1
|
Ramírez CS, Tolmie C, Rivas MG, Gonzalez PJ, Murgida DH, Opperman DJ, Brondino CD, Ferroni FM. Structural insights into the copper-containing nitrite reductase from Bradyrhizobium japonicum USDA110 and its role in the low nitrite reductase activity of rhizobia. Arch Biochem Biophys 2025:110467. [PMID: 40381977 DOI: 10.1016/j.abb.2025.110467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/25/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Bradyrhizobium japonicum USDA110 is a widely used microorganism in the formulation of bioinoculants for soybean crops, harboring a copper-containing nitrite reductase with low enzymatic activity. The activity of BjNirK at pH 6.5 was higher compared to that at pH 8.0, regardless of the presence of either physiological or artificial electron donors. Thermal shift assays reveal that the enzyme is more stable at pH 6.5 than at pH 8.0. X-ray structural data reveals that the funnel for substrate entry shows a wider cavity when compared to other class I NirK structures. Furthermore, the presence of an additional channel for proton provision is observed, in addition to the primary and secondary proton channels. The T2Cu active site can accommodate one or two water molecules, resulting in a tetra- or pentacoordinated metal site, respectively. The structural data correlates well with both optical visible and resonance Raman spectroscopies, denoting a strong blue character of the T1Cu site in both solid and solution states. Furthermore, EPR-monitored redox titration reveals that the catalytic rate is not constrained by T1Cu-T2Cu intraprotein electron transfer reaction at either pH 6.5 or pH 8.0. Additionally, bioinformatics studies indicate that the interaction between the enzyme and the electron donor is not pH dependent. These two observations suggest that the low activity of BjNirK is not caused by inefficient donor-enzyme interaction or impaired electron transfer. The present results suggest that the structural architecture and enzyme properties in rhizobia are designed to ensure low activity, a trait that is particularly advantageous for symbiosis.
Collapse
Affiliation(s)
- Cintia Soledad Ramírez
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas. Universidad Nacional del Litoral (UNL). CONICET, Ciudad Universitaria. Paraje El Pozo, Santa Fe, Santa Fe. S300ZAA. Argentina
| | - Carmien Tolmie
- Department of Microbiology and Biochemistry, University of the Free State (UFS), 205 Nelson Mandela Drive, Bloemfontein, Free State, 9300, South Africa
| | - María Gabriela Rivas
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas. Universidad Nacional del Litoral (UNL). CONICET, Ciudad Universitaria. Paraje El Pozo, Santa Fe, Santa Fe. S300ZAA. Argentina
| | - Pablo Javier Gonzalez
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas. Universidad Nacional del Litoral (UNL). CONICET, Ciudad Universitaria. Paraje El Pozo, Santa Fe, Santa Fe. S300ZAA. Argentina
| | - Daniel Horacio Murgida
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2 piso 1, Buenos Aires, Buenos Aires C1428EHA, Argentina
| | - Diederik Johannes Opperman
- Department of Microbiology and Biochemistry, University of the Free State (UFS), 205 Nelson Mandela Drive, Bloemfontein, Free State, 9300, South Africa
| | - Carlos Dante Brondino
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas. Universidad Nacional del Litoral (UNL). CONICET, Ciudad Universitaria. Paraje El Pozo, Santa Fe, Santa Fe. S300ZAA. Argentina
| | - Felix Martín Ferroni
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas. Universidad Nacional del Litoral (UNL). CONICET, Ciudad Universitaria. Paraje El Pozo, Santa Fe, Santa Fe. S300ZAA. Argentina.
| |
Collapse
|
2
|
Guevara Cuasapud LA, González PJ, Ferroni FM, Duré AB, Dalosto SD, Rivas MG, Brondino CD. Replacement of the essential catalytic aspartate with serine leads to an active form of copper-containing nitrite reductase from the denitrifier Sinorhizobium meliloti 2011. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141062. [PMID: 39743188 DOI: 10.1016/j.bbapap.2024.141062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/15/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
We report the molecular, biochemical and spectroscopic characterization and computational calculations of a variant of the copper-containing nitrite reductase from the rhizobial microorganism S. meliloti (SmNirK), in which the catalytic aspartate residue (AspCAT) has been replaced with serine (SerCAT, D134S) by site-directed mutagenesis. Like the wild-type enzyme, D134S is a homotrimer with the typical catalytic pocket of two-domain NirK containing two copper centers, one of type 1 (T1) and another of type 2 (T2). The T1 electron transfer center is similar to that of the wild-type enzyme but the electronic and covalent properties of T2 active site are altered by the mutation. As for the wild-type enzyme, the enzymatic activity of D134S is pH-dependent, i.e. it is higher at lower pH values, but the kcat is an order of magnitude lower. EPR studies showed a decrease in g‖ and an increase in A‖ of D134S relative to wild-type enzyme. This indicates changes in the electronic and covalent properties of T2 upon mutation, which affects the reduction potential of T2 and the T1-T2 reduction potential gap. Taken together, this evidence points to the importance of the ligands of the second coordination sphere of T2 in controlling critical parameters in catalysis. The possibility that AspCAT/SerCAT is the switch that triggers T1 → T2 electron transfer upon T2 nitrite binding and the importance of HisCAT for the pH-dependent catalytic activity of NirK are discussed.
Collapse
Affiliation(s)
- Lorieth A Guevara Cuasapud
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA Santa Fe, Argentina
| | - Pablo J González
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA Santa Fe, Argentina
| | - Félix M Ferroni
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA Santa Fe, Argentina
| | - Andrea B Duré
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA Santa Fe, Argentina
| | - Sergio D Dalosto
- Instituto de Física del Litoral, CONICET-UNL, Güemes 3450, S3000GLN Santa Fe, Argentina
| | - Maria G Rivas
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA Santa Fe, Argentina.
| | - Carlos D Brondino
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA Santa Fe, Argentina.
| |
Collapse
|
3
|
Williams E, Seib KL, Fairley CK, Pollock GL, Hocking JS, McCarthy JS, Williamson DA. Neisseria gonorrhoeae vaccines: a contemporary overview. Clin Microbiol Rev 2024; 37:e0009423. [PMID: 38226640 PMCID: PMC10938898 DOI: 10.1128/cmr.00094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Neisseria gonorrhoeae infection is an important public health issue, with an annual global incidence of 87 million. N. gonorrhoeae infection causes significant morbidity and can have serious long-term impacts on reproductive and neonatal health and may rarely cause life-threatening disease. Global rates of N. gonorrhoeae infection have increased over the past 20 years. Importantly, rates of antimicrobial resistance to key antimicrobials also continue to increase, with the United States Centers for Disease Control and Prevention identifying drug-resistant N. gonorrhoeae as an urgent threat to public health. This review summarizes the current evidence for N. gonorrhoeae vaccines, including historical clinical trials, key N. gonorrhoeae vaccine preclinical studies, and studies of the impact of Neisseria meningitidis vaccines on N. gonorrhoeae infection. A comprehensive survey of potential vaccine antigens, including those identified through traditional vaccine immunogenicity approaches, as well as those identified using more contemporary reverse vaccinology approaches, are also described. Finally, the potential epidemiological impacts of a N. gonorrhoeae vaccine and research priorities for further vaccine development are described.
Collapse
Affiliation(s)
- Eloise Williams
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher K. Fairley
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Georgina L. Pollock
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jane S. Hocking
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - James S. McCarthy
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Deborah A. Williamson
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Scott CJR, Leadbeater DR, Oates NC, James SR, Newling K, Li Y, McGregor NGS, Bird S, Bruce NC. Whole genome structural predictions reveal hidden diversity in putative oxidative enzymes of the lignocellulose-degrading ascomycete Parascedosporium putredinis NO1. Microbiol Spectr 2023; 11:e0103523. [PMID: 37811978 PMCID: PMC10714830 DOI: 10.1128/spectrum.01035-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE An annotated reference genome has revealed P. putredinis NO1 as a useful resource for the identification of new lignocellulose-degrading enzymes for biorefining of woody plant biomass. Utilizing a "structure-omics"-based searching strategy, we identified new potentially lignocellulose-active sequences that would have been missed by traditional sequence searching methods. These new identifications, alongside the discovery of novel enzymatic functions from this underexplored lineage with the recent discovery of a new phenol oxidase that cleaves the main structural β-O-4 linkage in lignin from P. putredinis NO1, highlight the underexplored and poorly represented family Microascaceae as a particularly interesting candidate worthy of further exploration toward the valorization of high value biorenewable products.
Collapse
Affiliation(s)
- Conor J. R. Scott
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, United Kingdom
| | - Daniel R. Leadbeater
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, United Kingdom
| | - Nicola C. Oates
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, United Kingdom
| | - Sally R. James
- Department of Biology, Bioscience Technology Facility, University of York, York, United Kingdom
| | - Katherine Newling
- Department of Biology, Bioscience Technology Facility, University of York, York, United Kingdom
| | - Yi Li
- Department of Biology, Bioscience Technology Facility, University of York, York, United Kingdom
| | - Nicholas G. S. McGregor
- Department of Chemistry, York Structural Biology Laboratory, The University of York, York, United Kingdom
| | - Susannah Bird
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, United Kingdom
| | - Neil C. Bruce
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, United Kingdom
| |
Collapse
|
5
|
Barreiro DS, Oliveira RNS, Pauleta SR. Biochemical Characterization of the Copper Nitrite Reductase from Neisseria gonorrhoeae. Biomolecules 2023; 13:1215. [PMID: 37627281 PMCID: PMC10452240 DOI: 10.3390/biom13081215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/16/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The copper-containing nitrite reductase from Neisseria gonorrhoeae has been shown to play a critical role in the infection mechanism of this microorganism by producing NO and abolishing epithelial exfoliation. This enzyme is a trimer with a type 1 copper center per subunit and a type 2 copper center in the subunits interface, with the latter being the catalytic site. The two centers were characterized for the first time by EPR and CD spectroscopy, showing that the type 1 copper center has a high rhombicity due to its lower symmetry and more tetragonal structure, while the type 2 copper center has the usual properties, but with a smaller hyperfine coupling constant (A// = 10.5 mT). The thermostability of the enzyme was analyzed by differential scanning calorimetry, which shows a single endothermic transition in the thermogram, with a maximum at 94 °C, while the CD spectra in the visible region indicate the presence of the type 1 copper center up to 80 °C. The reoxidation of the N. gonorrhoeae copper-containing nitrite reductase in the presence of nitrite were analyzed by visible spectroscopy and showed a pH dependence, being higher at pH 5.5-6.0. The high thermostability of this enzyme may be important to maintaining a high activity in the extracellular space and to making it less susceptible to denaturation and proteolysis, contributing to the proliferation of N. gonorrhoeae.
Collapse
Affiliation(s)
- Daniela S. Barreiro
- Microbial Stress Lab, UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ricardo N. S. Oliveira
- Microbial Stress Lab, UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Sofia R. Pauleta
- Microbial Stress Lab, UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
6
|
Branch AH, Stoudenmire JL, Seib KL, Cornelissen CN. Acclimation to Nutritional Immunity and Metal Intoxication Requires Zinc, Manganese, and Copper Homeostasis in the Pathogenic Neisseriae. Front Cell Infect Microbiol 2022; 12:909888. [PMID: 35846739 PMCID: PMC9280163 DOI: 10.3389/fcimb.2022.909888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis are human-specific pathogens in the Neisseriaceae family that can cause devastating diseases. Although both species inhabit mucosal surfaces, they cause dramatically different diseases. Despite this, they have evolved similar mechanisms to survive and thrive in a metal-restricted host. The human host restricts, or overloads, the bacterial metal nutrient supply within host cell niches to limit pathogenesis and disease progression. Thus, the pathogenic Neisseria require appropriate metal homeostasis mechanisms to acclimate to such a hostile and ever-changing host environment. This review discusses the mechanisms by which the host allocates and alters zinc, manganese, and copper levels and the ability of the pathogenic Neisseria to sense and respond to such alterations. This review will also discuss integrated metal homeostasis in N. gonorrhoeae and the significance of investigating metal interplay.
Collapse
Affiliation(s)
- Alexis Hope Branch
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Julie L. Stoudenmire
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Cynthia Nau Cornelissen
- Center for Translational Immunology, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
7
|
Truchon AN, Hendrich CG, Bigott AF, Dalsing BL, Allen C. NorA, HmpX, and NorB Cooperate to Reduce NO Toxicity during Denitrification and Plant Pathogenesis in Ralstonia solanacearum. Microbiol Spectr 2022; 10:e0026422. [PMID: 35377234 PMCID: PMC9045102 DOI: 10.1128/spectrum.00264-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
Ralstonia solanacearum, which causes bacterial wilt disease of many crops, requires denitrifying respiration to survive in its plant host. In the hypoxic environment of plant xylem vessels, this pathogen confronts toxic oxidative radicals like nitric oxide (NO), which is generated by both bacterial denitrification and host defenses. R. solanacearum has multiple distinct mechanisms that could mitigate this stress, including putative NO-binding protein (NorA), nitric oxide reductase (NorB), and flavohaemoglobin (HmpX). During denitrification and tomato pathogenesis and in response to exogenous NO, R. solanacearum upregulated norA, norB, and hmpX. Single mutants lacking ΔnorB, ΔnorA, or ΔhmpX increased expression of many iron and sulfur metabolism genes, suggesting that the loss of even one NO detoxification system demands metabolic compensation. Single mutants suffered only moderate fitness reductions in host plants, possibly because they upregulated their remaining protective genes. However, ΔnorA/norB, ΔnorB/hmpX, and ΔnorA/hmpX double mutants grew poorly in denitrifying culture and in planta. It is likely that the loss of norA, norB, and hmpX is lethal, since the methods used to construct the double mutants could not generate a triple mutant. Functional aconitase activity assays showed that NorA, HmpX, and especially NorB are important for maintaining iron-sulfur cluster proteins. Additionally, plant defense genes were upregulated in tomatoes infected with the NO-overproducing ΔnorB mutant, suggesting that bacterial detoxification of NO reduces the ability of the plant host to perceive the presence of the pathogen. Thus, R. solanacearum's three NO detoxification systems each contribute to and are collectively essential for overcoming metabolic nitrosative stress during denitrification, for virulence and growth in the tomato, and for evading host plant defenses. IMPORTANCE The soilborne plant pathogen Ralstonia solanacearum (Rs) causes bacterial wilt, a serious and widespread threat to global food security. Rs is metabolically adapted to low-oxygen conditions, using denitrifying respiration to survive in the host and cause disease. However, bacterial denitrification and host defenses generate nitric oxide (NO), which is toxic and also alters signaling pathways in both the pathogen and its plant hosts. Rs mitigates NO with a trio of mechanistically distinct proteins: NO-reductase (NorB), predicted iron-binding (NorA), and oxidoreductase (HmpX). This redundancy, together with analysis of mutants and in-planta dual transcriptomes, indicates that maintaining low NO levels is integral to Rs fitness in tomatoes (because NO damages iron-cluster proteins) and to evading host recognition (because bacterially produced NO can trigger plant defenses).
Collapse
Affiliation(s)
- Alicia N. Truchon
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Connor G. Hendrich
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adam F. Bigott
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Beth L. Dalsing
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Ramírez CS, Tolmie C, Opperman DJ, González PJ, Rivas MG, Brondino CD, Ferroni FM. Copper nitrite reductase from Sinorhizobium meliloti 2011: Crystal structure and interaction with the physiological versus a nonmetabolically related cupredoxin-like mediator. Protein Sci 2021; 30:2310-2323. [PMID: 34562300 DOI: 10.1002/pro.4195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/08/2022]
Abstract
We report the crystal structure of the copper-containing nitrite reductase (NirK) from the Gram-negative bacterium Sinorhizobium meliloti 2011 (Sm), together with complex structural alignment and docking studies with both non-cognate and the physiologically related pseudoazurins, SmPaz1 and SmPaz2, respectively. S. meliloti is a rhizobacterium used for the formulation of Medicago sativa bionoculants, and SmNirK plays a key role in this symbiosis through the denitrification pathway. The structure of SmNirK, solved at a resolution of 2.5 Å, showed a striking resemblance with the overall structure of the well-known Class I NirKs composed of two Greek key β-barrel domains. The activity of SmNirK is ~12% of the activity reported for classical NirKs, which could be attributed to several factors such as subtle structural differences in the secondary proton channel, solvent accessibility of the substrate channel, and that the denitrifying activity has to be finely regulated within the endosymbiont. In vitro kinetics performed in homogenous and heterogeneous media showed that both SmPaz1 and SmPaz2, which are coded in different regions of the genome, donate electrons to SmNirK with similar performance. Even though the energetics of the interprotein electron transfer (ET) process is not favorable with either electron donors, adduct formation mediated by conserved residues allows minimizing the distance between the copper centers involved in the interprotein ET process.
Collapse
Affiliation(s)
- Cintia Soledad Ramírez
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL). CONICET, Ciudad Universitaria, Santa Fe, Argentina
| | - Carmien Tolmie
- Department of Microbiology and Biochemistry, University of the Free State (UFS), Bloemfontein, South Africa
| | - Diederik Johannes Opperman
- Department of Microbiology and Biochemistry, University of the Free State (UFS), Bloemfontein, South Africa
| | - Pablo Javier González
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL). CONICET, Ciudad Universitaria, Santa Fe, Argentina
| | - María Gabriela Rivas
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL). CONICET, Ciudad Universitaria, Santa Fe, Argentina
| | - Carlos Dante Brondino
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL). CONICET, Ciudad Universitaria, Santa Fe, Argentina
| | - Felix Martín Ferroni
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL). CONICET, Ciudad Universitaria, Santa Fe, Argentina
| |
Collapse
|
9
|
Bernabeu E, Miralles-Robledillo JM, Giani M, Valdés E, Martínez-Espinosa RM, Pire C. In Silico Analysis of the Enzymes Involved in Haloarchaeal Denitrification. Biomolecules 2021; 11:biom11071043. [PMID: 34356667 PMCID: PMC8301774 DOI: 10.3390/biom11071043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
During the last century, anthropogenic activities such as fertilization have led to an increase in pollution in many ecosystems by nitrogen compounds. Consequently, researchers aim to reduce nitrogen pollutants following different strategies. Some haloarchaea, owing to their denitrifier metabolism, have been proposed as good model organisms for the removal of not only nitrate, nitrite, and ammonium, but also (per)chlorates and bromate in brines and saline wastewater. Bacterial denitrification has been extensively described at the physiological, biochemical, and genetic levels. However, their haloarchaea counterparts remain poorly described. In previous work the model structure of nitric oxide reductase was analysed. In this study, a bioinformatic analysis of the sequences and the structural models of the nitrate, nitrite and nitrous oxide reductases has been described for the first time in the haloarchaeon model Haloferax mediterranei. The main residues involved in the catalytic mechanism and in the coordination of the metal centres have been explored to shed light on their structural characterization and classification. These results set the basis for understanding the molecular mechanism for haloarchaeal denitrification, necessary for the use and optimization of these microorganisms in bioremediation of saline environments among other potential applications including bioremediation of industrial waters.
Collapse
Affiliation(s)
- Eric Bernabeu
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Jose María Miralles-Robledillo
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Micaela Giani
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Elena Valdés
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Carmen Pire
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (E.B.); (J.M.M.-R.); (M.G.); (E.V.); (R.M.M.-E.)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
- Correspondence: ; Tel.: +34-965903400 (ext. 2064)
| |
Collapse
|
10
|
Maciver SK, McLaughlin PJ, Apps DK, Piñero JE, Lorenzo-Morales J. Opinion: Iron, Climate Change and the ‘Brain Eating Amoeba’ Naegleria fowleri. Protist 2021. [DOI: 10.1016/j.protis.2020.125791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Lim KYL, Mullally CA, Haese EC, Kibble EA, McCluskey NR, Mikucki EC, Thai VC, Stubbs KA, Sarkar-Tyson M, Kahler CM. Anti-Virulence Therapeutic Approaches for Neisseria gonorrhoeae. Antibiotics (Basel) 2021; 10:antibiotics10020103. [PMID: 33494538 PMCID: PMC7911339 DOI: 10.3390/antibiotics10020103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/15/2023] Open
Abstract
While antimicrobial resistance (AMR) is seen in both Neisseria gonorrhoeae and Neisseria meningitidis, the former has become resistant to commonly available over-the-counter antibiotic treatments. It is imperative then to develop new therapies that combat current AMR isolates whilst also circumventing the pathways leading to the development of AMR. This review highlights the growing research interest in developing anti-virulence therapies (AVTs) which are directed towards inhibiting virulence factors to prevent infection. By targeting virulence factors that are not essential for gonococcal survival, it is hypothesized that this will impart a smaller selective pressure for the emergence of resistance in the pathogen and in the microbiome, thus avoiding AMR development to the anti-infective. This review summates the current basis of numerous anti-virulence strategies being explored for N. gonorrhoeae.
Collapse
Affiliation(s)
- Katherine Y. L. Lim
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Christopher A. Mullally
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Ethan C. Haese
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Emily A. Kibble
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Edward C. Mikucki
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Van C. Thai
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Keith A. Stubbs
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
| | - Charlene M. Kahler
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (K.Y.L.L.); (C.A.M.); (E.C.H.); (E.A.K.); (N.R.M.); (E.C.M.); (V.C.T.); (M.S.-T.)
- Correspondence:
| |
Collapse
|
12
|
Microscale communication between bacterial pathogens and the host epithelium. Genes Immun 2021; 22:247-254. [PMID: 34588625 PMCID: PMC8497271 DOI: 10.1038/s41435-021-00149-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023]
Abstract
Pathogenic bacteria have evolved a variety of highly selective adhesins allowing these microbes to engage specific surface determinants of their eukaryotic host cells. Receptor clustering induced by the multivalent microorganisms will not only anchor the bacteria to the tissue, but will inevitably trigger host cell signaling. It has become clear, that these bacteria-initiated signaling events can be seen as a form of localized communication with host epithelial cells. Such a microscale communication can have immediate consequences in the form of changes in host cell membrane morphology or cytoskeletal organization, but can also lead to transcriptional responses and medium- and long-term alterations in cellular physiology. In this review, we will discuss several examples of this form of microscale communication between bacterial pathogens and mammalian host cells and try to delineate their downstream ramifications in the infection process. Furthermore, we will highlight recent findings that specialized pathogenic bacteria utilize the adhesin-based interaction to diffuse the short-range messenger molecule nitric oxide into the host tissue. While anti-adhesive strategies to disrupt the initial bacterial attachment have not yet translated into medical applications, the ability to interfere with the microscale communication emanating on the host side provides an unconventional approach for preventing infectious diseases.
Collapse
|
13
|
Cole GB, Bateman TJ, Moraes TF. The surface lipoproteins of gram-negative bacteria: Protectors and foragers in harsh environments. J Biol Chem 2021; 296:100147. [PMID: 33277359 PMCID: PMC7857515 DOI: 10.1074/jbc.rev120.008745] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/06/2022] Open
Abstract
Gram-negative pathogens are enveloped by an outer membrane that serves as a double-edged sword: On the one hand, it provides a layer of protection for the bacterium from environmental insults, including other bacteria and the host immune system. On the other hand, it restricts movement of vital nutrients into the cell and provides a plethora of antigens that can be detected by host immune systems. One strategy used to overcome these limitations is the decoration of the outer surface of gram-negative bacteria with proteins tethered to the outer membrane through a lipid anchor. These surface lipoproteins (SLPs) fulfill critical roles in immune evasion and nutrient acquisition, but as more bacterial genomes are sequenced, we are beginning to discover their prevalence and their different roles and mechanisms and importantly how we can exploit them as antimicrobial targets. This review will focus on representative SLPs that gram-negative bacteria use to overcome host innate immunity, specifically the areas of nutritional immunity and complement system evasion. We elaborate on the structures of some notable SLPs required for binding target molecules in hosts and how this information can be used alongside bioinformatics to understand mechanisms of binding and in the discovery of new SLPs. This information provides a foundation for the development of therapeutics and the design of vaccine antigens.
Collapse
Affiliation(s)
- Gregory B Cole
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Thomas J Bateman
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Mapping of the Denitrification Pathway in Burkholderia thailandensis by Genome-Wide Mutant Profiling. J Bacteriol 2020; 202:JB.00304-20. [PMID: 32900830 DOI: 10.1128/jb.00304-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Burkholderia thailandensis is a soil saprophyte that is closely related to the pathogen Burkholderia pseudomallei, the etiological agent of melioidosis in humans. The environmental niches and infection sites occupied by these bacteria are thought to contain only limited concentrations of oxygen, where they can generate energy via denitrification. However, knowledge of the underlying molecular basis of the denitrification pathway in these bacteria is scarce. In this study, we employed a transposon sequencing (Tn-Seq) approach to identify genes conferring a fitness benefit for anaerobic growth of B. thailandensis Of the 180 determinants identified, several genes were shown to be required for growth under denitrifying conditions: the nitrate reductase operon narIJHGK2K1, the aniA gene encoding a previously unknown nitrite reductase, and the petABC genes encoding a cytochrome bc 1, as well as three novel regulators that control denitrification. Our Tn-Seq data allowed us to reconstruct the entire denitrification pathway of B. thailandensis and shed light on its regulation. Analyses of growth behaviors combined with measurements of denitrification metabolites of various mutants revealed that nitrate reduction provides sufficient energy for anaerobic growth, an important finding in light of the fact that some pathogenic Burkholderia species can use nitrate as a terminal electron acceptor but are unable to complete denitrification. Finally, we demonstrated that a nitrous oxide reductase mutant is not affected for anaerobic growth but is defective in biofilm formation and accumulates N2O, which may play a role in the dispersal of B. thailandensis biofilms.IMPORTANCE Burkholderia thailandensis is a soil-dwelling saprophyte that is often used as surrogate of the closely related pathogen Burkholderia pseudomallei, the causative agent of melioidosis and a classified biowarfare agent. Both organisms are adapted to grow under oxygen-limited conditions in rice fields by generating energy through denitrification. Microoxic growth of B. pseudomallei is also considered essential for human infections. Here, we have used a Tn-Seq approach to identify the genes encoding the enzymes and regulators required for growth under denitrifying conditions. We show that a mutant that is defective in the conversion of N2O to N2, the last step in the denitrification process, is unaffected in microoxic growth but is severely impaired in biofilm formation, suggesting that N2O may play a role in biofilm dispersal. Our study identified novel targets for the development of therapeutic agents to treat meliodiosis.
Collapse
|
15
|
Hira D, Matsumura M, Kitamura R, Furukawa K, Fujii T. Unique hexameric structure of copper-containing nitrite reductase of an anammox bacterium KSU-1. Biochem Biophys Res Commun 2020; 526:654-660. [DOI: 10.1016/j.bbrc.2020.03.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
|
16
|
Sasaki D, Watanabe TF, Eady RR, Garratt RC, Antonyuk SV, Hasnain SS. Reverse protein engineering of a novel 4-domain copper nitrite reductase reveals functional regulation by protein-protein interaction. FEBS J 2020; 288:262-280. [PMID: 32255260 DOI: 10.1111/febs.15324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/16/2020] [Accepted: 04/01/2020] [Indexed: 01/03/2023]
Abstract
Cu-containing nitrite reductases that convert NO2 - to NO are critical enzymes in nitrogen-based energy metabolism. Among organisms in the order Rhizobiales, we have identified two copies of nirK, one encoding a new class of 4-domain CuNiR that has both cytochrome and cupredoxin domains fused at the N terminus and the other, a classical 2-domain CuNiR (Br2D NiR). We report the first enzymatic studies of a novel 4-domain CuNiR from Bradyrhizobium sp. ORS 375 (BrNiR), its genetically engineered 3- and 2-domain variants, and Br2D NiR revealing up to ~ 500-fold difference in catalytic efficiency in comparison with classical 2-domain CuNiRs. Contrary to the expectation that tethering would enhance electron delivery by restricting the conformational search by having a self-contained donor-acceptor system, we demonstrate that 4-domain BrNiR utilizes N-terminal tethering for downregulating enzymatic activity instead. Both Br2D NiR and an engineered 2-domain variant of BrNiR (Δ(Cytc-Cup) BrNiR) have 3 to 5% NiR activity compared to the well-characterized 2-domain CuNiRs from Alcaligenes xylosoxidans (AxNiR) and Achromobacter cycloclastes (AcNiR). Structural comparison of Δ(Cytc-Cup) BrNiR and Br2D NiR with classical 2-domain AxNiR and AcNiR reveals structural differences of the proton transfer pathway that could be responsible for the lowering of activity. Our study provides insights into unique structural and functional characteristics of naturally occurring 4-domain CuNiR and its engineered 3- and 2-domain variants. The reverse protein engineering approach utilized here has shed light onto the broader question of the evolution of transient encounter complexes and tethered electron transfer complexes. ENZYME: Copper-containing nitrite reductase (CuNiR) (EC 1.7.2.1). DATABASE: The atomic coordinate and structure factor of Δ(Cytc-Cup) BrNiR and Br2D NiR have been deposited in the Protein Data Bank (http://www.rcsb.org/) under the accession code 6THE and 6THF, respectively.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - Tatiana F Watanabe
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK.,The São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Robert R Eady
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - Richard C Garratt
- The São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Svetlana V Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| | - S Samar Hasnain
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, UK
| |
Collapse
|
17
|
Muenzner P, Hauck CR. Neisseria gonorrhoeae Blocks Epithelial Exfoliation by Nitric-Oxide-Mediated Metabolic Cross Talk to Promote Colonization in Mice. Cell Host Microbe 2020; 27:793-808.e5. [PMID: 32289262 DOI: 10.1016/j.chom.2020.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/19/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
Several pathogens suppress exfoliation, a key defense of epithelia against microbial colonization. Common among these pathogens, exemplified by Neisseria gonorrhoeae, is their ability to bind carcinoembryonic antigen-related cell adhesion molecules (CEACAMs). Gonococcal CEACAM engagement triggers the expression of CD105, which is necessary to block epithelial exfoliation, whereas homotypic CEACAM-CEACAM interactions or antibody-mediated CEACAM clustering does not lead to CD105 expression. Here, we show that CEACAM-associated bacteria release nitric oxide (NO) during anaerobic respiration, and membrane-permeable NO initiates a eukaryotic signaling pathway involving soluble guanylate cyclase (sGC), protein kinase G, and the transcription factor CREB to upregulate CD105 expression. A murine vaginal infection model with N. gonorrhoeae reveals this metabolic cross communication allows bacterial suppression of epithelial exfoliation to facilitate mucosal colonization. Disrupting NO-initiated responses in host cells re-establishes epithelial exfoliation and inhibits mouse genital tract colonization by N. gonorrhoeae, suggesting a host-directed approach to prevent bacterial infections.
Collapse
Affiliation(s)
- Petra Muenzner
- Lehrstuhl Für Zellbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Für Zellbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, Universität Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
18
|
High-resolution neutron crystallography visualizes an OH-bound resting state of a copper-containing nitrite reductase. Proc Natl Acad Sci U S A 2020; 117:4071-4077. [PMID: 32041886 PMCID: PMC7049163 DOI: 10.1073/pnas.1918125117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
X-ray crystallography often fails to determine the positions of hydrogen atoms, which play crucial roles in enzymatic reactions. Despite many X-ray crystallographic studies, the reaction mechanism of copper-containing nitrite reductases (CuNIRs), which reduce nitrite using two protons, has been controversial. The high-resolution neutron structure of a CuNIR reveals the protonation states of catalytic residues and key water molecules, thus providing insights into the catalytic mechanism. The catalytic Cu is shown to be coordinated by a hydroxide ion and not water. Furthermore, the hydrogen-deuterium exchange ratio suggests that intramolecular electron transfer is involved in a hydrogen-bond jump. These observations are consistent with previous computational chemistry; therefore, our study forms a bridge between the structural biology and quantum chemistry of CuNIRs. Copper-containing nitrite reductases (CuNIRs) transform nitrite to gaseous nitric oxide, which is a key process in the global nitrogen cycle. The catalytic mechanism has been extensively studied to ultimately achieve rational control of this important geobiochemical reaction. However, accumulated structural biology data show discrepancies with spectroscopic and computational studies; hence, the reaction mechanism is still controversial. In particular, the details of the proton transfer involved in it are largely unknown. This situation arises from the failure of determining positions of hydrogen atoms and protons, which play essential roles at the catalytic site of CuNIRs, even with atomic resolution X-ray crystallography. Here, we determined the 1.50 Å resolution neutron structure of a CuNIR from Geobacillus thermodenitrificans (trimer molecular mass of ∼106 kDa) in its resting state at low pH. Our neutron structure reveals the protonation states of catalytic residues (deprotonated aspartate and protonated histidine), thus providing insights into the catalytic mechanism. We found that a hydroxide ion can exist as a ligand to the catalytic Cu atom in the resting state even at a low pH. This OH-bound Cu site is unexpected from previously given X-ray structures but consistent with a reaction intermediate suggested by computational chemistry. Furthermore, the hydrogen-deuterium exchange ratio in our neutron structure suggests that the intramolecular electron transfer pathway has a hydrogen-bond jump, which is proposed by quantum chemistry. Our study can seamlessly link the structural biology to the computational chemistry of CuNIRs, boosting our understanding of the enzymes at the atomic and electronic levels.
Collapse
|
19
|
Opperman DJ, Murgida DH, Dalosto SD, Brondino CD, Ferroni FM. A three-domain copper-nitrite reductase with a unique sensing loop. IUCRJ 2019; 6:248-258. [PMID: 30867922 PMCID: PMC6400189 DOI: 10.1107/s2052252519000241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
Dissimilatory nitrite reductases are key enzymes in the denitrification pathway, reducing nitrite and leading to the production of gaseous products (NO, N2O and N2). The reaction is catalysed either by a Cu-containing nitrite reductase (NirK) or by a cytochrome cd 1 nitrite reductase (NirS), as the simultaneous presence of the two enzymes has never been detected in the same microorganism. The thermophilic bacterium Thermus scotoductus SA-01 is an exception to this rule, harbouring both genes within a denitrification cluster, which encodes for an atypical NirK. The crystal structure of TsNirK has been determined at 1.63 Å resolution. TsNirK is a homotrimer with subunits of 451 residues that contain three copper atoms each. The N-terminal region possesses a type 2 Cu (T2Cu) and a type 1 Cu (T1CuN) while the C-terminus contains an extra type 1 Cu (T1CuC) bound within a cupredoxin motif. T1CuN shows an unusual Cu atom coordination (His2-Cys-Gln) compared with T1Cu observed in NirKs reported so far (His2-Cys-Met). T1CuC is buried at ∼5 Å from the molecular surface and located ∼14.1 Å away from T1CuN; T1CuN and T2Cu are ∼12.6 Å apart. All these distances are compatible with an electron-transfer process T1CuC → T1CuN → T2Cu. T1CuN and T2Cu are connected by a typical Cys-His bridge and an unexpected sensing loop which harbours a SerCAT residue close to T2Cu, suggesting an alternative nitrite-reduction mechanism in these enzymes. Biophysicochemical and functional features of TsNirK are discussed on the basis of X-ray crystallography, electron paramagnetic resonance, resonance Raman and kinetic experiments.
Collapse
Affiliation(s)
- Diederik Johannes Opperman
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, Free State 9300, South Africa
| | - Daniel Horacio Murgida
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2 piso 1, Buenos Aires, Buenos Aires C1428EHA, Argentina
| | - Sergio Daniel Dalosto
- Instituto de Física del Litoral, CONICET-UNL, Güemes 3450, Santa Fe, Santa Fe S3000ZAA, Argentina
| | - Carlos Dante Brondino
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), CONICET, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Santa Fe S3000ZAA, Argentina
| | - Felix Martín Ferroni
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), CONICET, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Santa Fe S3000ZAA, Argentina
| |
Collapse
|
20
|
El-Rami FE, Zielke RA, Wi T, Sikora AE, Unemo M. Quantitative Proteomics of the 2016 WHO Neisseria gonorrhoeae Reference Strains Surveys Vaccine Candidates and Antimicrobial Resistance Determinants. Mol Cell Proteomics 2019; 18:127-150. [PMID: 30352803 PMCID: PMC6317477 DOI: 10.1074/mcp.ra118.001125] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
The sexually transmitted disease gonorrhea (causative agent: Neisseria gonorrhoeae) remains an urgent public health threat globally because of its reproductive health repercussions, high incidence, widespread antimicrobial resistance (AMR), and absence of a vaccine. To mine gonorrhea antigens and enhance our understanding of gonococcal AMR at the proteome level, we performed the first large-scale proteomic profiling of a diverse panel (n = 15) of gonococcal strains, including the 2016 World Health Organization (WHO) reference strains. These strains show all existing AMR profiles - established through phenotypic characterization and reference genome publication - and are intended for quality assurance in laboratory investigations. Herein, these isolates were subjected to subcellular fractionation and labeling with tandem mass tags coupled to mass spectrometry and multi-combinatorial bioinformatics. Our analyses detected 904 and 723 common proteins in cell envelope and cytoplasmic subproteomes, respectively. We identified nine novel gonorrhea vaccine candidates. Expression and conservation of new and previously selected antigens were investigated. In addition, established gonococcal AMR determinants were evaluated for the first time using quantitative proteomics. Six new proteins, WHO_F_00238, WHO_F_00635c, WHO_F_00745, WHO_F_01139, WHO_F_01144c, and WHO_F_01126, were differentially expressed in all strains, suggesting that they represent global proteomic AMR markers, indicate a predisposition toward developing or compensating gonococcal AMR, and/or act as new antimicrobial targets. Finally, phenotypic clustering based on the isolates' defined antibiograms and common differentially expressed proteins yielded seven matching clusters between established and proteome-derived AMR signatures. Together, our investigations provide a reference proteomics data bank for gonococcal vaccine and AMR research endeavors, which enables microbiological, clinical, or epidemiological projects and enhances the utility of the WHO reference strains.
Collapse
Affiliation(s)
- Fadi E El-Rami
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Ryszard A Zielke
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Teodora Wi
- §Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Aleksandra E Sikora
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon;; ¶Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon;.
| | - Magnus Unemo
- ‖World Health Organization Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| |
Collapse
|
21
|
Baarda BI, Zielke RA, Jerse AE, Sikora AE. Lipid-Modified Azurin of Neisseria gonorrhoeae Is Not Surface Exposed and Does Not Interact With the Nitrite Reductase AniA. Front Microbiol 2018; 9:2915. [PMID: 30538694 PMCID: PMC6277709 DOI: 10.3389/fmicb.2018.02915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
Lipid-modified cupredoxin azurin (Laz) is involved in electron transport in Neisseria and proposed to act as an electron donor to the surface-displayed nitrite reductase AniA. We identified Laz in Neisseria gonorrhoeae cell envelopes and naturally elaborated membrane vesicles in proteomic investigations focused on discovering new vaccine and therapeutic targets for this increasingly difficult to treat pathogen. Its surface exposure in N. meningitidis suggested Laz could be a vaccine candidate for N. gonorrhoeae. Here we characterized the localization, expression, and role of Laz within the gonococcal cell envelope and challenged the hypothesis that Laz and AniA interact. While we demonstrate that Laz indeed shows some good features of a vaccine antigen, such as stable expression, high conservation, and ability to elicit antibodies that cross-react with a diverse panel of Neisseria, it is not a surface-displayed lipoprotein in the gonococcus. This discovery eliminates Laz as a gonorrhea vaccine candidate, further highlighting the necessity of examining homologous protein localization between closely related species. Absence of Laz slightly altered cell envelope integrity but was not associated with growth defects in vitro, including during anoxia, implicating the presence of other electron pathways to AniA. To further dissect the implied AniA-Laz interaction, we utilized biolayer interferometry and optimized and executed chemical cross-linking coupled with immunoblotting to covalently link interacting protein partners in living gonococci. This method, applied for the first time in N. gonorrhoeae research to interrogate protein complexes, was validated by the appearance of the trimer form of AniA, as well as by increased formation of the β-barrel assembly machinery complex, in the presence of cross-linker. We conclude that Laz is not an electron donor to AniA based on their distinct subcellular localization, discordant expression during infection of the female mouse lower genital tract, and lack of interaction in vivo and in vitro.
Collapse
Affiliation(s)
- Benjamin I Baarda
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Ryszard A Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Aleksandra E Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States.,Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| |
Collapse
|
22
|
Kobayashi S, Hira D, Yoshida K, Toyofuku M, Shida Y, Ogasawara W, Yamaguchi T, Araki N, Oshiki M. Nitric Oxide Production from Nitrite Reduction and Hydroxylamine Oxidation by Copper-containing Dissimilatory Nitrite Reductase (NirK) from the Aerobic Ammonia-oxidizing Archaeon, Nitrososphaera viennensis. Microbes Environ 2018; 33:428-434. [PMID: 30318500 PMCID: PMC6308003 DOI: 10.1264/jsme2.me18058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aerobic ammonia-oxidizing archaea (AOA) play a crucial role in the global nitrogen cycle by oxidizing ammonia to nitrite, and nitric oxide (NO) is a key intermediate in AOA for sustaining aerobic ammonia oxidation activity. We herein heterologously expressed the NO-forming, copper-containing, dissimilatory nitrite reductase (NirK) from Nitrososphaera viennensis and investigated its enzymatic properties. The recombinant protein catalyzed the reduction of 15NO2− to 15NO, the oxidation of hydroxylamine (15NH2OH) to 15NO, and the production of 14–15N2O from 15NH2OH and 14NO2−. To the best of our knowledge, the present study is the first to document the enzymatic properties of AOA NirK.
Collapse
Affiliation(s)
- Shun Kobayashi
- Department of Civil Engineering, National Institute of Technology, Nagaoka College
| | - Daisuke Hira
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University
| | - Keitaro Yoshida
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Masanori Toyofuku
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology
| | | | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology
| | - Nobuo Araki
- Department of Civil Engineering, National Institute of Technology, Nagaoka College
| | - Mamoru Oshiki
- Department of Civil Engineering, National Institute of Technology, Nagaoka College
| |
Collapse
|
23
|
Dong J, Sasaki D, Eady RR, Antonyuk SV, Hasnain SS. Identification of a tyrosine switch in copper-haem nitrite reductases. IUCRJ 2018; 5:510-518. [PMID: 30002851 PMCID: PMC6038957 DOI: 10.1107/s2052252518008242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
There are few cases where tyrosine has been shown to be involved in catalysis or the control of catalysis despite its ability to carry out chemistry at much higher potentials (1 V versus NHE). Here, it is shown that a tyrosine that blocks the hydrophobic substrate-entry channel in copper-haem nitrite reductases can be activated like a switch by the treatment of crystals of Ralstonia pickettii nitrite reductase (RpNiR) with nitric oxide (NO) (-0.8 ± 0.2 V). Treatment with NO results in an opening of the channel originating from the rotation of Tyr323 away from AspCAT97. Remarkably, the structure of a catalytic copper-deficient enzyme also shows Tyr323 in the closed position despite the absence of type 2 copper (T2Cu), clearly demonstrating that the status of Tyr323 is not controlled by T2Cu or its redox chemistry. It is also shown that the activation by NO is not through binding to haem. It is proposed that activation of the Tyr323 switch is controlled by NO through proton abstraction from tyrosine and the formation of HNO. The insight gained here for the use of tyrosine as a switch in catalysis has wider implications for catalysis in biology.
Collapse
Affiliation(s)
- Jianshu Dong
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZX, England
| | - Daisuke Sasaki
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZX, England
| | - Robert R. Eady
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZX, England
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZX, England
| | - S. Samar Hasnain
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZX, England
| |
Collapse
|
24
|
Cloning, purification and characterization of novel Cu-containing nitrite reductase from the Bacillus firmus GY-49. World J Microbiol Biotechnol 2017; 34:10. [DOI: 10.1007/s11274-017-2383-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/22/2017] [Indexed: 11/27/2022]
|
25
|
Study of the Cys-His bridge electron transfer pathway in a copper-containing nitrite reductase by site-directed mutagenesis, spectroscopic, and computational methods. Biochim Biophys Acta Gen Subj 2017; 1862:752-760. [PMID: 29051066 DOI: 10.1016/j.bbagen.2017.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/06/2017] [Accepted: 10/12/2017] [Indexed: 11/22/2022]
Abstract
The Cys-His bridge as electron transfer conduit in the enzymatic catalysis of nitrite to nitric oxide by nitrite reductase from Sinorhizobium meliloti 2011 (SmNir) was evaluated by site-directed mutagenesis, steady state kinetic studies, UV-vis and EPR spectroscopic measurements as well as computational calculations. The kinetic, structural and spectroscopic properties of the His171Asp (H171D) and Cys172Asp (C172D) SmNir variants were compared with the wild type enzyme. Molecular properties of H171D and C172D indicate that these point mutations have not visible effects on the quaternary structure of SmNir. Both variants are catalytically incompetent using the physiological electron donor pseudoazurin, though C172D presents catalytic activity with the artificial electron donor methyl viologen (kcat=3.9(4) s-1) lower than that of wt SmNir (kcat=240(50) s-1). QM/MM calculations indicate that the lack of activity of H171D may be ascribed to the Nδ1H…OC hydrogen bond that partially shortcuts the T1-T2 bridging Cys-His covalent pathway. The role of the Nδ1H…OC hydrogen bond in the pH-dependent catalytic activity of wt SmNir is also analyzed by monitoring the T1 and T2 oxidation states at the end of the catalytic reaction of wt SmNir at pH6 and 10 by UV-vis and EPR spectroscopies. These data provide insight into how changes in Cys-His bridge interrupts the electron transfer between T1 and T2 and how the pH-dependent catalytic activity of the enzyme are related to pH-dependent structural modifications of the T1-T2 bridging chemical pathway.
Collapse
|
26
|
Shewell LK, Jen FEC, Jennings MP. Refinement of immunizing antigens to produce functional blocking antibodies against the AniA nitrite reductase of Neisseria gonorrhoeae. PLoS One 2017; 12:e0182555. [PMID: 28771632 PMCID: PMC5542605 DOI: 10.1371/journal.pone.0182555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/20/2017] [Indexed: 01/16/2023] Open
Abstract
The emergence of multi-drug resistant Neisseria gonorrhoeae has generated an urgent need for novel therapies or a vaccine to prevent gonococcal disease. In this study we investigate the potential of targeting the surface exposed nitrite reductase, AniA, to block activity by producing functional blocking antibodies. AniA activity is essential for anaerobic growth and biofilm formation of N. gonorrhoeae and functional blocking antibodies may prevent colonisation and disease. Seven peptides covering regions adjacent to the active site were designed based on the AniA structure. Six of the seven peptide conjugates generated immune responses. Peptide 7, GALGQLKVEGAEN, was able to elicit antibodies capable of blocking AniA activity. Antiserum raised against the peptide 7 conjugate detected AniA in 20 N. gonorrhoeae clinical isolates. Recombinant AniA protein antigens were also assessed in this study and generated high-titre, functional blocking antibody responses. Peptide 7 conjugates or truncated recombinant AniA antigens have potential for inclusion in a vaccine against N. gonorrhoeae.
Collapse
Affiliation(s)
- Lucy K. Shewell
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Freda E.-C Jen
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
- * E-mail:
| |
Collapse
|
27
|
Peptide Inhibitors Targeting the Neisseria gonorrhoeae Pivotal Anaerobic Respiration Factor AniA. Antimicrob Agents Chemother 2017; 61:AAC.00186-17. [PMID: 28584144 DOI: 10.1128/aac.00186-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/27/2017] [Indexed: 12/24/2022] Open
Abstract
Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea, which is highly prevalent worldwide and has a major impact on reproductive and neonatal health. The superbug status of N. gonorrhoeae necessitates the development of drugs with different mechanisms of action. Here, we focused on targeting the nitrite reductase AniA, which is a pivotal component of N. gonorrhoeae anaerobic respiration and biofilm formation. Our studies showed that gonococci expressing AniA containing the altered catalytic residues D137A and H280A failed to grow under anaerobic conditions, demonstrating that the nitrite reductase function is essential. To facilitate the pharmacological targeting of AniA, new crystal structures of AniA were refined to 1.90-Å and 2.35-Å resolutions, and a phage display approach with libraries expressing randomized linear dodecameric peptides or heptameric peptides flanked by a pair of cysteine residues was utilized. Biopanning experiments led to the identification of 29 unique peptides, with 1 of them, C7-3, being identified multiple times. Evaluation of their ability to interact with AniA using enzyme-linked immunosorbent assay and computational docking studies revealed that C7-3 was the most promising inhibitor, binding near the type 2 copper site of the enzyme, which is responsible for interaction with nitrite. Subsequent enzymatic assays and biolayer interferometry with a synthetic C7-3 and its derivatives, C7-3m1 and C7-3m2, demonstrated potent inhibition of AniA. Finally, the MIC50 value of C7-3 and C7-3m2 against anaerobically grown N. gonorrhoeae was 0.6 mM. We present the first peptide inhibitors of AniA, an enzyme that should be further exploited for antigonococcal drug development.
Collapse
|
28
|
Hooda Y, Shin HE, Bateman TJ, Moraes TF. Neisserial surface lipoproteins: structure, function and biogenesis. Pathog Dis 2017; 75:2966469. [PMID: 28158534 DOI: 10.1093/femspd/ftx010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/29/2017] [Indexed: 11/14/2022] Open
Abstract
The surface of many Gram-negative bacteria contains lipidated protein molecules referred to as surface lipoproteins or SLPs. SLPs play critical roles in host immune evasion, nutrient acquisition and regulation of the bacterial stress response. The focus of this review is on the SLPs present in Neisseria, a genus of bacteria that colonise the mucosal surfaces of animals. Neisseria contains two pathogens of medical interest, namely Neisseria meningitidis and N. gonorrhoeae. Several SLPs have been identified in Neisseria and their study has elucidated key strategies used by these pathogens to survive inside the human body. Herein, we focus on the identification, structure and function of SLPs that have been identified in Neisseria. We also survey the translocation pathways used by these SLPs to reach the cell surface. Specifically, we elaborate on the strategies used by neisserial SLPs to translocate across the outer membrane with an emphasis on Slam, a novel outer membrane protein that has been implicated in SLP biogenesis. Taken together, the study of SLPs in Neisseria illustrates the widespread roles played by this family of proteins in Gram-negative bacteria.
Collapse
|
29
|
Horrell S, Kekilli D, Strange RW, Hough MA. Recent structural insights into the function of copper nitrite reductases. Metallomics 2017; 9:1470-1482. [DOI: 10.1039/c7mt00146k] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper nitrite reductases (CuNiRs) catalyse the reduction of nitrite to nitric oxide as part of the denitrification pathway. In this review, we describe insights into CuNiR function from structural studies.
Collapse
Affiliation(s)
- Sam Horrell
- School of Biological Sciences
- University of Essex
- Colchester
- UK
| | - Demet Kekilli
- School of Biological Sciences
- University of Essex
- Colchester
- UK
| | | | | |
Collapse
|
30
|
Comparative analysis of amino acid composition in the active site of nirk gene encoding copper-containing nitrite reductase (CuNiR) in bacterial spp. Comput Biol Chem 2016; 67:102-113. [PMID: 28068515 DOI: 10.1016/j.compbiolchem.2016.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 06/13/2016] [Accepted: 12/29/2016] [Indexed: 11/22/2022]
Abstract
The nirk gene encoding the copper-containing nitrite reductase (CuNiR), a key catalytic enzyme in the environmental denitrification process that helps to produce nitric oxide from nitrite. The molecular mechanism of denitrification process is definitely complex and in this case a theoretical investigation has been conducted to know the sequence information and amino acid composition of the active site of CuNiR enzyme using various Bioinformatics tools. 10 Fasta formatted sequences were retrieved from the NCBI database and the domain and disordered regions identification and phylogenetic analyses were done on these sequences. The comparative modeling of protein was performed through Modeller 9v14 program and visualized by PyMOL tools. Validated protein models were deposited in the Protein Model Database (PMDB) (PMDB id: PM0080150 to PM0080159). Active sites of nirk encoding CuNiR enzyme were identified by Castp server. The PROCHECK showed significant scores for four protein models in the most favored regions of the Ramachandran plot. Active sites and cavities prediction exhibited that the amino acid, namely Glycine, Alanine, Histidine, Aspartic acid, Glutamic acid, Threonine, and Glutamine were common in four predicted protein models. The present in silico study anticipates that active site analyses result will pave the way for further research on the complex denitrification mechanism of the selected species in the experimental laboratory.
Collapse
|
31
|
Chen H, Yu F, Shi W. Detection of N 2O-producing fungi in environment using nitrite reductase gene (nirK)-targeting primers. Fungal Biol 2016; 120:1479-1492. [PMID: 27890085 DOI: 10.1016/j.funbio.2016.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/19/2023]
Abstract
Fungal denitrification has been increasingly investigated, but its community ecology is poorly understood due to the lack of culture-independent tools. In this work, four pairs of nirK-targeting primers were designed and evaluated for primer specificity and efficiency using thirty N2O-producing fungal cultures and an agricultural soil. All primers amplified nirK from fungi and soil, but their efficiency and specificity were different. A primer set, FnirK_F3/R2 amplified ∼80 % of tested fungi, including Aspergillus, Fusarium, Penicillium, and Trichoderma, as compared to ∼40-70 % for other three primers. The nirK fragments of fungal and soil DNA amplified by FnirK_F3/R2 were phylogenetically related to denitrifying fungi in the orders Eurotiales, Hypocreales, and Sordariales; and clone sequences were also distributed in the clusters of Chaetomium, Metarhizium, and Myceliophthora that were uncultured from soil in our previous work. This proved the wide-range capability of primers for amplifying diverse denitrifying fungi from environment. However, our primers and recently-developed other primers amplified bacterial nirK from soil and this co-amplification of fungal and bacterial nirK was theoretically discussed. The FnirK_F3/R2 was further compared with published primers; results from clone libraries demonstrated that FnirK_F3/R2 was more specifically targeted on fungi and had broader taxonomical coverage than some others.
Collapse
Affiliation(s)
- Huaihai Chen
- Department of Soil Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Fangbo Yu
- Department of Soil Science, North Carolina State University, Raleigh, NC 27695, USA; School of Environment and Resource Sciences, Zhejiang Agriculture and Forestry University, Linan, Zhejiang 311300, China
| | - Wei Shi
- Department of Soil Science, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
32
|
Abstract
Prior to 1950, the consensus was that biological transformations occurred in two-electron steps, thereby avoiding the generation of free radicals. Dramatic advances in spectroscopy, biochemistry, and molecular biology have led to the realization that protein-based radicals participate in a vast array of vital biological mechanisms. Redox processes involving high-potential intermediates formed in reactions with O2 are particularly susceptible to radical formation. Clusters of tyrosine (Tyr) and tryptophan (Trp) residues have been found in many O2-reactive enzymes, raising the possibility that they play an antioxidant protective role. In blue copper proteins with plastocyanin-like domains, Tyr/Trp clusters are uncommon in the low-potential single-domain electron-transfer proteins and in the two-domain copper nitrite reductases. The two-domain muticopper oxidases, however, exhibit clusters of Tyr and Trp residues near the trinuclear copper active site where O2 is reduced. These clusters may play a protective role to ensure that reactive oxygen species are not liberated during O2 reduction.
Collapse
Affiliation(s)
- Harry B Gray
- Beckman Institute, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
33
|
Highly diverse nirK genes comprise two major clades that harbour ammonium-producing denitrifiers. BMC Genomics 2016; 17:155. [PMID: 26923558 PMCID: PMC4770552 DOI: 10.1186/s12864-016-2465-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/12/2016] [Indexed: 01/09/2023] Open
Abstract
Background Copper dependent nitrite reductase, NirK, catalyses the key step in denitrification, i.e. nitrite reduction to nitric oxide. Distinct structural NirK classes and phylogenetic clades of NirK-type denitrifiers have previously been observed based on a limited set of NirK sequences, however, their environmental distribution or ecological strategies are currently unknown. In addition, environmental nirK-type denitrifiers are currently underestimated in PCR-dependent surveys due to primer coverage limitations that can be attributed to their broad taxonomic diversity and enormous nirK sequence divergence. Therefore, we revisited reported analyses on partial NirK sequences using a taxonomically diverse, full-length NirK sequence dataset. Results Division of NirK sequences into two phylogenetically distinct clades was confirmed, with Clade I mainly comprising Alphaproteobacteria (plus some Gamma- and Betaproteobacteria) and Clade II harbouring more diverse taxonomic groups like Archaea, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Nitrospirae, Firmicutes, Actinobacteria, Planctomycetes and Proteobacteria (mainly Beta and Gamma). Failure of currently available primer sets to target diverse NirK-type denitrifiers in environmental surveys could be attributed to mismatches over the whole length of the primer binding regions including the 3′ site, with Clade II sequences containing higher sequence divergence than Clade I sequences. Simultaneous presence of both the denitrification and DNRA pathway could be observed in 67 % of all NirK-type denitrifiers. Conclusion The previously reported division of NirK into two distinct phylogenetic clades was confirmed using a taxonomically diverse set of full-length NirK sequences. Enormous sequence divergence of nirK gene sequences, probably due to variable nirK evolutionary trajectories, will remain an issue for covering diverse NirK-type denitrifiers in amplicon-based environmental surveys. The potential of a single organism to partition nitrate to either denitrification or dissimilatory nitrate reduction to ammonium appeared to be more widespread than originally anticipated as more than half of all NirK-type denitrifiers were shown to contain both pathways in their genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2465-0) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography. Proc Natl Acad Sci U S A 2016; 113:2928-33. [PMID: 26929369 DOI: 10.1073/pnas.1517770113] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proton-coupled electron transfer (PCET), a ubiquitous phenomenon in biological systems, plays an essential role in copper nitrite reductase (CuNiR), the key metalloenzyme in microbial denitrification of the global nitrogen cycle. Analyses of the nitrite reduction mechanism in CuNiR with conventional synchrotron radiation crystallography (SRX) have been faced with difficulties, because X-ray photoreduction changes the native structures of metal centers and the enzyme-substrate complex. Using serial femtosecond crystallography (SFX), we determined the intact structures of CuNiR in the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å resolution, respectively. Furthermore, the SRX NC structure representing a transient state in the catalytic cycle was determined at 1.30-Å resolution. Comparison between SRX and SFX structures revealed that photoreduction changes the coordination manner of the substrate and that catalytically important His255 can switch hydrogen bond partners between the backbone carbonyl oxygen of nearby Glu279 and the side-chain hydroxyl group of Thr280. These findings, which SRX has failed to uncover, propose a redox-coupled proton switch for PCET. This concept can explain how proton transfer to the substrate is involved in intramolecular electron transfer and why substrate binding accelerates PCET. Our study demonstrates the potential of SFX as a powerful tool to study redox processes in metalloenzymes.
Collapse
|
35
|
Fukuda Y, Tse KM, Suzuki M, Diederichs K, Hirata K, Nakane T, Sugahara M, Nango E, Tono K, Joti Y, Kameshima T, Song C, Hatsui T, Yabashi M, Nureki O, Matsumura H, Inoue T, Iwata S, Mizohata E. Redox-coupled structural changes in nitrite reductase revealed by serial femtosecond and microfocus crystallography. J Biochem 2016; 159:527-38. [PMID: 26769972 PMCID: PMC4846774 DOI: 10.1093/jb/mvv133] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/19/2015] [Indexed: 11/17/2022] Open
Abstract
Serial femtosecond crystallography (SFX) has enabled the damage-free structural determination of metalloenzymes and filled the gaps of our knowledge between crystallographic and spectroscopic data. Crystallographers, however, scarcely know whether the rising technique provides truly new structural insights into mechanisms of metalloenzymes partly because of limited resolutions. Copper nitrite reductase (CuNiR), which converts nitrite to nitric oxide in denitrification, has been extensively studied by synchrotron radiation crystallography (SRX). Although catalytic Cu (Type 2 copper (T2Cu)) of CuNiR had been suspected to tolerate X-ray photoreduction, we here showed that T2Cu in the form free of nitrite is reduced and changes its coordination structure in SRX. Moreover, we determined the completely oxidized CuNiR structure at 1.43 Å resolution with SFX. Comparison between the high-resolution SFX and SRX data revealed the subtle structural change of a catalytic His residue by X-ray photoreduction. This finding, which SRX has failed to uncover, provides new insight into the reaction mechanism of CuNiR.
Collapse
Affiliation(s)
- Yohta Fukuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ka Man Tse
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Mamoru Suzuki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan;
| | - Kay Diederichs
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany;
| | - Kunio Hirata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan;
| | - Takanori Nakane
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Michihiro Sugahara
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan;
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan;
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan;
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan;
| | - Takashi Kameshima
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan;
| | - Changyong Song
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Korea; and
| | - Takaki Hatsui
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan;
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan;
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Hiroyoshi Matsumura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;
| |
Collapse
|
36
|
Lintuluoto M, Lintuluoto JM. DFT Study on Nitrite Reduction Mechanism in Copper-Containing Nitrite Reductase. Biochemistry 2015; 55:210-23. [DOI: 10.1021/acs.biochem.5b00542] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Masami Lintuluoto
- Graduate
School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamohanki-cho, Sakyo, Kyoto 606-8522, Japan
| | - Juha M. Lintuluoto
- Graduate
School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
37
|
Jen FEC, Djoko KY, Bent SJ, Day CJ, McEwan AG, Jennings MP. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenicNeisseria. FASEB J 2015; 29:3828-38. [DOI: 10.1096/fj.15-270751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/18/2015] [Indexed: 01/21/2023]
|
38
|
Komori H, Higuchi Y. Structure and molecular evolution of multicopper blue proteins. Biomol Concepts 2015; 1:31-40. [PMID: 25961983 DOI: 10.1515/bmc.2010.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The multicopper blue protein family, which contains cupredoxin-like domains as a structural unit, is one of the most diverse groups of proteins. This protein family is divided into two functionally different types of enzymes: multicopper oxidase and nitrite reductase. Multicopper oxidase catalyzes the oxidation of the substrate and then reduces dioxygen. The structures of many multicopper oxidases are already known, and until recently they were classified into two main groups: the three- and six-domain types. Both function as monomers and have three spectroscopically different copper sites: Types I (blue), II, and III (tri-nuclear). Nitrite reductase is a closely related protein that contains Types I and II (mono-nuclear) coppers but reduces nitrite instead of dioxygen. Nitrite reductase, which consists of two domains, forms a homotrimer. Multicopper oxidase and nitrite reductase share similar structural architectures and also contain Type I copper. Therefore, it is proposed that they have a common ancestor protein. Recently, some two-domain type multicopper oxidases have been found and their crystal structures have been determined. They have a trimeric quaternary structure and contain an active site at the molecular interface such as nitrite reductase. These results support previous hypotheses and provide an insight into the molecular evolution of multicopper blue proteins.
Collapse
|
39
|
Fukuda Y, Inoue T. High-temperature and high-resolution crystallography of thermostable copper nitrite reductase. Chem Commun (Camb) 2015; 51:6532-5. [DOI: 10.1039/c4cc09553g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The structure of thermostable copper nitrite reductase in complex with nitrite was determined at 320 K.
Collapse
Affiliation(s)
- Yohta Fukuda
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Tsuyoshi Inoue
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| |
Collapse
|
40
|
Long A, Song B, Fridey K, Silva A. Detection and diversity of copper containing nitrite reductase genes (nirK) in prokaryotic and fungal communities of agricultural soils. FEMS Microbiol Ecol 2014; 91:1-9. [PMID: 25764542 DOI: 10.1093/femsec/fiu004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microorganisms are capable of producing N2 and N2O gases as the end products of denitrification. Copper-containing nitrite reductase (NirK), a key enzyme in the microbial N-cycle, has been found in bacteria, archaea and fungi. This study seeks to assess the diversity of nirK genes in the prokaryotic and fungal communities of agricultural soils in the United States. New primers targeting the nirK genes in fungi were developed, while nirK genes in archaea and bacteria were detected using previously published methods. The new primers were able to detect fungal nirK genes as well as bacterial nirK genes from a group that could not be observed with previously published primers. Based on the sequence analyses from three different primer sets, five clades of nirK genes were identified, which were associated with soil archaea, ammonium-oxidizing bacteria, denitrifying bacteria and fungi. The diversity of nirK genes in the two denitrifying bacteria clades was higher than the diversity found in other clades. Using a newly designed primer set, this study showed the detection of fungal nirK genes from environmental samples. The newly designed PCR primers in this study enhance the ability to detect the diversity of nirK-encoding microorganisms in soils.
Collapse
Affiliation(s)
- Andrew Long
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC 28403
| | - Bongkeun Song
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC 28403 Department of Biological Sciences, Virginia Institute of Marine Sciences, Gloucester Point, VA 23062, USA Department of Life Science, Dongguk University-Seoul, Seoul 100-715, South Korea
| | - Kelly Fridey
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC 28403
| | - Amy Silva
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC 28403
| |
Collapse
|
41
|
A Eukaryotic Copper-Containing Nitrite Reductase Derived from a NirK Homolog Gene ofAspergillus oryzae. Biosci Biotechnol Biochem 2014; 74:984-91. [DOI: 10.1271/bbb.90844] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Verbaendert I, Hoefman S, Boeckx P, Boon N, De Vos P. Primers for overlooked nirK, qnorB, and nosZ genes of thermophilic Gram-positive denitrifiers. FEMS Microbiol Ecol 2014; 89:162-80. [PMID: 24784780 DOI: 10.1111/1574-6941.12346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/03/2014] [Accepted: 04/10/2014] [Indexed: 12/16/2022] Open
Abstract
Although efforts have been made the past few years, knowledge on genomic and phenotypic diversity and occurrence of the denitrification ability in Gram-positive bacteria are still fragmentary. Many environmental monitoring approaches have used nir, nor, and nos genes as marker genes for detection of denitrification or denitrifying bacteria. However, primers used in these methods often fail to detect the genes in specific bacterial taxa, such as Gram-positive denitrifiers. In this study, novel primer sets specifically targeting nirK, qnorB, and nosZ genes of the Firmicute genus Geobacillus were developed by genomic mining and tested in parallel with commonly used primers on a set of phylogenetically closely related denitrifying geobacilli. Novel nirK and qnorB sequences were recovered from all strains tested, whereas nosZ was detected in part of the strain set, which was in agreement with observed phenotypes. Interspecies and modest intraspecies variations in amplified fragment length polymorphism (AFLP) patterns were observed, verifying presence of genomic variation within the strain set. Our study shows that closely related Gram-positive denitrifiers may differ in denitrification phenotype and genotype. But foremost, novel primers targeting very divergent nirK, qnorB, and nosZ gene sequences of Gram-positive denitrifiers, are now available for cultivation-independent environmental surveys.
Collapse
Affiliation(s)
- Ines Verbaendert
- Laboratory of Microbiology (LM-UGent), Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| | | | | | | | | |
Collapse
|
43
|
Zielke RA, Wierzbicki IH, Weber JV, Gafken PR, Sikora AE. Quantitative proteomics of the Neisseria gonorrhoeae cell envelope and membrane vesicles for the discovery of potential therapeutic targets. Mol Cell Proteomics 2014; 13:1299-317. [PMID: 24607996 PMCID: PMC4014286 DOI: 10.1074/mcp.m113.029538] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 02/28/2014] [Indexed: 01/29/2023] Open
Abstract
Neisseria gonorrhoeae (GC) is a human-specific pathogen, and the agent of a sexually transmitted disease, gonorrhea. There is a critical need for new approaches to study and treat GC infections because of the growing threat of multidrug-resistant isolates and the lack of a vaccine. Despite the implied role of the GC cell envelope and membrane vesicles in colonization and infection of human tissues and cell lines, comprehensive studies have not been undertaken to elucidate their constituents. Accordingly, in pursuit of novel molecular therapeutic targets, we have applied isobaric tagging for absolute quantification coupled with liquid chromatography and mass spectrometry for proteome quantitative analyses. Mining the proteome of cell envelopes and native membrane vesicles revealed 533 and 168 common proteins, respectively, in analyzed GC strains FA1090, F62, MS11, and 1291. A total of 22 differentially abundant proteins were discovered including previously unknown proteins. Among those proteins that displayed similar abundance in four GC strains, 34 were found in both cell envelopes and membrane vesicles fractions. Focusing on one of them, a homolog of an outer membrane protein LptD, we demonstrated that its depletion caused loss of GC viability. In addition, we selected for initial characterization six predicted outer membrane proteins with unknown function, which were identified as ubiquitous in the cell envelopes derived from examined GC isolates. These studies entitled a construction of deletion mutants and analyses of their resistance to different chemical probes. Loss of NGO1985, in particular, resulted in dramatically decreased GC viability upon treatment with detergents, polymyxin B, and chloramphenicol, suggesting that this protein functions in the maintenance of the cell envelope permeability barrier. Together, these findings underscore the concept that the cell envelope and membrane vesicles contain crucial, yet under-explored determinants of GC physiology, which may represent promising targets for designing new therapeutic interventions.
Collapse
Affiliation(s)
- Ryszard A. Zielke
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | - Igor H. Wierzbicki
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | - Jacob V. Weber
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| | - Philip R. Gafken
- §Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024
| | - Aleksandra E. Sikora
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
44
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1210] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
45
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
46
|
Fukuda Y, Koteishi H, Yoneda R, Tamada T, Takami H, Inoue T, Nojiri M. Structural and functional characterization of the Geobacillus copper nitrite reductase: involvement of the unique N-terminal region in the interprotein electron transfer with its redox partner. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:396-405. [PMID: 24440558 DOI: 10.1016/j.bbabio.2014.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/19/2013] [Accepted: 01/07/2014] [Indexed: 11/28/2022]
Abstract
The crystal structures of copper-containing nitrite reductase (CuNiR) from the thermophilic Gram-positive bacterium Geobacillus kaustophilus HTA426 and the amino (N)-terminal 68 residue-deleted mutant were determined at resolutions of 1.3Å and 1.8Å, respectively. Both structures show a striking resemblance with the overall structure of the well-known CuNiRs composed of two Greek key β-barrel domains; however, a remarkable structural difference was found in the N-terminal region. The unique region has one β-strand and one α-helix extended to the northern surface of the type-1 copper site. The superposition of the Geobacillus CuNiR model on the electron-transfer complex structure of CuNiR with the redox partner cytochrome c551 in other denitrifier system led us to infer that this region contributes to the transient binding with the partner protein during the interprotein electron transfer reaction in the Geobacillus system. Furthermore, electron-transfer kinetics experiments using N-terminal residue-deleted mutant and the redox partner, Geobacillus cytochrome c551, were carried out. These structural and kinetics studies demonstrate that the region is directly involved in the specific partner recognition.
Collapse
Affiliation(s)
- Yohta Fukuda
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; Department of Materials Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Molecular Biology Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Hiroyasu Koteishi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ryohei Yoneda
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Taro Tamada
- Molecular Biology Research Center, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
| | - Hideto Takami
- Microbial Genome Research Group, Japan Agency of Marine-Earth Science and Technology, Yokosuka, Kanagawa 237-0061, Japan
| | - Tsuyoshi Inoue
- Department of Materials Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaki Nojiri
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan; RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.
| |
Collapse
|
47
|
Fukuda Y, Tse KM, Lintuluoto M, Fukunishi Y, Mizohata E, Matsumura H, Takami H, Nojiri M, Inoue T. Structural insights into the function of a thermostable copper-containing nitrite reductase. ACTA ACUST UNITED AC 2013; 155:123-35. [DOI: 10.1093/jb/mvt107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Jerse AE, Bash MC, Russell MW. Vaccines against gonorrhea: current status and future challenges. Vaccine 2013; 32:1579-87. [PMID: 24016806 DOI: 10.1016/j.vaccine.2013.08.067] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/10/2013] [Accepted: 08/17/2013] [Indexed: 01/11/2023]
Abstract
Gonorrhea occurs at high incidence throughout the world and significantly impacts reproductive health and the spread of human immunodeficiency virus. Current control measures are inadequate and seriously threatened by the rapid emergence of antibiotic resistance. Progress on gonorrhea vaccines has been slow; however, recent advances justify significant effort in this area. Conserved vaccine antigens have been identified that elicit bactericidal antibodies and, or play key roles in pathogenesis that could be targeted by a vaccine-induced response. A murine genital tract infection model is available for systematic testing of antigens, immunization routes and adjuvants, and transgenic mice exist to relieve some host restrictions. Furthermore, mechanisms by which Neisseria gonorrhoeae avoids inducing a protective adaptive response are being elucidated using human cells and the mouse model. Induction of a Th1 response in mice clears infection and induces a memory response, which suggests Th1-inducing adjuvants may be key in vaccine-induced protection. Continued research in this area should include human testing and clinical studies to confirm or negate findings from experimental systems and to define protective host factors.
Collapse
Affiliation(s)
- Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hebért School of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.
| | - Margaret C Bash
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 1400 Rockville Pike, Bethesda, MD 20814, USA.
| | - Michael W Russell
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, 3435 Main Street, Buffalo, NY 14214-3000, USA.
| |
Collapse
|
49
|
Lawton TJ, Bowen KE, Sayavedra-Soto LA, Arp DJ, Rosenzweig AC. Characterization of a nitrite reductase involved in nitrifier denitrification. J Biol Chem 2013; 288:25575-25583. [PMID: 23857587 DOI: 10.1074/jbc.m113.484543] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nitrifier denitrification is the conversion of nitrite to nitrous oxide by ammonia-oxidizing organisms. This process, which is distinct from denitrification, is active under aerobic conditions in the model nitrifier Nitrosomonas europaea. The central enzyme of the nitrifier dentrification pathway is a copper nitrite reductase (CuNIR). To understand how a CuNIR, typically inactivated by oxygen, functions in this pathway, the enzyme isolated directly from N. europaea (NeNIR) was biochemically and structurally characterized. NeNIR reduces nitrite at a similar rate to other CuNIRs but appears to be oxygen tolerant. Crystal structures of oxidized and reduced NeNIR reveal a substrate channel to the active site that is much more restricted than channels in typical CuNIRs. In addition, there is a second fully hydrated channel leading to the active site that likely acts a water exit pathway. The structure is minimally affected by changes in pH. Taken together, these findings provide insight into the molecular basis for NeNIR oxygen tolerance.
Collapse
Affiliation(s)
- Thomas J Lawton
- From the Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208 and
| | - Kimberly E Bowen
- From the Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208 and
| | - Luis A Sayavedra-Soto
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Daniel J Arp
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | - Amy C Rosenzweig
- From the Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208 and.
| |
Collapse
|
50
|
Hopper AC, Li Y, Cole JA. A critical role for the cccA gene product, cytochrome c2, in diverting electrons from aerobic respiration to denitrification in Neisseria gonorrhoeae. J Bacteriol 2013; 195:2518-29. [PMID: 23543713 PMCID: PMC3676072 DOI: 10.1128/jb.02300-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/14/2013] [Indexed: 01/22/2023] Open
Abstract
Neisseria gonorrhoeae is a microaerophile that, when oxygen availability is limited, supplements aerobic respiration with a truncated denitrification pathway, nitrite reduction to nitrous oxide. We demonstrate that the cccA gene of Neisseria gonorrhoeae strain F62 (accession number NG0292) is expressed, but the product, cytochrome c2, accumulates to only low levels. Nevertheless, a cccA mutant reduced nitrite at about half the rate of the parent strain. We previously reported that cytochromes c4 and c5 transfer electrons to cytochrome oxidase cbb3 by two independent pathways and that the CcoP subunit of cytochrome oxidase cbb3 transfers electrons to nitrite. We show that mutants defective in either cytochrome c4 or c5 also reduce nitrite more slowly than the parent. By combining mutations in cccA (Δc2), cycA (Δc4), cycB (Δc5), and ccoP (ccoP-C368A), we demonstrate that cytochrome c2 is required for electron transfer from cytochrome c4 via the third heme group of CcoP to the nitrite reductase, AniA, and that cytochrome c5 transfers electrons to nitrite reductase by an independent pathway. We propose that cytochrome c2 forms a complex with cytochrome oxidase. If so, the redox state of cytochrome c2 might regulate electron transfer to nitrite or oxygen. However, our data are more consistent with a mechanism in which cytochrome c2 and the CcoQ subunit of cytochrome oxidase form alternative complexes that preferentially catalyze nitrite and oxygen reduction, respectively. Comparison with the much simpler electron transfer pathway for nitrite reduction in the meningococcus provides fascinating insights into niche adaptation within the pathogenic neisseriae.
Collapse
Affiliation(s)
- Amanda C Hopper
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | | |
Collapse
|