1
|
Guo Y, Zheng W, Yue T, Baimakangzhuo, Qi X, Liu K, Li L, He Y, Su B. GCH1 contributes to high-altitude adaptation in Tibetans by regulating blood nitric oxide. J Genet Genomics 2025:S1673-8527(25)00114-6. [PMID: 40254159 DOI: 10.1016/j.jgg.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
Nitric oxide (NO) is a key vasodilator that regulates vascular pressure and blood flow. Tibetans have developed a "blunted" mechanism for regulating NO levels at high altitude, with GTP cyclohydrolase 1 (GCH1) identified as a key candidate gene. Here, we present comprehensive genetic and functional analyses of GCH1, which exhibits strong Darwinian positive selection in Tibetans. We show that Tibetan-enriched GCH1 variants down-regulate its expression in the blood of Tibetans. Based on this observation, we generate the heterozygous Gch1 knockout (Gch1+/-) mouse model to simulate its downregulation in Tibetans. We find that under prolonged hypoxia, the Gch1+/- mice have relatively higher blood NO and blood oxygen saturation levels compared to the wild-type (WT) controls, providing better oxygen supplies to the cardiovascular and pulmonary systems. Markedly, hypoxia-induced cardiac hypertrophy and pulmonary remodeling are significantly attenuated in the Gch1+/- mice compared with the WT controls, likely due to the adaptive changes in molecular regulations related to metabolism, inflammation, circadian rhythm, extracellular matrix, and oxidative stress. This study sheds light on the role of GCH1 in regulating blood NO, contributing to the physiological adaptation of the cardiovascular and pulmonary systems in Tibetans at high altitude.
Collapse
Affiliation(s)
- Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China; School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Baimakangzhuo
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, Xizang 850000, China
| | - Xuebin Qi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650223, China
| | - Kai Liu
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Liya Li
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
2
|
Osorio-Méndez JJ, Gómez-Grosso LA, Montoya-Ortiz G, Novoa-Herrán S, Domínguez-Romero Y. Small Extracellular Vesicles from Breast Cancer Cells Induce Cardiotoxicity. Int J Mol Sci 2025; 26:945. [PMID: 39940718 PMCID: PMC11816698 DOI: 10.3390/ijms26030945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Cardiovascular diseases and cancer are leading global causes of morbidity and mortality, necessitating advances in diagnosis and treatment. Doxorubicin (Doxo), a potent chemotherapy drug, causes long-term heart damage due to cardiotoxicity. Small extracellular vesicles (sEVs) carry bioactive molecules-such as proteins, lipids, and nucleic acids-that can modulate gene expression and signaling pathways in recipient cells, including cardiomyocytes. Through the delivery of cytokines, microRNAs, and growth factors, sEVs can influence cell survival, which plays a critical role in the development of cardiotoxicity. This study investigates the role of sEVs derived from breast cancer cells treated or not with Doxo and their potential to induce cardiomyocyte damage, thereby contributing to cardiotoxicity. We isolated sEVs from MCF-7 cells treated or not to Doxo using ultracentrifugation and characterized them through Nanoparticle Tracking Analysis (NTA), Scanning Electron Microscopy (SEM), and Western Blotting (WB) for the markers CD63, CD81, and TSG101. We analyzed cytokine profiles using a Multiplex Assay and Cytokine Membrane Array. We exposed Guinea pig cardiomyocytes to different concentrations of sEVs. We assessed their viability (MTT assay), shortening, reactive oxygen species (ROS-DHE dye) production, mitochondrial membrane potential (JC-1 dye), and calcium dynamics (FLUO-4 dye). We performed statistical analyses, including t-tests, ANOVA, Cohen's d, and η2 to validate the robustness of the results. Treatment of MCF-7 cells with 0.01 μM Doxorubicin resulted in increased sEVs production, particularly after 48 h of exposure (~1.79 × 108 ± 2.77 × 107 vs. ~5.1 × 107 ± 1.28 × 107 particles/mL, n = 3, p = 0.0019). These sEVs exhibited protein profiles in the 130-25 kDa range and 93-123 nm sizes. They carried cytokines including TNF-α, IL-1β, IL-4, IFN-γ, and IL-10. Exposure of cardiomyocytes to sEVs (0.025 μg/mL to 2.5 μg/mL) from both Doxo-treated and untreated cells significantly reduced cardiomyocyte viability, shortened cell length by up to 20%, increased ROS production, and disrupted calcium homeostasis and mitochondrial membrane potential, indicating severe cellular stress and cardiotoxicity. These findings suggest that Doxo enhances sEVs production from breast cancer cells, which plays a key role in cardiotoxicity through their cytokine cargo. The study highlights the potential of these sEVs as biomarkers for early cardiotoxicity detection and as therapeutic targets to mitigate cardiovascular risks in chemotherapy patients. Future research should focus on understanding the mechanisms by which Doxorubicin-induced sEVs contribute to cardiotoxicity and exploring their diagnostic and therapeutic potential to improve patient safety and outcomes in cancer therapy.
Collapse
Affiliation(s)
- Jhon Jairo Osorio-Méndez
- Master in Biochemistry Program, Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia (Y.D.-R.)
| | - Luis Alberto Gómez-Grosso
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia (Y.D.-R.)
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Gladis Montoya-Ortiz
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia (Y.D.-R.)
| | - Susana Novoa-Herrán
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia (Y.D.-R.)
| | - Yohana Domínguez-Romero
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia (Y.D.-R.)
- Doctorate in Biotechnology Program, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| |
Collapse
|
3
|
Zhang R, Wang P, Jin Y, Xie Q, Xiao P. Imperatorin's Effect on Myocardial Infarction Based on Network Pharmacology and Molecular Docking. Cardiovasc Ther 2025; 2025:7551459. [PMID: 39834616 PMCID: PMC11745561 DOI: 10.1155/cdr/7551459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose: Myocardial infarction (MI), a severe cardiovascular disease, is the result of insufficient blood supply to the myocardium. Despite the improvements of conventional therapies, new approaches are needed to improve the outcome post-MI. Imperatorin is a natural compound with multiple pharmacological properties and potential cardioprotective effects. Therefore, this work investigated imperatorin's therapeutic effects and its mechanism of action in an MI mouse model. Methods: Network pharmacology, molecular docking, and experimental validation were performed for exploring the pharmacokinetic properties, therapeutic effects, and molecular targets of imperatorin in MI. Permanent ligation of the left anterior descending artery was performed in male C57BL/6 mice to induce MI before treatment with imperatorin once per day for 1 week. Echocardiography, heart histology, RNA sequencing, and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) as well as western blotting were carried out for evaluating cardiac function and structure, as well as gene and protein expression. Results: Imperatorin significantly improved cardiac function, preserved cardiac structure, attenuated cardiac remodeling and fibrosis, and reduced cardiomyocyte apoptosis in MI mice. Eight differentially expressed genes overlapping with key target genes were found, two upregulated and six downregulated. A key target in signaling pathways associated with imperatorin effect in MI was angiotensin-converting enzyme (ACE). Imperatorin inhibited ACE-angiotensin II (Ang II)-angiotensin II Type 1 receptor (AT1R) axis in MI mice. Conclusion: Imperatorin attenuated MI by inhibiting the ACE-Ang II-AT1R axis. Thus, imperatorin might be considered a potential therapeutic agent to cure MI.
Collapse
MESH Headings
- Animals
- Myocardial Infarction/drug therapy
- Myocardial Infarction/pathology
- Myocardial Infarction/metabolism
- Myocardial Infarction/physiopathology
- Myocardial Infarction/genetics
- Male
- Furocoumarins/pharmacology
- Furocoumarins/chemistry
- Mice, Inbred C57BL
- Disease Models, Animal
- Network Pharmacology
- Molecular Docking Simulation
- Apoptosis/drug effects
- Signal Transduction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/metabolism
- Ventricular Remodeling/drug effects
- Fibrosis
- Ventricular Function, Left/drug effects
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/drug effects
- Angiotensin II
- Gene Expression Regulation
- Gene Regulatory Networks
Collapse
Affiliation(s)
- Ruizhe Zhang
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yao Jin
- Department of Cardiology, The Fourth Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qingya Xie
- Department of Cardiology, The Fourth Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Pingxi Xiao
- Department of Cardiology, The Fourth Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Park M, Cho S, Jeong D. Restoration of Sestrin 3 Expression Mitigates Cardiac Oxidative Damage in Ischemia-Reperfusion Injury Model. Antioxidants (Basel) 2025; 14:61. [PMID: 39857395 PMCID: PMC11763094 DOI: 10.3390/antiox14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Cardiac ischemia-reperfusion injury (IRI) occurs when blood flow is restored to the myocardium after a period of ischemia, leading to oxidative stress and subsequent myocardial cell damage, primarily due to the accumulation of reactive oxygen species (ROS). In our previous research, we identified that miR-25 is significantly overexpressed in pressure overload-induced heart failure, and its inhibition improves cardiac function by restoring the expression of SERCA2a, a key protein involved in calcium regulation. In this study, we aimed to investigate the role of miR-25 in the context of ischemia-reperfusion injury. We found that miR-25 was markedly upregulated under hypoxic conditions in both in vitro and in vivo models. Through in silico analysis, we identified Sestrin3 (SESN3), an antioxidant protein known for its protective effects against oxidative stress, as a novel target of miR-25. Based on these findings, we hypothesized that inhibiting miR-25 would restore Sestrin3 expression, thereby reducing ROS-induced myocardial cell damage and improving cardiac function. To test this hypothesis, we employed two model systems: a hypoxia/reoxygenation (H/R) stress model using H9c2 myoblasts and a surgically induced ischemia-reperfusion injury mouse model. Our results demonstrated that the use of miR-25 inhibitors significantly improved cardiac function and reduced myocardial damage in both models through the restoration of SESN3 expression. In conclusion, our findings suggest that targeting miR-25 may serve as a novel therapeutic modality to alleviate oxidative damage in the heart.
Collapse
Affiliation(s)
| | | | - Dongtak Jeong
- Department of Medicinal & Life Science, College of Science and Convergence Technology, Hanyang University—ERICA, Ansan 15588, Republic of Korea; (M.P.); (S.C.)
| |
Collapse
|
5
|
Li T, Li Y, Zeng Y, Zhou X, Zhang S, Ren Y. Construction of preclinical evidence for propofol in the treatment of reperfusion injury after acute myocardial infarction: A systematic review and meta-analysis. Biomed Pharmacother 2024; 174:116629. [PMID: 38640712 DOI: 10.1016/j.biopha.2024.116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024] Open
Abstract
Propofol, a commonly used intravenous anesthetic, has demonstrated potential in protecting against myocardial ischemia/reperfusion injury (MIRI) based on preclinical animal studies. However, the clinical benefits of propofol in this context are subject to debate. We conducted a systematic search across eight databases to identify all relevant animal studies investigating the preventive effects of propofol on MIRI until October 30, 2023. We assessed the methodological quality of the included studies using SYRCLE's bias risk tool. Statistical analysis was performed using STATA 15.1. The primary outcome measures analyzed in this study were myocardial infarct size (IS) and myocardial injury biomarkers. This study presents a comprehensive analysis of 48 relevant animal studies investigating propofol's preventive effects on MIRI. Propofol administration demonstrated a reduction in myocardial IS and decreased levels of myocardial injury biomarkers (CK-MB, LDH, cTnI). Moreover, propofol improved myocardial function parameters (+dp/dtmax, -dP/dtmax, LVEF, LVFS), exhibited favorable effects on inflammatory markers (IL-6, TNF-α) and oxidative stress markers (SOD, MDA), and reduced myocardial cell apoptotic index (AI). These findings suggest propofol exerts cardioprotective effects by reducing myocardial injury, decreasing infarct size, and improving heart function. However, the absence of animal models that accurately represent comorbidities such as aging and hypertension, as well as inconsistent administration methods that align with clinical practice, may hinder its clinical translation. Further robust investigations are required to validate these findings, elucidate the underlying mechanisms of propofol, and facilitate its potential translation into clinical practice.
Collapse
Affiliation(s)
- Tao Li
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanwei Li
- Cardiology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiwei Zeng
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Su Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulan Ren
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
6
|
Wang YC, Shao YD, Shao CL, Guan XQ, Lu PP, Ning K, Liu BN, Guo HD. Dihydrotanshinone I reduces H9c2 cell damage by regulating AKT and MAPK signaling pathways. In Vitro Cell Dev Biol Anim 2024; 60:89-97. [PMID: 38253954 DOI: 10.1007/s11626-023-00839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Cardiovascular disease is the deadliest disease in the world. Previous studies have shown that Dihydrotanshinone I (DHT) can improve cardiac function after myocardial injury. This study aimed to observe the protective effect and mechanism of DHT on H9c2 cells by establishing an oxygen-glucose deprivation/reoxygenation (OGD/R) injury model. By constructing OGD/R injury simulation of H9c2 cells in a myocardial injury model, the proliferation of H9c2 cells treated with DHT concentrations of 0.1 μmol/L were not affected at 24, 48, and 72 h. DHT can significantly reduce the apoptosis of H9c2 cells caused by OGD/R. Compared with the OGD/R group, DHT treatment significantly reduced the level of MDA and increased the level of SOD in cells. DHT treatment of cells can significantly reduce the levels of ROS and Superoxide in mitochondria in H9c2 cells caused by OGD/R and H2O2. DHT significantly reduced the phosphorylation levels of P38MAPK and ERK in H9c2 cells induced by OGD/R, and significantly increased the phosphorylation levels of AKT in H9c2 cells. DHT can significantly reduce the oxidative stress damage of H9c2 cells caused by H2O2 and OGD/R, thereby reducing the apoptosis of H9c2 cells. And this may be related to regulating the phosphorylation levels of AKT, ERK, and P38MAPK.
Collapse
Affiliation(s)
- Ya-Chao Wang
- School of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-da Shao
- School of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chang-le Shao
- School of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Qi Guan
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping-Ping Lu
- School of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Ning
- School of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Bao-Nian Liu
- School of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hai-Dong Guo
- School of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
7
|
Zhao K, Chen X, Bian Y, Zhou Z, Wei X, Zhang J. Broadening horizons: The role of ferroptosis in myocardial ischemia-reperfusion injury. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2269-2286. [PMID: 37119287 DOI: 10.1007/s00210-023-02506-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Ferroptosis is a novel type of regulated cell death (RCD) discovered in recent years, where abnormal intracellular iron accumulation leads to the onset of lipid peroxidation, which further leads to the disruption of intracellular redox homeostasis and triggers cell death. Iron accumulation with lipid peroxidation is considered a hallmark of ferroptosis that distinguishes it from other RCDs. Myocardial ischemia-reperfusion injury (MIRI) is a process of increased myocardial cell injury that occurs during coronary reperfusion after myocardial ischemia and is associated with high post-infarction mortality. Multiple experiments have shown that ferroptosis plays an important role in MIRI pathophysiology. This review systematically summarized the latest research progress on the mechanisms of ferroptosis. Then we report the possible link between the occurrence of MIRI and ferroptosis in cardiomyocytes. Finally, we discuss and analyze the related drugs that target ferroptosis to attenuate MIRI and its action targets, and point out the shortcomings of the current state of relevant research and possible future research directions. It is hoped to provide a new avenue for improving the prognosis of the acute coronary syndrome.
Collapse
Affiliation(s)
- Ke Zhao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Xiaoshu Chen
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yujing Bian
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Zhou Zhou
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Xijin Wei
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China.
| | - Juan Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China.
| |
Collapse
|
8
|
Wang Q, Zuurbier CJ, Huhn R, Torregroza C, Hollmann MW, Preckel B, van den Brom CE, Weber NC. Pharmacological Cardioprotection against Ischemia Reperfusion Injury-The Search for a Clinical Effective Therapy. Cells 2023; 12:1432. [PMID: 37408266 DOI: 10.3390/cells12101432] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
Pharmacological conditioning aims to protect the heart from myocardial ischemia-reperfusion injury (IRI). Despite extensive research in this area, today, a significant gap remains between experimental findings and clinical practice. This review provides an update on recent developments in pharmacological conditioning in the experimental setting and summarizes the clinical evidence of these cardioprotective strategies in the perioperative setting. We start describing the crucial cellular processes during ischemia and reperfusion that drive acute IRI through changes in critical compounds (∆GATP, Na+, Ca2+, pH, glycogen, succinate, glucose-6-phosphate, mitoHKII, acylcarnitines, BH4, and NAD+). These compounds all precipitate common end-effector mechanisms of IRI, such as reactive oxygen species (ROS) generation, Ca2+ overload, and mitochondrial permeability transition pore opening (mPTP). We further discuss novel promising interventions targeting these processes, with emphasis on cardiomyocytes and the endothelium. The limited translatability from basic research to clinical practice is likely due to the lack of comorbidities, comedications, and peri-operative treatments in preclinical animal models, employing only monotherapy/monointervention, and the use of no-flow (always in preclinical models) versus low-flow ischemia (often in humans). Future research should focus on improved matching between preclinical models and clinical reality, and on aligning multitarget therapy with optimized dosing and timing towards the human condition.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Coert J Zuurbier
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Ragnar Huhn
- Department of Anesthesiology, Kerckhoff-Clinic-Center for Heart, Lung, Vascular and Rheumatic Disease, Justus-Liebig-University Giessen, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| | - Carolin Torregroza
- Department of Anesthesiology, Kerckhoff-Clinic-Center for Heart, Lung, Vascular and Rheumatic Disease, Justus-Liebig-University Giessen, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| | - Markus W Hollmann
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Benedikt Preckel
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Charissa E van den Brom
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| | - Nina C Weber
- Department of Anesthesiology-L.E.I.C.A., Amsterdam University Medical Centers, Location AMC, Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
9
|
Domingos AE, Seara FAC, Oliveira DF, Maciel L, Barbosa RAQ, Barcellos LC, Pinto VS, Fortunato RS, Nascimento JHM. Mitochondrial dysfunction and cardiac ischemia/reperfusion injury are attenuated by nandrolone: Role of JAK-STAT3 pathway. Steroids 2023:109247. [PMID: 37149242 DOI: 10.1016/j.steroids.2023.109247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/12/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
AIM To investigate the effect of acute treatment with the anabolic steroid (AS) nandrolone decanoate in mitochondrial homeostasis and JAK-STAT3 signaling during the progression of cardiac ischemia/reperfusion injury (IR). METHODS Male Wistar rats (2 months old) were randomly allocated into four experimental groups: Control (CTRL), IR, AS, and AS+AG490. All animals were euthanized 3 days after a single intramuscular injection of nandrolone at 10 mg/kg (AS and AS+AG490 groups) or vehicle (CTRL and IR groups). Baseline mRNA expression of antioxidant enzymes superoxide dismutase (SOD) 1 and 2, glutathione peroxidase, catalase, and myosin heavy chain (MHC) α and β were compared between CTRL and AS groups. Isolated hearts were submitted to ex vivo ischemia and reperfusion, except for hearts from the CTRL group. Before the IR protocol, the JAK-STAT3 inhibitor AG490 was perfused in hearts from the AS+AG490 group. Heart samples were collected during reperfusion to investigate the effects on mitochondrial function. Results Antioxidant enzyme mRNA expression was unaffected, whereas the AS group exhibited decreased β- MHC/α-MHC ratio versus the CTRL group. Compared to the IR group, the AS group exhibited better recovery of post-ischemic left ventricular (LV) end-diastolic pressure and LV-developed pressure levels, while infarct size significantly decreased. Furthermore, mitochondrial production, transmembrane potential, and swelling were improved, whereas ROS formation was decreased versus the IR group. These effects were prevented by the perfusion of JAK-STAT3 inhibitor AG490. CONCLUSION These findings suggest that acute nandrolone treatment can provide cardioprotection by recruiting the JAK-STAT3 signaling pathway and mitochondrial preservation.
Collapse
Affiliation(s)
- Ainá E Domingos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando A C Seara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil; Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Brazil
| | - Dahienne F Oliveira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Maciel
- Campus Professor Geraldo Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil
| | - Raiana A Q Barbosa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciane C Barcellos
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Verônica S Pinto
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S Fortunato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose H M Nascimento
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
A double-edged sword: role of apoptosis repressor with caspase recruitment domain (ARC) in tumorigenesis and ischaemia/reperfusion (I/R) injury. Apoptosis 2023; 28:313-325. [PMID: 36652128 DOI: 10.1007/s10495-022-01802-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/19/2023]
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) acts as a potent and multifunctional inhibitor of apoptosis, which is mainly expressed in postmitotic cells, including cardiomyocytes. ARC is special for its N-terminal caspase recruitment domain and caspase recruitment domain. Due to the powerful inhibition of apoptosis, ARC is mainly reported to act as a cardioprotective factor during ischaemia‒reperfusion (I/R) injury, preventing cardiomyocytes from being devastated by various catastrophes, including oxidative stress, calcium overload, and mitochondrial dysfunction in the circulatory system. However, recent studies have found that ARC also plays a potential regulatory role in tumorigenesis especially in colorectal cancer and renal cell carcinomas, through multiple apoptosis-associated pathways, which remains to be explored in further studies. Therefore, ARC regulates the body and maintains the balance of physiological activities with its interesting duplex. This review summarizes the current research progress of ARC in the field of tumorigenesis and ischaemia/reperfusion injury, to provide overall research status and new possibilities for researchers.
Collapse
|
11
|
Pathophysiology of Ischemic Stroke: Noncoding RNA Role in Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5815843. [PMID: 36132228 PMCID: PMC9484962 DOI: 10.1155/2022/5815843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 08/20/2022] [Indexed: 11/29/2022]
Abstract
Stroke is a neurological disease that causes significant disability and death worldwide. Ischemic stroke accounts for 75% of all strokes. The pathophysiological processes underlying ischemic stroke include oxidative stress, the toxicity of excitatory amino acids, ion disorder, enhanced apoptosis, and inflammation. Noncoding RNAs (ncRNAs) may have a vital role in regulating the pathophysiological processes of ischemic stroke, as confirmed by the altered expression of ncRNAs in blood samples from acute ischemic stroke patients, animal models, and oxygen-glucose-deprived (OGD) cell models. Due to specific changes in expression, ncRNAs can potentially be biomarkers for the diagnosis, treatment, and prognosis of ischemic stroke. As an important brain cell component, glial cells mediate the occurrence and progression of oxidative stress after ischemic stroke, and ncRNAs are an irreplaceable part of this mechanism. This review highlights the impact of ncRNAs in the oxidative stress process of ischemic stroke. It focuses on specific ncRNAs that underlie the pathophysiology of ischemic stroke and have potential as diagnostic biomarkers and therapeutic targets.
Collapse
|
12
|
Modification of Ischemia/Reperfusion-Induced Alterations in Subcellular Organelles by Ischemic Preconditioning. Int J Mol Sci 2022; 23:ijms23073425. [PMID: 35408783 PMCID: PMC8998910 DOI: 10.3390/ijms23073425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
It is now well established that ischemia/reperfusion (I/R) injury is associated with the compromised recovery of cardiac contractile function. Such an adverse effect of I/R injury in the heart is attributed to the development of oxidative stress and intracellular Ca2+-overload, which are known to induce remodeling of subcellular organelles such as sarcolemma, sarcoplasmic reticulum, mitochondria and myofibrils. However, repeated episodes of brief periods of ischemia followed by reperfusion or ischemic preconditioning (IP) have been shown to improve cardiac function and exert cardioprotective actions against the adverse effects of prolonged I/R injury. This protective action of IP in attenuating myocardial damage and subcellular remodeling is likely to be due to marked reductions in the occurrence of oxidative stress and intracellular Ca2+-overload in cardiomyocytes. In addition, the beneficial actions of IP have been attributed to the depression of proteolytic activities and inflammatory levels of cytokines as well as the activation of the nuclear factor erythroid factor 2-mediated signal transduction pathway. Accordingly, this review is intended to describe some of the changes in subcellular organelles, which are induced in cardiomyocytes by I/R for the occurrence of oxidative stress and intracellular Ca2+-overload and highlight some of the mechanisms for explaining the cardioprotective effects of IP.
Collapse
|
13
|
Uncoupling protein 1 knockout aggravates isoproterenol-induced acute myocardial ischemia via AMPK/mTOR/PPARα pathways in rats. Transgenic Res 2021; 31:107-118. [PMID: 34709566 PMCID: PMC8821478 DOI: 10.1007/s11248-021-00289-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022]
Abstract
Uncoupling protein 1 (UCP1) was found exclusively in the inner membranes of the mitochondria of brown adipose tissue (BAT). We found that UCP1 was also expressed in heart tissue and significantly upregulated in isoproterenol (ISO)-induced acute myocardial ischemia (AMI) rat model. The present study is to determine the underlying mechanism involved in the UCP1 upregulation in ISO-induced AMI rat model. The Ucp1−/− rats were generated by CRISPR-Cas9 system and presented decreased BAT volume. 2-months old Sprague Dawley (SD) wild-type (WT) and Ucp1−/− rats were treated with ISO intraperitoneally 30 mg/kg once a day for 3 consecutive days to establish AMI model. In saline group, the echocardiographic parameters, serum markers of myocardial injury cardiac troponin I (cTnI), creatine kinase isoenzyme MB (CK-MB), oxidant malondialdehyde (MDA), antioxidant superoxide dismutase (SOD) or fibrosis were comparable between WT and Ucp1−/− rats. ISO treatment induced worse left ventricle (LV) hypertrophy, myocardial fibrosis, increased higher cTnI, CK-MB and MDA and decreased lower SOD level in Ucp1−/− rats compared with that of WT rats. Ucp1−/− rats also presented lower myocardial phosphocreatine (PCr)/ATP-ratio, which demonstrated worse cardiac energy regulation defect. ISO treatment induced the phosphorylation of AMP-activated protein kinase (AMPK) activation, subsequently the phosphorylation of mammalian target of rapamycin (mTOR) inhibition and peroxisome proliferators-activated receptor α (PPARα) activation in WT rats, whereas activation of AMPK/mTOR/PPARα pathways significantly inhibited in Ucp1−/− rats. To sum up, UCP1 knockout aggravated ISO-induced AMI by inhibiting AMPK/mTOR/PPARα pathways in rats. Increasing UCP1 expression in heart tissue may be a cytoprotective therapeutic strategy for AMI.
Collapse
|
14
|
Mushtaq U, Bashir M, Nabi S, Khanday FA. Epidermal growth factor receptor and integrins meet redox signaling through P66shc and Rac1. Cytokine 2021; 146:155625. [PMID: 34157521 DOI: 10.1016/j.cyto.2021.155625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
This review examines the concerted role of Epidermal Growth Factor Receptor (EGFR) and integrins in regulating Reactive oxygen species (ROS) production through different signaling pathways. ROS as such are not always deleterious to the cells but they also act as signaling molecules, that regulates numerous indespensible physiological fuctions of life. Many adaptor proteins, particularly Shc and Grb2, are involved in mediating the downstream signaling pathways stimulated by EGFR and integrins. Integrin-induced activation of EGFR and subsequent tyrosine phosphorylation of a class of acceptor sites on EGFR leads to alignment and tyrosine phosphorylation of Shc, PLCγ, the p85 subunit of PI-3 K, and Cbl, followed by activation of the downstream targets Erk and Akt/PKB. Functional interactions between these receptors result in the activation of Rac1 via these adaptor proteins, thereby leading to Reactive Oxygen Species. Both GF and integrin activation can produce oxidants independently, however synergistically there is increased ROS generation, suggesting a mutual cooperation between integrins and GFRs for redox signalling. The ROS produced further promotes feed-forward stimulation of redox signaling events such as MAPK activation and gene expression. This relationship has not been reviewed previously. The literature presented here can have multiple implications, ranging from looking at synergistic effects of integrin and EGFR mediated signaling mechanisms of different proteins to possible therapeutic interventions operated by these two receptors. Furthermore, such mutual redox regulation of crosstalk between EGFR and integrins not only add to the established models of pathological oxidative stress, but also can impart new avenues and opportunities for targeted antioxidant based therapeutics.
Collapse
Affiliation(s)
- Umar Mushtaq
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India; Department of Biotechnology, Central University of Kashmir, Ganderbal, JK 191201, India
| | - Muneesa Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India; Department of Higher Education, Government of Jammu & Kashmir, 190001, India
| | - Sumaiya Nabi
- Department of Biochemistry, University of Kashmir, Srinagar, JK 190006, India
| | - Firdous A Khanday
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India.
| |
Collapse
|
15
|
Role of Oxidative Stress in Reperfusion following Myocardial Ischemia and Its Treatments. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6614009. [PMID: 34055195 PMCID: PMC8149218 DOI: 10.1155/2021/6614009] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/21/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Myocardial ischemia is a disease with high morbidity and mortality, for which reperfusion is currently the standard intervention. However, the reperfusion may lead to further myocardial damage, known as myocardial ischemia/reperfusion injury (MI/RI). Oxidative stress is one of the most important pathological mechanisms in reperfusion injury, which causes apoptosis, autophagy, inflammation, and some other damage in cardiomyocytes through multiple pathways, thus causing irreversible cardiomyocyte damage and cardiac dysfunction. This article reviews the pathological mechanisms of oxidative stress involved in reperfusion injury and the interventions for different pathways and targets, so as to form systematic treatments for oxidative stress-induced myocardial reperfusion injury and make up for the lack of monotherapy.
Collapse
|
16
|
Karbasiafshar C, Sellke FW, Abid MR. Mesenchymal stem cell-derived extracellular vesicles in the failing heart: past, present, and future. Am J Physiol Heart Circ Physiol 2021; 320:H1999-H2010. [PMID: 33861149 PMCID: PMC8163643 DOI: 10.1152/ajpheart.00951.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. Current treatment options include lifestyle changes, medication, and surgical intervention. However, many patients are unsuitable candidates for surgeries due to comorbidities, diffuse coronary artery disease, or advanced stages of heart failure. The search for new treatment options has recently transitioned from cell-based therapies to stem-cell-derived extracellular vesicles (EVs). A number of challenges remain in the EV field, including the effect of comorbidities, characterization, and delivery. However, recent revolutionary developments and insight into the potential of personalizing EV contents by bioengineering methods to alter specific signaling pathways in the ischemic myocardium hold promise. Here, we discuss the past limitations of cell-based therapies and recent EV studies involving in vivo, in vitro, and omics, and future challenges and opportunities in EV-based treatments in CVD.
Collapse
Affiliation(s)
| | - Frank W Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Department of Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - M Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Department of Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
17
|
Choi JH, Lee H, Lee H, Lee H. Dopant-Dependent Toxicity of CeO 2 Nanoparticles Is Associated with Dynamic Changes in H3K4me3 and H3K27me3 and Transcriptional Activation of NRF2 Gene in HaCaT Human Keratinocytes. Int J Mol Sci 2021; 22:3087. [PMID: 33802993 PMCID: PMC8002609 DOI: 10.3390/ijms22063087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Despite advances in the preparation of metal oxide (MO) nanoparticles (NPs) as catalysts for various applications, concerns about the biosafety of these particles remain. In this study, we prepared transition metal-doped cerium oxide (TM@CeO2; TM = Cr, Mn, Fe, Co, or Ni) nanoparticles and investigated the mechanism underlying dopant-dependent toxicity in HaCaT human keratinocytes. We show that doping with Cr or Co but not Fe, Mn, or Ni increased the toxicity of CeO2 NPs in dose- and time-dependent manners and led to apoptotic cell death. Interestingly, while both undoped and transition metal-doped NPs increased intracellular reactive oxygen species (ROS), toxic Cr@CeO2 and Co@CeO2 NPs failed to induce the expression of NRF2 (nuclear factor erythroid 2-related factor 2) as well as its downstream target genes involved in the antioxidant defense system. Moreover, activation of NRF2 transcription was correlated with dynamic changes in H3K4me3 and H3K27me3 at the promoter of NRF2, which was not observed in cells exposed to Cr@CeO2 NPs. Furthermore, exposure to relatively non-toxic Fe@CeO2 NPs, but not the toxic Cr@CeO2 NPs, resulted in increased binding of MLL1 complex, a major histone lysine methylase mediating trimethylation of histone H3 lysine 4, at the NRF2 promoter. Taken together, our findings strongly suggest that failure of cells to respond to oxidative stress is critical for dopant-dependent toxicity of CeO2 NPs and emphasize that careful evaluation of newly developed NPs should be preceded before industrial or biomedical applications.
Collapse
Affiliation(s)
- Jang Hyun Choi
- Department of Biological Sciences, College of Natural Science, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea; (J.H.C.); (H.L.)
| | - Haram Lee
- Department of Biological Sciences, College of Natural Science, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea; (J.H.C.); (H.L.)
| | - Hangil Lee
- Department of Chemistry, Sookmyung Women’s University, Seoul 04310, Korea
| | - Hansol Lee
- Department of Biological Sciences, College of Natural Science, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea; (J.H.C.); (H.L.)
| |
Collapse
|
18
|
Hinojo CM, Ciarlone GE, D'Agostino DP, Dean JB. Exogenous ketone salts inhibit superoxide production in the rat caudal solitary complex during exposure to normobaric and hyperbaric hyperoxia. J Appl Physiol (1985) 2021; 130:1936-1954. [PMID: 33661724 DOI: 10.1152/japplphysiol.01071.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The use of hyperbaric oxygen (HBO2) in hyperbaric and undersea medicine is limited by the risk of seizures [i.e., central nervous system (CNS) oxygen toxicity, CNS-OT] resulting from increased production of reactive oxygen species (ROS) in the CNS. Importantly, ketone supplementation has been shown to delay onset of CNS-OT in rats by ∼600% in comparison with control groups (D'Agostino DP, Pilla R, Held HE, Landon CS, Puchowicz M, Brunengraber H, Ari C, Arnold P, Dean JB. Am J Physiol Regu Integr Comp Physiol 304: R829-R836, 2013). We have tested the hypothesis that ketone body supplementation inhibits ROS production during exposure to hyperoxygenation in rat brainstem cells. We measured the rate of cellular superoxide ([Formula: see text]) production in the caudal solitary complex (cSC) in rat brain slices using a fluorogenic dye, dihydroethidium (DHE), during exposure to control O2 (0.4 ATA) followed by 1-2 h of normobaric oxygen (NBO2) (0.95 ATA) and HBO2 (1.95, and 4.95 ATA) hyperoxia, with and without a 50:50 mixture of ketone salts (KS) dl-β-hydroxybutyrate + acetoacetate. All levels of hyperoxia tested stimulated [Formula: see text] production similarly in cSC cells and coexposure to 5 mM KS during hyperoxia significantly blunted the rate of increase in DHE fluorescence intensity during exposure to hyperoxia. Not all cells tested produced [Formula: see text] at the same rate during exposure to control O2 and hyperoxygenation; cells that increased [Formula: see text] production by >25% during hyperoxia in comparison with baseline were inhibited by KS, whereas cells that did not reach that threshold during hyperoxia were unaffected by KS. These findings support the hypothesis that ketone supplementation decreases the steady-state concentrations of superoxide produced during exposure to NBO2 and HBO2 hyperoxia.NEW & NOTEWORTHY Exposure of rat medullary tissue slices to levels of O2 that mimic those that cause seizures in rats stimulates cellular superoxide ([Formula: see text]) production to varying degrees. Cellular [Formula: see text] generation in the caudal solitary complex is variable during exposure to control O2 and hyperoxia and significantly decreases during ketone supplementation. Our findings support the theory that ketone supplementation delays onset of central nervous system oxygen toxicity in mammals, in part, by decreasing [Formula: see text] production in O2-sensitive neurons.
Collapse
Affiliation(s)
- Christopher M Hinojo
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, MDC 8, University of South Florida, Tampa, Florida
| | - Geoffrey E Ciarlone
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, MDC 8, University of South Florida, Tampa, Florida
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, MDC 8, University of South Florida, Tampa, Florida.,Institute of Human and Machine Cognition, Ocala, Florida
| | - Jay B Dean
- Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, MDC 8, University of South Florida, Tampa, Florida
| |
Collapse
|
19
|
Rookyard AW, Paulech J, Thyssen S, Liddy KA, Puckeridge M, Li DK, White MY, Cordwell SJ. A Global Profile of Reversible and Irreversible Cysteine Redox Post-Translational Modifications During Myocardial Ischemia/Reperfusion Injury and Antioxidant Intervention. Antioxid Redox Signal 2021; 34:11-31. [PMID: 32729339 DOI: 10.1089/ars.2019.7765] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aims: Cysteine (Cys) is a major target for redox post-translational modifications (PTMs) that occur in response to changes in the cellular redox environment. We describe multiplexed, peptide-based enrichment and quantitative mass spectrometry (MS) applied to globally profile reversible redox Cys PTM in rat hearts during ischemia/reperfusion (I/R) in the presence or absence of an aminothiol antioxidant, N-2-mercaptopropionylglycine (MPG). Parallel fractionation also allowed identification of irreversibly oxidized Cys peptides (Cys-SO2H/SO3H). Results: We identified 4505 reversibly oxidized Cys peptides of which 1372 were significantly regulated by ischemia and/or I/R. An additional 219 peptides (247 sites) contained Cys-SO2H/Cys-SO3H modifications, and these were predominantly identified from hearts subjected to I/R (n = 168 peptides). Parallel reaction monitoring MS (PRM-MS) enabled relative quantitation of 34 irreversibly oxidized Cys peptides. MPG attenuated a large cluster of I/R-associated reversibly oxidized Cys peptides and irreversible Cys oxidation to less than nonischemic controls (n = 24 and 34 peptides, respectively). PRM-MS showed that Cys sites oxidized during ischemia and/or I/R and "protected" by MPG were largely mitochondrial, and were associated with antioxidant functions (peroxiredoxins 5 and 6) and metabolic processes, including glycolysis. Metabolomics revealed I/R induced changes in glycolytic intermediates that were reversed in the presence of MPG, which were consistent with irreversible PTM of triose phosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), altered GAPDH enzyme activity, and reduced I/R glycolytic payoff as evidenced by adenosine triphosphate and NADH levels. Innovation: Novel enrichment and PRM-MS approaches developed here enabled large-scale relative quantitation of Cys redox sites modified by reversible and irreversible PTM during I/R and antioxidant remediation. Conclusions: Cys sites identified here are targets of reactive oxygen species that can contribute to protein dysfunction and the pathogenesis of I/R.
Collapse
Affiliation(s)
- Alexander W Rookyard
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Jana Paulech
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Stine Thyssen
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Kiersten A Liddy
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Max Puckeridge
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Desmond K Li
- Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Melanie Y White
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney, Australia.,Sydney Mass Spectrometry, The University of Sydney, Sydney, Australia
| |
Collapse
|
20
|
Cibi DM, Bi-Lin KW, Shekeran SG, Sandireddy R, Tee N, Singh A, Wu Y, Srinivasan DK, Kovalik JP, Ghosh S, Seale P, Singh MK. Prdm16 Deficiency Leads to Age-Dependent Cardiac Hypertrophy, Adverse Remodeling, Mitochondrial Dysfunction, and Heart Failure. Cell Rep 2020; 33:108288. [PMID: 33086060 DOI: 10.1016/j.celrep.2020.108288] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/23/2020] [Accepted: 09/29/2020] [Indexed: 01/09/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a well-established risk factor for cardiovascular mortality worldwide. Although hypertrophy is traditionally regarded as an adaptive response to physiological or pathological stress, prolonged hypertrophy can lead to heart failure. Here we demonstrate that Prdm16 is dispensable for cardiac development. However, it is required in the adult heart to preserve mitochondrial function and inhibit hypertrophy with advanced age. Cardiac-specific deletion of Prdm16 results in cardiac hypertrophy, excessive ventricular fibrosis, mitochondrial dysfunction, and impaired metabolic flexibility, leading to heart failure. We demonstrate that Prdm16 and euchromatic histone-lysine N-methyltransferase factors (Ehmts) act together to reduce expression of fetal genes reactivated in pathological hypertrophy by inhibiting the functions of the pro-hypertrophic transcription factor Myc. Although young Prdm16 knockout mice show normal cardiac function, they are predisposed to develop heart failure in response to metabolic stress. Our study demonstrates that Prdm16 protects the heart against age-dependent cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Dasan Mary Cibi
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Kathleen Wung Bi-Lin
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Shamini Guna Shekeran
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Reddemma Sandireddy
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Nicole Tee
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore 169609
| | - Anamika Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594
| | - Jean-Paul Kovalik
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Sujoy Ghosh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857
| | - Patrick Seale
- Institute for Diabetes, Obesity, and Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857; National Heart Research Institute Singapore, National Heart Center Singapore, Singapore 169609.
| |
Collapse
|
21
|
Seara FAC, Olivares EL, Nascimento JHM. Anabolic steroid excess and myocardial infarction: From ischemia to reperfusion injury. Steroids 2020; 161:108660. [PMID: 32492466 DOI: 10.1016/j.steroids.2020.108660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/05/2020] [Accepted: 05/17/2020] [Indexed: 01/06/2023]
Abstract
Anabolic steroids (AS) are synthetic testosterone-derivatives developed by the pharmaceutical industry to mimic testosterone biological effects. So far, AS have been implicated in the treatment of pathological conditions, such as hypogonadism, anemia, and cachexia. Since their discovery, though, AS have been illicitly used by elite and recreational athletes, bodybuilders and weightlifters in order to enhance athletic and aesthetic performance. This practice is characterized by cycles of administration and withdrawal, the combination of different AS compounds, and administration of doses 50 - 1000 times higher than those recommended for therapeutic purposes. AS excess has been correlated to cardiovascular detrimental effects, including cardiac hypertrophy, arrhythmias, and hypertension. Particularly, acute myocardial infarction (AMI) has been extensively reported by clinical and post-mortem studies. Atherosclerosis, hypercoagulability state, increased thrombogenesis and vasospasm have arisen as potential causes of myocardial ischemia in AS users. Additionally, several experimental reports have demonstrated that AS can increase the susceptibility to cardiac ischemia/reperfusion injury, whereas the cardioprotection elicited by physical exercise and ischemic postconditioning is blunted. Altogether, these factors can contribute to increased AMI morbidity and mortality during AS excess, particularly when AS are combined with other compounds, such as thyroid hormones, growth hormones, insulin, and diuretics.
Collapse
Affiliation(s)
- Fernando A C Seara
- Laboratory of Cardiovascular Physiology and Pharmacology, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil; Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil; Laboratory of Cardiac Electrophysiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Emerson L Olivares
- Laboratory of Cardiovascular Physiology and Pharmacology, Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil; Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Jose H M Nascimento
- Laboratory of Cardiac Electrophysiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
22
|
Energetic, antioxidant, inflammatory and cell death responses in the red muscle of thermally stressed Sparus aurata. J Comp Physiol B 2020; 190:403-418. [DOI: 10.1007/s00360-020-01278-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
|
23
|
Wang X, Zheng H, Jia Z, Lei Z, Li M, Zhuang Q, Zhou H, Qiu Y, Fu Y, Yang X, Xi Y, Yan Q. Drosophila Prominin-like, a homolog of CD133, interacts with ND20 to maintain mitochondrial function. Cell Biosci 2019; 9:101. [PMID: 31890150 PMCID: PMC6923988 DOI: 10.1186/s13578-019-0365-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022] Open
Abstract
Background Drosophila Prominin-like is a homolog of mammalian CD133, which is recognized as a biomarker for stem cells. The interacting proteins of CD133 and their biological functions remain elusive. Results In this study, we using yeast two-hybrid assays, GST pull-down assay and co-immunoprecipitation (Co-IP) methods found that Drosophila Prominin-like interacts with ND20, a subunit of mitochondrial respiratory complex I. Bioinformatics analysis suggests that Prominin-like is a six-transmembrane glycoprotein which localizes on cellular membranes. Immunostaining and mitochondrial fractionation indicate that Drosophila Prominin-like could localize in the mitochondria. The knockdown of prominin-like in S2 cells resulted in transient mitochondrial dysfunctions as evidenced by reduced ATP production, elevated ROS generation and an accompanied reduction in mitochondrial proteins. Mitochondrial dysfunctions were detected in aged prominin-like mutant flies. Conclusion Our data indicates that Prominin-like acts to maintain mitochondrial function through its interaction with ND20 which, itself, is active in the mitochondrial electron transport chain. Our study provides insights into a novel molecular mechanism of Drosophila prominin-like and suggests a similar function of CD133 in mammals.
Collapse
Affiliation(s)
- Xuexiang Wang
- 1College of Life Science, Zhejiang University, Hangzhou, 310058 Zhejiang China.,2Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, 250000 Shandong China
| | - Huimei Zheng
- 3Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China.,4Institute of Genetics, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Zexiao Jia
- 1College of Life Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Zhaoying Lei
- 1College of Life Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Mengyao Li
- 1College of Life Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Qianqian Zhuang
- 1College of Life Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Hui Zhou
- 1College of Life Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yue Qiu
- 1College of Life Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yong Fu
- 5The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052 Zhejiang China
| | - Xiaohang Yang
- 3Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China.,4Institute of Genetics, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yongmei Xi
- 3Division of Human Reproduction and Developmental Genetics, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang China.,4Institute of Genetics, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Qingfeng Yan
- 1College of Life Science, Zhejiang University, Hangzhou, 310058 Zhejiang China.,4Institute of Genetics, Zhejiang University, Hangzhou, 310058 Zhejiang China.,6The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
24
|
Demeter-Haludka V, Kovács M, Prorok J, Nagy N, Varró A, Végh Á. Examination of the Changes in Calcium Homeostasis in the Delayed Antiarrhythmic Effect of Sodium Nitrite. Int J Mol Sci 2019; 20:E5687. [PMID: 31766239 PMCID: PMC6888494 DOI: 10.3390/ijms20225687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 01/11/2023] Open
Abstract
We have evidence that the intravenous infusion of sodium nitrite (NaNO2) results in an antiarrhythmic effect when given 24 h prior to an ischemia and reperfusion (I/R) insult in anaesthetized dogs. This protection was associated with the reduction of reactive oxygen species resulting from I/R through the attenuation of mitochondrial respiration. Here, we examined whether the changes in calcium, which also contributes to arrhythmia generation, play a role in the NaNO2-induced effect. On the first day, 30 anaesthetized dogs were treated either with saline or NaNO2 (0.2 µmol/kg/min) for 20 min. Some animals were subjected to a 25 min LAD (anterior descending branch of the left coronary artery) occlusion and 2 min reperfusion (I/R = 4; NaNO2-I/R = 6), or the heart was removed 24 h later. We have shown that nitrite prevented the I/R-induced increase in cellular and mitochondrial calcium deposits. During simulated I/R, the amplitude of the calcium transient and the diastolic calcium level were significantly lower in the nitrite-treated hearts and the ERP (effective refractory period) fraction of the action potential was significantly increased. Furthermore, nitrite also enhanced the mitochondrial respiratory response and prevented the MPTPT opening during calcium overload. These results suggest that nitrite can reduce the harmful consequences of calcium overload, perhaps directly by modulating ion channels or indirectly by reducing the mitochondrial ROS (reactive oxygen species) production.
Collapse
Affiliation(s)
- Vivien Demeter-Haludka
- Department of Pharmacology and Pharmacotherapy, University of Szeged, H-6721 Szeged, Hungary; (V.D.-H.); (J.P.); (N.N.); (A.V.); (Á.V.)
| | - Mária Kovács
- Department of Pharmacology and Pharmacotherapy, University of Szeged, H-6721 Szeged, Hungary; (V.D.-H.); (J.P.); (N.N.); (A.V.); (Á.V.)
| | - János Prorok
- Department of Pharmacology and Pharmacotherapy, University of Szeged, H-6721 Szeged, Hungary; (V.D.-H.); (J.P.); (N.N.); (A.V.); (Á.V.)
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, University of Szeged, H-6721 Szeged, Hungary; (V.D.-H.); (J.P.); (N.N.); (A.V.); (Á.V.)
- MTA-SZTE Research Group of Cardiovascular Pharmacology, H-6721 Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged, H-6721 Szeged, Hungary; (V.D.-H.); (J.P.); (N.N.); (A.V.); (Á.V.)
| | - Ágnes Végh
- Department of Pharmacology and Pharmacotherapy, University of Szeged, H-6721 Szeged, Hungary; (V.D.-H.); (J.P.); (N.N.); (A.V.); (Á.V.)
| |
Collapse
|
25
|
Zhang J, Yao M, Jia X, Xie J, Wang Y. Hexokinase II Upregulation Contributes to Asiaticoside-Induced Protection of H9c2 Cardioblasts During Oxygen-Glucose Deprivation/Reoxygenation. J Cardiovasc Pharmacol 2019; 75:84-90. [PMID: 31569121 DOI: 10.1097/fjc.0000000000000754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Asiaticoside (AS), one of the main functional components of Centella asiatica, has been reported to protect neurons from ischemia-hypoxia-induced injury. However, the role of AS in myocardial oxygen-glucose deprivation/reoxygenation (OGD/R) injury has not been investigated. The aim of this study was to investigate the role of AS in OGD/R-treated H9c2 cardiomyocytes and the underlying mechanism involved. Cell viability was detected using MTT assay. Cell apoptosis was measured using flow cytometry. The oxidative stress was assessed by detecting the malonaldehyde (MDA) content and activities of superoxide dismutase, glutathione peroxidase, and catalase (CAT). The glucose consumption and lactate production were determined to reflect glycolysis rate. The expression levels of hexokinase II (HK2) were detected using reverse transcription quantitative polymerase chain reaction and Western blot. H9c2 cells were transfected with small interfering RNA targeting HK2 (si-HK2) to knockdown HK2. Results showed that AS improved cell viability and inhibited apoptosis in OGD/R-injured H9c2 cells. AS pretreatment prevented OGD/R-induced oxidative stress, as evidenced by the decreased MDA content, and increased activities of superoxide dismutase, glutathione peroxidase, and CAT. The decreased glucose consumption and lactate production in OGD/R-injured H9c2 cells were reversed after AS treatment. Mechanically, AS induced the expression of HK2 in OGD/R-injured H9c2 cells. Knockdown of HK2 abolished the protective effects of AS on OGD/R-injured H9c2 cells. In conclusion, the protective effects of AS on cardiomyocytes from OGD/R-induced injury were mediated at least partly by upregulating HK2.
Collapse
Affiliation(s)
- Jing Zhang
- Deparment of Vasculocardiology, Affiliated Hospital of Hebei University, Baoding, China; and
| | - Mingyan Yao
- Department of Endocrinology, Baoding No.1 Central Hospital, Baoding, China
| | - Xinwei Jia
- Deparment of Vasculocardiology, Affiliated Hospital of Hebei University, Baoding, China; and
| | - Junmin Xie
- Deparment of Vasculocardiology, Affiliated Hospital of Hebei University, Baoding, China; and
| | - Yanfei Wang
- Deparment of Vasculocardiology, Affiliated Hospital of Hebei University, Baoding, China; and
| |
Collapse
|
26
|
Chang WT, Li CQ, Hsu CW, Lee C, Huang HH, Yuan CS, Chen WJ, Vanden Hoek TL, Shao ZH, Li J. Baicalein Cardioprotection via Oxidant Scavenging and Akt-Nitric Oxide Signaling: Identification of Early Reperfusion Phase as the Critical Therapeutic Window. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1043-1056. [PMID: 31311299 DOI: 10.1142/s0192415x19500538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Baicalein is a natural flavonoid with anti-oxidant activities protecting against ischemia/reperfusion (I/R) injury. Previous studies suggest that oxidative burst early after reperfusion accelerates cell death. We therefore investigated the critical therapeutic window of baicalein by examining the timing of baicalein treatment in relation to its oxidant modulating and cytoprotective effects. Using an established chick cardiomyocyte model of I/R, we administered baicalein at various time points after reperfusion and assessed cell viability and the profiles of reactive oxygen species (ROS), nitric oxide (NO), and Akt phosphorylation. Baicalein administered at the onset of reperfusion resulted in a concentration-dependent reduction of cell death (25 μM 48.2±1.9%, 50μM 43.8±1.5%, 100μM 36.6±2.1%, vs. I/R control 57.3±1.4%, all p<0.05). Baicalein (100μM) timely and effectively scavenged ROS burst and enhanced NO production in the early reperfusion phase. Cotreatment with NO synthase (NOS) inhibitor l-NAME (200μM) partially abrogated the cytoprotective effect. Baicalein (100μM) given after reperfusion lost protective effect in a time-dependent manner with cytoprotection completely lost if >60min. Even with only 15-min delay after reperfusion, the ROS scavenging effect was abolished and the NO enhancing effect markedly reduced. The phosphorylation of Akt, an upstream regulator of eNOS, also diminished as the delay lengthened. In conclusion, baicalein treatment after reperfusion confers cardioprotection in a concentration- and time-dependent manner. The critical therapeutic window lies in the early reperfusion phase, during which ROS scavenging and Akt-eNOS mediated NO signaling are most effective.
Collapse
Affiliation(s)
- Wei-Tien Chang
- *Department of Emergency Medicine, National Taiwan University, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan, R.O.C.,†Cardiology Section, Department of Internal Medicine, National Taiwan University, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan, R.O.C
| | - Chang-Qing Li
- ‡Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois Hospital & Health Sciences System, Chicago, IL 60612, USA
| | - Chin-Wan Hsu
- §Department of Emergency Medicine, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Chunpei Lee
- ‡Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois Hospital & Health Sciences System, Chicago, IL 60612, USA
| | - Hsien-Hao Huang
- ¶Department of Emergency Medicine, Taipei Veterans General Hospital and Emergency Medicine, College of Medicine, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Chun-Su Yuan
- ∥Tang Center for Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| | - Wen-Jone Chen
- *Department of Emergency Medicine, National Taiwan University, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan, R.O.C.,†Cardiology Section, Department of Internal Medicine, National Taiwan University, College of Medicine and National Taiwan University Hospital, Taipei, Taiwan, R.O.C
| | - Terry L Vanden Hoek
- ‡Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois Hospital & Health Sciences System, Chicago, IL 60612, USA
| | - Zuo-Hui Shao
- ‡Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois Hospital & Health Sciences System, Chicago, IL 60612, USA
| | - Jing Li
- ‡Department of Emergency Medicine, Center for Advanced Resuscitation Medicine, University of Illinois Hospital & Health Sciences System, Chicago, IL 60612, USA
| |
Collapse
|
27
|
Yang CF, Chen YY, Singh JP, Hsu SF, Liu YW, Yang CY, Chang CW, Chen SN, Shih RH, Hsu STD, Jou YS, Cheng CF, Meng TC. Targeting protein tyrosine phosphatase PTP-PEST (PTPN12) for therapeutic intervention in acute myocardial infarction. Cardiovasc Res 2019. [DOI: 10.1093/cvr/cvz165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Aims
The myocardial ischaemia/reperfusion (I/R) injury is almost inevitable since reperfusion is the only established treatment for acute myocardial infarction (AMI). To date there is no effective strategy available for reducing the I/R injury. Our aim was to elucidate the mechanisms underlying myocardial I/R injury and to develop a new strategy for attenuating the damage it causes.
Methods and results
Using a mouse model established by ligation of left anterior descending artery, we found an increase in activity of protein tyrosine phosphatases (PTPs) in myocardium during I/R. Treating the I/R-mice with a pan-PTP inhibitor phenyl vinyl sulfone attenuated I/R damage, suggesting PTP activation to be harmful in I/R. Through analysing RNAseq data, we showed PTPs being abundantly expressed in mouse myocardium. By exposing primary cardiomyocytes ablated with specific endogenous PTPs by RNAi to hypoxia/reoxygenation (H/R), we found a role that PTP-PEST (PTPN12) plays to promote cell death under H/R stress. Auranofin, a drug being used in clinical practice for treating rheumatoid arthritis, may target PTP-PEST thus suppressing its activity. We elucidated the molecular basis for Auranofin-induced inactivation of PTP-PEST by structural studies, and then examined its effect on myocardial I/R injury. In the mice receiving Auranofin before reperfusion, myocardial PTP activity was suppressed, leading to restored phosphorylation of PTP-PEST substrates, including ErbB-2 that maintains the survival signalling of the heart. In line with the inhibition of PTP-PEST activity, the Auranofin-treated I/R-mice had smaller infarct size and better cardiac function.
Conclusions
PTP-PEST contributes to part of the damages resulting from myocardial I/R. The drug Auranofin, potentially acting through the PTP-PEST-ErbB-2 signalling axis, reduces myocardial I/R injury. Based on this finding, Auranofin could be used in the development of new treatments that manage I/R injury in patients with AMI.
Collapse
Affiliation(s)
- Chiu-Fen Yang
- Department of Cardiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707 Chung-Yang Road Sec. 3, Hualien 970, Taiwan
- Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Yi-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Jai Prakash Singh
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate program, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Chemistry, National Tsing-Hua University, 101 Kuang-Fu Road Sec. 2, Hsinchu 300, Taiwan
| | - Shu-Fang Hsu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Yu-Wen Liu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Chun-Yi Yang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, 1 Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Chia-Wei Chang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Szu-Ni Chen
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Rou-Ho Shih
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate program, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, 1 Roosevelt Road Sec. 4, Taipei 106, Taiwan
| | - Yuh-Shan Jou
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Ching-Feng Cheng
- Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289 Jianguo Road, Xindian Dist., New Taipei City 231, Taiwan
| | - Tzu-Ching Meng
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate program, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, 1 Roosevelt Road Sec. 4, Taipei 106, Taiwan
| |
Collapse
|
28
|
Kostyuk AI, Kotova DA, Demidovich AD, Panova AS, Kelmanson IV, Belousov VV, Bilan DS. Lipid metabolic changes in rat brain during permanent cerebral ischemia. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
With each year, millions of people remain targeted by brain stroke, it still is by all means a global concern of the mankind. Despite all efforts to understand this disease better, there is still a lack of information on pathophysiology of ischemic stroke. Scrutinized data on biochemical changes at early stages of ischemia may help understand the mechanisms of the disorder and possibly reveal ways to finding the cure. The key role in the pathogenesis of stroke belongs to lipids as well as to the molecules associated with their biosynthesis and functionality. On the one hand, stroke evokes a deep oxidative stress leading to damage to biomolecules including lipids while on the other hand, due to the lack of reducing equivalents, the cellular biosynthesis processes are interrupted. The focus of this work was to study the changes taking place in the tissues of rat brain as a result of ischemia including estimation of levels of total cholesterol, FFA, MDA, GSH, and NADP(H). It was shown that in 24 hours from the onset of ischemia, there was a significant decrease in levels of FFA, total cholesterol and GSH, and an increase in the level of MDA, a marker of lipid peroxidation. NADP(H) pool level decreases twice in 6 hours from MCAO.
Collapse
Affiliation(s)
- AI Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - DA Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - AD Demidovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - AS Panova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - IV Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; he Research Institute for Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - VV Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia; he Research Institute for Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - DS Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
29
|
Curcumin Induces Neural Differentiation of Human Pluripotent Embryonal Carcinoma Cells through the Activation of Autophagy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4378710. [PMID: 30800669 PMCID: PMC6360631 DOI: 10.1155/2019/4378710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/10/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022]
Abstract
Curcumin is a natural polyphenolic compound, isolated from Curcuma longa, and is an important ingredient of Asian foods. Curcumin has revealed its strong activities of anti-inflammatory, antioxidant, and anticancer. The efficient amount of curcumin could induce differentiation of stem cells and promoted the differentiation of glioma-initiating cells; however, the mechanisms underlying neural induction of curcumin have not yet been revealed. In this study, neural-inducing ability of curcumin was explored by using human pluripotent embryonal carcinoma cells, NTERA2 cells. The cells were induced toward neural lineage with curcumin and were compared with a standard neutralizing agent (retinoic acid). It was found that, after 14 days of the induction by curcumin, NTERA2 cells showed neuronal morphology and expressed neural-specific genes, including NeuroD, TUJ1, and PAX6. Importantly, curcumin activated neurogenesis of NTERA2 cells via the activation of autophagy, since autophagy-related genes, such as LC3, LAMP1, and ATG5, were upregulated along with the expression of neural genes. The inhibition of autophagy by chloroquine suppressed both autophagy and neural differentiation, highlighting the positive role of autophagy during neural differentiation. This autophagy-mediated neural differentiation of curcumin was found to be an ROS-dependent manner; curcumin induced ROS generation and suppressed antioxidant gene expression. Altogether, this study proposed the neural-inducing activity of curcumin via the regulation of autophagy within NTERA2 cells and underscored the health beneficial effects of curcumin for neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.
Collapse
|
30
|
González-Montero J, Brito R, Gajardo AIJ, Rodrigo R. Myocardial reperfusion injury and oxidative stress: Therapeutic opportunities. World J Cardiol 2018; 10:74-86. [PMID: 30344955 PMCID: PMC6189069 DOI: 10.4330/wjc.v10.i9.74] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of death worldwide. Its associated mortality, morbidity and complications have significantly decreased with the development of interventional cardiology and percutaneous coronary angioplasty (PCA) treatment, which quickly and effectively restore the blood flow to the area previously subjected to ischemia. Paradoxically, the restoration of blood flow to the ischemic zone leads to a massive production of reactive oxygen species (ROS) which generate rapid and severe damage to biomolecules, generating a phenomenon called myocardial reperfusion injury (MRI). In the clinical setting, MRI is associated with multiple complications such as lethal reperfusion, no-reflow, myocardial stunning, and reperfusion arrhythmias. Despite significant advances in the understanding of the mechanisms accounting for the myocardial ischemia reperfusion injury, it remains an unsolved problem. Although promising results have been obtained in experimental studies (mainly in animal models), these benefits have not been translated into clinical settings. Thus, clinical trials have failed to find benefits from any therapy to prevent MRI. There is major evidence with respect to the contribution of oxidative stress to MRI in cardiovascular diseases. The lack of consistency between basic studies and clinical trials is not solely based on the diversity inherent in epidemiology but is also a result of the methodological weaknesses of some studies. It is quite possible that pharmacological issues, such as doses, active ingredients, bioavailability, routes of administration, co-therapies, startup time of the drug intervention, and its continuity may also have some responsibility for the lack of consistency between different studies. Furthermore, the administration of high ascorbate doses prior to reperfusion appears to be a safe and rational therapy against the development of oxidative damage associated with myocardial reperfusion. In addition, the association with N-acetylcysteine (a glutathione donor) and deferoxamine (an iron chelator) could improve the antioxidant cardioprotection by ascorbate, making it even more effective in preventing myocardial reperfusion damage associated with PCA following AMI.
Collapse
Affiliation(s)
- Jaime González-Montero
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 70058, Chile
| | - Roberto Brito
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 70058, Chile
- Internal Medicine Department, University of Chile, Clinical Hospital, Santiago 70058, Chile
| | - Abraham IJ Gajardo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 70058, Chile
- Internal Medicine Department, University of Chile, Clinical Hospital, Santiago 70058, Chile
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 70058, Chile
| |
Collapse
|
31
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Mitochondrial bioenergetics and cardiolipin alterations in myocardial ischemia-reperfusion injury: implications for pharmacological cardioprotection. Am J Physiol Heart Circ Physiol 2018; 315:H1341-H1352. [PMID: 30095969 DOI: 10.1152/ajpheart.00028.2018] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mitochondrial dysfunction plays a central role in myocardial ischemia-reperfusion (I/R) injury. Increased reactive oxygen species production, impaired electron transport chain activity, aberrant mitochondrial dynamics, Ca2+ overload, and opening of the mitochondrial permeability transition pore have been proposed as major contributory factors to mitochondrial dysfunction during myocardial I/R injury. Cardiolipin (CL), a mitochondria-specific phospholipid, plays a pivotal role in multiple mitochondrial bioenergetic processes, including respiration and energy conversion, in mitochondrial morphology and dynamics as well as in several steps of the apoptotic process. Changes in CL levels, species composition, and degree of oxidation may have deleterious consequences for mitochondrial function with important implications in a variety of pathophysiological conditions, including myocardial I/R injury. In this review, we focus on the role played by CL alterations in mitochondrial dysfunction in myocardial I/R injury. Pharmacological strategies to prevent myocardial injury during I/R targeting mitochondrial CL are also examined.
Collapse
Affiliation(s)
- Giuseppe Paradies
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari , Bari , Italy
| | | | - Francesca Maria Ruggiero
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari , Bari , Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics, and Molecular Biotechnologies, National Research Council , Bari , Italy
| |
Collapse
|
32
|
Baicalein Rescues Delayed Cooling via Preservation of Akt Activation and Akt-Mediated Phospholamban Phosphorylation. Int J Mol Sci 2018; 19:ijms19040973. [PMID: 29587364 PMCID: PMC5979521 DOI: 10.3390/ijms19040973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/26/2022] Open
Abstract
Cooling reduces the ischemia/reperfusion (I/R) injury seen in sudden cardiac arrest (SCA) by decreasing the burst of reactive oxygen species (ROS). Its cardioprotection is diminished when delay in reaching the target temperature occurs. Baicalein, a flavonoid derived from the root of Scutellaria baicalensis Georgi, possesses antioxidant properties. Therefore, we hypothesized that baicalein can rescue cooling cardioprotection when cooling is delayed. Two murine cardiomyocyte models, an I/R model (90 min ischemia/3 h reperfusion) and stunning model (30 min ischemia/90 min reperfusion), were used to assess cell survival and contractility, respectively. Cooling (32 °C) was initiated either during ischemia or during reperfusion. Cell viability and ROS generation were measured. Cell contractility was evaluated by real-time phase-contrast imaging. Our results showed that cooling reduced cell death and ROS generation, and this effect was diminished when cooling was delayed. Baicalein (25 µM), given either at the start of reperfusion or start of cooling, resulted in a comparable reduction of cell death and ROS production. Baicalein improved phospholamban phosphorylation, contractility recovery, and cell survival. These effects were Akt-dependent. In addition, no synergistic effect was observed with the combined treatments of cooling and baicalein. Our data suggest that baicalein may serve as a novel adjunct therapeutic strategy for SCA resuscitation.
Collapse
|
33
|
Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med 2018; 117:76-89. [PMID: 29373843 DOI: 10.1016/j.freeradbiomed.2018.01.024] [Citation(s) in RCA: 565] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 02/06/2023]
Abstract
Ischemia-reperfusion (IR) injury is central to the pathology of major cardiovascular diseases, such as stroke and myocardial infarction. IR injury is mediated by several factors including the elevated production of reactive oxygen species (ROS), which occurs particularly at reperfusion. The mitochondrial respiratory chain and NADPH oxidases of the NOX family are major sources of ROS in cardiomyocytes. The first part of this review discusses recent findings and controversies on the mechanisms of superoxide production by the mitochondrial electron transport chain during IR injury, as well as the contribution of the NOX isoforms expressed in cardiomyocytes, NOX1, NOX2 and NOX4, to this damage. It then focuses on the effects of ROS on the opening of the mitochondrial permeability transition pore (mPTP), an inner membrane non-selective pore that causes irreversible damage to the heart. The second part analyzes the redox mechanisms of cardiomyocyte mitochondrial protection; specifically, the activation of the hypoxia-inducible factor (HIF) pathway and the antioxidant transcription factor Nrf2, which are both regulated by the cellular redox state. Redox mechanisms involved in ischemic preconditioning, one of the most effective ways of protecting the heart against IR injury, are also reviewed. Interestingly, several of these protective pathways converge on the inhibition of mPTP opening during reperfusion. Finally, the clinical and translational implications of these cardioprotective mechanisms are discussed.
Collapse
Affiliation(s)
- Susana Cadenas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain.
| |
Collapse
|
34
|
Ren B, Li D, Si L, Ding Y, Han J, Chen X, Zheng Q. Alteronol induces cell cycle arrest and apoptosis via increased reactive oxygen species production in human breast cancer T47D cells. J Pharm Pharmacol 2018; 70:516-524. [DOI: 10.1111/jphp.12879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/16/2017] [Indexed: 10/18/2022]
Abstract
Abstract
Objective
Emerging evidence showed that alteronol has a potential antitumour effect in several tumour cells. However, the antitumour effect of alteronol on breast cancer has not been reported. This study investigated the mechanisms of alteronol-induced cell proliferation inhibition in human breast cancer T47D cells.
Methods
After treatment with alteronol, T47D cell proliferation was examined by MTT assay. The cell cycle distribution, cell apoptosis, reactive oxygen species level and mitochondrial membrane potential were evaluated via flow cytometry. Next, the protein levels of cyclin B1, cdc2, p21, p-cyclin B1, p-cdc2, p53, Bax, Bcl-2 and cytochrome c were analysed using Western blot analysis. Meanwhile, the mRNA levels of cyclin B1, cdc2, p21 and p53 were examined by qRT-PCR.
Key findings
Our data showed that alteronol inhibited the proliferation of T47D cells via inducing G2-phase arrest and cell apoptosis. Compared with control group, alteronol significantly increased ROS level and triggered mitochondrial dysfunction in alteronol-treated T47D cells. Further studies showed that the mRNA and protein levels of cdc2 and cyclin B1 were downregulated, while the mRNA and protein levels of p21, p53, p-cyclin B1, p-cdc2 and cytochrome c were upregulated. In addition, the expression level of Bax was increased, and the expression level of Bcl-2 was decreased.
Conclusions
Alteronol induced T47D cell cycle arrest and cell apoptosis through increasing ROS production and triggering mitochondrial dysfunction, and subsequently inhibiting T47D cell proliferation.
Collapse
Affiliation(s)
- Boxue Ren
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang, China
| | - Defang Li
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Lingling Si
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang, China
| | - Yangfang Ding
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang, China
| | - Jichun Han
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Xiaoyu Chen
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Qiusheng Zheng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang, China
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
35
|
Abstract
Kidney cell death plays a key role in the progression of life-threatening renal diseases, such as acute kidney injury and chronic kidney disease. Injured and dying epithelial and endothelial cells take part in complex communication with the innate immune system, which drives the progression of cell death and the decrease in renal function. To improve our understanding of kidney cell death dynamics and its impact on renal disease, a study approach is needed that facilitates the visualization of renal function and morphology in real time. Intravital multiphoton microscopy of the kidney has been used for more than a decade and made substantial contributions to our understanding of kidney physiology and pathophysiology. It is a unique tool that relates renal structure and function in a time- and spatial-dependent manner. Basic renal function, such as microvascular blood flow regulation and glomerular filtration, can be determined in real time and homeostatic alterations, which are linked inevitably to cell death and can be depicted down to the subcellular level. This review provides an overview of the available techniques to study kidney dysfunction and inflammation in terms of cell death in vivo, and addresses how this novel approach can be used to improve our understanding of cell death dynamics in renal disease.
Collapse
|
36
|
Seara FAC, Maciel L, Barbosa RAQ, Rodrigues NC, Silveira ALB, Marassi MP, Carvalho AB, Nascimento JHM, Olivares EL. Cardiac ischemia/reperfusion injury is inversely affected by thyroid hormones excess or deficiency in male Wistar rats. PLoS One 2018; 13:e0190355. [PMID: 29304184 PMCID: PMC5755761 DOI: 10.1371/journal.pone.0190355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/13/2017] [Indexed: 11/19/2022] Open
Abstract
AIM Thyroid dysfunctions can increase the risk of myocardial ischemia and infarction. However, the repercussions on cardiac ischemia/reperfusion (IR) injury remain unclear so far. We report here the effects of hypothyroidism and thyrotoxicosis in the susceptibility to IR injury in isolated rat hearts compared to euthyroid condition and the potential role of antioxidant enzymes. METHODS Hypothyroidism and thyrotoxicosis were induced by administration of methimazole (MMZ, 300 mg/L) and thyroxine (T4, 12 mg/L), respectively in drinking water for 35 days. Isolated hearts were submitted to IR and evaluated for mechanical dysfunctions and infarct size. Superoxide dismutase types 1 and 2 (SOD1 and SOD2), glutathione peroxidase types 1 and 3 (GPX 1 and GPX3) and catalase mRNA levels were assessed by quantitative RT-PCR to investigate the potential role of antioxidant enzymes. RESULTS Thyrotoxicosis elicited cardiac hypertrophy and increased baseline mechanical performance, including increased left ventricle (LV) systolic pressure, LV developed pressure and derivatives of pressure (dP/dt), whereas in hypothyroid hearts exhibited decreased dP/dt. Post-ischemic recovery of LV end-diastolic pressure (LVEDP), LVDP and dP/dt was impaired in thyrotoxic rat hearts, whereas hypothyroid hearts exhibited improved LVEDP and decreased infarct size. Catalase expression was decreased by thyrotoxicosis. CONCLUSION Thyrotoxicosis was correlated, at least in part, to cardiac remodeling and increased susceptibility to IR injury possibly due to down-regulation of antioxidant enzymes, whereas hypothyroid hearts were less vulnerable to IR injury.
Collapse
Affiliation(s)
- Fernando A. C. Seara
- Laboratory of Cardiovascular Physiology and Pharmacology, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica–RJ, Brazil
- Laboratory of Cardiac Electrophysiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro–Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Maciel
- Laboratory of Cardiac Electrophysiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro–Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raiana A. Q. Barbosa
- Laboratory of Cellular and Molecular Cardiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro–Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nayana C. Rodrigues
- Laboratory of Cardiovascular Physiology and Pharmacology, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica–RJ, Brazil
| | - Anderson L. B. Silveira
- Laboratory of Cardiovascular Physiology and Pharmacology, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica–RJ, Brazil
- Laboratory of Physiology and Human Performance, Department of Physical Education and Sports, Institute of Education, Federal Rural University of Rio de Janeiro, Seropedica–RJ, Brazil
| | - Michelle P. Marassi
- Laboratory of Cardiovascular Physiology and Pharmacology, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica–RJ, Brazil
| | - Adriana B. Carvalho
- Laboratory of Cellular and Molecular Cardiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro–Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Hamilton M. Nascimento
- Laboratory of Cardiac Electrophysiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro–Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emerson L. Olivares
- Laboratory of Cardiovascular Physiology and Pharmacology, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, Seropedica–RJ, Brazil
| |
Collapse
|
37
|
Stowe DF, Yang M, Heisner JS, Camara AK. Endogenous and Agonist-induced Opening of Mitochondrial Big Versus Small Ca2+-sensitive K+ Channels on Cardiac Cell and Mitochondrial Protection. J Cardiovasc Pharmacol 2017; 70:314-328. [PMID: 28777255 PMCID: PMC5726766 DOI: 10.1097/fjc.0000000000000524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Both big (BKCa) and small (SKCa) conductance Ca-sensitive K channels are present in mammalian cardiac cell mitochondria (m). We used pharmacological agonists and antagonists of BKCa and SKCa channels to examine the importance of endogenous opening of these channels and the relative contribution of either or both of these channels to protect against contractile dysfunction and reduce infarct size after ischemia reperfusion (IR) injury through a mitochondrial protective mechanism. After global cardiac IR injury of ex vivo perfused Guinea pig hearts, we found the following: both agonists NS1619 (for BKCa) and DCEB (for SKCa) improved contractility; BKCa antagonist paxilline (PAX) alone or with SKCa antagonist NS8593 worsened contractility and enhanced infarct size; both antagonists PAX and NS8593 obliterated protection by their respective agonists; BKCa and SKCa antagonists did not block protection afforded by SKCa and BKCa agonists, respectively; and all protective effects by the agonists were blocked by scavenging superoxide anions (O2) with Mn(III) tetrakis (4-benzoic acid) porphyrin (TBAP). Contractile function was inversely associated with global infarct size. In in vivo rats, infusion of NS8593, PAX, or both antagonists enhanced regional infarct size while infusion of either NS1619 or DCEB reduced infarct size. In cardiac mitochondria isolated from ex vivo hearts after IR, combined SKCa and BKCa agonists improved respiratory control index and Ca retention capacity compared with IR alone, whereas the combined antagonists did not alter respiratory control index but worsened Ca retention capacity. Although the differential protective bioenergetics effects of endogenous or exogenous BKCa and SKCa channel opening remain unclear, each channel likely responds to different sensing Ca concentrations and voltage gradients over time during oxidative stress-induced injury to individually or together protect cardiac mitochondria and myocytes.
Collapse
Affiliation(s)
- David F. Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, The Medical College of Wisconsin, Milwaukee, WI, USA
- Research Service, Zablocki VA Medical Center, Milwaukee, WI, USA
| | - Meiying Yang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James S. Heisner
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amadou K.S. Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, The Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
38
|
Andrienko TN, Pasdois P, Pereira GC, Ovens MJ, Halestrap AP. The role of succinate and ROS in reperfusion injury - A critical appraisal. J Mol Cell Cardiol 2017; 110:1-14. [PMID: 28689004 PMCID: PMC5678286 DOI: 10.1016/j.yjmcc.2017.06.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/14/2017] [Accepted: 06/30/2017] [Indexed: 12/20/2022]
Abstract
We critically assess the proposal that succinate-fuelled reverse electron flow (REF) drives mitochondrial matrix superoxide production from Complex I early in reperfusion, thus acting as a key mediator of ischemia/reperfusion (IR) injury. Real-time surface fluorescence measurements of NAD(P)H and flavoprotein redox state suggest that conditions are unfavourable for REF during early reperfusion. Furthermore, rapid loss of succinate accumulated during ischemia can be explained by its efflux rather than oxidation. Moreover, succinate accumulation during ischemia is not attenuated by ischemic preconditioning (IP) despite powerful cardioprotection. In addition, measurement of intracellular reactive oxygen species (ROS) during reperfusion using surface fluorescence and mitochondrial aconitase activity detected major increases in ROS only after mitochondrial permeability transition pore (mPTP) opening was first detected. We conclude that mPTP opening is probably triggered initially by factors other than ROS, including increased mitochondrial [Ca2+]. However, IP only attenuates [Ca2+] increases later in reperfusion, again after initial mPTP opening, implying that IP regulates mPTP opening through additional mechanisms. One such is mitochondria-bound hexokinase 2 (HK2) which dissociates from mitochondria during ischemia in control hearts but not those subject to IP. Indeed, there is a strong correlation between the extent of HK2 loss from mitochondria during ischemia and infarct size on subsequent reperfusion. Mechanisms linking HK2 dissociation to mPTP sensitisation remain to be fully established but several related processes have been implicated including VDAC1 oligomerisation, the stability of contact sites between the inner and outer membranes, cristae morphology, Bcl-2 family members and mitochondrial fission proteins such as Drp1.
Collapse
Affiliation(s)
- Tatyana N Andrienko
- School of Biochemistry and The Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Philippe Pasdois
- School of Biochemistry and The Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Gonçalo C Pereira
- School of Biochemistry and The Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Matthew J Ovens
- School of Biochemistry and The Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Andrew P Halestrap
- School of Biochemistry and The Bristol Heart Institute, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
39
|
Asokan Shibu M, Kuo WW, Kuo CH, Day CH, Shen CY, Chung LC, Lai CH, Pan LF, Vijaya Padma V, Huang CY. Potential phytoestrogen alternatives exert cardio-protective mechanisms via estrogen receptors. Biomedicine (Taipei) 2017; 7:11. [PMID: 28612709 PMCID: PMC5479424 DOI: 10.1051/bmdcn/2017070204] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/10/2017] [Indexed: 12/19/2022] Open
Abstract
The 17 beta-estradiol (E2) is a sex hormone that is most abundant and most active estrogen in premenopausal women. The importance of E2 in providing cardioprotection and reducing the occurrence of heart disease in women of reproductive age has been well recognized. There are three subtype of estrogen receptors (ERs), including ERα, ERβ and GPR30 have been identified and accumulating evidence reveal their roles on E2-mediated genomic and nongenomic pathway in cardiomyocytes against various cardiac insults. In this review, we focus on the estrogen and ERs mediated signaling pathways in cardiomyocytes that determines cardio-protection against various stresses and further discuss the clinical implication of ERs and phytoestrogens. Further we provide some insights on phytoeostrogens which may play as alternatives in estrogen replacement therapies.
Collapse
Affiliation(s)
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, Department of Sports Sciences, University of Taipei, Taipei 100, Taiwan
| | | | - Chia-Yao Shen
- Department of Nursing, Meiho University, Pingtung 912,Taiwan
| | - Li-Chin Chung
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy & Science, Tainan 717, Taiwan
| | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Armed-Force, Taichung General Hospital, Taichung 411, Taiwan
| | - Lung-Fa Pan
- Division of Cardiology, Department of Internal Medicine, Armed-Force, Taichung General Hospital, Taichung 411, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiyar University, Coimbatore, Tamil Nadu 641046, India
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan - School of Chinese Medicine, China Medical University, Taichung 404, Taiwan - Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
40
|
Smith KA, Waypa GB, Schumacker PT. Redox signaling during hypoxia in mammalian cells. Redox Biol 2017; 13:228-234. [PMID: 28595160 PMCID: PMC5460738 DOI: 10.1016/j.redox.2017.05.020] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/08/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
Hypoxia triggers a wide range of protective responses in mammalian cells, which are mediated through transcriptional and post-translational mechanisms. Redox signaling in cells by reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) occurs through the reversible oxidation of cysteine thiol groups, resulting in structural modifications that can change protein function profoundly. Mitochondria are an important source of ROS generation, and studies reveal that superoxide generation by the electron transport chain increases during hypoxia. Other sources of ROS, such as the NAD(P)H oxidases, may also generate oxidant signals in hypoxia. This review considers the growing body of work indicating that increased ROS signals during hypoxia are responsible for regulating the activation of protective mechanisms in diverse cell types.
Collapse
Affiliation(s)
- Kimberly A Smith
- Department of Pediatrics, Division of Neonatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Gregory B Waypa
- Department of Pediatrics, Division of Neonatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Paul T Schumacker
- Department of Pediatrics, Division of Neonatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
41
|
Jakobs P, Serbulea V, Leitinger N, Eckers A, Haendeler J. Nuclear Factor (Erythroid-Derived 2)-Like 2 and Thioredoxin-1 in Atherosclerosis and Ischemia/Reperfusion Injury in the Heart. Antioxid Redox Signal 2017; 26:630-644. [PMID: 27923281 PMCID: PMC5397216 DOI: 10.1089/ars.2016.6795] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Redox signaling is one of the key elements involved in cardiovascular diseases. Two important molecules are the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and the oxidoreductase thioredoxin-1 (Trx-1). Recent Advances: During the previous years, a lot of studies investigated Nrf2 and Trx-1 as protective proteins in cardiovascular disorders. Moreover, post-translational modifications of those molecules were identified that play an important role in the cardiovascular system. This review will summarize changes in the vasculature in atherosclerosis and ischemia reperfusion injury of the heart and the newest findings achieved with Nrf2 and Trx-1 therein. Interestingly, Nrf2 and Trx-1 can act together as well as independently of each other in protection against atherosclerosis and ischemia and reperfusion injury. CRITICAL ISSUES In principle, pharmacological activation of a transcription factor-like Nrf2 can be dangerous, since a transcription regulator has multiple targets and the pleiotropic effects of such activation should not be ignored. Moreover, overactivation of Nrf2 as well as long-term treatment with Trx-1 could be deleterious for the cardiovascular system. FUTURE DIRECTIONS Therefore, the length of treatment with Nrf2 activators and/or Trx-1 has first to be studied in more detail in cardiovascular disorders. Moreover, a combination of Nrf2 activators and Trx-1 should be investigated and taken into consideration. Antioxid. Redox Signal. 26, 630-644.
Collapse
Affiliation(s)
- Philipp Jakobs
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Anna Eckers
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Judith Haendeler
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
- Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
42
|
Ramos C, Brito R, González-Montero J, Valls N, Gormaz JG, Prieto JC, Aguayo R, Puentes Á, Noriega V, Pereira G, Palavecino T, Rodrigo R. Effects of a novel ascorbate-based protocol on infarct size and ventricle function in acute myocardial infarction patients undergoing percutaneous coronary angioplasty. Arch Med Sci 2017; 13:558-567. [PMID: 28507569 PMCID: PMC5420620 DOI: 10.5114/aoms.2016.59713] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION This study was designed to test the hypothesis that high-dose ascorbate prior to reperfusion followed by low chronic oral doses ameliorate myocardial reperfusion injury (MRI) in acute myocardial infarction patients subjected to primary percutaneous coronary angioplasty (PCA). MATERIAL AND METHODS A randomized double-blind placebo-controlled and multicenter clinical trial was performed on acute myocardial infarction (AMI) patients who underwent PCA. Sodium ascorbate (320 mmol/l, n = 53) or placebo (n = 46) was infused 30 min prior to PCA. Blood samples were drawn at enrolment (M1), after balloon deflation (M2), 6-8 h after M2 (M3) and at discharge (M4). Total antioxidant capacity of plasma (ferric reducing ability of plasma - FRAP), erythrocyte reduced glutathione (GSH) and plasma ascorbate levels were determined in blood samples. Cardiac magnetic resonance (CMR) was performed at 7-15 days and 2-3 months following PCA. Ninety-nine patients were enrolled. In 67 patients, the first CMR was performed, and 40 patients completed follow-up. RESULTS The ascorbate group showed significantly higher ascorbate and FRAP levels and a decrease in the GSH levels at M2 and M3 (p < 0.05). There were no significant differences in the infarct size, indexed end-systolic volume and ejection fraction at both CMRs. There was a significant amelioration in the decreased ejection fraction between the first and second CMR in the ascorbate group (p < 0.05). CONCLUSIONS Ascorbate given prior to reperfusion did not show a significant difference in infarct size or ejection fraction. However, it improved the change in ejection fraction determined between 7-15 days and 2-3 months. This result hints at a possible functional effect of ascorbate to ameliorate MRI.
Collapse
Affiliation(s)
| | - Roberto Brito
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jaime González-Montero
- Faculty of Medicine, University of Chile, Santiago, Chile
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Nicolás Valls
- Faculty of Medicine, University of Chile, Santiago, Chile
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan G. Gormaz
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan C. Prieto
- Faculty of Medicine, University of Chile, Santiago, Chile
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | | | | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
43
|
Suliman HB, Keenan JE, Piantadosi CA. Mitochondrial quality-control dysregulation in conditional HO-1 -/- mice. JCI Insight 2017; 2:e89676. [PMID: 28194437 DOI: 10.1172/jci.insight.89676] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The heme oxygenase-1 (Hmox1; HO-1) pathway was tested for defense of mitochondrial quality control in cardiomyocyte-specific Hmox1 KO mice (HO-1[CM]-/-) exposed to oxidative stress (100% O2). After 48 hours of exposure, these mice showed persistent cardiac inflammation and oxidative tissue damage that caused sarcomeric disruption, cardiomyocyte death, left ventricular dysfunction, and cardiomyopathy, while control hearts showed minimal damage. After hyperoxia, HO-1(CM)-/- hearts showed suppression of the Pgc-1α/nuclear respiratory factor-1 (NRF-1) axis, swelling, low electron density mitochondria by electron microscopy (EM), increased cell death, and extensive collagen deposition. The damage mechanism involves structurally deficient autophagy/mitophagy, impaired LC3II processing, and failure to upregulate Pink1- and Park2-mediated mitophagy. The mitophagy pathway was suppressed through loss of NRF-1 binding to proximal promoter sites on both genes. These results indicate that cardiac Hmox1 induction not only prevents heme toxicity, but also regulates the timing and registration of genetic programs for mitochondrial quality control that limit cell death, pathological remodeling, and cardiac fibrosis.
Collapse
Affiliation(s)
| | | | - Claude A Piantadosi
- Department of Medicine.,Department of Anesthesiology.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
44
|
Lesnefsky EJ, Chen Q, Tandler B, Hoppel CL. Mitochondrial Dysfunction and Myocardial Ischemia-Reperfusion: Implications for Novel Therapies. Annu Rev Pharmacol Toxicol 2017; 57:535-565. [PMID: 27860548 PMCID: PMC11060135 DOI: 10.1146/annurev-pharmtox-010715-103335] [Citation(s) in RCA: 294] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria have emerged as key participants in and regulators of myocardial injury during ischemia and reperfusion. This review examines the sites of damage to cardiac mitochondria during ischemia and focuses on the impact of these defects. The concept that mitochondrial damage during ischemia leads to cardiac injury during reperfusion is addressed. The mechanisms that translate ischemic mitochondrial injury into cellular damage, during both ischemia and early reperfusion, are examined. Next, we discuss strategies that modulate and counteract these mechanisms of mitochondrial-driven injury. The new concept that mitochondria are not merely stochastic sites of oxidative and calcium-mediated injury but that they activate cellular responses of mitochondrial remodeling and cellular reactions that modulate the balance between cell death and recovery is reviewed, and the therapeutic implications of this concept are discussed.
Collapse
Affiliation(s)
- Edward J Lesnefsky
- Department of Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia 23298; ,
- Medical Service, McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249;
| | - Qun Chen
- Department of Medicine, Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia 23298; ,
| | - Bernard Tandler
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio 44106;
| | - Charles L Hoppel
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106;
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
- Center for Mitochondrial Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
45
|
Baumeister P, Quinn TA. Altered Calcium Handling and Ventricular Arrhythmias in Acute Ischemia. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2016; 10:61-69. [PMID: 28008297 PMCID: PMC5158122 DOI: 10.4137/cmc.s39706] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/27/2016] [Accepted: 11/20/2016] [Indexed: 12/14/2022]
Abstract
Acute ischemia results in deadly cardiac arrhythmias that are a major contributor to sudden cardiac death (SCD). The electrophysiological changes involved have been extensively studied, yet the mechanisms of ventricular arrhythmias during acute ischemia remain unclear. What is known is that during acute ischemia both focal (ectopic excitation) and nonfocal (reentry) arrhythmias occur, due to an interaction of altered electrical, mechanical, and biochemical properties of the myocardium. There is particular interest in the role that alterations in intracellular calcium handling, which cause changes in intracellular calcium concentration and to the calcium transient, play in ischemia-induced arrhythmias. In this review, we briefly summarize the known contributors to ventricular arrhythmias during acute ischemia, followed by an in-depth examination of the potential contribution of altered intracellular calcium handling, which may include novel targets for antiarrhythmic therapy.
Collapse
Affiliation(s)
- Peter Baumeister
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| |
Collapse
|
46
|
Panth N, Paudel KR, Parajuli K. Reactive Oxygen Species: A Key Hallmark of Cardiovascular Disease. Adv Med 2016; 2016:9152732. [PMID: 27774507 PMCID: PMC5059509 DOI: 10.1155/2016/9152732] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/11/2016] [Accepted: 08/24/2016] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) have been the prime cause of mortality worldwide for decades. However, the underlying mechanism of their pathogenesis is not fully clear yet. It has been already established that reactive oxygen species (ROS) play a vital role in the progression of CVDs. ROS are chemically unstable reactive free radicals containing oxygen, normally produced by xanthine oxidase, nicotinamide adenine dinucleotide phosphate oxidase, lipoxygenases, or mitochondria or due to the uncoupling of nitric oxide synthase in vascular cells. When the equilibrium between production of free radicals and antioxidant capacity of human physiology gets altered due to several pathophysiological conditions, oxidative stress is induced, which in turn leads to tissue injury. This review focuses on pathways behind the production of ROS, its involvement in various intracellular signaling cascades leading to several cardiovascular disorders (endothelial dysfunction, ischemia-reperfusion, and atherosclerosis), methods for its detection, and therapeutic strategies for treatment of CVDs targeting the sources of ROS. The information generated by this review aims to provide updated insights into the understanding of the mechanisms behind cardiovascular complications mediated by ROS.
Collapse
Affiliation(s)
- Nisha Panth
- Department of Pharmacy, School of Health and Allied Sciences, Pokhara University, Dhungepatan, Kaski 33701, Nepal
| | - Keshav Raj Paudel
- Department of Pharmacy, School of Health and Allied Sciences, Pokhara University, Dhungepatan, Kaski 33701, Nepal
| | - Kalpana Parajuli
- Department of Pharmacy, School of Health and Allied Sciences, Pokhara University, Dhungepatan, Kaski 33701, Nepal
| |
Collapse
|
47
|
Increased myocardial vulnerability to ischemia-reperfusion injury in the presence of left ventricular hypertrophy. J Hypertens 2016; 34:513-23; discussion 523. [PMID: 26820478 DOI: 10.1097/hjh.0000000000000826] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Despite its high prevalence among patients suffering myocardial infarction, the significance of left ventricle hypertrophy for infarct size is not known. We asked whether infarct size might be increased by this condition, and whether any such increase might be associated with an increased mitochondrial damage following coronary occlusion. METHODS Occlusion of the left descending artery in isolated, perfused hearts of SHR-SP (spontaneously hypertensive rat stroke-prone) (left ventricular hypertrophy) or Wistar-Kyoto (WKY) (control) rats was used, followed by reperfusion with or without exendin-4 (Exe-4), a glucagon-like peptide-1 receptor agonist. Infarct size relative to area-at-risk was determined. Separately, mitochondria were isolated after global ischemia. Activities of complexes III and IV and amounts of selected complex subunits and cytochromes a, b, c, and c1 were determined. RESULTS Infarct size (ischemia 35 min and 120 min reperfusion) was 65.8% (±3.3%) and 37.1% (±3.4%) in the SHR-SP and WKY hearts, respectively (P < 0.05). Exe-4 significantly decreased infarct size and hypercontracture in WKY, but not in SHR-SP, hearts. After ischemia 15 min in SHR-SP hearts, Exe-4 reduced the infarct (26.6%, ±3.8% to 9.3% ± 1.5%; P < 0.05). Mitochondria from postischemic SHR-SP hearts showed a reduction of complex III (368.1 ± 37.5 to 175.8 ± 23.0 nmoles/min × mg; P < 0.05) and complex IV (14.4 ± 0.22 to 5.8 ± 0.8 1/s × mg; P < 0.05) activities and decreased amounts of cytochromes a, b, and c. CONCLUSION Hearts from hypertensive (SHR-SP) rats with left ventricle hypertrophy appeared more vulnerable to ischemia-reperfusion injury, as supported by a more profound infarct development and an earlier loss of postconditioning by Exe-4. Mitochondrial complexes III and IV were identified among possible loci of this increased, hypertrophy-associated vulnerability.
Collapse
|
48
|
Forkhead box O (FOXO) 3 modulates hypoxia-induced autophagy through AMPK signalling pathway in cardiomyocytes. Biosci Rep 2016; 36:BSR20160091. [PMID: 27129298 PMCID: PMC5293586 DOI: 10.1042/bsr20160091] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/25/2016] [Indexed: 12/19/2022] Open
Abstract
Autophagy is promoted as a response to such environmental stress conditions as ATP depletion and excessive accumulation of reactive oxygen species (ROS). Multiple signalling pathways, including AMP-activated protein kinase (AMPK), are indicated to promote autophagy in ischaemic/hypoxic (I/R) heart. However, it's far more to clarify the orchestrated cross-talk between AMPK and other signalling pathways in the autophagy. In the present study, we investigated the autophagy induction by hypoxia in Rat H9C2 cardiomyocytes with LC3-EGFP reporter, EM and Western blot analysis. Then, we examined the promotion of forkhead box O (FOXO) 3, one member of FOXO transcriptional protein family, by hypoxia in Rat H9C2 cells and determined the mediation of FOXO 3 in the hypoxia-induced autophagy in H9C2 cells. In addition, we investigated the role of AMPK signalling in the FOXO3-mediated, hypoxia-induced autophagy in H9C2 cells. It was demonstrated that hypoxia induced significant autophagy in H9C2 cells, via promoting autophagic vesicles, inducing the conversion of LC3-I to LC3-II and up-regulating autophagy-related (ATG) markers. Moreover, FOXO3 was up-regulated by the hypoxia in H9C2 cells; and the knockdown of FOXO3 significantly reduced the hypoxia-induced autophagy. In addition, AMPK signalling was significantly promoted by hypoxia in H9C2 cells, and the chemical manipulation of AMPK exerted significant influence on the hypoxia-induced autophagy and on the FOXO3 level. In conclusion, FOXO3 regulated the hypoxia-induced autophagy in cardiomyocytes, and AMPK mediated the FOXO3 promotion during the autophagy induction by hypoxia, implying the key regulatory role of FOXO3 and AMPK signalling in the hypoxia-induced autophagy in cardiomyocytes.
Collapse
|
49
|
Ning Y, Li Z, Qiu Z. FOXO1 silence aggravates oxidative stress-promoted apoptosis in cardiomyocytes by reducing autophagy. J Toxicol Sci 2016; 40:637-45. [PMID: 26354380 DOI: 10.2131/jts.40.637] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mechanisms underlining oxidative stress-induced injury to cardiomyocytes during myocardial infarction (MI) or acute ischemia/reperfusion (I/R) are not well recognized. Forkhead box O (FOXO) transcription factors have been defined as critical mediators of oxidative stress resistance in multiple cell types, but their cardioprotective functions have not been reported previously. In the present study, we investigated the promotion to FOXO1 by the treatment with hydrogen peroxide (H2O2) during the H2O2-induced apoptosis in cardiomyocyte H9c2 cells. We then silenced FOXO1 with FOXO1-specific siRNA, and re-evaluated the H2O2-induced apoptosis. In addition, we also examined the H2O2-induced autophagy and the autophagy induction post FOXO1 silence. Results demonstrated that H2O2 induced a significantly high level of apoptosis in H9c2 cells. Interestingly, the FOXO1 in both mRNA and protein levels were not significantly regulated, however, the phosphorylated form of FOXO1 was significantly promoted in the H2O2-treated H9c2 cells. On the other hand, post the significant knockout of FOXO1 with the transfection with FOXO1-specific siRNA, the apoptosis induction was more significant in H9c2 cells subjected to H2O2. In addition, we found a significantly higher level of autophagy induction in the H2O2-treated H9c2 cells. However, the autophagy was markedly reduced by the knockout of FOXO1. In summary, these data support the critical role for FOXO1 in promoting cardiomyocytes against oxidative stress probably through inducing autophagy.
Collapse
Affiliation(s)
- Yuzhen Ning
- Vasculocardiology Deparment, Zhujiang Hospital, Southern Medical University, China
| | | | | |
Collapse
|
50
|
Yang X, Jiang J, Yang X, Han J, Zheng Q. Licochalcone A induces T24 bladder cancer cell apoptosis by increasing intracellular calcium levels. Mol Med Rep 2016; 14:911-9. [PMID: 27221781 DOI: 10.3892/mmr.2016.5334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/03/2016] [Indexed: 11/06/2022] Open
Abstract
Licochalcone A (LCA) has been reported to significantly inhibit cell proliferation, increase reactive oxygen species (ROS) levels, and induce apoptosis of T24 human bladder cancer cells via mitochondria and endoplasmic reticulum (ER) stress-triggered signaling pathways. Based on these findings, the present study aimed to investigate the mechanisms by which LCA induces apoptosis of T24 cells. Cultured T24 cells were treated with LCA, and cell viability was measured using the sulforhodamine B assay. Apoptosis was detected by flow cytometry with Annexin V/propidium iodide staining, and by fluorescent microscopy with Hoechst 33258 staining. The levels of intracellular free calcium ions were determined using Fluo-3 AM dye marker. Intracellular ROS levels were assessed using the 2',7'-dichlorodihydrofluorescein diacetate probe assay. The mitochondrial membrane potential was measured using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl benzimidazole carbocyanine iodide. Furthermore, the mRNA expression levels of B‑cell lymphoma (Bcl)‑extra large, Bcl‑2‑associated X protein, Bcl‑2‑interacting mediator of cell death, apoptotic protease activating factor‑1 (Apaf‑1), calpain 2, cysteinyl aspartate specific proteinase (caspase)‑3, caspase‑4 and caspase‑9 were determined using reverse transcription semiquantitative and quantitative polymerase chain reaction analyses. Treatment with LCA inhibited proliferation and induced apoptosis of T24 cells, and increased intracellular Ca2+ levels and ROS production. Furthermore, LCA induced mitochondrial dysfunction, decreased mitochondrial membrane potential, and increased the mRNA expression levels of Apaf‑1, caspase‑9 and caspase‑3. Exposure of T24 cells to LCA also triggered calpain 2 and caspase‑4 activation, resulting in apoptosis. These findings indicated that LCA increased intracellular Ca2+ levels, which may be associated with mitochondrial dysfunction. In addition, the ER stress pathway may be considered an important mechanism by which LCA induces apoptosis of T24 bladder cancer cells.
Collapse
Affiliation(s)
- Xinhui Yang
- Department of Pharmacology, Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Jiangtao Jiang
- Department of Pharmacology, Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Xinyan Yang
- Department of Pharmacology, Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Jichun Han
- Department of Pharmacology, Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| | - Qiusheng Zheng
- Department of Pharmacology, Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, Xinjiang 832002, P.R. China
| |
Collapse
|