of infectious viral progeny without significant alteration of intracellular viral RNA levels or RNA translation. Chemical inhibition of ATP synthase diminished RV yield in both conventional cell culture and in human intestinal enteroids, indicating that ATP5B positively regulates late-stage RV maturation in primary intestinal epithelial cells. Collectively, our results shed light on the role of host proteins in RV genome assembly and particle formation and identify ATP5B as a novel pro-RV RNA-binding protein, contributing to our understanding of how host ATP synthases may galvanize virus growth and pathogenesis.
Collapse
Affiliation(s)
- Lili Ren
- From the Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, California 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; the Palo Alto Veterans Institute of Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304; the School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Siyuan Ding
- From the Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, California 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; the Palo Alto Veterans Institute of Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304.
| | - Yanhua Song
- From the Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, California 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; the Palo Alto Veterans Institute of Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304; the Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bin Li
- From the Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, California 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; the Palo Alto Veterans Institute of Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304; the Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Muthukumar Ramanathan
- the Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Julia Co
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305
| | - Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305
| | - Paul A Khavari
- the Palo Alto Veterans Institute of Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304; the Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305
| | - Harry B Greenberg
- From the Department of Medicine, Division of Gastroenterology and Hepatology, Stanford, California 94305; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305; the Palo Alto Veterans Institute of Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304.
| |
Collapse
|
10
|
Abstract
Viroporins are short polypeptides encoded by viruses. These small membrane proteins assemble into oligomers that can permeabilize cellular lipid bilayers, disrupting the physiology of the host to the advantage of the virus. Consequently, efforts during the last few decades have been focused towards the discovery of viroporin channel inhibitors, but in general these have not been successful to produce licensed drugs. Viroporins are also involved in viral pathogenesis by engaging in critical interactions with viral proteins, or disrupting normal host cellular pathways through coordinated interactions with host proteins. These protein-protein interactions (PPIs) may become alternative attractive drug targets for the development of antivirals. In this sense, while thus far most antiviral molecules have targeted viral proteins, focus is moving towards targeting host proteins that are essential for virus replication. In principle, this largely would overcome the problem of resistance, with the possibility of using repositioned existing drugs. The precise role of these PPIs, their strain- and host- specificities, and the structural determination of the complexes involved, are areas that will keep the fields of virology and structural biology occupied for years to come. In the present review, we provide an update of the efforts in the characterization of the main PPIs for most viroporins, as well as the role of viroporins in these PPIs interactions.
Collapse
Affiliation(s)
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
11
|
Kumar S, Ramappa R, Pamidimukkala K, Rao CD, Suguna K. New tetrameric forms of the rotavirus NSP4 with antiparallel helices. Arch Virol 2018; 163:1531-1547. [DOI: 10.1007/s00705-018-3753-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/13/2018] [Indexed: 01/05/2023]
|
12
|
Sahmani M, Azari S, Tebianian M, Gheibi N, Pourasgari F. Higher Expression Level and Lower Toxicity of Genetically Spliced Rotavirus NSP4 in Comparison to the Full-Length Protein in E. coli. IRANIAN JOURNAL OF BIOTECHNOLOGY 2016; 14:50-57. [PMID: 28959326 DOI: 10.15171/ijb.1233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Rotavirus group A (RVA) is recognized as a major cause of severe gastroenteritis in children and new-born animals. Nonstructural protein 4 (NSP4) is responsible for the enterotoxic activity of these viruses in the villus epithelial cells. Amino acids 114-135 of NSP4 are known to form the diarrhea-inducing region of this viral enterotoxin. Therefore, developing an NSP4 lacking the enterotoxin domain could result in the introduction of a new subunit vaccine against rotaviruses in both humans and animals. OBJECTIVES The aim of this study is the evaluation of rotavirus A NSP4 expression in E. coli expression system before and after removal of the diarrhea-inducing domain, which is the first step towards further immunological studies of the resulting protein. MATERIALS AND METHODS Splicing by overlap extension (SOEing) PCR was used to remove the diarrhea-inducing sequence from the NSP4 cDNA. Both the full-length (FL-NSP4) and the spliced (S-NSP4) cDNA amplicons were cloned into pET-32c and pGEX-6P-2. Expression levels of the recombinant proteins were evaluated in E. coli BL21 (DE3) by Western blot analysis. In addition, the toxicity of pET plasmids bearing the S-NSP4 and FL-NSP4 fragments was investigated by plasmid stability test. RESULTS For FL-NSP4, protein expression was detected for the strain containing the pGEX:FL-NSP4 plasmid, but not for the strain carrying pET:FL-NSP4. Hourly sampling up to 3 h showed that the protein production decreased by time. In contrast, expression of S-NSP4 was detected for pET:S-NSP4 strain, but not for pGEX:S-NSP4. Plasmid stability test showed that pET:S-NSP4 recombinant plasmid was almost stable, while pET:FL-NSP4 was unstable. CONCLUSIONS This is the first report of production of rotavirus NSP4 lacking the diarrhea-inducing domain (S-NSP4). SNSP4 shows less toxicity in this expression system and potentially could be a promising goal for rotavirus immunological and vaccine studies in the future.
Collapse
Affiliation(s)
- Mehdi Sahmani
- Department of Clinical Biochemistry and Genetics, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Siavash Azari
- Department of Biotechnology, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Majid Tebianian
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farzaneh Pourasgari
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Iran
| |
Collapse
|
13
|
Investigation of Stilbenoids as Potential Therapeutic Agents for Rotavirus Gastroenteritis. Adv Virol 2015; 2015:293524. [PMID: 26379708 PMCID: PMC4563088 DOI: 10.1155/2015/293524] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 12/20/2022] Open
Abstract
Rotavirus (RV) infections cause severe diarrhea in infants and young children worldwide. Vaccines are available but cost prohibitive for many countries and only reduce severe symptoms. Vaccinated infants continue to shed infectious particles, and studies show decreased efficacy of the RV vaccines in tropical and subtropical countries where they are needed most. Continuing surveillance for new RV strains, assessment of vaccine efficacy, and development of cost effective antiviral drugs remain an important aspect of RV studies. This study was to determine the efficacy of antioxidant and anti-inflammatory stilbenoids to inhibit RV replication. Peanut (A. hypogaea) hairy root cultures were induced to produce stilbenoids, which were purified by high performance countercurrent chromatography (HPCCC) and analyzed by HPLC. HT29.f8 cells were infected with RV in the presence stilbenoids. Cell viability counts showed no cytotoxic effects on HT29.f8 cells. Viral infectivity titers were calculated and comparatively assessed to determine the effects of stilbenoid treatments. Two stilbenoids, trans-arachidin-1 and trans-arachidin-3, show a significant decrease in RV infectivity titers. Western blot analyses performed on the infected cell lysates complemented the infectivity titrations and indicated a significant decrease in viral replication. These studies show the therapeutic potential of the stilbenoids against RV replication.
Collapse
|
14
|
The Emerging Roles of Viroporins in ER Stress Response and Autophagy Induction during Virus Infection. Viruses 2015; 7:2834-57. [PMID: 26053926 PMCID: PMC4488716 DOI: 10.3390/v7062749] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 01/14/2023] Open
Abstract
Viroporins are small hydrophobic viral proteins that oligomerize to form aqueous pores on cellular membranes. Studies in recent years have demonstrated that viroporins serve important functions during virus replication and contribute to viral pathogenicity. A number of viroporins have also been shown to localize to the endoplasmic reticulum (ER) and/or its associated membranous organelles. In fact, replication of most RNA viruses is closely linked to the ER, and has been found to cause ER stress in the infected cells. On the other hand, autophagy is an evolutionarily conserved "self-eating" mechanism that is also observed in cells infected with RNA viruses. Both ER stress and autophagy are also known to modulate a wide variety of signaling pathways including pro-inflammatory and innate immune response, thereby constituting a major aspect of host-virus interactions. In this review, the potential involvement of viroporins in virus-induced ER stress and autophagy will be discussed.
Collapse
|
15
|
Scott C, Griffin S. Viroporins: structure, function and potential as antiviral targets. J Gen Virol 2015; 96:2000-2027. [PMID: 26023149 DOI: 10.1099/vir.0.000201] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The channel-forming activity of a family of small, hydrophobic integral membrane proteins termed 'viroporins' is essential to the life cycles of an increasingly diverse range of RNA and DNA viruses, generating significant interest in targeting these proteins for antiviral development. Viroporins vary greatly in terms of their atomic structure and can perform multiple functions during the virus life cycle, including those distinct from their role as oligomeric membrane channels. Recent progress has seen an explosion in both the identification and understanding of many such proteins encoded by highly significant pathogens, yet the prototypic M2 proton channel of influenza A virus remains the only example of a viroporin with provenance as an antiviral drug target. This review attempts to summarize our current understanding of the channel-forming functions for key members of this growing family, including recent progress in structural studies and drug discovery research, as well as novel insights into the life cycles of many viruses revealed by a requirement for viroporin activity. Ultimately, given the successes of drugs targeting ion channels in other areas of medicine, unlocking the therapeutic potential of viroporins represents a valuable goal for many of the most significant viral challenges to human and animal health.
Collapse
Affiliation(s)
- Claire Scott
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Stephen Griffin
- Leeds Institute of Cancer & Pathology and Leeds CRUK Clinical Centre, Faculty of Medicine and Health, St James's University Hospital, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
16
|
Arai S, Yonezawa Y, Okazaki N, Matsumoto F, Shibazaki C, Shimizu R, Yamada M, Adachi M, Tamada T, Kawamoto M, Tokunaga H, Ishibashi M, Blaber M, Tokunaga M, Kuroki R. Structure of a highly acidic β-lactamase from the moderate halophile Chromohalobacter sp. 560 and the discovery of a Cs(+)-selective binding site. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:541-54. [PMID: 25760604 PMCID: PMC4356365 DOI: 10.1107/s1399004714027734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/19/2014] [Indexed: 11/17/2022]
Abstract
Environmentally friendly absorbents are needed for Sr(2+) and Cs(+), as the removal of the radioactive Sr(2+) and Cs(+) that has leaked from the Fukushima Nuclear Power Plant is one of the most important problems in Japan. Halophilic proteins are known to have many acidic residues on their surface that can provide specific binding sites for metal ions such as Cs(+) or Sr(2+). The crystal structure of a halophilic β-lactamase from Chromohalobacter sp. 560 (HaBLA) was determined to resolutions of between 1.8 and 2.9 Å in space group P31 using X-ray crystallography. Moreover, the locations of bound Sr(2+) and Cs(+) ions were identified by anomalous X-ray diffraction. The location of one Cs(+)-specific binding site was identified in HaBLA even in the presence of a ninefold molar excess of Na(+) (90 mM Na(+)/10 mM Cs(+)). From an activity assay using isothermal titration calorimetry, the bound Sr(2+) and Cs(+) ions do not significantly affect the enzymatic function of HaBLA. The observation of a selective and high-affinity Cs(+)-binding site provides important information that is useful for the design of artificial Cs(+)-binding sites that may be useful in the bioremediation of radioactive isotopes.
Collapse
Affiliation(s)
- Shigeki Arai
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Yasushi Yonezawa
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Nobuo Okazaki
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Fumiko Matsumoto
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Chie Shibazaki
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Rumi Shimizu
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Mitsugu Yamada
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Motoyasu Adachi
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Taro Tamada
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| | - Masahide Kawamoto
- Saga Prefectural Regional Industry Support Center, Kyushu Synchrotron Light Research Center, 8-7 Yayoigaoka, Tosu, Saga 841-0005, Japan
| | - Hiroko Tokunaga
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Matsujiro Ishibashi
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Michael Blaber
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
- College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306-4300, USA
| | - Masao Tokunaga
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Ryota Kuroki
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195, Japan
| |
Collapse
|
17
|
Dormitzer PR. Rotaviruses. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015:1854-1864.e4. [DOI: 10.1016/b978-1-4557-4801-3.00152-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Abstract
UNLABELLED Rotavirus (RV) nonstructural protein 4 (NSP4) is a virulence factor that disrupts cellular Ca(2+) homeostasis and plays multiple roles regulating RV replication and the pathophysiology of RV-induced diarrhea. Although its native oligomeric state is unclear, crystallographic studies of the coiled-coil domain (CCD) of NSP4 from two different strains suggest that it functions as a tetramer or a pentamer. While the CCD of simian strain SA11 NSP4 forms a tetramer that binds Ca(2+) at its core, the CCD of human strain ST3 forms a pentamer lacking the bound Ca(2+) despite the residues (E120 and Q123) that coordinate Ca(2+) binding being conserved. In these previous studies, while the tetramer crystallized at neutral pH, the pentamer crystallized at low pH, suggesting that preference for a particular oligomeric state is pH dependent and that pH could influence Ca(2+) binding. Here, we sought to examine if the CCD of NSP4 from a single RV strain can exist in two oligomeric states regulated by Ca(2+) or pH. Biochemical, biophysical, and crystallographic studies show that while the CCD of SA11 NSP4 exhibits high-affinity binding to Ca(2+) at neutral pH and forms a tetramer, it does not bind Ca(2+) at low pH and forms a pentamer, and the transition from tetramer to pentamer is reversible with pH. Mutational analysis shows that Ca(2+) binding is necessary for the tetramer formation, as an E120A mutant forms a pentamer. We propose that the structural plasticity of NSP4 regulated by pH and Ca(2+) may form a basis for its pleiotropic functions during RV replication. IMPORTANCE The nonstructural protein NSP4 of rotavirus is a multifunctional protein that plays an important role in virus replication, morphogenesis, and pathogenesis. Previous crystallography studies of the coiled-coil domain (CCD) of NSP4 from two different rotavirus strains showed two distinct oligomeric states, a Ca(2+)-bound tetrameric state and a Ca(2+)-free pentameric state. Whether NSP4 CCD from the same strain can exist in different oligomeric states and what factors might regulate its oligomeric preferences are not known. This study used a combination of biochemical, biophysical, and crystallography techniques and found that the NSP4 CCD can undergo a reversible transition from a Ca(2+)-bound tetramer to a Ca(2+)-free pentamer in response to changes in pH. From these studies, we hypothesize that this remarkable structural adaptability of the CCD forms a basis for the pleiotropic functional properties of NSP4.
Collapse
|
19
|
Desselberger U. Rotaviruses. Virus Res 2014; 190:75-96. [PMID: 25016036 DOI: 10.1016/j.virusres.2014.06.016] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 01/12/2023]
|
20
|
Malik YS, Kumar N, Sharma K, Ghosh S, Bányai K, Balasubramanian G, Kobayashi N, Matthijnssens J. Molecular analysis of non structural rotavirus group A enterotoxin gene of bovine origin from India. INFECTION GENETICS AND EVOLUTION 2014; 25:20-7. [DOI: 10.1016/j.meegid.2014.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 11/15/2022]
|
21
|
Gamble AJ, Peacock AFA. De novo design of peptide scaffolds as novel preorganized ligands for metal-ion coordination. Methods Mol Biol 2014; 1216:211-31. [PMID: 25213418 DOI: 10.1007/978-1-4939-1486-9_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter describes how de novo designed peptides can be used as novel preorganized ligands for metal ion coordination. The focus is on the design of peptides which are programmed to spontaneously self-assemble into α-helical coiled coils in aqueous solution, and how metal ion binding sites can be engineered onto and into these structures. In addition to describing the various design principles, some key examples are covered illustrating the success of this approach, including a more detailed example in the case study.
Collapse
Affiliation(s)
- Aimee J Gamble
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
22
|
Ball JM, Schroeder ME, Williams CV, Schroeder F, Parr RD. Mutational analysis of the rotavirus NSP4 enterotoxic domain that binds to caveolin-1. Virol J 2013; 10:336. [PMID: 24220211 PMCID: PMC3924327 DOI: 10.1186/1743-422x-10-336] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/22/2013] [Indexed: 01/11/2023] Open
Abstract
Background Rotavirus (RV) nonstructural protein 4 (NSP4) is the first described viral enterotoxin, which induces early secretory diarrhea in neonatal rodents. Our previous data show a direct interaction between RV NSP4 and the structural protein of caveolae, caveolin-1 (cav-1), in yeast and mammalian cells. The binding site of cav-1 mapped to the NSP4 amphipathic helix, and led us to examine which helical face was responsible for the interaction. Methods A panel of NSP4 mutants were prepared and tested for binding to cav-1 by yeast two hybrid and direct binding assays. The charged residues of the NSP4 amphipathic helix were changed to alanine (NSP446-175-ala6); and three residues in the hydrophobic face were altered to charged amino acids (NSP446-175-HydroMut). In total, twelve mutants of NSP4 were generated to define the cav-1 binding site. Synthetic peptides corresponding to the hydrophobic and charged faces of NSP4 were examined for structural changes by circular dichroism (CD) and diarrhea induction by a neonatal mouse study. Results Mutations of the hydrophilic face (NSP446-175-Ala6) bound cav-1 akin to wild type NSP4. In contrast, disruption of the hydrophobic face (NSP446-175-HydroMut) failed to bind cav-1. These data suggest NSP4 and cav-1 associate via a hydrophobic interaction. Analyses of mutant synthetic peptides in which the hydrophobic residues in the enterotoxic domain of NSP4 were altered suggested a critical hydrophobic residue. Both NSP4HydroMut112-140, that contains three charged amino acids (aa113, 124, 131) changed from the original hydrophobic residues and NSP4AlaAcidic112-140 that contained three alanine residues substituted for negatively charged (aa114, 125, 132) amino acids failed to induce diarrhea. Whereas peptides NSP4wild type 112−140 and NSP4AlaBasic112-140 that contained three alanine substituted for positively charged (aa115, 119, 133) amino acids, induced diarrhea. Conclusions These data show that the cav-1 binding domain is within the hydrophobic face of the NSP4 amphipathic helix. The integrity of the helical structure is important for both cav-1 binding and diarrhea induction implying a connection between NSP4 functional and binding activities.
Collapse
Affiliation(s)
- Judith M Ball
- Department of Pathobiology, Texas A&M University, TVMC, College Station, Texas 77843-4467, USA.
| | | | | | | | | |
Collapse
|
23
|
González-Ochoa G, Menchaca GE, Hernández CE, Rodríguez C, Tamez RS, Contreras JF. Mutation distribution in the NSP4 protein in rotaviruses isolated from Mexican children with moderate to severe gastroenteritis. Viruses 2013; 5:792-805. [PMID: 23478638 PMCID: PMC3705296 DOI: 10.3390/v5030792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 01/08/2023] Open
Abstract
The NSP4 protein is a multifunctional protein that plays a role in the morphogenesis and pathogenesis of the rotavirus. Although NSP4 is considered an enterotoxin, the relationship between gastroenteritis severity and amino acid variations in NSP4 of the human rotavirus remains unclear. In this study, we analyzed the sequence diversity of NSP4 and the severity of gastroenteritis of children with moderate to severe gastroenteritis. The rotavirus-infected children were hospitalized before the rotavirus vaccine program in Mexico. All children had diarrhea within 1-4 days, 44 (88%) were vomiting and 35 (70%) had fevers. The severity analysis showed that 13 (26%) cases had mild gastroenteritis, 23 (46%) moderate gastroenteritis and 14 (28%) severe. NSP4 phylogenetic analysis showed three clusters within the genotype E1. Sequence analysis revealed similar mutations inside each cluster, and an uncommon variation in residue 144 was found in five of the Mexican NSP4 sequences. Most of the amino acid variations were located in the VP4 and VP6 binding site domains, with no relationship to different grades of gastroenteritis. This finding indicates that severe gastroenteritis caused by the rotavirus appears to be related to diverse viral or cellular factors instead of NSP4 activity as a unique pathogenic factor.
Collapse
Affiliation(s)
- Guadalupe González-Ochoa
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, CP. 66451, Mexico.
| | | | | | | | | | | |
Collapse
|
24
|
Inoue T, Tsai B. How viruses use the endoplasmic reticulum for entry, replication, and assembly. Cold Spring Harb Perspect Biol 2013; 5:a013250. [PMID: 23284050 DOI: 10.1101/cshperspect.a013250] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To cause infection, a virus enters a host cell, replicates, and assembles, with the resulting new viral progeny typically released into the extracellular environment to initiate a new infection round. Virus entry, replication, and assembly are dynamic and coordinated processes that require precise interactions with host components, often within and surrounding a defined subcellular compartment. Accumulating evidence pinpoints the endoplasmic reticulum (ER) as a crucial organelle supporting viral entry, replication, and assembly. This review focuses on the molecular mechanism by which different viruses co-opt the ER to accomplish these crucial infection steps. Certain bacterial toxins also hijack the ER for entry. An interdisciplinary approach, using rigorous biochemical and cell biological assays coupled with advanced microscopy strategies, will push to the next level our understanding of the virus-ER interaction during infection.
Collapse
Affiliation(s)
- Takamasa Inoue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | | |
Collapse
|
25
|
Chacko AR, Zwart PH, Read RJ, Dodson EJ, Rao CD, Suguna K. Severe diffraction anisotropy, rotational pseudosymmetry and twinning complicate the refinement of a pentameric coiled-coil structure of NSP4 of rotavirus. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1541-8. [DOI: 10.1107/s090744491203836x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 09/07/2012] [Indexed: 11/10/2022]
Abstract
The crystal structure of the region spanning residues 95–146 of the rotavirus nonstructural protein NSP4 from the asymptomatic human strain ST3 was determined at a resolution of 2.5 Å. Severe diffraction anisotropy, rotational pseudosymmetry and twinning complicated the refinement of this structure. A systematic explanation confirming the crystal pathologies and describing how the structure was successfully refined is given in this report.
Collapse
|
26
|
Zambrano JL, Sorondo O, Alcala A, Vizzi E, Diaz Y, Ruiz MC, Michelangeli F, Liprandi F, Ludert JE. Rotavirus infection of cells in culture induces activation of RhoA and changes in the actin and tubulin cytoskeleton. PLoS One 2012; 7:e47612. [PMID: 23082182 PMCID: PMC3474729 DOI: 10.1371/journal.pone.0047612] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/19/2012] [Indexed: 12/20/2022] Open
Abstract
Rotavirus infection induces an increase in [Ca2+]cyto, which in turn may affect the distribution of the cytoskeleton proteins in the infected cell. Changes in microfilaments, including the formation of stress fibers, were observed starting at 0.5 h.p.i. using fluorescent phalloidin. Western blot analysis indicated that RhoA is activated between 0.5 and 1 h.p.i. Neither the phosphorylation of RhoA nor the formation of stress fibers were observed in cells infected with virions pre-treated with an anti-VP5* non-neutralizing mAb, suggesting that RhoA activation is stimulated by the interaction of the virus with integrins forming the cell receptor complex. In addition, the structure of the tubulin cytoskeleton was also studied. Alterations of the microtubules were evident starting at 3 h.p.i. and by 7 h.p.i. when microtubules were markedly displaced toward the periphery of the cell cytoplasm. Loading of rotavirus-infected cells with either a Ca2+ chelator (BAPTA) or transfection with siRNAs to silence NSP4, reversed the changes observed in both the microfilaments and microtubules distribution, but not the appearance of stress fibers. These results indicate that alterations in the distribution of actin microfilaments are initiated early during infection by the activation of RhoA, and that latter changes in the Ca2+ homeostasis promoted by NSP4 during infection may be responsible for other alterations in the actin and tubulin cytoskeleton.
Collapse
Affiliation(s)
- Jose Luis Zambrano
- Instituto Venezolano de Investigaciones Científicas (IVIC), CMBC. Caracas, Venezuela
- * E-mail: (JLZ); (JL)
| | - Orlando Sorondo
- Instituto Venezolano de Investigaciones Científicas (IVIC), CMBC. Caracas, Venezuela
- Escuela de Biología, Universidad Central de Venezuela (UCV), Caracas, Venezuela
| | - Ana Alcala
- Instituto Venezolano de Investigaciones Científicas (IVIC), CMBC. Caracas, Venezuela
| | - Esmeralda Vizzi
- Instituto Venezolano de Investigaciones Científicas (IVIC), CMBC. Caracas, Venezuela
| | - Yuleima Diaz
- University of Bergen Thormøhlensgate 55, Bergen, Norway
| | - Marie Christine Ruiz
- Instituto Venezolano de Investigaciones Científicas (IVIC), CBB. Caracas, Venezuela
| | - Fabian Michelangeli
- Instituto Venezolano de Investigaciones Científicas (IVIC), CBB. Caracas, Venezuela
| | - Ferdinando Liprandi
- Instituto Venezolano de Investigaciones Científicas (IVIC), CMBC. Caracas, Venezuela
| | - Juan E. Ludert
- Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, México
- * E-mail: (JLZ); (JL)
| |
Collapse
|
27
|
Andersson AMC, Håkansson KO, Jensen BAH, Christensen D, Andersen P, Thomsen AR, Christensen JP. Increased immunogenicity and protective efficacy of influenza M2e fused to a tetramerizing protein. PLoS One 2012; 7:e46395. [PMID: 23049700 PMCID: PMC3462204 DOI: 10.1371/journal.pone.0046395] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/31/2012] [Indexed: 12/18/2022] Open
Abstract
The ectodomain of the matrix 2 protein (M2e) of influenza A virus represents an attractive target for developing a universal influenza A vaccine, with its sequence being highly conserved amongst human variants of this virus. With the aim of targeting conformational epitopes presumably shared by diverse influenza A viruses, a vaccine (M2e-NSP4) was constructed linking M2e (in its consensus sequence) to the rotavirus fragment NSP498–135; due to its coiled-coil region this fragment is known to form tetramers in aqueous solution and in this manner we hoped to mimick the natural configuration of M2e as presented in membranes. M2e-NSP4 was then evaluated side-by-side with synthetic M2e peptide for its immunogenicity and protective efficacy in a murine influenza challenge model. Here we demonstrate that M2e fused to the tetramerizing protein induces an accelerated, augmented and more broadly reactive antibody response than does M2e peptide as measured in two different assays. Most importantly, vaccination with M2e-NSP4 caused a significant decrease in lung virus load early after challenge with influenza A virus and maintained its efficacy against a lethal challenge even at very low vaccine doses. Based on the results presented in this study M2e-NSP4 merits further investigation as a candidate for or as a component of a universal influenza A vaccine.
Collapse
Affiliation(s)
- Anne-Marie Carola Andersson
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Allan Randrup Thomsen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jan Pravsgaard Christensen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
28
|
Hu L, Crawford SE, Hyser JM, Estes MK, Prasad BVV. Rotavirus non-structural proteins: structure and function. Curr Opin Virol 2012; 2:380-8. [PMID: 22789743 DOI: 10.1016/j.coviro.2012.06.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
Abstract
The replication of rotavirus is a complex process that is orchestrated by an exquisite interplay between the rotavirus non-structural and structural proteins. Subsequent to particle entry and genome transcription, the non-structural proteins coordinate and regulate viral mRNA translation and the formation of electron-dense viroplasms that serve as exclusive compartments for genome replication, genome encapsidation and capsid assembly. In addition, non-structural proteins are involved in antagonizing the antiviral host response and in subverting important cellular processes to enable successful virus replication. Although far from complete, new structural studies, together with functional studies, provide substantial insight into how the non-structural proteins coordinate rotavirus replication. This brief review highlights our current knowledge of the structure-function relationships of the rotavirus non-structural proteins, as well as fascinating questions that remain to be understood.
Collapse
Affiliation(s)
- Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | | | | | | | | |
Collapse
|
29
|
Elucidation of the Rotavirus NSP4-Caveolin-1 and -Cholesterol Interactions Using Synthetic Peptides. JOURNAL OF AMINO ACIDS 2012; 2012:575180. [PMID: 22500212 PMCID: PMC3303745 DOI: 10.1155/2012/575180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 11/16/2011] [Indexed: 01/19/2023]
Abstract
Rotavirus (RV) NSP4, the first described viral enterotoxin, is a multifunctional glycoprotein that contributes to viral pathogenesis, morphogenesis, and replication. NSP4 binds both termini of caveolin-1 and is isolated from caveolae fractions that are rich in anionic phospholipids and cholesterol. These interactions indicate that cholesterol/caveolin-1 plays a role in NSP4 transport to the cell surface, which is essential to its enterotoxic activity. Synthetic peptides were utilized to identify target(s) of intervention by exploring the NSP4-caveolin-1 and -cholesterol interactions. NSP4112–140 that overlaps the caveolin-1 binding domain and a cholesterol recognition amino acid consensus (CRAC) motif and both termini of caveolin-1 (N-caveolin-12–20, 19–40 and C-caveolin-1161–180) were synthesized. Direct fluorescence-binding assays were employed to determine binding affinities of the NSP4-caveolin-1 peptides and cholesterol. Intracellular cholesterol alteration revealed a redistribution of NSP4 and disintegration of viroplasms. These data further imply interruption of NSP4112–140-N-caveolin-119–40 and cholesterol interactions may block NSP4 intracellular transport, hence enterotoxicity.
Collapse
|
30
|
Structural insights into the coupling of virion assembly and rotavirus replication. Nat Rev Microbiol 2012; 10:165-77. [PMID: 22266782 DOI: 10.1038/nrmicro2673] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Viral replication is rapid and robust, but it is far from a chaotic process. Instead, successful production of infectious progeny requires that events occur in the correct place and at the correct time. Rotaviruses (segmented double-stranded RNA viruses of the Reoviridae family) seem to govern their replication through ordered disassembly and assembly of a triple-layered icosahedral capsid. In recent years, high-resolution structural data have provided unprecedented insight into these events. In this Review, we explore the current understanding of rotavirus replication and how it compares to replication of other Reoviridae family members.
Collapse
|
31
|
Didsbury A, Wang C, Verdon D, Sewell MA, McIntosh JD, Taylor JA. Rotavirus NSP4 is secreted from infected cells as an oligomeric lipoprotein and binds to glycosaminoglycans on the surface of non-infected cells. Virol J 2011; 8:551. [PMID: 22185400 PMCID: PMC3305486 DOI: 10.1186/1743-422x-8-551] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/20/2011] [Indexed: 12/22/2022] Open
Abstract
Background Nonstructural glycoprotein 4 (NSP4) encoded by rotavirus is the only viral protein currently believed to function as an enterotoxin. NSP4 is synthesized as an intracellular transmembrane glycoprotein and as such is essential for virus assembly. Infection of polarized Caco-2 cells with rotavirus also results in the secretion of glycosylated NSP4 apparently in a soluble form despite retention of its transmembrane domain. We have examined the structure, solubility and cell-binding properties of this secreted form of NSP4 to further understand the biochemical basis for its enterotoxic function. We show here that NSP4 is secreted as discrete detergent-sensitive oligomers in a complex with phospholipids and demonstrate that this secreted form of NSP4 can bind to glycosaminoglycans present on the surface of a range of different cell types. Methods NSP4 was purified from the medium of infected cells after ultracentrifugation and ultrafiltration by successive lectin-affinity and ion exchange chromatography. Oligomerisation of NSP4 was examined by density gradient centrifugation and chemical crosslinking and the lipid content was assessed by analytical thin layer chromatography and flame ionization detection. Binding of NSP4 to various cell lines was measured using a flow cytometric-based assay. Results Secreted NSP4 formed oligomers that contained phospholipid but dissociated to a dimeric species in the presence of non-ionic detergent. The purified glycoprotein binds to the surface of various non-infected cells of distinct lineage. Binding of NSP4 to HT-29, a cell line of intestinal origin, is saturable and independent of divalent cations. Complementary biochemical approaches reveal that NSP4 binds to sulfated glycosaminoglycans on the plasma membrane. Conclusion Our study is the first to analyze an authentic (i.e. non-recombinant) form of NSP4 that is secreted from virus-infected cells. Despite retention of the transmembrane domain, secreted NSP4 remains soluble in an aqueous environment as an oligomeric lipoprotein that can bind to various cell types via an interaction with glycosaminoglycans. This broad cellular tropism exhibited by NSP4 may have implications for the pathophysiology of rotavirus disease.
Collapse
Affiliation(s)
- Alicia Didsbury
- School of Biological Sciences, University of Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
32
|
Chacko AR, Jeyakanthan J, Ueno G, Sekar K, Rao CD, Dodson EJ, Suguna K, Read RJ. A new pentameric structure of rotavirus NSP4 revealed by molecular replacement. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 68:57-61. [DOI: 10.1107/s0907444911049705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 11/21/2011] [Indexed: 11/10/2022]
|
33
|
Novel pentameric structure of the diarrhea-inducing region of the rotavirus enterotoxigenic protein NSP4. J Virol 2011; 85:12721-32. [PMID: 21917949 DOI: 10.1128/jvi.00349-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A novel pentameric structure which differs from the previously reported tetrameric form of the diarrhea-inducing region of the rotavirus enterotoxin NSP4 is reported here. A significant feature of this pentameric form is the absence of the calcium ion located in the core region of the tetrameric structures. The lysis of cells, the crystallization of the region spanning residues 95 to 146 of NSP4 (NSP4(95-146)) of strain ST3 (ST3:NSP4(95-146)) at acidic pH, and comparative studies of the recombinant purified peptide under different conditions by size-exclusion chromatography (SEC) and of the crystal structures suggested pH-, Ca(2+)-, and protein concentration-dependent oligomeric transitions in the peptide. Since the NSP4(95-146) mutant lacks the N-terminal amphipathic domain (AD) and most of the C-terminal flexible region (FR), to demonstrate that the pentameric transition is not a consequence of the lack of the N- and C-terminal regions, glutaraldehyde cross-linking of the ΔN72 and ΔN94 mutant proteins, which contain or lack the AD, respectively, but possess the complete C-terminal FR, was carried out. The results indicate the presence of pentamers in preparations of these longer mutants. Detailed SEC analyses of ΔN94 prepared under different conditions, however, revealed protein concentration-dependent but metal ion- and pH-independent pentamer accumulation at high concentrations which dissociated into tetramers and lower oligomers at low protein concentrations. While calcium appeared to stabilize the tetramer, magnesium in particular stabilized the dimer. ΔN72 existed primarily in the multimeric form under all conditions. These findings of a calcium-free NSP4 pentamer and its concentration-dependent and largely calcium-independent oligomeric transitions open up a new dimension in an understanding of the structural basis of its multitude of functions.
Collapse
|
34
|
Gibbons TF, Storey SM, Williams CV, McIntosh A, Mitchel DM, Parr RD, Schroeder ME, Schroeder F, Ball JM. Rotavirus NSP4: Cell type-dependent transport kinetics to the exofacial plasma membrane and release from intact infected cells. Virol J 2011; 8:278. [PMID: 21645398 PMCID: PMC3129587 DOI: 10.1186/1743-422x-8-278] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/06/2011] [Indexed: 11/10/2022] Open
Abstract
Background Rotavirus NSP4 localizes to multiple intracellular sites and is multifunctional, contributing to RV morphogenesis, replication and pathogenesis. One function of NSP4 is the induction of early secretory diarrhea by binding surface receptors to initiate signaling events. The aims of this study were to determine the transport kinetics of NSP4 to the exofacial plasma membrane (PM), the subsequent release from intact infected cells, and rebinding to naïve and/or neighboring cells in two cell types. Methods Transport kinetics was evaluated using surface-specific biotinylation/streptavidin pull-downs and exofacial exposure of NSP4 was confirmed by antibody binding to intact cells, and fluorescent resonant energy transfer. Transfected cells similarly were monitored to discern NSP4 movement in the absence of infection or other viral proteins. Endoglycosidase H digestions, preparation of CY3- or CY5- labeled F(ab)2 fragments, confocal imaging, and determination of preferential polarized transport employed standard laboratory techniques. Mock-infected, mock-biotinylated and non-specific antibodies served as controls. Results Only full-length (FL), endoglycosidase-sensitive NSP4 was detected on the exofacial surface of two cell types, whereas the corresponding cell lysates showed multiple glycosylated forms. The C-terminus of FL NSP4 was detected on exofacial-membrane surfaces at different times in different cell types prior to its release into culture media. Transport to the PM was rapid and distinct yet FL NSP4 was secreted from both cell types at a time similar to the release of virus. NSP4-containing, clarified media from both cells bound surface molecules of naïve cells, and imaging showed secreted NSP4 from one or more infected cells bound neighboring cell membranes in culture. Preferential sorting to apical or basolateral membranes also was distinct in different polarized cells. Conclusions The intracellular transport of NSP4 to the PM, translocation across the PM, exposure of the C-terminus on the cell surface and subsequent secretion occurs via an unusual, complex and likely cell-dependent process. The exofacial exposure of the C-terminus poses several questions and suggests an atypical mechanism by which NSP4 traverses the PM and interacts with membrane lipids. Mechanistic details of the unconventional trafficking of NSP4, interactions with host-cell specific molecules and subsequent release require additional study.
Collapse
Affiliation(s)
- Thomas F Gibbons
- Department of Pathobiology Texas A&M University, TVMC, College Station, TX 77843-4467, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Uversky VN. Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chem Soc Rev 2011; 40:1623-34. [DOI: 10.1039/c0cs00057d] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Rotavirus disrupts calcium homeostasis by NSP4 viroporin activity. mBio 2010; 1. [PMID: 21151776 PMCID: PMC2999940 DOI: 10.1128/mbio.00265-10] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/27/2010] [Indexed: 12/22/2022] Open
Abstract
Many viruses alter intracellular calcium homeostasis. The rotavirus nonstructural protein 4 (NSP4), an endoplasmic reticulum (ER) transmembrane glycoprotein, increases intracellular levels of cytoplasmic Ca2+ ([Ca2+]cyto) through a phospholipase C-independent pathway, which is required for virus replication and morphogenesis. However, the NSP4 domain and mechanism that increases [Ca2+]cyto are unknown. We identified an NSP4 domain (amino acids [aa] 47 to 90) that inserts into membranes and has structural characteristics of viroporins, a class of small hydrophobic viral proteins that disrupt membrane integrity and ion homeostasis to facilitate virus entry, assembly, or release. Mutational analysis showed that NSP4 viroporin activity was mediated by an amphipathic α-helical domain downstream of a conserved lysine cluster. The lysine cluster directed integral membrane insertion of the viroporin domain and was critical for viroporin activity. In epithelial cells, expression of wild-type NSP4 increased the levels of free cytoplasmic Ca2+ by 3.7-fold, but NSP4 viroporin mutants maintained low levels of [Ca2+]cyto, were retained in the ER, and failed to form cytoplasmic vesicular structures, called puncta, which surround viral replication and assembly sites in rotavirus-infected cells. When [Ca2+]cyto was increased pharmacologically with thapsigargin, viroporin mutants formed puncta, showing that elevation of calcium levels and puncta formation are distinct functions of NSP4 and indicating that NSP4 directly or indirectly responds to elevated cytoplasmic calcium levels. NSP4 viroporin activity establishes the mechanism for NSP4-mediated elevation of [Ca2+]cyto, a critical event that regulates rotavirus replication and virion assembly. Rotavirus is the leading cause of viral gastroenteritis in children and young animals. Rotavirus infection and expression of nonstructural protein 4 (NSP4) alone dramatically increase cytosolic calcium, which is essential for replication and assembly of infectious virions. This work identifies the intracellular mechanism by which NSP4 disrupts calcium homeostasis by showing that NSP4 is a viroporin, a class of virus-encoded transmembrane pores. Mutational analyses identified residues critical for viroporin activity. Viroporin mutants did not elevate the levels of cytoplasmic calcium in mammalian cells and were maintained in the endoplasmic reticulum rather than forming punctate vesicular structures that are critical for virus replication and morphogenesis. Pharmacological elevation of cytoplasmic calcium levels rescued puncta formation in viroporin mutants, demonstrating that elevation of calcium levels and puncta formation are distinct NSP4 functions. While viroporins typically function in virus entry or release, elevation of calcium levels by NSP4 viroporin activity may serve as a regulatory function to facilitate virus replication and assembly.
Collapse
|
37
|
Desselberger U. Towards achieving a high-resolution structure of rotavirus particles. Future Virol 2009. [DOI: 10.2217/fvl.09.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evaluation of: Aoki ST, Settembre EC, Trask SD, Greenberg HB, Harrison SC, Dormitzer PR: Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science 324 (5993), 1444–1447 (2009). The determination of the molecular structure of the trimer of VP7, one of the outer layer proteins of rotaviruses, has significantly contributed to the knowledge of the overall structure of rotavirus particles. The molecular mechanism of rotavirus neutralization has been clarified and a topological explanation been found for the emergence of antibody escape mutants. Furthermore, translational work was enabled by engineering VP7 mutants, which form stable trimers by means of novel disulfide bridges linking the different subunits together; such a construct could become an attractive and safe vaccine candidate.
Collapse
Affiliation(s)
- Ulrich Desselberger
- University of Cambridge, Department of Medicine, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, UK
| |
Collapse
|
38
|
Yuchi Z, Pau VPT, Lu BX, Junop M, Yang DSC. An engineered right-handed coiled coil domain imparts extreme thermostability to the KcsA channel. FEBS J 2009; 276:6236-46. [PMID: 19780836 DOI: 10.1111/j.1742-4658.2009.07327.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
KcsA, a potassium channel from Streptomyces lividans, was the first ion channel to have its transmembrane domain structure determined by crystallography. Previously we have shown that its C-terminal cytoplasmic domain is crucial for the thermostability and the expression of the channel. Expression was almost abolished in its absence, but could be rescued by the presence of an artificial left-handed coiled coil tetramerization domain GCN4. In this study, we noticed that the handedness of GCN4 is not the same as the bundle crossing of KcsA. Therefore, a compatible right-handed coiled coil structure was identified from the Protein Data Bank and used to replace the C-terminal domain of KcsA. The hybrid channel exhibited a higher expression level than the wild-type and is extremely thermostable. Surprisingly, this stable hybrid channel is equally active as the wild-type channel in conducting potassium ions through a lipid bilayer at an acidic pH. We suggest that a similar engineering strategy could be applied to other ion channels for both functional and structural studies.
Collapse
Affiliation(s)
- Zhiguang Yuchi
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | | | | | | | | |
Collapse
|
39
|
Zhou Y, Frey TK, Yang JJ. Viral calciomics: interplays between Ca2+ and virus. Cell Calcium 2009; 46:1-17. [PMID: 19535138 PMCID: PMC3449087 DOI: 10.1016/j.ceca.2009.05.005] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 12/23/2022]
Abstract
Ca2+ is one of the most universal and versatile signaling molecules and is involved in almost every aspect of cellular processes. Viruses are adept at utilizing the universal Ca2+ signal to create a tailored cellular environment that meets their own demands. This review summarizes most of the known mechanisms by which viruses perturb Ca2+ homeostasis and utilize Ca2+ and cellular Ca2+-binding proteins to their benefit in their replication cycles. Ca2+ plays important roles in virion structure formation, virus entry, viral gene expression, posttranslational processing of viral proteins and virion maturation and release. As part of the review, we introduce an algorithm to identify linear “EF-hand” Ca2+-binding motifs which resulted in the prediction of a total of 93 previously unrecognized Ca2+-binding motifs in virus proteins. Many of these proteins are nonstructural proteins, a class of proteins among which Ca2+ interactions had not been formerly appreciated. The presence of linear Ca2+-binding motifs in viral proteins enlarges the spectrum of Ca2+–virus interplay and expands the total scenario of viral calciomics.
Collapse
Affiliation(s)
- Yubin Zhou
- Department of Chemistry, Georgia State University, 50 Decatur St., Atlanta, GA 30303 USA
| | | | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Rotaviruses cause life-threatening gastroenteritis in children throughout the world. The burden of disease has resulted in the development of two live, attenuated vaccines that are now licensed in many countries. This review summarizes new data on these vaccines, their effectiveness, and remaining challenges including new data on the rotavirus enterotoxin, a potential antiviral target. RECENT FINDINGS Live attenuated rotavirus vaccines are used to protect infants against severe rotavirus-induced gastroenteritis and, RotaTeq, a pentavalent bovine-based vaccine, and, Rotarix, a monovalent human rotavirus, are now currently licensed in many countries. Initial results of the licensed RotaTeq vaccine have been promising in the USA and results of immunogenicity and efficacy in developing countries are expected soon. However, universal vaccine implementation is challenging due to age limitations on administration of these vaccines. Chronic rotavirus infections in immunocompromised children may remain a problem and require the development of new treatments including antiviral drugs. Increasing data on the mechanisms of action of the rotavirus enterotoxin highlight this pleiotropic protein as a good target as well as a unique calcium agonist. SUMMARY Rotavirus is now a commonly occurring vaccine-preventable disease among children in developed countries and hopefully this also will soon be true for developing countries. Future studies will determine whether other methods of prevention, such as nonreplicating vaccines and antiviral drugs, will be needed to treat disease in immunocompromised children.
Collapse
Affiliation(s)
- Joseph M. Hyser
- Department of Molecular Virology and Microbiology and Medicine —Gastroenterology Baylor College of Medicine Houston, Texas 77030 -3498
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology and Medicine —Gastroenterology Baylor College of Medicine Houston, Texas 77030 -3498
| |
Collapse
|
41
|
Díaz Y, Chemello ME, Peña F, Aristimuño OC, Zambrano JL, Rojas H, Bartoli F, Salazar L, Chwetzoff S, Sapin C, Trugnan G, Michelangeli F, Ruiz MC. Expression of nonstructural rotavirus protein NSP4 mimics Ca2+ homeostasis changes induced by rotavirus infection in cultured cells. J Virol 2008; 82:11331-43. [PMID: 18787006 PMCID: PMC2573286 DOI: 10.1128/jvi.00577-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 07/28/2008] [Indexed: 12/22/2022] Open
Abstract
Rotavirus infection modifies Ca(2+) homeostasis, provoking an increase in Ca(2+) permeation, the cytoplasmic Ca(2+) concentration ([Ca(2+)](cyto)), and total Ca(2+) pools and a decrease in Ca(2+) response to agonists. A glycosylated viral protein(s), NSP4 and/or VP7, may be responsible for these effects. HT29 or Cos-7 cells were infected by the SA11 clone 28 strain, in which VP7 is not glycosylated, or transiently transfected with plasmids coding for NSP4-enhanced green fluorescent protein (EGFP) or NSP4. The permeability of the plasma membrane to Ca(2+) and the amount of Ca(2+) sequestered in the endoplasmic reticulum released by carbachol or ATP were measured in fura-2-loaded cells at the single-cell level under a fluorescence microscope or in cell suspensions in a fluorimeter. Total cell Ca(2+) pools were evaluated as (45)Ca(2+) uptake. Infection with SA11 clone 28 induced an increase in Ca(2+) permeability and (45)Ca(2+) uptake similar to that found with the normally glycosylated SA11 strain. These effects were inhibited by tunicamycin, indicating that inhibition of glycosylation of a viral protein other than VP7 affects the changes of Ca(2+) homeostasis induced by infection. Expression of NSP4-EGFP or NSP4 in transfected cells induced the same changes observed with rotavirus infection, whereas the expression of EGFP or EGFP-VP4 showed the behavior of uninfected and untransfected cells. Increased (45)Ca(2+) uptake was also observed in cells expressing NSP4-EGFP or NSP4, as evidenced in rotavirus infection. These results indicate that glycosylated NSP4 is primarily responsible for altering the Ca(2+) homeostasis of infected cells through an initial increase of cell membrane permeability to Ca(2+).
Collapse
Affiliation(s)
- Yuleima Díaz
- Laboratorio de Fisiología Gastrointestinal, IVIC, Caracas 1020A, Venezuela
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Integrins alpha1beta1 and alpha2beta1 are receptors for the rotavirus enterotoxin. Proc Natl Acad Sci U S A 2008; 105:8811-8. [PMID: 18587047 DOI: 10.1073/pnas.0803934105] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rotavirus NSP4 is a viral enterotoxin capable of causing diarrhea in neonatal mice. This process is initiated by the binding of extracellular NSP4 to target molecule(s) on the cell surface that triggers a signaling cascade leading to diarrhea. We now report that the integrins alpha1beta1 and alpha2beta1 are receptors for NSP4. NSP4 specifically binds to the alpha1 and alpha2 I domains with apparent K(d) = 1-2.7 muM. Binding is mediated by the I domain metal ion-dependent adhesion site motif, requires Mg(2+) or Mn(2+), is abolished with EDTA, and an NSP4 point mutant, E(120)A, fails to bind alpha2 integrin I domain. NSP4 has two distinct integrin interaction domains. NSP4 amino acids 114-130 are essential for binding to the I domain, and NSP4 peptide 114-135 blocks binding of the natural ligand, collagen I, to integrin alpha2. NSP4 amino acids 131-140 are not associated with the initial binding to the I domain, but elicit signaling that leads to the spreading of attached C2C12-alpha2 cells, mouse myoblast cells stably expressing the human alpha2 integrin. NSP4 colocalizes with integrin alpha2 on the basolateral surface of rotavirus-infected polarized intestinal epithelial (Caco-2) cells as well as surrounding noninfected cells. NSP4 mutants that fail to bind or signal through integrin alpha2 were attenuated in diarrhea induction in neonatal mice. These results indicate that NSP4 interaction with integrin alpha1 and alpha2 is an important component of enterotoxin function and rotavirus pathogenesis, further distinguishing this viral virulence factor from other microbial enterotoxins.
Collapse
|
43
|
Hyser JM, Zeng CQY, Beharry Z, Palzkill T, Estes MK. Epitope mapping and use of epitope-specific antisera to characterize the VP5* binding site in rotavirus SA11 NSP4. Virology 2007; 373:211-28. [PMID: 18164740 DOI: 10.1016/j.virol.2007.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 11/14/2007] [Accepted: 11/20/2007] [Indexed: 12/30/2022]
Abstract
Rotavirus (RV) is the leading cause of infantile gastroenteritis worldwide. RV nonstructural protein 4 (NSP4), the first characterized viral enterotoxin, is a 28-kDa glycoprotein that has pleiotropic functions in RV infection and pathogenesis. NSP4 has multiple forms enabling it to perform its different functions. Dissecting such functions could be facilitated by use of epitope-specific antibodies. This work mapped the epitopes for the monoclonal antibody B4-2/55 and three polyclonal antisera generated against synthetic SA11 NSP4 peptides corresponding to residues 114-135, 120-147, and 150-175. The epitope for B4-2/55 mapped to residues 100-118, wherein residues E105, R108 and E111 are critical for antibody binding. Antiserum generated to two peptides (aa114-135 and aa120-147) with enterotoxin activity each recognize a single but distinct epitope. The epitope for the peptide antiserum to aa114-135 was mapped to residues 114-125 with highly conserved residues T117/T118, E120, and E122 being critical for antibody binding. The peptide antiserum to aa120-147 binds to NSP4 at residues 130-140 and residues Q137-T138 are critical for this epitope. Finally, the epitope for the antiserum to peptide aa150-175 mapped to residues 155-170, wherein residues E160 and E170 are critical for antibody binding. Knowledge of the binding sites of domain-specific antibodies can aid in further characterizing different functions of NSP4. To demonstrate this, we characterized the interaction between NSP4 and VP5() [K(D)=0.47 microM] and show that binding of NSP4 to VP5* is blocked by antibody to NSP4 aa114-135 and aa120-147, but not aa150-175. The use of single epitope-specific antibodies to differentially block functions of NSP4 is a feasible approach to determine the functional domain structure of this important RV virulence factor.
Collapse
Affiliation(s)
- Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
The human immunodeficiency virus type 1 (HIV-1) has been intensely investigated since its discovery in 1983 as the cause of acquired immune deficiency syndrome (AIDS). With relatively few proteins made by the virus, it is able to accomplish many tasks, with each protein serving multiple functions. The Envelope glycoprotein, composed of the two noncovalently linked subunits, SU (surface glycoprotein) and TM (transmembrane glycoprotein) is largely responsible for host cell recognition and entry respectively. While the roles of the N-terminal residues of TM is well established as a fusion pore and anchor for Env into cell membranes, the role of the C-terminus of the protein is not well understood and is fiercely debated. This review gathers information on TM in an attempt to shed some light on the functional regions of this protein.
Collapse
Affiliation(s)
- Joshua M Costin
- Biotechnology Research Group, Department of Biology, Florida Gulf Coast University, 10501 FGCU Blvd, S., Fort Myers, Fl 33965, USA.
| |
Collapse
|
45
|
Zhou Y, Tzeng WP, Yang W, Zhou Y, Ye Y, Lee HW, Frey TK, Yang J. Identification of a Ca2+-binding domain in the rubella virus nonstructural protease. J Virol 2007; 81:7517-28. [PMID: 17475644 PMCID: PMC1933374 DOI: 10.1128/jvi.00605-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The rubella virus (RUB) nonstructural protein (NS) open reading frame (ORF) encodes a polypeptide precursor that is proteolytically self cleaved into two replicase components involved in viral RNA replication. A putative EF-hand Ca(2+)-binding motif that was conserved across different genotypes of RUB was predicted within the nonstructural protease that cleaves the precursor by using bioinformatics tools. To probe the metal-binding properties of this motif, we used an established grafting approach and engineered the 12-residue Ca(2+)-coordinating loop into a non-Ca(2+)-binding scaffold protein, CD2. The grafted EF-loop bound to Ca(2+) and its trivalent analogs Tb(3+) and La(3+) with K(d)s of 214, 47, and 14 microM, respectively. Mutations (D1210A and D1217A) of two of the potential Ca(2+)-coordinating ligands in the EF-loop led to the elimination of Tb(3+) binding. Inductive coupled plasma mass spectrometry was used to confirm the presence of Ca(2+) ([Ca(2+)]/[protein] = 0.7 +/- 0.2) in an NS protease minimal metal-binding domain, RUBCa, that spans the EF-hand motif. Conformational studies on RUBCa revealed that Ca(2+) binding induced local conformational changes and increased thermal stability (Delta T(m) = 4.1 degrees C). The infectivity of an RUB infectious cDNA clone containing the mutations D1210A/D1217A was decreased by approximately 20-fold in comparison to the wild-type (wt) clone, and these mutations rapidly reverted to the wt sequence. The NS protease containing these mutations was less efficient at precursor cleavage than the wt NS protease at 35 degrees C, and the mutant NS protease was temperature sensitive at 39 degrees C, confirming that the Ca(2+)-binding loop played a structural role in the NS protease and was specifically required for optimal stability under physiological conditions.
Collapse
Affiliation(s)
- Yubin Zhou
- Department of Chemistry, Georgia State University, 50 Decatur St., Atlanta, GA 30303, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Mir KD, Parr RD, Schroeder F, Ball JM. Rotavirus NSP4 interacts with both the amino- and carboxyl-termini of caveolin-1. Virus Res 2007; 126:106-15. [PMID: 17379346 PMCID: PMC1978065 DOI: 10.1016/j.virusres.2007.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/29/2007] [Accepted: 02/05/2007] [Indexed: 11/25/2022]
Abstract
Rotavirus NSP4 plays multiple roles in viral pathogenesis, morphogenesis and replication. We previously reported a direct interaction between full-length NSP4 and the enterotoxic peptide composed of NSP4 residues 114-135 with full-length caveolin-1, the structural protein of caveolae. Caveolin-1 forms a hairpin loop in the cytoplasmic leaflet of plasma membrane caveolae. This unique orientation results in both termini of caveolin-1 exposed to the cytoplasm. The goal of this study was to map the caveolin-1 residues that interact with NSP4 to obtain a more complete picture of this binding event. Utilizing reverse yeast two-hybrid analyses and direct peptide binding assays, the NSP4 binding site was localized to caveolin-1 residues 2-22 and 161-178, at the amino- and carboxyl-termini, respectively. However, NSP4 binding to one of the termini was sufficient for the interaction.
Collapse
Affiliation(s)
- Kiran D. Mir
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Department of Pathobiology, College Station, TX 77843
| | - Rebecca D. Parr
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Department of Pathobiology, College Station, TX 77843
| | - Friedhelm Schroeder
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Department of Physiology and Pharmacology, College Station, TX 77843
| | - Judith M. Ball
- Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Department of Pathobiology, College Station, TX 77843
- *corresponding author Phone: (979) 845-9710, Fax: (979) 845-9231, , Texas A&M University, TVMC, TAMU 4467, College Station, TX 77843
| |
Collapse
|
47
|
Deepa R, Durga Rao C, Suguna K. Structure of the extended diarrhea-inducing domain of rotavirus enterotoxigenic protein NSP4. Arch Virol 2007; 152:847-59. [PMID: 17265103 DOI: 10.1007/s00705-006-0921-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
Rotavirus nonstructural protein 4 (NSP4) is a multidomainal and multifunctional protein and is recognized as the first virus-encoded enterotoxin. Extensive efforts to crystallize the complete cytoplasmic tail (CT), which exhibits all the known biological functions, have been unsuccessful, and to date, the structure of only a synthetic peptide corresponding to amino acids (aa) 95-137 has been reported. Recent studies indicate that the interspecies-variable domain (ISVD) from aa 135 to 141 as well as the extreme C-terminus are critical determinants of virus virulence and the diarrhea-inducing ability of the protein. Among the five NSP4 genotypes identified, those belonging to genotypes A1, B and C possess either a proline at position 138 or a glycine at 140, while those of A2, D and E lack these residues in the ISVD, suggesting conformational differences in this region among different NSP4s. Here, we examined the crystallization properties of several deletion mutants and report the structure of a recombinant mutant, NSP4:95-146, lacking the N-terminal 94 and C-terminal 29 aa, from SA11 (A1) and I321 (A2) at 1.67 and 2.7 A, respectively. In spite of the high resolution of one of the structures, electron density for the C-terminal 9 residues could not be seen for either of the mutants, and the crystal packing resulted in the creation of a clear empty space for this region. Extension of the unstructured C-terminus beyond aa 146 hindered crystallization under the experimental conditions. The present structure revealed significant differences from that of the synthetic peptide in the conformation of amino acids at the end of the helix as well as the crystal packing owing to the additional space required to accommodate the un structured virulence-determining region. The crystal structure and secondary structure prediction of the NSP4:95-146 mutants from different genotypes suggest that the region C-terminal to aa 137 in all the NSP4 proteins is likely to be unstructured, and this might be of structural and biological functional significance.
Collapse
Affiliation(s)
- R Deepa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
48
|
Pesavento JB, Crawford SE, Estes MK, Prasad BVV. Rotavirus proteins: structure and assembly. Curr Top Microbiol Immunol 2006; 309:189-219. [PMID: 16913048 DOI: 10.1007/3-540-30773-7_7] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rotavirus is a major pathogen of infantile gastroenteritis. It is a large and complex virus with a multilayered capsid organization that integrates the determinants of host specificity, cell entry, and the enzymatic functions necessary for endogenous transcription of the genome that consists of 11 dsRNA segments. These segments encode six structural and six nonstructural proteins. In the last few years, there has been substantial progress in our understanding of both the structural and functional aspects of a variety of molecular processes involved in the replication of this virus. Studies leading to this progress using of a variety of structural and biochemical techniques including the recent application of RNA interference technology have uncovered several unique and intriguing features related to viral morphogenesis. This review focuses on our current understanding of the structural basis of the molecular processes that govern the replication of rotavirus.
Collapse
Affiliation(s)
- J B Pesavento
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
49
|
Parr RD, Storey SM, Mitchell DM, McIntosh AL, Zhou M, Mir KD, Ball JM. The rotavirus enterotoxin NSP4 directly interacts with the caveolar structural protein caveolin-1. J Virol 2006; 80:2842-54. [PMID: 16501093 PMCID: PMC1395425 DOI: 10.1128/jvi.80.6.2842-2854.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 12/13/2005] [Indexed: 11/20/2022] Open
Abstract
Rotavirus nonstructural protein 4 (NSP4) is known to function as an intracellular receptor at the endoplasmic reticulum (ER) critical to viral morphogenesis and is the first characterized viral enterotoxin. Exogenously added NSP4 induces diarrhea in rodent pups and stimulates secretory chloride currents across intestinal segments as measured in Ussing chambers. Circular dichroism studies further reveal that intact NSP4 and the enterotoxic peptide (NSP4(114-135)) that is located within the extended, C-terminal amphipathic helix preferentially interact with caveola-like model membranes. We now show colocalization of NSP4 and caveolin-1 in NSP4-transfected and rotavirus-infected mammalian cells in reticular structures surrounding the nucleus (likely ER), in the cytosol, and at the cell periphery by laser scanning confocal microscopy. A direct interaction between NSP4 residues 112 to 140 and caveolin-1 was determined by the Pro-Quest yeast two-hybrid system with full-length NSP4 and seven overlapping deletion mutants as bait, caveolin-1 as prey, and vice versa. Coimmunoprecipitation of NSP4-caveolin-1 complexes from rotavirus-infected mammalian cells demonstrated that the interaction occurs during viral infection. Finally, binding of caveolin-1 from mammalian cell lysates to Sepharose-bound, NSP4-specific synthetic peptides confirmed the yeast two-hybrid data and further delineated the binding domain to amino acids 114 to 135. We propose that the association of NSP4 and caveolin-1 contributes to NSP4 intracellular trafficking from the ER to the cell surface and speculate that exogenously added NSP4 stimulates signaling molecules located in caveola microdomains.
Collapse
Affiliation(s)
- Rebecca D Parr
- Department of Pathobiology, Texas A&M University 4467, College Station, Texas 77843, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Jagannath MR, Kesavulu MM, Deepa R, Sastri PN, Kumar SS, Suguna K, Rao CD. N- and C-terminal cooperation in rotavirus enterotoxin: novel mechanism of modulation of the properties of a multifunctional protein by a structurally and functionally overlapping conformational domain. J Virol 2006; 80:412-25. [PMID: 16352566 PMCID: PMC1317517 DOI: 10.1128/jvi.80.1.412-425.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 10/04/2005] [Indexed: 01/07/2023] Open
Abstract
Rotavirus NSP4 is a multifunctional endoplasmic reticulum (ER)-resident nonstructural protein with the N terminus anchored in the ER and about 131 amino acids (aa) of the C-terminal tail (CT) oriented in the cytoplasm. Previous studies showed a peptide spanning aa 114 to 135 to induce diarrhea in newborn mouse pups with the 50% diarrheal dose approximately 100-fold higher than that for the full-length protein, suggesting a role for other regions in the protein in potentiating its diarrhea-inducing ability. In this report, employing a large number of methods and deletion and amino acid substitution mutants, we provide evidence for the cooperation between the extreme C terminus and a putative amphipathic alpha-helix located between aa 73 and 85 (AAH73-85) at the N terminus of DeltaN72, a mutant that lacked the N-terminal 72 aa of nonstructural protein 4 (NSP4) from Hg18 and SA11. Cooperation between the two termini appears to generate a unique conformational state, specifically recognized by thioflavin T, that promoted efficient multimerization of the oligomer into high-molecular-mass soluble complexes and dramatically enhanced resistance against trypsin digestion, enterotoxin activity of the diarrhea-inducing region (DIR), and double-layered particle-binding activity of the protein. Mutations in either the C terminus, AAH73-85, or the DIR resulted in severely compromised biological functions, suggesting that the properties of NSP4 are subject to modulation by a single and/or overlapping highly sensitive conformational domain that appears to encompass the entire CT. Our results provide for the first time, in the absence of a three-dimensional structure, a unique conformation-dependent mechanism for understanding the NSP4-mediated pleiotropic properties including virus virulence and morphogenesis.
Collapse
Affiliation(s)
- M R Jagannath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | | | |
Collapse
|