1
|
Suali L, Mohammad Salih FA, Ibrahim MY, Bin Jeffree MS, Suali E, Siew Moy F, Shook Fe Y, Sunggip C. The Effect of Single Nucleotide Polymorphisms on Clinical Phenotypes of Sabahan Transfusion-Dependent β-Thalassemia Patients with Homozygous Filipino β 0-Deletion. Hemoglobin 2025; 49:10-19. [PMID: 39806862 DOI: 10.1080/03630269.2024.2448175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Sabah has the highest prevalence of β-thalassemia in Malaysia, with the Filipino β0-deletion as the predominant mutation. Patients with the homozygous Filipino β0-deletion exhibit phenotypic heterogeneity due to various genetic modifiers, yet the effects of these modifiers on the clinical phenotype remain poorly understood. This study investigated the effects of the coinheritance of α-thalassemia, XmnI-Gγ rs7482144, BCL11A rs766432, and 5'HS4 rs16912979 polymorphisms on the clinical phenotype of homozygous Filipino β0-deletion patients in Sabah. Molecular analyses were performed on 124 homozygous Filipino β0-deletion patients using gap-PCR, PCR-RFLP, multiplex PCR, ARMS-PCR, gel electrophoresis, and DNA sequencing. Data showed that the coinheritance of the -α3.7 deletion significantly affected the clinical phenotypes of homozygous Filipino β0-deletion patients (p < 0.05). Patients with the -α3.7/-α3.7 genotype (5.6%) had a less severe clinical phenotype compared to those with the αα/αα (71.8%) and -α3.7/αα (22.6%) genotypes. Our data further revealed that the MAFs of the XmnI-Gγ rs7482144 and BCL11A rs766432 polymorphisms in these patients were 0.032 and 0.194, respectively. Interestingly, none of these single nucleotide polymorphisms significantly influenced the clinical phenotype of the patients. The effect of the 5'HS4 rs16912979 polymorphism on the clinical phenotype could not be assessed due to its rarity (1.6%). However, a novel 5'HS4 c.733+G mutation was identified, warranting further investigation of its potential impact on β-thalassemia pathogenesis. Our findings indicate that the clinical phenotype of patients with the homozygous Filipino β0-deletion is strongly influenced by the coinheritance of the -α3.7 deletion, but not by the XmnI-Gγ rs7482144 and BCL11A rs766432 polymorphisms.
Collapse
Affiliation(s)
- Latifah Suali
- Department of Biomedical and Science Therapeutic, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | | | - Mohammad Yusof Ibrahim
- Department of Community and Family Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Mohammad Saffree Bin Jeffree
- Department of Community and Family Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Emma Suali
- Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Fong Siew Moy
- Department of Pediatrics, Likas Women's and Children's Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Yap Shook Fe
- Department of Pediatrics, Likas Women's and Children's Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Caroline Sunggip
- Department of Biomedical and Science Therapeutic, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
2
|
Lee H, Friedman MJ, Kim SB, Oh S. DNA regulatory element cooperation and competition in transcription. BMB Rep 2024; 57:509-520. [PMID: 39523506 PMCID: PMC11693600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 11/16/2024] Open
Abstract
Regulation of eukaryotic transcription is a complex process that enables precise temporal and spatial control of gene expression. Promoters, which are cis-regulatory elements (CREs) located proximal to the transcription start site (TSS), selectively integrate regulatory cues from distal CREs, or enhancers, and their associated transcriptional machinery. In this review, we discuss current knowledge regarding CRE cooperation and competition impacting gene expression, including features of enhancer-promoter, enhancer-enhancer, and promoter-promoter interplay. We also provide an overview of recent insights into the underlying molecular mechanisms that facilitate physical and functional interaction of regulatory elements, such as the involvement of enhancer RNAs and biomolecular condensates. [BMB Reports 2024; 57(12): 509-520].
Collapse
Affiliation(s)
- Haram Lee
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong 30019, Korea, Seoul 01795, Korea
| | - Meyer Joseph Friedman
- Department and School of Medicine, University of California, San Diego, CA 92093, USA, Seoul 01795, Korea
| | - Sang Bum Kim
- Department of Pharmacy, College of Pharmacy, Sahmyook University, Seoul 01795, Korea
| | - Soohwan Oh
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong 30019, Korea, Seoul 01795, Korea
| |
Collapse
|
3
|
|
4
|
Morgan RA, Unti MJ, Aleshe B, Brown D, Osborne KS, Koziol C, Ayoub PG, Smith OB, O'Brien R, Tam C, Miyahira E, Ruiz M, Quintos JP, Senadheera S, Hollis RP, Kohn DB. Improved Titer and Gene Transfer by Lentiviral Vectors Using Novel, Small β-Globin Locus Control Region Elements. Mol Ther 2019; 28:328-340. [PMID: 31628051 DOI: 10.1016/j.ymthe.2019.09.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 01/11/2023] Open
Abstract
β-globin lentiviral vectors (β-LV) have faced challenges in clinical translation for gene therapy of sickle cell disease (SCD) due to low titer and sub-optimal gene transfer to hematopoietic stem and progenitor cells (HSPCs). To overcome the challenge of preserving efficacious expression while increasing vector performance, we used published genomic and epigenomic data available through ENCODE to redefine enhancer element boundaries of the β-globin locus control region (LCR) to construct novel ENCODE core sequences. These novel LCR elements were used to design a β-LV of reduced proviral length, termed CoreGA-AS3-FB, produced at higher titers and possessing superior gene transfer to HSPCs when compared to the full-length parental β-LV at equal MOI. At low vector copy number, vectors containing the ENCODE core sequences were capable of reversing the sickle phenotype in a mouse model of SCD. These studies provide a β-LV that will be beneficial for gene therapy of SCD by significantly reducing the cost of vector production and extending the vector supply.
Collapse
Affiliation(s)
- Richard A Morgan
- Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mildred J Unti
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bamidele Aleshe
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Devin Brown
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kyle S Osborne
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Colin Koziol
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paul G Ayoub
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Oliver B Smith
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rachel O'Brien
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Curtis Tam
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eric Miyahira
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marlene Ruiz
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jason P Quintos
- CSUN-UCLA Stem Cell Scientist Training Program, California State University, Northridge, Northridge, CA 91330, USA
| | - Shantha Senadheera
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Roger P Hollis
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donald B Kohn
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; The Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Urbinati F, Campo Fernandez B, Masiuk KE, Poletti V, Hollis RP, Koziol C, Kaufman ML, Brown D, Mavilio F, Kohn DB. Gene Therapy for Sickle Cell Disease: A Lentiviral Vector Comparison Study. Hum Gene Ther 2019; 29:1153-1166. [PMID: 30198339 DOI: 10.1089/hum.2018.061] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sickle cell disease (SCD) is an inherited blood disorder caused by a single amino acid substitution in the β-globin chain of hemoglobin. Gene therapy is a promising therapeutic alternative, particularly in patients lacking an allogeneic bone marrow (BM) donor. One of the major challenges for an effective gene therapy approach is the design of an efficient vector that combines high-level and long-term β-globin expression with high infectivity in primary CD34+ cells. Two lentiviral vectors carrying an anti-sickling β-globin transgene (AS3) were directly compared: the Lenti/βAS3-FB, and Globe-AS3 with and without the FB insulator. The comparison was performed initially in human BM CD34+ cells derived from SCD patients in an in vitro model of erythroid differentiation. Additionally, the comparison was carried out in two in vivo models: First, an NOD SCID gamma mouse model was used to compare transduction efficiency and β-globin expression in human BM CD34+ cells after transplant. Second, a sickle mouse model was used to analyze β-globin expression produced from the vectors tested, as well as hematologic correction of the sickle phenotype. While minor differences were found in the vectors in the in vitro study (2.4-fold higher vector copy number in CD34+ cells when using Globe-AS3), no differences were noted in the overall correction of the SCD phenotype in the in vivo mouse model. This study provides a comprehensive in vitro and in vivo analysis of two globin lentiviral vectors, which is useful for determining the optimal candidate for SCD gene therapy.
Collapse
Affiliation(s)
- Fabrizia Urbinati
- 1 Department of Microbiology, Immunology, and Molecular Genetics, University of California , Los Angeles, California; University of Modena and Reggio Emilia , Italy
| | - Beatriz Campo Fernandez
- 1 Department of Microbiology, Immunology, and Molecular Genetics, University of California , Los Angeles, California; University of Modena and Reggio Emilia , Italy
| | - Katelyn E Masiuk
- 1 Department of Microbiology, Immunology, and Molecular Genetics, University of California , Los Angeles, California; University of Modena and Reggio Emilia , Italy
| | - Valentina Poletti
- 2 Genethon , Evry, France; and University of Modena and Reggio Emilia , Italy
| | - Roger P Hollis
- 1 Department of Microbiology, Immunology, and Molecular Genetics, University of California , Los Angeles, California; University of Modena and Reggio Emilia , Italy
| | - Colin Koziol
- 1 Department of Microbiology, Immunology, and Molecular Genetics, University of California , Los Angeles, California; University of Modena and Reggio Emilia , Italy
| | - Michael L Kaufman
- 1 Department of Microbiology, Immunology, and Molecular Genetics, University of California , Los Angeles, California; University of Modena and Reggio Emilia , Italy
| | - Devin Brown
- 1 Department of Microbiology, Immunology, and Molecular Genetics, University of California , Los Angeles, California; University of Modena and Reggio Emilia , Italy
| | - Fulvio Mavilio
- 3 Dipartimento di Scienza Della Vita, University of Modena and Reggio Emilia , Italy
| | - Donald B Kohn
- 1 Department of Microbiology, Immunology, and Molecular Genetics, University of California , Los Angeles, California; University of Modena and Reggio Emilia , Italy
| |
Collapse
|
6
|
Weber L, Poletti V, Magrin E, Antoniani C, Martin S, Bayard C, Sadek H, Felix T, Meneghini V, Antoniou MN, El-Nemer W, Mavilio F, Cavazzana M, Andre-Schmutz I, Miccio A. An Optimized Lentiviral Vector Efficiently Corrects the Human Sickle Cell Disease Phenotype. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:268-280. [PMID: 30140714 PMCID: PMC6105766 DOI: 10.1016/j.omtm.2018.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/29/2018] [Indexed: 12/17/2022]
Abstract
Autologous transplantation of hematopoietic stem cells transduced with a lentiviral vector (LV) expressing an anti-sickling HBB variant is a potential treatment for sickle cell disease (SCD). With a clinical trial as our ultimate goal, we generated LV constructs containing an anti-sickling HBB transgene (HBBAS3), a minimal HBB promoter, and different combinations of DNase I hypersensitive sites (HSs) from the locus control region (LCR). Hematopoietic stem progenitor cells (HSPCs) from SCD patients were transduced with LVs containing either HS2 and HS3 (β-AS3) or HS2, HS3, and HS4 (β-AS3 HS4). The inclusion of the HS4 element drastically reduced vector titer and infectivity in HSPCs, with negligible improvement of transgene expression. Conversely, the LV containing only HS2 and HS3 was able to efficiently transduce SCD bone marrow and Plerixafor-mobilized HSPCs, with anti-sickling HBB representing up to ∼60% of the total HBB-like chains. The expression of the anti-sickling HBB and the reduced incorporation of the βS-chain in hemoglobin tetramers allowed up to 50% reduction in the frequency of RBC sickling under hypoxic conditions. Together, these results demonstrate the ability of a high-titer LV to express elevated levels of a potent anti-sickling HBB transgene ameliorating the SCD cell phenotype.
Collapse
Affiliation(s)
- Leslie Weber
- Laboratory of Human Lymphohematopoiesis, INSERM UMR_S1163, 75015 Paris, France.,Paris Diderot University - Sorbonne Paris Cité, 75015 Paris, France
| | | | - Elisa Magrin
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Chiara Antoniani
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Laboratory of chromatin and gene regulation during development, INSERM UMR_S1163, 75015 Paris, France
| | | | - Charles Bayard
- Laboratory of Human Lymphohematopoiesis, INSERM UMR_S1163, 75015 Paris, France
| | - Hanem Sadek
- Laboratory of Human Lymphohematopoiesis, INSERM UMR_S1163, 75015 Paris, France
| | - Tristan Felix
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Laboratory of chromatin and gene regulation during development, INSERM UMR_S1163, 75015 Paris, France
| | - Vasco Meneghini
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Laboratory of chromatin and gene regulation during development, INSERM UMR_S1163, 75015 Paris, France
| | | | - Wassim El-Nemer
- Biologie Intégrée du Globule Rouge, INSERM UMR_S1134, Paris Diderot University, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, 75015 Paris, France.,Institut National de la Transfusion Sanguine, 75015 Paris, France.,Laboratoire d'Excellence GR-Ex, 75015 Paris, France
| | - Fulvio Mavilio
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marina Cavazzana
- Laboratory of Human Lymphohematopoiesis, INSERM UMR_S1163, 75015 Paris, France.,Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Isabelle Andre-Schmutz
- Laboratory of Human Lymphohematopoiesis, INSERM UMR_S1163, 75015 Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Annarita Miccio
- Genethon, INSERM UMR951, 91000 Evry, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, 75015 Paris, France.,Laboratory of chromatin and gene regulation during development, INSERM UMR_S1163, 75015 Paris, France
| |
Collapse
|
7
|
Iarovaia OV, Kovina AP, Petrova NV, Razin SV, Ioudinkova ES, Vassetzky YS, Ulianov SV. Genetic and Epigenetic Mechanisms of β-Globin Gene Switching. BIOCHEMISTRY (MOSCOW) 2018; 83:381-392. [PMID: 29626925 DOI: 10.1134/s0006297918040090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vertebrates have multiple forms of hemoglobin that differ in the composition of their polypeptide chains. During ontogenesis, the composition of these subunits changes. Genes encoding different α- and β-polypeptide chains are located in two multigene clusters on different chromosomes. Each cluster contains several genes that are expressed at different stages of ontogenesis. The phenomenon of stage-specific transcription of globin genes is referred to as globin gene switching. Mechanisms of expression switching, stage-specific activation, and repression of transcription of α- and β-globin genes are of interest from both theoretical and practical points of view. Alteration of balanced expression of globin genes, which usually occurs due to damage to adult β-globin genes, leads to development of severe diseases - hemoglobinopathies. In most cases, reactivation of the fetal hemoglobin gene in patients with β-thalassemia and sickle cell disease can reduce negative consequences of irreversible alterations of expression of the β-globin genes. This review focuses on the current state of research on genetic and epigenetic mechanisms underlying stage-specific switching of β-globin genes.
Collapse
Affiliation(s)
- O V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | | | | | | | |
Collapse
|
8
|
Fujita T, Yuno M, Suzuki Y, Sugano S, Fujii H. Identification of physical interactions between genomic regions by enChIP-Seq. Genes Cells 2017; 22:506-520. [PMID: 28474362 DOI: 10.1111/gtc.12492] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/22/2017] [Indexed: 01/23/2023]
Abstract
Physical interactions between genomic regions play critical roles in the regulation of genome functions, including gene expression. Here, we show the feasibility of using engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) in combination with next-generation sequencing (NGS) (enChIP-Seq) to detect such interactions. In enChIP-Seq, the target genomic region is captured by an engineered DNA-binding complex, such as a clustered regularly interspaced short palindromic repeats (CRISPR) system consisting of a catalytically inactive form of Cas9 and a single guide RNA. Subsequently, the genomic regions that physically interact with the target genomic region in the captured complex are sequenced by NGS. Using enChIP-Seq, we found that the 5'HS5 locus, which is involved in the regulation of globin genes expression at the β-globin locus, interacts with multiple genomic regions upon erythroid differentiation in the human erythroleukemia cell line K562. Genes near the genomic regions inducibly associated with the 5'HS5 locus were transcriptionally up-regulated in the differentiated state, suggesting the existence of a coordinated transcription mechanism mediated by physical interactions between these loci. Thus, enChIP-Seq might be a potentially useful tool for detecting physical interactions between genomic regions in a nonbiased manner, which would facilitate elucidation of the molecular mechanisms underlying regulation of genome functions.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Miyuki Yuno
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.,Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.,Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hodaka Fujii
- Chromatin Biochemistry Research Group, Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
9
|
Vathipadiekal V, Alsultan A, Baltrusaitis K, Farrell JJ, Al-Rubaish AM, Al-Muhanna F, Naserullah Z, Suliman A, Patra P, Milton JN, Farrer LA, Chui DH, Al-Ali AK, Sebastiani P, Steinberg MH. Homozygosity for a haplotype in the HBG2-OR51B4 region is exclusive to Arab-Indian haplotype sickle cell anemia. Am J Hematol 2016; 91:E308-11. [PMID: 27185208 DOI: 10.1002/ajh.24368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/10/2016] [Accepted: 03/13/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Vinod Vathipadiekal
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Abdulrahman Alsultan
- Sickle Cell Disease Research Center and Department of Pediatrics; College of Medicine, King Saud University; Riyadh Saudi Arabia
| | - Kristin Baltrusaitis
- Department of Biostatistics; Boston University School of Public Health; Boston Massachusetts
| | - John J. Farrell
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Abdullah M. Al-Rubaish
- Department of Internal Medicine; College of Medicine, University of Dammam; Dammam Kingdom of Saudi Arabia
| | - Fahad Al-Muhanna
- Department of Internal Medicine; College of Medicine, University of Dammam; Dammam Kingdom of Saudi Arabia
| | - Zaki Naserullah
- Alomran Scientific Chair for Hematological Diseases, King Faisal University, King Faisal University, King Fahd Hospital; Hafof Al-Ahsa Kingdom of Saudi Arabia
- Department of Pediatrics, Maternity & Child Hospital; Dammam Kingdom of Saudi Arabia
| | - Ahmed Suliman
- Alomran Scientific Chair; King Faisal University, King Fahd Hospital; Hafof Al-Ahsa Kingdom of Saudi Arabia
| | - P.K. Patra
- Department of Biochemistry; Pt. J.N.M. Medical College; Raipur Chhattisgarh India
| | - Jacqueline N. Milton
- Department of Biostatistics; Boston University School of Public Health; Boston Massachusetts
| | - Lindsay A. Farrer
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - David H.K. Chui
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Amein K. Al-Ali
- Center for Research & Medical Consultation; University of Dammam; Dammam Saudi Arabia
| | - Paola Sebastiani
- Department of Biostatistics; Boston University School of Public Health; Boston Massachusetts
| | - Martin. H. Steinberg
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| |
Collapse
|
10
|
Katsumura KR, DeVilbiss AW, Pope NJ, Johnson KD, Bresnick EH. Transcriptional mechanisms underlying hemoglobin synthesis. Cold Spring Harb Perspect Med 2013; 3:a015412. [PMID: 23838521 PMCID: PMC3753722 DOI: 10.1101/cshperspect.a015412] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The physiological switch in expression of the embryonic, fetal, and adult β-like globin genes has garnered enormous attention from investigators interested in transcriptional mechanisms and the molecular basis of hemoglobinopathies. These efforts have led to the discovery of cell type-specific transcription factors, unprecedented mechanisms of transcriptional coregulator function, genome biology principles, unique contributions of nuclear organization to transcription and cell function, and promising therapeutic targets. Given the vast literature accrued on this topic, this article will focus on the master regulator of erythroid cell development and function GATA-1, its associated proteins, and its frontline role in controlling hemoglobin synthesis. GATA-1 is a crucial regulator of genes encoding hemoglobin subunits and heme biosynthetic enzymes. GATA-1-dependent mechanisms constitute an essential regulatory core that nucleates additional mechanisms to achieve the physiological control of hemoglobin synthesis.
Collapse
Affiliation(s)
- Koichi R Katsumura
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Wisconsin Institute for Medical Research, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | | | | | | | | |
Collapse
|
11
|
Costa FC, Fedosyuk H, Chazelle AM, Neades RY, Peterson KR. Mi2β is required for γ-globin gene silencing: temporal assembly of a GATA-1-FOG-1-Mi2 repressor complex in β-YAC transgenic mice. PLoS Genet 2012; 8:e1003155. [PMID: 23284307 PMCID: PMC3527334 DOI: 10.1371/journal.pgen.1003155] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 10/18/2012] [Indexed: 12/12/2022] Open
Abstract
Activation of γ-globin gene expression in adults is known to be therapeutic for sickle cell disease. Thus, it follows that the converse, alleviation of repression, would be equally effective, since the net result would be the same: an increase in fetal hemoglobin. A GATA-1-FOG-1-Mi2 repressor complex was recently demonstrated to be recruited to the −566 GATA motif of the Aγ-globin gene. We show that Mi2β is essential for γ-globin gene silencing using Mi2β conditional knockout β-YAC transgenic mice. In addition, increased expression of Aγ-globin was detected in adult blood from β-YAC transgenic mice containing a T>G HPFH point mutation at the −566 GATA silencer site. ChIP experiments demonstrated that GATA-1 is recruited to this silencer at day E16, followed by recruitment of FOG-1 and Mi2 at day E17 in wild-type β-YAC transgenic mice. Recruitment of the GATA-1–mediated repressor complex was disrupted by the −566 HPFH mutation at developmental stages when it normally binds. Our data suggest that a temporal repression mechanism is operative in the silencing of γ-globin gene expression and that either a trans-acting Mi2β knockout deletion mutation or the cis-acting −566 Aγ-globin HPFH point mutation disrupts establishment of repression, resulting in continued γ-globin gene transcription during adult definitive erythropoiesis. Sickle cell disease (SCD) is one of the most common genetic diseases, affecting millions of people worldwide. SCD affects red blood cells' shape and renders them ineffective, resulting in anemia along with attendant complications. The disease is caused by a single point mutation in the coding sequence of the adult β-globin gene that changes normal adult hemoglobin (HbA) to sickle hemoglobin (HbS). Scientific evidence has demonstrated that continued expression of the fetal γ-globin genes (fetal hemoglobin, HbF), which are normally silenced after birth, is the best treatment for SCD, since the pathophysiology is largely ameliorated. Our therapeutic goal is to reactivate the γ-globin genes to substitute for the defective adult β-globin gene. We identified a novel γ-globin gene silencer sequence and demonstrated that a GATA-1-FOG-1-Mi2 repressor complex binds to this sequence and silences γ-globin synthesis. However, data regarding the requirement of Mi2 for silencing is controversial. We demonstrate that γ-globin synthesis increases as Mi2 expression decreases. We also show that repressor complex components assemble sequentially during development; completion of assembly coincides with γ-globin gene silencing. Disruption of either the repressor complex or mutation of its binding site induces γ-globin. Understanding this mechanism will reveal potential new targets for treating SCD.
Collapse
Affiliation(s)
- Flávia C. Costa
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Halyna Fedosyuk
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Allen M. Chazelle
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Renee Y. Neades
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Kenneth R. Peterson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Peterson KR, Fedosyuk H, Harju-Baker S. LCR 5' hypersensitive site specificity for globin gene activation within the active chromatin hub. Nucleic Acids Res 2012; 40:11256-69. [PMID: 23042246 PMCID: PMC3526258 DOI: 10.1093/nar/gks900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The DNaseI hypersensitive sites (HSs) of the human β-globin locus control region (LCR) may function as part of an LCR holocomplex within a larger active chromatin hub (ACH). Differential activation of the globin genes during development may be controlled in part by preferential interaction of each gene with specific individual HSs during globin gene switching, a change in conformation of the LCR holocomplex, or both. To distinguish between these possibilities, human β-globin locus yeast artificial chromosome (β-YAC) lines were produced in which the ε-globin gene was replaced with a second marked β-globin gene (βm), coupled to an intact LCR, a 5′HS3 complete deletion (5′ΔHS3) or a 5′HS3 core deletion (5′ΔHS3c). The 5′ΔHS3c mice expressed βm-globin throughout development; γ-globin was co-expressed in the embryonic yolk sac, but not in the fetal liver; and wild-type β-globin was co-expressed in adult mice. Although the 5′HS3 core was not required for βm-globin expression, previous work showed that the 5′HS3 core is necessary for ε-globin expression during embryonic erythropoiesis. A similar phenotype was observed in 5′HS complete deletion mice, except βm-globin expression was higher during primitive erythropoiesis and γ-globin expression continued into fetal definitive erythropoiesis. These data support a site specificity model of LCR HS-globin gene interaction.
Collapse
Affiliation(s)
- Kenneth R Peterson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | |
Collapse
|
13
|
Montiel-Equihua CA, Zhang L, Knight S, Saadeh H, Scholz S, Carmo M, Alonso-Ferrero ME, Blundell MP, Monkeviciute A, Schulz R, Collins M, Takeuchi Y, Schmidt M, Fairbanks L, Antoniou M, Thrasher AJ, Gaspar HB. The β-globin locus control region in combination with the EF1α short promoter allows enhanced lentiviral vector-mediated erythroid gene expression with conserved multilineage activity. Mol Ther 2012; 20:1400-9. [PMID: 22434141 PMCID: PMC3381857 DOI: 10.1038/mt.2012.50] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/20/2012] [Indexed: 01/03/2023] Open
Abstract
Some gene therapy strategies are compromised by the levels of gene expression required for therapeutic benefit, and also by the breadth of cell types that require correction. We designed a lentiviral vector system in which a transgene is under the transcriptional control of the short form of constitutively acting elongation factor 1α promoter (EFS) combined with essential elements of the locus control region of the β-globin gene (β-LCR). We show that the β-LCR can upregulate EFS activity specifically in erythroid cells but does not alter EFS activity in myeloid or lymphoid cells. Experiments using the green fluorescent protein (GFP) reporter or the human adenosine deaminase (ADA) gene demonstrate 3-7 times upregulation in vitro but >20 times erythroid-specific upregulation in vivo, the effects of which were sustained for 1 year. The addition of the β-LCR did not alter the mutagenic potential of the vector in in vitro mutagenesis (IM) assays although microarray analysis showed that the β-LCR upregulates ~9% of neighboring genes. This vector design therefore combines the benefits of multilineage gene expression with high-level erythroid expression, and has considerable potential for correction of multisystem diseases including certain lysosomal storage diseases through a hematopoietic stem cell (HSC) gene therapy approach.
Collapse
Affiliation(s)
- Claudia A Montiel-Equihua
- Centre for Immunodeficiency, Molecular Immunology Unit, Institute of Child Health, University College London, London, UK
| | - Lin Zhang
- Centre for Immunodeficiency, Molecular Immunology Unit, Institute of Child Health, University College London, London, UK
| | - Sean Knight
- MRC/UCL Centre for Medical Virology, Division of Infection and Immunity, UCL Cancer Institute, University College London, London, UK
| | - Heba Saadeh
- Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London, UK
| | | | - Marlene Carmo
- Centre for Immunodeficiency, Molecular Immunology Unit, Institute of Child Health, University College London, London, UK
| | - Maria E Alonso-Ferrero
- Centre for Immunodeficiency, Molecular Immunology Unit, Institute of Child Health, University College London, London, UK
| | - Michael P Blundell
- Centre for Immunodeficiency, Molecular Immunology Unit, Institute of Child Health, University College London, London, UK
| | - Aiste Monkeviciute
- Centre for Immunodeficiency, Molecular Immunology Unit, Institute of Child Health, University College London, London, UK
| | - Reiner Schulz
- Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London, UK
| | - Mary Collins
- MRC/UCL Centre for Medical Virology, Division of Infection and Immunity, UCL Cancer Institute, University College London, London, UK
| | - Yasuhiro Takeuchi
- Wohl Virion Centre, Division of Infection and Immunity, University College London, Cruciform Building, London, UK
| | | | | | - Michael Antoniou
- Department of Medical and Molecular Genetics, King's College London, Guy's Hospital, London, UK
| | - Adrian J Thrasher
- Centre for Immunodeficiency, Molecular Immunology Unit, Institute of Child Health, University College London, London, UK
| | - H Bobby Gaspar
- Centre for Immunodeficiency, Molecular Immunology Unit, Institute of Child Health, University College London, London, UK
| |
Collapse
|
14
|
The hypersensitive sites of the murine β-globin locus control region act independently to affect nuclear localization and transcriptional elongation. Blood 2012; 119:3820-7. [PMID: 22378846 DOI: 10.1182/blood-2011-09-380485] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The β-globin locus control region (LCR) is necessary for high-level β-globin gene transcription and differentiation-dependent relocation of the β-globin locus from the nuclear periphery to the central nucleoplasm and to foci of hyperphosphorylated Pol II "transcription factories" (TFys). To determine the contribution of individual LCR DNaseI hypersensitive sites (HSs) to transcription and nuclear location, in the present study, we compared β-globin gene activity and location in erythroid cells derived from mice with deletions of individual HSs, deletions of 2 HSs, and deletion of the whole LCR and found all of the HSs had a similar spectrum of activities, albeit to different degrees. Each HS acts as an independent module to activate expression in an additive manner, and this is correlated with relocation away from the nuclear periphery. In contrast, HSs have redundant activities with respect to association with TFys and the probability that an allele is actively transcribed, as measured by primary RNA transcript FISH. The limiting effect on RNA levels occurs after β-globin genes associate with TFys, at which time HSs contribute to the amount of RNA arising from each burst of transcription by stimulating transcriptional elongation.
Collapse
|
15
|
Kim S, Kim YW, Shim SH, Kim CG, Kim A. Chromatin structure of the LCR in the human β-globin locus transcribing the adult δ- and β-globin genes. Int J Biochem Cell Biol 2011; 44:505-13. [PMID: 22178075 DOI: 10.1016/j.biocel.2011.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/21/2011] [Accepted: 12/01/2011] [Indexed: 11/15/2022]
Abstract
The β-like globin genes are transcribed in a developmental stage specific fashion in erythroid cells. The specific transcription of globin genes is conferred by the locus control region (LCR), but the chromatin structure of the LCR in the human adult β-globin locus transcribing the δ- and β-globin genes is not clear. Here, we employed hybrid MEL cells that contain a human chromosome 11. The δ- and β-globin genes were highly transcribed in hybrid MEL/ch11 cells after transcriptional induction. LCR HS3 and HS2 were strongly occupied by erythroid specific transcriptional activators and co-factors in the induced locus. These HSs, but not HS4 and HS1, were in close proximity with the active globin genes as revealed by high resolution 3C experiments. The active features at HS3 were markedly established after transcriptional induction, while HS2 was in a relatively active conformation before the induction. Unexpectedly, HS1 did not show notable active features except histone hyperacetylation. Taken together, the LCR of the human β-globin locus transcribing the adult δ- and β-globin genes has HS specific chromatin structure. The structure at each HS, which is different from the locus transcribing the fetal globin genes, might relate to its role in transcribing the adult genes.
Collapse
Affiliation(s)
- Seoyeon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan 609-735, Republic of Korea
| | | | | | | | | |
Collapse
|
16
|
Fromm G, Bulger M. A spectrum of gene regulatory phenomena at mammalian beta-globin gene loci. Biochem Cell Biol 2010; 87:781-90. [PMID: 19898527 DOI: 10.1139/o09-048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The beta-globin gene cluster in mammals, consisting of a set of erythroid-specific, developmentally activated, and (or) silenced genes, has long presented a model system for the investigation of gene regulation. As the number and complexity of models of gene activation and repression have expanded, so too has the complexity of phenomena associated with the regulation of the beta-globin genes. Models for expression from within the locus must account for local (promoter-proximal), distal (enhancer-mediated), and domain-wide components of the regulatory pathways that proceed through mammalian development and erythroid differentiation. In this review, we provide an overview of transcriptional activation, silencing, chromatin structure, and the function of distal regulatory elements involved in the normal developmental regulation of beta-globin gene expression.
Collapse
Affiliation(s)
- George Fromm
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
17
|
Fang X, Yin W, Xiang P, Han H, Stamatoyannopoulos G, Li Q. The higher structure of chromatin in the LCR of the beta-globin locus changes during development. J Mol Biol 2009; 394:197-208. [PMID: 19781549 DOI: 10.1016/j.jmb.2009.09.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 09/14/2009] [Accepted: 09/17/2009] [Indexed: 11/17/2022]
Abstract
The beta-globin locus control region (LCR) is able to enhance the expression of all globin genes throughout the course of development. However, the chromatin structure of the LCR at the different developmental stages is not well defined. We report DNase I and micrococcal nuclease hypersensitivity, chromatin immunoprecipitation analyses for histones H2A, H2B, H3, and H4, and 3C (chromatin conformation capture) assays of the normal and mutant beta-globin loci, which demonstrate that nucleosomes at the DNase I hypersensitive sites of the LCR could be either depleted or retained depending on the stages of development. Furthermore, MNase sensitivity and 3C assays suggest that the LCR chromatin is more open in embryonic erythroblasts than in definitive erythroblasts at the primary- and secondary-structure levels; however, the LCR chromatin is packaged more tightly in embryonic erythroblasts than in definitive erythroblasts at the tertiary chromatin level. Our study provides the first evidence that the occupancy of nucleosomes at a DNase I hypersensitive site is a developmental stage-related event and that embryonic and adult cells possess distinct chromatin structures of the LCR.
Collapse
Affiliation(s)
- Xiangdong Fang
- Division of Medical Genetics, Department of Medicine, Box 357720, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
18
|
Lisowski L, Sadelain M. Current status of globin gene therapy for the treatment of β-thalassaemia. Br J Haematol 2008; 141:335-45. [DOI: 10.1111/j.1365-2141.2008.07098.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Silencing of Agamma-globin gene expression during adult definitive erythropoiesis mediated by GATA-1-FOG-1-Mi2 complex binding at the -566 GATA site. Mol Cell Biol 2008; 28:3101-13. [PMID: 18347053 DOI: 10.1128/mcb.01858-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autonomous silencing of gamma-globin transcription is an important developmental regulatory mechanism controlling globin gene switching. An adult stage-specific silencer of the (A)gamma-globin gene was identified between -730 and -378 relative to the mRNA start site. A marked copy of the (A)gamma-globin gene inserted between locus control region 5' DNase I-hypersensitive site 1 and the epsilon-globin gene was transcriptionally silenced in adult beta-globin locus yeast artificial chromosome (beta-YAC) transgenic mice, but deletion of the 352-bp region restored expression. This fragment reduced reporter gene expression in K562 cells, and GATA-1 was shown to bind within this sequence at the -566 GATA site. Further, the Mi2 protein, a component of the NuRD complex, was observed in erythroid cells with low gamma-globin levels, whereas only a weak signal was detected when gamma-globin was expressed. Chromatin immunoprecipitation of fetal liver tissue from beta-YAC transgenic mice demonstrated that GATA-1, FOG-1, and Mi2 were recruited to the (A)gamma-globin -566 or (G)gamma-globin -567 GATA site when gamma-globin expression was low (day 18) but not when gamma-globin was expressed (day 12). These data suggest that during definitive erythropoiesis, gamma-globin gene expression is silenced, in part, by binding a protein complex containing GATA-1, FOG-1, and Mi2 at the -566/-567 GATA sites of the proximal gamma-globin promoters.
Collapse
|
20
|
Fedosyuk H, Peterson KR. Deletion of the human beta-globin LCR 5'HS4 or 5'HS1 differentially affects beta-like globin gene expression in beta-YAC transgenic mice. Blood Cells Mol Dis 2007; 39:44-55. [PMID: 17433733 PMCID: PMC1934938 DOI: 10.1016/j.bcmd.2007.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 02/09/2007] [Accepted: 02/09/2007] [Indexed: 11/16/2022]
Abstract
A 213 kb human beta-globin locus yeast artificial chromosome (beta-YAC) was modified by homologous recombination to delete 2.9 kb of cross-species conserved sequence similarity encompassing the LCR 5' hypersensitive site (HS) 4 (Delta5'HS4 beta-YAC). In three transgenic mouse lines, completion of the gamma- to beta-globin switch during definitive erythropoiesis was delayed relative to wild-type beta-YAC mice. In addition, quantitative per-copy human beta-like globin mRNA levels were similar to wild-type beta-YAC transgenic lines, although beta-globin gene expression was slightly decreased in the day 12 fetal liver of Delta5'HS4 beta-YAC mice. A 0.8 kb 5'HS1 fragment was similarly deleted in the YAC. Three Delta5'HS1 beta-YAC transgenic lines were established. epsilon-globin gene expression was markedly reduced, approximately 16 fold, during primitive erythropoiesis compared to wild-type beta-YAC mice, but gamma-globin expression levels were unaffected. However, during the fetal stage of definitive erythropoiesis, gamma-globin gene expression was decreased approximately 4 fold at day 12 and approximately 5 fold at day 14. Temporal developmental expression profiles of the beta-like globin genes were unaffected by deletion of 5'HS1. Decreased expression of the epsilon- and gamma-globin genes is the first phenotype ascribed to a 5'HS1 mutation in the human beta-globin locus, suggesting that this HS does indeed have a role in LCR function beyond simply a combined synergism with the other LCR HSs.
Collapse
Affiliation(s)
- Halyna Fedosyuk
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
21
|
Tanabe O, McPhee D, Kobayashi S, Shen Y, Brandt W, Jiang X, Campbell AD, Chen YT, Chang CS, Yamamoto M, Tanimoto K, Engel JD. Embryonic and fetal beta-globin gene repression by the orphan nuclear receptors, TR2 and TR4. EMBO J 2007; 26:2295-306. [PMID: 17431400 PMCID: PMC1864974 DOI: 10.1038/sj.emboj.7601676] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 03/12/2007] [Indexed: 11/09/2022] Open
Abstract
The TR2 and TR4 orphan nuclear receptors comprise the DNA-binding core of direct repeat erythroid definitive, a protein complex that binds to direct repeat elements in the embryonic and fetal beta-type globin gene promoters. Silencing of both the embryonic and fetal beta-type globin genes is delayed in definitive erythroid cells of Tr2 and Tr4 null mutant mice, whereas in transgenic mice that express dominant-negative TR4 (dnTR4), human embryonic epsilon-globin is activated in primitive and definitive erythroid cells. In contrast, human fetal gamma-globin is activated by dnTR4 only in definitive, but not in primitive, erythroid cells, implicating TR2/TR4 as a stage-selective repressor. Forced expression of wild-type TR2 and TR4 leads to precocious repression of epsilon-globin, but in contrast to induction of gamma-globin in definitive erythroid cells. These temporally specific, gene-selective alterations in epsilon- and gamma-globin gene expression by gain and loss of TR2/TR4 function provide the first genetic evidence for a role for these nuclear receptors in sequential, gene-autonomous silencing of the epsilon- and gamma-globin genes during development, and suggest that their differential utilization controls stage-specific repression of the human epsilon- and gamma-globin genes.
Collapse
Affiliation(s)
- Osamu Tanabe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David McPhee
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shoko Kobayashi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yannan Shen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William Brandt
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Xia Jiang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew D Campbell
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yei-Tsung Chen
- Departments of Pathology, Urology, Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Chawn shang Chang
- Departments of Pathology, Urology, Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Keiji Tanimoto
- Centre for TARA, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA. Tel.: +1 734 615 7509; Fax: +1 734 763 1166; E-mail:
| |
Collapse
|
22
|
Hermann BP, Hornbaker KI, Maran RRM, Heckert LL. Distal regulatory elements are required for Fshr expression, in vivo. Mol Cell Endocrinol 2007; 260-262:49-58. [PMID: 17097219 PMCID: PMC1764205 DOI: 10.1016/j.mce.2006.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 01/23/2006] [Indexed: 10/23/2022]
Abstract
The gonadotropin follicle-stimulating hormone (FSH) is required for initiation and maintenance of normal gametogenesis and acts through a specific, cell-surface receptor (Fshr) present only on Sertoli and granulosa cells in the gonads. Despite extensive examination of the transcriptional mechanisms regulating Fshr, the sequences directing its expression to these cells remain unidentified. To establish the minimal region necessary for Fshr expression, we generated transgenic mice carrying a yeast artificial chromosome (YAC) that contained 413 kilobases (kb) of the rat Fshr locus (YAC60). Transgene expression, as determined by RT-PCR, was absent from immature testis and Sertoli cells, limited to germ cells of the adult testis, and never observed in the ovary. While the data is limited to only one transgenic line, it suggests that the 413kb region does not specify the normal spatiotemporal expression pattern of Fshr. Comparative genomics was used to identify potential distal regulatory elements, revealing seven regions of high evolutionary conservation (>80% identity over 100bp or more), six of which were absent from the transgene. Functional examination of the evolutionary conserved regions (ECRs) by transient transfection revealed that all of the ECRs had modest transcriptional activity in Sertoli or myoid cells with two, ECR4 and ECR5, showing differential effects in expressing and non-expressing cells. These data reveal that distal regulatory regions (outside the 413kb in YAC60) are required for appropriate temporal and spatial Fshr expression and implicate the identified ECRs in transcriptional regulation of Fshr.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chromosome Mapping
- Chromosomes, Artificial, Yeast
- Conserved Sequence
- Evolution, Molecular
- Gene Expression Profiling
- Gene Expression Regulation/genetics
- Humans
- Integrases/metabolism
- Mice
- Mice, Transgenic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Receptors, FSH/genetics
- Recombination, Genetic
- Regulatory Sequences, Nucleic Acid/genetics
- Saccharomyces cerevisiae/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Brian P Hermann
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
23
|
Navas PA, Li Q, Peterson KR, Stamatoyannopoulos G. Investigations of a human embryonic globin gene silencing element using YAC transgenic mice. Exp Biol Med (Maywood) 2006; 231:328-34. [PMID: 16514181 PMCID: PMC2812921 DOI: 10.1177/153537020623100314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A silencing element has been previously located upstream of the human epsilon-globin gene promoter using transient assays and transgenic mice carrying plasmid constructs in which the element has been deleted or its transcriptional motifs have been mutated. To investigate whether this element functions in the context of the whole beta-globin locus, we analyzed epsilon-globin gene expression in transgenic mice carrying a deletion of the silencing element in the context of a 213-kilobase human beta-globin yeast artificial chromosome (beta-YAC). epsilon-Globin gene expression was measured during embryonic and fetal development and in adult mice. epsilon-mRNA levels in embryonic cells in Day 12 blood were as high as those measured in wild-type beta-YAC controls, indicating that the deletion does not affect epsilon gene promoter function. epsilon-Globin gene expression was confined to the embryonic cells, indicating that deletion of this silencing element did not affect epsilon-globin developmental expression in the context of the beta-YAC. These results suggest that in the context of the whole beta-globin locus, other proximal and upstream epsilon gene promoter elements as well as competition by the downstream globin genes contribute to the silencing of the epsilon-globin gene in the cells of definitive erythropoiesis.
Collapse
Affiliation(s)
- Patrick A Navas
- Division of Medical Genetics, University of Washington, Seattle, 98195, USA.
| | | | | | | |
Collapse
|
24
|
Bresnick EH, Johnson KD, Kim SI, Im H. Establishment and regulation of chromatin domains: mechanistic insights from studies of hemoglobin synthesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:435-471. [PMID: 16891178 DOI: 10.1016/s0079-6603(06)81011-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Emery H Bresnick
- Department of Pharmacology, University of Wisconsin Medical School, 383 Medical Sciences Center, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
25
|
Harju S, Navas PA, Stamatoyannopoulos G, Peterson KR. Genome architecture of the human beta-globin locus affects developmental regulation of gene expression. Mol Cell Biol 2005; 25:8765-78. [PMID: 16199858 PMCID: PMC1265765 DOI: 10.1128/mcb.25.20.8765-8778.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To test the role of gene order in globin gene expression, mutant human beta-globin locus yeast artificial chromosome constructs were used, each having one additional globin gene encoding a "marked" transcript (epsilon(m), gamma(m), or beta(m)) integrated at different locations within the locus. When a beta(m)-globin gene was placed between the locus control region (LCR) and the epsilon-globin gene, beta(m)-globin expression dominated primitive and definitive erythropoiesis; only beta(m)-globin mRNA was detected during the fetal and adult definitive stages of erythropoiesis. When an (A)gamma(m)-globin gene was placed at the same location, (A)gamma(m)-globin was expressed during embryonic erythropoiesis and the fetal liver stage of definitive erythropoiesis but was silenced during the adult stage. The downstream wild-type gamma-globin genes were not expressed. When an epsilon(m)-globin gene was placed between the delta- and beta-globin genes, it remained silent during embryonic erythropoiesis; only the LCR-proximal wild-type epsilon-globin gene was expressed. Placement of a beta(m)-globin gene upstream of the (G)gamma-globin gene resulted in expression of beta(m)-globin in embryonic cells and in a significant decrease in expression of the downstream wild-type beta-globin gene. These results indicate that distance from the LCR, an inherent property of spatial gene order, is a major determinant of temporal gene expression during development.
Collapse
Affiliation(s)
- Susanna Harju
- Department of Biochemistry and Molecular Biology, MS 3030, University of Kansas Medical Center, Kansas City, 66160-7421, USA
| | | | | | | |
Collapse
|
26
|
Hu X, Bulger M, Bender MA, Fields J, Groudine M, Fiering S. Deletion of the core region of 5' HS2 of the mouse beta-globin locus control region reveals a distinct effect in comparison with human beta-globin transgenes. Blood 2005; 107:821-6. [PMID: 16189270 PMCID: PMC1895626 DOI: 10.1182/blood-2005-06-2308] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The beta-globin locus control region (LCR) is a large DNA element that is required for high-level expression of beta-like globin genes from the endogenous mouse locus or in transgenic mice carrying the human beta-globin locus. The LCR encompasses 6 DNaseI hypersensitive sites (HSs) that bind transcription factors. These HSs each contain a core of a few hundred base pairs (bp) that has most of the functional activity and exhibits high interspecies sequence homology. Adjoining the cores are 500- to 1000-bp "flanks" with weaker functional activity and lower interspecies homology. Studies of human beta-globin transgenes and of the endogenous murine locus show that deletion of an entire HS (core plus flanks) moderately suppresses expression. However, human transgenes in which only individual HS core regions were deleted showed drastic loss of expression accompanied by changes in chromatin structure. To address these disparate results, we have deleted the core region of 5'HS2 from the endogenous murine beta-LCR. The phenotype was similar to that of the larger 5'HS2 deletion, with no apparent disruption of chromatin structure. These results demonstrate that the greater severity of HS core deletions in comparison to full HS deletions is not a general property of the beta-LCR.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Microbiology/Immunology, Dartmouth Medical School, Hanover, NH, USA
| | | | | | | | | | | |
Collapse
|
27
|
Fang X, Sun J, Xiang P, Yu M, Navas PA, Peterson KR, Stamatoyannopoulos G, Li Q. Synergistic and additive properties of the beta-globin locus control region (LCR) revealed by 5'HS3 deletion mutations: implication for LCR chromatin architecture. Mol Cell Biol 2005; 25:7033-41. [PMID: 16055715 PMCID: PMC1190234 DOI: 10.1128/mcb.25.16.7033-7041.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletion of the 234-bp core element of the DNase I hypersensitive site 3 (5'HS3) of the locus control region (LCR) in the context of a human beta-globin locus yeast artificial chromosome (beta-YAC) results in profound effects on globin gene expression in transgenic mice. In contrast, deletion of a 2.3-kb 5'HS3 region, which includes the 234-bp core sequence, has a much milder phenotype. Here we report the effects of these deletions on chromatin structure in the beta-globin locus of adult erythroblasts. The 234-bp 5'HS3 deletion abolished histone acetylation throughout the beta-globin locus; recruitment of RNA polymerase II (pol II) to the LCR and beta-globin gene promoter was reduced to a basal level; and formation of all the 5' DNase I hypersensitive sites of the LCR was disrupted. The 2.3-kb 5'HS3 deletion mildly reduced the level of histone acetylation but did not change the profile across the whole locus; the 5' DNase I hypersensitive sites of the LCR were formed, but to a lesser extent; and recruitment of pol II was reduced, but only marginally. These data support the hypothesis that the LCR forms a specific chromatin structure and acts as a single entity. Based on these results we elaborate on a model of LCR chromatin architecture which accommodates the distinct phenotypes of the 5'HS3 and HS3 core deletions.
Collapse
Affiliation(s)
- Xiangdong Fang
- Medical Genetics, University of Washington, Seattle, 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Chakalova L, Carter D, Debrand E, Goyenechea B, Horton A, Miles J, Osborne C, Fraser P. Developmental regulation of the beta-globin gene locus. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 38:183-206. [PMID: 15881896 DOI: 10.1007/3-540-27310-7_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The beta-globin genes have become a classical model for studying regulation of gene expression. Wide-ranging studies have revealed multiple levels of epigenetic regulation that coordinately ensure a highly specialised, tissue- and stage-specific gene transcription pattern. Key players include cis-acting elements involved in establishing and maintaining specific chromatin conformations and histone modification patterns, elements engaged in the transcription process through long-range regulatory interactions, transacting general and tissue-specific factors. On a larger scale, molecular events occurring at the locus level take place in the context of a highly dynamic nucleus as part of the cellular epigenetic programme.
Collapse
Affiliation(s)
- Lyubomira Chakalova
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Cambridge, CB2 4AT, UK
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Karpova T, Presley J, Manimaran RR, Scherrer SP, Tejada L, Peterson KR, Heckert LL. A FTZ-F1-containing yeast artificial chromosome recapitulates expression of steroidogenic factor 1 in vivo. Mol Endocrinol 2005; 19:2549-63. [PMID: 15961510 PMCID: PMC1544362 DOI: 10.1210/me.2004-0386] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Steroidogenic factor 1 (SF-1/Nr5a1) is an orphan nuclear receptor encoded by the Ftz-F1 gene and is required for gonad and adrenal development and regulation of hormone production within the reproductive and adrenal axes. To extend our understanding of Ftz-F1 and its role in SF-1 expression, we identified and characterized a yeast artificial chromosome (YAC) containing Ftz-F1. Within this YAC, Ftz-F1 is centrally located and flanked by genes encoding a second orphan nuclear receptor, germ cell nuclear factor, and proteasome (prosome, macropain) subunit beta type 7. Three lines of transgenic mice carrying the YAC were generated and in two lines (lines 7 and 14), RT-PCR and ribonuclease protection analysis showed that expression of transgenic SF-1 mimicked that of endogenous SF-1, both spatially and quantitatively. In the third line (line 15), pituitary and hypothalamic expression were absent. Comparison of the integrated transgenes revealed that line 15 was truncated at the end of intron 4 and revealed a region within the locus that is responsible for SF-1 expression in the pituitary and hypothalamus. The line 14 transgene was introduced into a mouse strain lacking functional SF-1. Examination of SF-1-deficient, transgene-positive mice revealed that the YAC was able to rescue adrenal and gonad development, which normally arrests in the SF-1-null embryos and showed that the 153-kb transgene integrated in line 14 is sufficient to properly direct SF-1 expression and support its biological activity. Thus, the study defines a region of Ftz-F1 that contains the requisite set of regulatory elements to direct SF-1 cell-specific expression and all temporal and quantitative changes need for its biological activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leslie L. Heckert
- Address all correspondence and requests for reprints to: Leslie L. Heckert, Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, 3901 Rainbow Boulevard. Kansas City, Kansas 66160. E-mail:
| |
Collapse
|
30
|
Navas PA, Swank RA, Yu M, Peterson KR, Stamatoyannopoulos G. Mutation of a transcriptional motif of a distant regulatory element reduces the expression of embryonic and fetal globin genes. Hum Mol Genet 2003; 12:2941-8. [PMID: 14506128 PMCID: PMC2808411 DOI: 10.1093/hmg/ddg319] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High-level beta-globin gene expression is dependent on the presence of the locus control region (LCR), a powerful regulatory element physically characterized by five DNase I-hypersensitive sites (HS), designated HS1-HS5. Of these, HS3 contains seven GT motifs that are essential for its activity. One of the motifs, GT6, has been shown by in vivo footprinting to display the largest difference in signal between fetal and adult globin expressing cells. We assessed the contribution of GT6 on the downstream globin gene expression by mutating this motif in a 248 kb beta-globin locus yeast artificial chromosome and measuring the activity of beta-globin genes in GT6m beta-YAC transgenic mice. Seven transgenic lines were established, three of which contained at least one intact copy of the beta-globin locus and were further investigated. The mutation of the GT6 motif reduced the expression of epsilon- and gamma-globin genes during embryonic erythropoiesis. During definitive erythropoiesis, gamma-globin gene expression was significantly reduced while beta-globin gene expression was virtually indistinguishable from wild-type controls. We conclude that the GT6 motif of hypersensitive site 3 of the LCR is required for normal epsilon- and gamma-globin gene expression during embryonic erythropoiesis and for gamma-globin gene expression during definitive erythropoiesis in the fetal liver. Our results provide evidence that mutations of single transcriptional motifs of distant regulatory elements can have profound effects on gene expression.
Collapse
|
31
|
Tang Y, Liu DP, Liang CC. Further understanding of the beta-globin locus regulation at the molecular level: looping or linking models? Genes Cells 2003; 7:889-900. [PMID: 12296820 DOI: 10.1046/j.1365-2443.2002.00568.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human beta-globin locus is a classic model of the eukaryotic multigene family with tissue- and temporally specific expression. Over the past few years, great advances have been achieved in studies of beta-globin locus regulation. The dominant role of the beta-globin locus control region (LCR) in chromatin opening and developmental switching has been challenged, and elements beyond the LCR have been studied in depth. More recently, the fields of research have been expanded to intergenic transcription, nuclear localization and histone modification. Several models have been proposed to elucidate the regulation mechanism; among them, the looping and linking models are the most prevalent. Different models are the summarization of the observations made at different times and a persuasive model must be based on a systematic understanding of the numerous observations. The objective of this review is to provide an overview of progress in the area of beta-globin regulation and then to discuss models for it.
Collapse
Affiliation(s)
- Yi Tang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100005, PR China
| | | | | |
Collapse
|
32
|
Abstract
During the past year, many interesting advances have been made regarding molecular mechanisms controlling beta-like globin gene switching. Throughout the beta locus, -acting elements exist that are dynamically bound by trans-acting proteins, including transcription factors, coactivators, repressors, and chromatin modifiers. Characterization of transcription factors, their interaction with one another, and an ever-increasing role for chromatin structure in gene expression have enhanced understanding of the mechanism of globin gene switching. The studies reviewed here contribute new insights on the interplay between -acting elements, transcription factors, and chromatin modifiers that underlie globin gene switching during development.
Collapse
Affiliation(s)
- Kenneth R Peterson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| |
Collapse
|
33
|
Jackson DA, McDowell JC, Dean A. Beta-globin locus control region HS2 and HS3 interact structurally and functionally. Nucleic Acids Res 2003; 31:1180-90. [PMID: 12582237 PMCID: PMC150235 DOI: 10.1093/nar/gkg217] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The overall structure of the DNase I hypersensitive sites (HSs) that comprise the beta-globin locus control region (LCR) is highly conserved among mammals, implying that the HSs have conserved functions. However, it is not well understood how the LCR HSs, either individually or collectively, activate transcription. We analyzed the interactions of HS2, HS3 and HS4 with the human epsilon- and beta-globin genes in chromatinized episomes in fetal/embryonic K562 cells. Only HS2 activates transcription of the epsilon-globin gene, while all three HSs activate the beta-globin gene. HS3 stimulates the beta-globin gene constitutively, but HS2 and HS4 transactivation requires expression of the transcription factor EKLF, which is not present in K562 cells but is required for beta-globin expression in vivo. To begin addressing how the individual HSs may interact with one another in a complex, we linked the beta-globin gene to both the HS2 and HS3. HS2 and HS3 together resulted in synergistic stimulation of beta-globin transcription. Unexpectedly, mutated, inactive forms of HS2 impeded the activation of the beta-globin gene by HS3. Thus, there appear to be distinct interactions among the HSs and between the HSs and the globin genes. These preferential, non-exclusive interactions may underlie an important structural and functional cooperativity among the regulatory sequences of the beta-globin locus in vivo.
Collapse
Affiliation(s)
- David A Jackson
- Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20892-2715, USA
| | | | | |
Collapse
|
34
|
Harju S, McQueen KJ, Peterson KR. Chromatin structure and control of beta-like globin gene switching. Exp Biol Med (Maywood) 2002; 227:683-700. [PMID: 12324650 DOI: 10.1177/153537020222700902] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human beta-globin locus is a complex genetic system widely used for analysis of eukaryotic gene expression. The locus consists of five functional beta-like globin genes, epsilon, (G)gamma, (A)gamma, delta, and beta, arrayed on the chromosome in the order that they are expressed during ontogeny. Globin gene expression is regulated, in part, by the locus control region, which physically consists of five DNaseI-hypersensitive sites located 6-22 Kb upstream of the epsilon -globin gene. During ontogeny two switches occur in beta-globin gene expression that reflect the changing oxygen requirements of the fetus. The first switch from embryonic epsilon - to fetal gamma-globin occurs at six weeks of gestation. The second switch from gamma- to adult delta- and beta-globin occurs shortly after birth. Throughout the locus, cis-acting elements exist that are dynamically bound by trans-acting proteins, including transcription factors, co-activators, repressors, and chromatin modifiers. Discovery of novel erythroid-specific transcription factors and a role for chromatin structure in gene expression have enhanced our understanding of the mechanism of globin gene switching. However, the hierarchy of events regulating gene expression during development, from extracellular signaling to transcriptional activation or repression, is complex. In this review we attempt to unify the current knowledge regarding the interplay of cis-acting elements, transcription factors, and chromatin modifiers into a comprehensive overview of globin gene switching.
Collapse
Affiliation(s)
- Susanna Harju
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City 66160, USA
| | | | | |
Collapse
|
35
|
Johnson KD, Grass JA, Boyer ME, Kiekhaefer CM, Blobel GA, Weiss MJ, Bresnick EH. Cooperative activities of hematopoietic regulators recruit RNA polymerase II to a tissue-specific chromatin domain. Proc Natl Acad Sci U S A 2002; 99:11760-5. [PMID: 12193659 PMCID: PMC129342 DOI: 10.1073/pnas.192285999] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The hematopoietic transcription factor GATA-1 regulates erythropoiesis and beta-globin expression. Although consensus GATA-1 binding sites exist throughout the murine beta-globin locus, we found that GATA-1 discriminates among these sites in vivo. Conditional expression of GATA-1 in GATA-1-null cells recapitulated the occupancy pattern. GATA-1 induced RNA polymerase II (pol II) recruitment to subregions of the locus control region and to the beta-globin promoters. The hematopoietic factor NF-E2 cooperated with GATA-1 to recruit pol II to the promoters. We propose that only when GATA-1 attracts pol II to the locus control region can pol II access the promoter in a NF-E2-dependent manner.
Collapse
Affiliation(s)
- Kirby D Johnson
- Department of Pharmacology, Molecular and Cellular Pharmacology Program, University of Wisconsin Medical School, 383 Medical Science Center, 1300 University Avenue, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Johnson KD, Norton JE, Bresnick EH. Requirements for utilization of CREB binding protein by hypersensitive site two of the beta-globin locus control region. Nucleic Acids Res 2002; 30:1522-30. [PMID: 11917012 PMCID: PMC101831 DOI: 10.1093/nar/30.7.1522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Strong transactivation of the beta-globin genes is conferred by the beta-globin locus control region (LCR), which consists of four erythroid-specific DNase I hypersensitive sites (HS1-HS4). HS2 has a powerful enhancer activity dependent upon tandem binding sites for the erythroid cell- and megakaryocyte-specific transcription factor NF-E2. An important co-activator-mediating transactivation by HS2 is the histone acetyltransferase (HAT) CREB binding protein (CBP). We showed previously that recruitment of a GAL4-CBP fusion protein to HS2 largely bypassed the requirement of the NF-E2 sites for transactivation. To determine whether GAL4-CBP recruitment is sufficient for transactivation, we assessed the importance of cis-elements within HS2. Docking of GAL4-CBP upstream of an Agamma-globin promoter lacking HS2 only weakly activated the promoter, indicating that HS2 components are required for GAL4-CBP-mediated transactivation. Sequences upstream and downstream of the NF-E2 sites were required for maximal GAL4-CBP-mediated transactivation, and HAT catalytic activity of GAL4-CBP was critical. No single factor-binding site was required for GAL4-CBP-mediated transactivation. However, deletion of two sites, a CACC site and an E-box, abolished transactivation in transient and stable transfection assays. These results suggest that NF-E2 recruits CBP as a critical step in transactivation, but additional components of HS2 are required to achieve maximal enhancer activity.
Collapse
Affiliation(s)
- Kirby D Johnson
- University of Wisconsin Medical School, Department of Pharmacology, Molecular and Cellular Pharmacology Program, 383 Medical Science Center, 1300 University Avenue, Madison, WI 53706, USA
| | | | | |
Collapse
|