1
|
Deng H, Ke Y, Weng S, Hu L, Zhang W, Sun Y, Yang L, Wang X, Feng M, Guo W, Zhong Z, Zhang D, He J, Zhou Y. A cytokine receptor domeless restrains mud crab reovirus infection via JAK-STAT signaling pathway in mud crab (Scylla paramamosain). FISH & SHELLFISH IMMUNOLOGY 2025; 163:110402. [PMID: 40350104 DOI: 10.1016/j.fsi.2025.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/24/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
JAK/STAT signaling pathways are associated with the innate immune system and play important roles in mediating immune responses to virus infection. Domeless is a unique receptor involved in invertebrate JAK/STAT pathway. In this study, a Domeless gene from Scylla paramamosain, named SpDOME, was cloned and characterized. The full length of SpDOME mRNA contains a 475 bp 5'untranslated region (UTR), an open reading frame (ORF) of 4188 bp and a 3'UTR of 195 bp. The SpDOME protein contains twenty-four amino acid signal peptide and six characteristic Domeless domains. In addition, the SpDOME showed 13%-26% identity and 44%-60% similarity to other DOME protein domains, respectively. The mRNA of SpDOME was expressed in all tissues, with higher expression in brain, intestine and ganglion, and lowest expression in hepatopancreas. Moreover, expression of SpDOME was significantly responsive to challenges by mud crab reovirus (MCRV), Poly(I:C) and LPS. Subcellular localization revealed that SpDOME were localized in the cytoplasm. SpDOME could activate SpSTAT to translocate from the cytoplasm to the nucleus, and significantly increase the transcription activity of the wsv069 promoter under stimulus of Poly(I:C) and LPS. Additionally, silencing of SpDOME in vivo increased the mortality of MCRV infected mud crab and the viral load in tissues and down-regulated the expression of multiple components of apoptosis and JAK-STAT pathways and almost all the examined immune effector genes. These findings suggest that SpDOME activates the JAK/STAT pathway and plays an important role in antiviral immunity in mud crab.
Collapse
Affiliation(s)
- Hengwei Deng
- School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China; State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yetong Ke
- School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lei Hu
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenfeng Zhang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yujia Sun
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Fisheries College, Jimei University, Xiamen, China
| | - Linwei Yang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xuewen Wang
- School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Mingyang Feng
- School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Weiliang Guo
- School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Zhihong Zhong
- School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Dongdong Zhang
- School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yongcan Zhou
- School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China.
| |
Collapse
|
2
|
Paul I, Roy A, Chakrabarti D, Nandi C, Ray S. Mutations in LIFR rewire the JAK/STAT signaling pathway: A study unveiling mechanistic details of Stüve-Wiedemann syndrome. Comput Biol Med 2024; 179:108797. [PMID: 38968765 DOI: 10.1016/j.compbiomed.2024.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/14/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024]
Abstract
Stüve-Wiedemann syndrome (SWS), a rare autosomal recessive disorder, characterized by diminutive size, curvature of the elongated bones, bent fingers, episodes of heightened body temperature, respiratory distress or periods of breath-holding, and challenges with feeding, especially causes fatality in infants. SWS is an outcome of potential missense mutations in the leukemia inhibitory factor receptor gene reflected as numerous amino acid mutations at protein level. Employing in silico tools and techniques like mutational screening with Pred_MutHTP, I-Mutant2.0, PANTHER.db, PolyPhen, to classify mutations as deleterious/destabilizing, in conjunction with experimental data analysis, P136A and S279P emerged as 'effect'-causing mutations. Pre-existing knowledge suggests, SWS progression is effectuated conformationally altered and dysfunctional LIFR, unable to bind to LIF and further form the LIF/LIFR/gp130 signalling complex. To gain functional insights into the effect of the said mutations on the wild type protein, an all-atom, explicit, solvent molecular dynamics simulation was performed following docking approaches. Consequently, referring to the RMSD, RMSF, protein dynamic network analysis, energy landscape plots and domain motion analysis, it was revealed that unbound LIFR_WT was more prone to LIF binding as usual whereas the mutants exhibited considerable domain closure to inhibit LIF binding. We conducted binding affinity analysis via MM/GBSA and dissociation constant estimation after LIFR-LIF docking and found the WT_complex to be more stable and compact as a whole when compared to the flexible mutant complexes thus being associated with SWS. Our study offers a route for understanding molecular level implications upon LIFR mutations which opens an avenue for therapeutic interventions.
Collapse
Affiliation(s)
- Ishani Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | | | - Chandreyee Nandi
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India.
| |
Collapse
|
3
|
Sun G, Wang T, Shi M, Zhou H, Wang J, Huang Z, Zhang H, Shi J. Low expression of IL6R predicts poor prognosis for lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1057. [PMID: 34422969 PMCID: PMC8339841 DOI: 10.21037/atm-21-36] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/25/2021] [Indexed: 11/06/2022]
Abstract
Background Interleukin 6 (IL6) is both a pleiotropic cytokine and an immune-related gene. Interleukin 6 receptor (IL6R) is the receptor for IL6. It may be closely connected to the development of lung cancer. This research aims to explore the prognostic value of IL6R and prevent overtreatment of patients with lung adenocarcinoma (LUAD). Methods In this study, the expression of IL6R in tumor tissues and surrounding tissues was first analyzed by immunohistochemistry in the Affiliated Hospital of Nantong University (NTU) cohort. Secondly, we downloaded information from The Cancer Genome Atlas (TCGA) for the TCGA cohort and used this information to explore the messenger RNA (mRNA) level of IL6R. We then used Kaplan-Meier survival analyses, univariate and multivariate Cox analyses, nomogram models, and decision curve analyses to assess the prognostic value of IL6R. In addition, we also analyzed immune cell infiltration and the signaling pathways related to IL6R through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). Results Through the data analysis of the NTU cohort and the TCGA cohort, it was found that the expression of IL6R in normal tissues around the tumor was higher than that in tumor tissue, and was positively correlated with the overall survival (OS) of LUAD patients. Additionally, low expression of IL6R was found to be an independent predictor of poor prognosis among the patients in these two research cohorts. Next, using GO, KEGG, and GSEA analyses, we found that partially infiltrated tumor immune cells might be related to earlier staging and better prognosis of patients with LUAD. Finally, the study of the 3-5-year survival rate of LUAD patients through the nomogram showed that the expression of IL6R could improve the accuracy of prediction to prevent the overtreatment of some LUAD patients. Conclusions In summary, our study indicated that the low expression of IL6R was associated with poor prognosis among LUAD patients and that low expression of IL6R is a potential independent risk factor that could provide a basis for strengthening postoperative classification management of such patients.
Collapse
Affiliation(s)
- Gaofeng Sun
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Tianyi Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Muqi Shi
- Medical College of Nantong University, Nantong China
| | - Hao Zhou
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jinjie Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhanghao Huang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.,Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
4
|
Real SAS, Parveen F, Rehman AU, Shaik R, Deo SVS, Husain SA. Mutation, methylation and expression analysis of LIFR gene in Indian breast cancer patients. Mutat Res 2019; 816-818:111677. [PMID: 31557600 DOI: 10.1016/j.mrfmmm.2019.111677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/10/2019] [Accepted: 08/02/2019] [Indexed: 01/19/2023]
Abstract
LIFR functions as a tumor suppressor and metastatic suppressor of breast cancer. The present study investigates the status of LIFR gene in Indian breast cancer patients. A total of 137 breast cancer tissue and 137 adjacent normal tissue which served as controls were analyzed for mutation by automated DNA sequencing, methylation through methylation-specific polymerase chain reaction and its corresponding expression at mRNA and protein level using real-time quantitative polymerase chain reaction and immunohistochemistry respectively in Indian breast cancer patients. All the molecular findings were statistically correlated with clinopathological parameters of the patients to identify its association. LIFR mRNA expression was found to be 2.534 ± 3.52 fold downregulated with subsequent absence of protein in 67.15% cases (92/137). The absence of LIFR protein coincided with 80.95% (85/105) methylated cases thereby showing a very strong correlation among the LIFR promoter methylation and LIFR protein expression (p = 0.0001). We also observed G2968C nucleotide change in 6/137 cases of exon 20 of LIFR gene resulting in Glu990Gln mutation. Correlation of LIFR promoter methylation with geographic location and age at menopause and LIFR mutation with age at menarche, age at first live birth, molecular subtypes of breast cancer, and lymph node status remained significant even after bonferroni correction (p ≤ 0.0027). All these data suggests the relevance of these associations in relation to Indian breast cancer patients. The loss of LIFR protein was frequently found in Indian breast cancer patients, and aberrant promoter methylation showed a significant correlation with its downregulation.
Collapse
Affiliation(s)
| | - Farah Parveen
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Asad Ur Rehman
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - S V S Deo
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
5
|
Schillinger O, Panwalkar V, Strodel B, Dingley AJ. Molecular Dynamics Simulations Reveal Key Roles of the Interleukin-6 Alpha Receptor in the Assembly of the Human Interleukin-6 Receptor Complex. J Phys Chem B 2017; 121:8113-8122. [PMID: 28783950 DOI: 10.1021/acs.jpcb.7b05732] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human interleukin-6 (hIL-6) is a pleiotropic cytokine with three distinct receptor epitopes, termed sites I, II, and III, which function to assemble a signaling complex. hIL-6 signals via a glycoprotein 130 (gp130) homodimer after initially forming a heterodimer with the nonsignaling α-receptor (IL-6Rα). The molecular description of the assembly of the hIL-6 signaling complex remains elusive because available structures provide descriptions of hIL-6 in its free and fully bound receptor forms, but not for intermediate steps that are crucial in the stepwise assembly of the signaling complex. In this report, molecular dynamics simulations provide atomic details describing the functional role of the initial hIL-6/IL-6Rα complex in facilitating subsequent interactions with gp130, which have not been previously shown. IL-6Rα binding to hIL-6 rigidifies the flexible N-terminus of the hIL-6 AB-loop through interactions with the D2 domain of IL-6Rα. This rigidification combined with repositioning of residues involved in gp130 receptor recognition promotes gp130 binding at site III. Binding of gp130 receptors at sites II and III is coupled with the release of the hIL-6 N-terminal AB-loop interaction and a pivoting of IL-6Rα around the hIL-6 helix bundle to the state of the hIL-6/IL-6Rα/gp130 complex.
Collapse
Affiliation(s)
- Oliver Schillinger
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich , 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität , 40225 Düsseldorf, Germany
| | - Vineet Panwalkar
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich , 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität , 40225 Düsseldorf, Germany
| | - Birgit Strodel
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich , 52425 Jülich, Germany.,Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität , 40225 Düsseldorf, Germany
| | - Andrew J Dingley
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich , 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität , 40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Yan M, Li C, Su Z, Liang Q, Li H, Liang S, Weng S, He J, Xu X. Identification of a JAK/STAT pathway receptor domeless from Pacific white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2015; 44:26-32. [PMID: 25659232 DOI: 10.1016/j.fsi.2015.01.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/15/2015] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway was known to participate in dozens of immune responses in organisms. Domeless, first identified in Drosophila melanogaster, is a unique receptor involved in invertebrate JAK/STAT pathway. In this study, a cytokine receptor (LvDOME) was identified in Litopenaeus vannamei. The LvDOME cDNA was 5178bp in length with an Open Reading Frame (ORF) of 4191bp. LvDOME contained two cytokine binding modules (CBMs) and three fibronectin-type-III-like (FNIII) domains, similar to most vertebrate IL-6 receptors. LvDOME was expressed highest in shrimp muscle and could be up-regulated in the late stage of white spot syndrome virus (WSSV) infection. LvDOME could significantly enhance the activity of the WSSV wsv069 gene promoter through acting on the STAT-binding motif, suggesting LvDOME could activate the JAK/STAT pathway. Moreover, knockdown of LvDOME resulted in lower cumulative mortality of shrimps and less WSSV copies, suggesting LvDOME may be hijacked by WSSV to benefit virus replication. To our knowledge, this is the first report on the receptor of JAK/STAT pathway in shrimp.
Collapse
Affiliation(s)
- Muting Yan
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Ziqi Su
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Qianhui Liang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Shizhong Liang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China.
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
7
|
Bobby R, Robustelli P, Kralicek AV, Mobli M, King GF, Grötzinger J, Dingley AJ. Functional implications of large backbone amplitude motions of the glycoprotein 130-binding epitope of interleukin-6. FEBS J 2014; 281:2471-83. [DOI: 10.1111/febs.12800] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/07/2014] [Accepted: 03/28/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Romel Bobby
- School of Biological Sciences; University of Auckland; New Zealand
- School of Chemical Sciences; University of Auckland; New Zealand
| | - Paul Robustelli
- Department of Biochemistry and Molecular Biophysics; Columbia University; New York NY USA
| | - Andrew V. Kralicek
- The New Zealand Institute for Plant & Food Research Limited; Auckland New Zealand
| | - Mehdi Mobli
- Centre for Advanced Imaging; University of Queensland; Brisbane Australia
- Institute for Molecular Bioscience; University of Queensland; Brisbane Australia
| | - Glenn F. King
- Institute for Molecular Bioscience; University of Queensland; Brisbane Australia
| | | | - Andrew J. Dingley
- School of Biological Sciences; University of Auckland; New Zealand
- School of Chemical Sciences; University of Auckland; New Zealand
- ICS-6 (Strukturbiochemie); Forschungszentrum Jülich; Germany
| |
Collapse
|
8
|
Overexpression of a splice variant of oncostatin M receptor beta in human esophageal squamous carcinoma. Cell Oncol (Dordr) 2011; 34:177-87. [DOI: 10.1007/s13402-011-0011-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2011] [Indexed: 10/18/2022] Open
|
9
|
Sortilin facilitates signaling of ciliary neurotrophic factor and related helical type 1 cytokines targeting the gp130/leukemia inhibitory factor receptor beta heterodimer. Mol Cell Biol 2010; 30:4175-87. [PMID: 20584990 DOI: 10.1128/mcb.00274-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sortilin is a member of the Vps10p domain family of neuropeptide and neurotrophin binding neuronal receptors. The family members interact with and partly share a variety of ligands and partake in intracellular sorting and protein transport as well as in transmembrane signal transduction. Thus, sortilin mediates the transport of both neurotensin and nerve growth factor and interacts with their respective receptors to facilitate ligand-induced signaling. Here we report that ciliary neurotrophic factor (CNTF), and related ligands targeting the established CNTF receptor alpha, binds to sortilin with high affinity. We find that sortilin may have at least two functions: one is to provide rapid endocytosis and the removal of CNTF, something which is not provided by CNTF receptor alpha, and the other is to facilitate CNTF signaling through the gp130/leukemia inhibitory factor (LIF) receptor beta heterodimeric complex. Interestingly, the latter function is independent of both the CNTF receptor alpha and ligand binding to sortilin but appears to implicate a direct interaction with LIF receptor beta. Thus, sortilin facilitates the signaling of all helical type 1 cytokines, which engage the gp130/LIF receptor beta complex.
Collapse
|
10
|
Le Saux S, Rousseau F, Barbier F, Ravon E, Grimaud L, Danger Y, Froger J, Chevalier S, Gascan H. Molecular dissection of human interleukin-31-mediated signal transduction through site-directed mutagenesis. J Biol Chem 2009; 285:3470-7. [PMID: 19920145 DOI: 10.1074/jbc.m109.049189] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin (IL)-31 is a recently described cytokine, preferentially produced by T helper 2 lymphocytes and associated with skin diseases, such as atopic dermatitis. IL-31 is a member of the four alpha-helix bundle cytokine family and is related to the IL-6 subgroup. Its heterodimeric membrane receptor is composed of the gp130-like receptor (GPL) subunit associated to the oncostatin M receptor subunit. We identified critical amino acids implicated in the ligand receptor interaction by computational analysis combined with site-directed mutagenesis. Six IL-31 residues selected for their putative involvement in cytokine receptor contact sites were alanine-substituted, and the corresponding proteins were expressed in mammalian and bacterial systems. Biochemical, membrane binding, cell signaling, and cell proliferation analyses showed that mutation E44A, E106A, or H110A abolished IL-31 binding to GPL and the subsequent signaling events. A second ligand receptor-binding site involved Lys(134), with alanine substitution leading to a protein that still binds GPL, but is unable to recruit the second receptor subunit and the subsequent signaling pathways. The results indicate that IL-31 recognizes its receptor complex through two different binding sites, and we propose a three-dimensional model for IL-31.
Collapse
Affiliation(s)
- Sabine Le Saux
- Unité Mixte INSERM 564, Bâtiment Monteclair, 4 rue Larrey, 49933 Angers Cedex 09, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Interleukin-31, produced mainly by activated CD4(+) T cells, is a newly discovered member of the gp130/IL-6 cytokine family. Unlike all the other family members, IL-31 does not engage gp130. Its receptor heterodimer consists of a unique gp130-like receptor chain IL-31RA, and the receptor subunit OSMRbeta that is shared with another family member oncostatin M (OSM). Binding of IL-31 to its receptor activates Jak/STAT, PI3K/AKT and MAPK pathways. IL-31 acts on a broad range of immune- and non-immune cells and therefore possesses potential pleiotropic physiological functions, including regulating hematopoiesis and immune response, causing inflammatory bowel disease, airway hypersensitivity and dermatitis. This review summarizes the recent findings on the biological characterization and physiological roles of IL-31 and its receptors.
Collapse
|
12
|
Metz S, Naeth G, Heinrich PC, Müller-Newen G. Novel inhibitors for murine and human leukemia inhibitory factor based on fused soluble receptors. J Biol Chem 2008; 283:5985-95. [PMID: 18174171 DOI: 10.1074/jbc.m706610200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fusion proteins of the extracellular parts of cytokine receptors, also known as cytokine traps, turned out to be promising cytokine inhibitors useful in anti-cytokine therapies. Here we present newly designed cytokine traps for murine and human leukemia inhibitory factor (LIF) as prototypes for inhibitors targeting cytokines that signal through a heterodimer of two signaling receptors of the glycoprotein 130 (gp130) family. LIF signals through a receptor heterodimer of LIF receptor (LIFR) and gp130 and induces the tyrosine phosphorylation of STAT3 leading to target gene expression. The analysis of various receptor fusion and deletion constructs revealed that a truncated form of the murine LIF receptor consisting of the first five extracellular domains was a potent inhibitor for human LIF. For the efficient inhibition of murine LIF, the cytokine-binding module of murine gp130 had to be fused to the first five domains of murine LIFR generating mLIF-RFP (murine LIFR fusion protein). The tyrosine phosphorylation of STAT3 and subsequent gene induction induced by human or murine LIF are completely blocked by the respective inhibitor. Furthermore, both inhibitors are specific and do not alter the bioactivities of the closely related cytokines interleukin (IL)-6 and oncostatin M. The gained knowledge on the construction of LIF inhibitors can be transferred to the design of inhibitors for related cytokines such as IL-31, IL-27, and oncostatin M for the treatment of inflammatory and malignant diseases.
Collapse
Affiliation(s)
- Silke Metz
- Institut für Biochemie, Universitätsklinikum RWTH Aachen, Pauwelsstrasse 30, Aachen, Germany
| | | | | | | |
Collapse
|
13
|
Rose-John S, Schooltink H. Cytokines are a therapeutic target for the prevention of inflammation-induced cancers. RECENT RESULTS IN CANCER RESEARCH. FORTSCHRITTE DER KREBSFORSCHUNG. PROGRES DANS LES RECHERCHES SUR LE CANCER 2007; 174:57-66. [PMID: 17302185 DOI: 10.1007/978-3-540-37696-5_5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Interleukin-6 (IL-6) is an inflammatory cytokine with a well-documented role in cancer. The cytokine binds to a membrane-bound IL-6 receptor (IL-6R) and this complex associates with two molecules of the signal transducing protein gp130, initiating intracellular signaling. Whereas gp130 is expressed on all cells of the body, the IL-6R is only found on some cells, mainly hepatocytes and several leukocytes. Cells, which only express gp130 and no IL-6R, cannot respond to IL-6. We have shown that the IL-6R exists as a soluble protein generated by limited proteolysis of the membrane-bound receptor or by translation from an alternatively spliced mRNA. The complex of soluble IL-6R (sIL-6R) and IL-6 can bind to gp130 on cells that lack the membrane-bound IL-6R and trigger gp130 signaling. We have named this process trans-signaling. We review data that show that IL-6 uses classical signaling via the membrane-bound receptor and trans-signaling via the soluble receptor in physiological and pathophysiological situations. We have developed designer cytokines, which specifically enhance or inhibit IL-6 trans-signaling. These designer cytokines have been shown to be extremely useful in therapeutic applications such as blockade of chronic inflammation and cancer.
Collapse
Affiliation(s)
- Stefan Rose-John
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Germany
| | | |
Collapse
|
14
|
Diveu C, Venereau E, Froger J, Ravon E, Grimaud L, Rousseau F, Chevalier S, Gascan H. Molecular and Functional Characterization of a Soluble Form of Oncostatin M/Interleukin-31 Shared Receptor. J Biol Chem 2006; 281:36673-82. [PMID: 17028186 DOI: 10.1074/jbc.m607005200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Activation of the signaling transduction pathways mediated by oncostatin M (OSM) requires the binding of the cytokine to either type I OSM receptor (leukemia inhibitory factor receptor/gp130) or to type II OSM receptor (OSMR/gp130). In the present work we have developed an enzyme-linked immunosorbent assay detecting a soluble form of OSMR (sOSMR) secreted by glioblastoma, hepatoma, and melanoma tumor cell lines. sOSMR was also present in sera of healthy individuals, with increased levels in multiple myeloma. Molecular cloning of a corresponding cDNA was carried out, and it encoded for a 70-kDa protein consisting of a half cytokine binding domain containing the canonical WSXWS motif, an immunoglobulin-like domain, and the first half of a second cytokine binding domain with cysteines in fixed positions. Analysis of the soluble receptor distribution revealed a preferential expression in lung, liver, pancreas, and placenta. sOSMR was able to bind OSM and interleukin-31 when associated to soluble gp130 or soluble interleukin-31R, respectively, and to neutralize both cytokine properties. We have also shown that OSM could positively regulate the synthesis of its own soluble receptor in tumor cells.
Collapse
Affiliation(s)
- Caroline Diveu
- Institut National de la Santé et de la Recherche Médicale, U564, F-49033 Angers, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kovaleva M, Bussmeyer I, Rabe B, Grötzinger J, Sudarman E, Eichler J, Conrad U, Rose-John S, Scheller J. Abrogation of viral interleukin-6 (vIL-6)-induced signaling by intracellular retention and neutralization of vIL-6 with an anti-vIL-6 single-chain antibody selected by phage display. J Virol 2006; 80:8510-20. [PMID: 16912301 PMCID: PMC1563863 DOI: 10.1128/jvi.00420-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human herpesvirus 8 (HHV-8) encodes several putative oncogenes, which are homologues to cellular host genes known to function in cell cycle regulation, control of apoptosis, and cytokine signaling. Viral interleukin (vIL-6) is believed to play an important role in the pathogenesis of Kaposi's sarcoma as well as primary effusion lymphoma and multicentric Castleman's disease. Therefore, vIL-6 is a promising target for novel therapies directed against HHV-8-associated diseases. By phage display screening of human synthetic antibody libraries, we have selected a specific recombinant antibody, called monoclonal anti-vIL-6 (MAV), binding to vIL-6. The epitope recognized by MAV was localized on the top of the D helix of the vIL-6 protein, which is a part of receptor binding site III. Consequently, MAV specifically inhibits vIL-6-mediated growth of the primary effusion lymphoma-derived cell line BCBL-1 and blocks STAT3 phosphorylation in the human hepatoma cell line HepG2. Since it was previously found that vIL-6 can also induce signals from within the cell, presumably within the endoplasmic reticulum, we fused the recombinant antibody MAV with the endoplasmic retention sequence KDEL (MAV-KDEL). As a result, COS-7 cells expressing MAV-KDEL and synthesizing vIL-6 ceased to secrete the cytokine. Moreover, we observed that vIL-6 that was bound to MAV-KDEL and retained in the endoplasmic reticulum did not induce STAT3 phosphorylation in HepG2 cells. We conclude that the activity of the intracellularly retained vIL-6 protein is neutralized by MAV-KDEL. Our results might represent a novel therapeutic strategy to neutralize virally encoded growth factors or oncogenes.
Collapse
Affiliation(s)
- Marina Kovaleva
- Department of Biochemistry, Christian Albrechts Universität, Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tenhumberg S, Schuster B, Zhu L, Kovaleva M, Scheller J, Kallen KJ, Rose-John S. gp130 dimerization in the absence of ligand: Preformed cytokine receptor complexes. Biochem Biophys Res Commun 2006; 346:649-57. [PMID: 16774741 DOI: 10.1016/j.bbrc.2006.05.173] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 05/18/2006] [Indexed: 11/21/2022]
Abstract
It is established that cytokine receptors signal after ligand binding as homo- or hetero-dimers in heteromeric complexes, but it is unclear, when dimerization occurs. To investigate gp130 dimerization, we performed co-precipitation experiments with the endogenous cytokine receptors gp130 and leukemia inhibitory factor receptor (LIF-R) and with gp130 variants carrying two different C-terminal peptide tags. Furthermore, fluorescence resonance energy transfer (FRET) was employed to detect dimerization of two fluorescent-tagged gp130 variants. Confocal laser scanning microscopy was used for FRET detection in live cells. gp130 and LIF-R could be coprecipitated in the absence of ligand. The interaction, however, was intensified by the addition of LIF. Similar results were obtained with the gp130 variants and confirmed by FRET analysis in live cells. The present study clearly demonstrates the existence of preformed but inactive gp130/LIF-R hetero- and gp130/gp130 homo-dimers. The addition of ligand enhanced the respective dimer formation and was required for signal transduction.
Collapse
Affiliation(s)
- Stephanie Tenhumberg
- Department of Biochemistry, Christian Albrechts University Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Interleukin-6 (IL-6) is a cytokine, which plays an important role in many chronic inflammatory diseases. IL-6 belongs to a family of 10 cytokines, which all act via receptor complexes containing the cytokine receptor subunit gp130. On cells, IL-6 first binds to a specific membrane-bound IL-6R and the complex of IL-6 and IL-6R interacts with gp130 leading to signal initiation. Whereas gp130 is widely expressed throughout the body, the IL-6R is only found on some cells including hepatocytes and some leucocytes. A soluble form of the IL-6R is an agonist capable of transmitting signals through interaction with the gp130 protein. In vivo, the IL-6/soluble IL-6R complex stimulates several types of target cells, which are unresponsive to IL-6 alone, as they do not express the membrane-bound IL-6R. We have named this process trans-signalling. We provided evidence that a soluble form of the IL-6 family signalling receptor subunit gp130 is the natural inhibitor of IL-6 trans-signalling responses. We showed that in chronic inflammatory diseases such as inflammatory bowel disease, peritonitis, rheumatoid arthritis, asthma as well as in colon cancer, IL-6 trans-signalling is critically involved in the maintenance of the disease state. Moreover, in all these animal models, the progression of the disease can be interrupted by specifically interfering with IL-6 trans-signalling using recombinant-soluble gp130Fc protein. The pathophysiologic mechanisms by which the IL-6/soluble IL-6R complex perpetuates the inflammatory state are discussed.
Collapse
Affiliation(s)
- J Scheller
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | | | | |
Collapse
|
18
|
Stremmel C, Siebenhaar R, Croner R, Reingruber B, Slavin AJ, Hohenberger W. Characterization of gene expression profiles of T cells during anti-tumor response. Int J Colorectal Dis 2005; 20:485-93. [PMID: 15812645 DOI: 10.1007/s00384-004-0714-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2004] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS T cells of tumor-bearing mice or cancer patients exhibit an immune dysfunction, enabling the tumor to escape immune surveillance. METHODS The experiments are based on EL4 thymoma cells that were transfected with costimulatory ligands B7-1, B7-2, or both at the same time. We used oligonucleotide-based DNA chip microarrays to characterize the genomic expression profile of peripheral T cells according to their anti-tumor immune response in vivo. These murine T cells were also characterized by ELISA, FACS analysis, and co-stimulatory assays. RESULTS Using commonly established methods, such as FACS analysis or the analysis of the cytokine profile by ELISA, it was not possible to determine functional differences in the in vivo activity of T lymphocytes against tumor cells. EL4 tumor cells induced multiple anti-tumor immune responses in vivo depending on their B7 expression. We successfully used microarray analysis to identify genes that were differentially expressed in the dysfunctional T cells, which were unable to reject tumors in vivo. Although Th1 and Th2 cytokine expression was not affected, we observed differential expression of genes involved in the regulation of an innate immune response. CONCLUSION Our results provide evidence that the anti-tumor response can be identified by the "gene profile" of T cells. Genomic scale analysis offers the opportunity to identify subtle changes in gene expression in T cells reflecting a distinct biological behavior in vivo.
Collapse
Affiliation(s)
- Christian Stremmel
- Department of Surgery, University of Erlangen-Nuremberg, Krankenhausstrasse 12, 91054, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Jones SA, Richards PJ, Scheller J, Rose-John S. IL-6 transsignaling: the in vivo consequences. J Interferon Cytokine Res 2005; 25:241-53. [PMID: 15871661 DOI: 10.1089/jir.2005.25.241] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytokine receptors exist in membrane-bound and soluble forms. They bind their ligands with comparable affinity. Although most soluble receptors are antagonists because they compete with their membrane counterparts for their ligands, some soluble receptors are agonists. In this case, on target cells, the complex of cytokine and soluble cytokine receptor binds to a second receptor subunit and initiates intracellular signal transduction. The soluble receptors of the interleukin-6 (IL-6) family of cytokines--soluble IL-6 receptor (sIL-6R), sIL-11R, and soluble ciliary neurotrophic factor receptor (sCNTFR)--are agonists. In vivo, the IL-6/sIL-6R complex stimulates several types of target cells not stimulated by IL-6 alone, as they do not express the membrane- bound IL-6R. This process has been named transsignaling. We have shown recently that in several chronic inflammatory diseases, such as chronic inflammatory bowl disease, peritonitis, and rheumatoid arthritis, as well as in colon cancer, transsignaling via the sIL-6R complexed to IL-6 is a crucial point in the maintenance of the disease. The mechanism by which the IL-6/sIL-6R complex regulates the inflammatory or neoplastic state is discussed.
Collapse
Affiliation(s)
- Simon A Jones
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3US, Wales, UK
| | | | | | | |
Collapse
|
20
|
Hanington PC, Belosevic M. Characterization of the leukemia inhibitory factor receptor in the goldfish (Carassius auratus). FISH & SHELLFISH IMMUNOLOGY 2005; 18:359-369. [PMID: 15683914 DOI: 10.1016/j.fsi.2004.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 09/17/2004] [Indexed: 05/24/2023]
Abstract
The cytokine leukemia inhibitory factor (LIF) and its receptor LIFR have been extensively characterized in mammals. LIF has been shown to mediate the proliferation, differentiation and activation of a number of cell types in various tissues. This paper reports on the identification of a novel LIFR isolated from goldfish (Carassius auratus) macrophages. Goldfish LIFR shares a 26% amino acid sequence identity with mammalian LIFR sequences; however it retains all of the conserved amino acid motifs that identify a functional LIFR such as the cytokine binding domains and the box-1 and box-2 motifs. The goldfish LIFR phylogenetically groups with the other identified LIFRs from human, mouse, rat and chicken, and it appears to be ancestral to the divergence of the oncostatin M receptor (OSMR). The tissue expression of goldfish LIFR is observed in the gill, kidney and brain as well as sorted goldfish macrophages which exhibit higher expression than monocytes and early progenitor cells.
Collapse
Affiliation(s)
- Patrick C Hanington
- Department of Biological Sciences, Room CW-405, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | | |
Collapse
|
21
|
Boulanger MJ, Garcia KC. Shared cytokine signaling receptors: structural insights from the gp130 system. ACTA ACUST UNITED AC 2004; 68:107-46. [PMID: 15500860 DOI: 10.1016/s0065-3233(04)68004-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The vast majority of cytokine signaling is mediated by "shared" receptors that form central signaling components of higher-order complexes incorporating ligand-specific receptors. These include the common gamma chain (gamma(c)), common beta chain (beta(c)), and gp130, as well as others. These receptors have the dual tasks of cross-reactive cytokine recognition, and formation of precisely oriented multimeric signaling assemblies. Currently, detailed structural information on a shared receptor complex exists only for gp130, which is a highly pleiotropic shared cytokine signaling receptor essential for mammalian cell growth and homeostasis. To date, more than 10 different four-helix bundle ligands have been identified that incorporate gp130, or one of its close relatives such as LIF receptor, into functional oligomeric signaling complexes. In this review we summarize our current knowledge of shared receptor recognition and activation, with a focus on gp130. We discuss recent structural and functional information to analyze overall architectural assemblies of gp130 cytokine complexes and probe the basis for the extreme cross-reactivity of gp130 for its multiple cytokine ligands.
Collapse
Affiliation(s)
- Martin J Boulanger
- Department of Microbiology, Stanford University School of Medicine, Stanford, California 94305-5124, USA
| | | |
Collapse
|
22
|
Plun-Favreau H, Perret D, Diveu C, Froger J, Chevalier S, Lelièvre E, Gascan H, Chabbert M. Leukemia inhibitory factor (LIF), cardiotrophin-1, and oncostatin M share structural binding determinants in the immunoglobulin-like domain of LIF receptor. J Biol Chem 2003; 278:27169-79. [PMID: 12707269 DOI: 10.1074/jbc.m303168200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Leukemia inhibitory factor (LIF), cardiotrophin-1 (CT-1), and oncostatin M (OSM) are four helix bundle cytokines acting through a common heterodimeric receptor composed of gp130 and LIF receptor (LIFR). Binding to LIFR occurs through a binding site characterized by an FXXK motif located at the N terminus of helix D (site III). The immunoglobulin (Ig)-like domain of LIFR was modeled, and the physico-chemical properties of its Connolly surface were analyzed. This analysis revealed an area displaying properties complementary to those of the LIF site III. Two residues of the Ig-like domain of LIFR, Asp214 and Phe284, formed a mirror image of the FXXK motif. Engineered LIFR mutants in which either or both of these two residues were mutated to alanine were transfected in Ba/F3 cells already containing gp130. The F284A mutation impaired the biological response induced by LIF and CT-1, whereas the response to OSM remained unchanged. The Asp214 mutation did not alter the functional responses. The D214A/F284A double mutation, however, totally impaired cellular proliferation to LIF and CT-1 and partially impaired OSM-induced proliferation with a 20-fold increase in EC50. These results were corroborated by the analysis of STAT3 phosphorylation and Scatchard analysis of cytokine binding to Ba/F3 cells. Molecular modeling of the complex of LIF with the Ig-like domain of LIFR provides a clue for the superadditivity of the D214A/F284A double mutation. Our results indicate that LIF, CT-1, and OSM share an overlapping binding site located in the Ig-like domain of LIFR. The different behaviors of LIF and CT-1, on one side, and of OSM, on the other side, can be related to the different affinity of their site III for LIFR.
Collapse
Affiliation(s)
- Hélène Plun-Favreau
- INSERM U564, Centre Hospitalier Universitaire d'Angers, 4 rue Larrey, 49033 Angers, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Aasland D, Schuster B, Grötzinger J, Rose-John S, Kallen KJ. Analysis of the leukemia inhibitory factor receptor functional domains by chimeric receptors and cytokines. Biochemistry 2003; 42:5244-52. [PMID: 12731865 DOI: 10.1021/bi0263311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In contrast to other hematopoietic cytokine receptors, the leukemia inhibitory factor receptor (LIFR) possesses two cytokine binding modules (CBMs). Previous studies suggested that the NH(2)-terminal CBM and the Ig-like domain of the LIFR are most important for LIF binding and activity. Using the recently engineered designer cytokine IC7, which induces an active heterodimer of the LIFR and gp130 after binding to the IL-6R, and several receptor chimeras of the LIFR and the interleukin-6 receptor (IL-6R) carrying the CBM of the IL-6R in place of the COOH-terminal LIFR CBM, we could assign individual receptor subdomains to individual binding sites of the ligand. The NH(2)-terminal CBM and the Ig-like domain of the LIFR bind to ligand site III, whereas the COOH-terminal CBM contacts site I. Furthermore, we show that LIFR mutants carrying the IL-6R CBM instead of the COOH-terminal CBM can replace the IL-6R by acting as an alpha-receptor for IL-6. However, in situations where a signaling competent receptor is bound at IL-6 site I, ligand binding to site III is an absolute requirement for participation of the receptor in a signaling heterodimer with gp130; i.e., a functional receptor complex of IL-6 type cytokines cannot be assembled solely via site I and II as in the growth hormone receptor complex.
Collapse
Affiliation(s)
- Dorthe Aasland
- Biochemisches Institut, Christian Albrechts Universität Kiel, Germany
| | | | | | | | | |
Collapse
|
24
|
Schuster B, Kovaleva M, Sun Y, Regenhard P, Matthews V, Grötzinger J, Rose-John S, Kallen KJ. Signaling of human ciliary neurotrophic factor (CNTF) revisited. The interleukin-6 receptor can serve as an alpha-receptor for CTNF. J Biol Chem 2003; 278:9528-35. [PMID: 12643274 DOI: 10.1074/jbc.m210044200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Human ciliary neurotrophic factor (CNTF) is a neurotrophic cytokine that exerts a neuroprotective effect in multiple sclerosis and amyotrophic lateral sclerosis. Clinical application of human CNTF, however, was prevented by high toxicity at higher dosages. Human CNTF elicits cellular responses by induction of a receptor complex consisting of the CNTF alpha-receptor (CNTFR), which is not involved in signal transduction, and the beta-receptors gp130 and leukemia inhibitory factor receptor (LIFR). Previous studies with rat CNTF demonstrated that rat CNTF is unable to interact with the human interleukin-6 alpha-receptor, whereas at high concentrations, it can directly induce a signaling heterodimer of human gp130 and human LIFR in the absence of the CNTF receptor. Here, we demonstrate that human CNTF cannot directly induce a heterodimer of human gp130 and LIFR. However, human CNTF can use both the membrane-bound and the soluble human IL-6R as a substitute for its cognate alpha-receptor and thus widen the target spectrum of human CNTF. Engineering a CNTFR-specific human CNTF variant may therefore be a prerequisite to improving the safety profile of CNTF.
Collapse
Affiliation(s)
- Björn Schuster
- Biochemisches Institut, Christian Albrechts Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Schuster B, Meinert W, Rose-John S, Kallen KJ. The human interleukin-6 (IL-6) receptor exists as a preformed dimer in the plasma membrane. FEBS Lett 2003; 538:113-6. [PMID: 12633863 DOI: 10.1016/s0014-5793(03)00154-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The recently solved X-ray structure of the extracellular portion of the interleukin-6 (IL-6) receptor (IL-6R) revealed an IL-6R dimer in the crystal lattice which probably represents a physiological dimer. Performing coprecipitation experiments with two differently tagged IL-6R variants expressed in COS-7 cells, we show that an IL-6R dimer exists in the plasma membrane in the absence of IL-6. Ligand binding does not seem to affect the dimerization status. When lysates of COS-7 cells expressing only one of the IL-6R variants are mixed, spontaneous dimerization occurs. Thus, the IL-6R dimer observed in the crystal structure represents a physiologically occurring phenomenon.
Collapse
Affiliation(s)
- Björn Schuster
- Biochemisches Institut, Christian Albrechts Universität zu Kiel, Olshausenstr 40, D-24098 Kiel, Germany
| | | | | | | |
Collapse
|