1
|
Gupta A, Pillai VS, Chittela RK. Translin: A multifunctional protein involved in nucleic acid metabolism. J Biosci 2019. [DOI: 10.1007/s12038-019-9947-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Gupta A, Pillai VS, Chittela RK. Role of amino acid residues important for nucleic acid binding in human Translin. Int J Biochem Cell Biol 2019; 115:105593. [PMID: 31442605 DOI: 10.1016/j.biocel.2019.105593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/25/2019] [Accepted: 08/19/2019] [Indexed: 11/15/2022]
Abstract
Translin is a multifunctional DNA/RNA binding protein involved in DNA repair and RNA metabolism. It has two basic regions and involvement of some residues in these regions in nucleic acid binding is established experimentally. Here we report the functional role of four residues of basic region II, Y85, R86, H88, R92 and one residue of C terminal region, K193 in nucleic acid binding using substitution mutant variants. CD analysis of the mutant proteins showed that secondary structure was maintained in all the mutant proteins in comparison to wild type protein. Octameric state was maintained in all the mutants of basic region as evidenced by TEM, DLS, native PAGE and gel filtration analyses. However, K193G mutation completely abolished the octameric state of Translin protein and consequently its ability to bind ssDNA/ssRNA. The mutants of the basic region II exhibited a differential effect on nucleic acid binding, with R86A and R92G as most deleterious. Interestingly, H88A mutant showed higher nucleic acid binding affinity in comparison to the wild type Translin. An in silico analysis of the mutant variant sequences predicted all the mutations to be destabilizing, causing increase in flexibility and also leading to disruption of local interactions. The differential effect of mutations on DNA/RNA binding where octameric state is maintained could be attributed to these predicted disturbances.
Collapse
Affiliation(s)
- Alka Gupta
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Vinayaki S Pillai
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India
| | - Rajani Kant Chittela
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
3
|
Kasai M, Ishida R, Nakahara K, Okumura K, Aoki K. Mesenchymal cell differentiation and diseases: involvement of translin/TRAX complexes and associated proteins. Ann N Y Acad Sci 2018; 1421:37-45. [PMID: 29740830 DOI: 10.1111/nyas.13690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/22/2018] [Accepted: 03/01/2018] [Indexed: 12/22/2022]
Abstract
Translin and translin-associated factor X (translin/TRAX) proteins have been implicated in a variety of cellular activities central to nucleic acid metabolism. Accumulating evidence indicates that translin/TRAX complexes participate in processes ensuring the replication of DNA, as well as cell division. Significant progress has been made in understanding the roles of translin/TRAX complexes in RNA metabolism, such as through RNA-induced silencing complex activation or the microRNA depletion that occurs in Dicer deficiency. At the cellular level, translin-deficient (Tsn-/- ) mice display delayed endochondral ossification or progressive bone marrow failure with ectopic osteogenesis and adipogenesis, suggesting involvement in mesenchymal cell differentiation. In this review, we summarize the molecular and cellular functions of translin homo-octamer and translin/TRAX hetero-octamer. Finally, we discuss the multifaceted roles of translin, TRAX, and associated proteins in the healthy and disease states.
Collapse
Affiliation(s)
- Masataka Kasai
- Juntendo University School of Medicine, Atopy Research Center, Tokyo, Japan.,Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Reiko Ishida
- Center for Stem Cell and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Nakahara
- National Institution for Academic Degrees and Quality Enhancement of Higher Education, Tokyo, Japan
| | - Ko Okumura
- Juntendo University School of Medicine, Atopy Research Center, Tokyo, Japan
| | - Katsunori Aoki
- Occupational Health Department, Sony Corporate Service Corporation, Kanagawa, Japan
| |
Collapse
|
4
|
Gupta A, Nair A, Ballal A, Chittela RK. C-terminal residues of rice translin are essential for octamer formation and nucleic acid binding. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:600-608. [PMID: 28797959 DOI: 10.1016/j.plaphy.2017.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/25/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Translin is a DNA/RNA binding protein involved in DNA repair and RNA metabolism. Previously, we had shown that rice translin (221 amino acids) exhibits biochemical activities similar to that of the human translin protein. Here we report the role of the C-terminal random coil in rice translin function by analyzing truncation (after 215th residue, Tra - 215) and substitution mutant proteins (Ser216Ala, Lys217Ala, Gln218Ala, Glu219Ala). Circular Dichroism (CD) analysis of Tra-215 showed deviations in comparison to Tra-WT. Truncation abolished the DNA binding activity and octamer formation as evidenced by the absence of ring like structures from TEM analysis. CD analysis of the substitution mutant proteins showed that the secondary structure was maintained in all the mutant proteins in comparison to wild type protein. Native PAGE and TEM analysis of the substitution mutants showed that Lys217Ala mutation completely abolished the octamer formation as rings and nucleic acid binding. Glu219Ala mutation also affected oligomerization but exhibited marginal RNA binding at higher protein concentrations and interestingly, failed to bind to DNA. However, Ser216Ala and Gln218Ala substitutions did not affect above mentioned activities of translin. Our results indicate that the C-terminal residues are one of the determinants of octamer formation in rice translin, with lysine at 217th position being the most important. Therefore, in conclusion, although the C-terminal residues do not form any defined secondary structure in the translin monomer, they are definitely involved in octamer formation and hence important for its molecular function. We have attempted to find the critical residues in translin function, which will advance our understanding of translin in DNA repair process in general and of rice translin in particular.
Collapse
Affiliation(s)
- Alka Gupta
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Mumbai, 400 094, India
| | - Anuradha Nair
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Mumbai, 400 094, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Mumbai, 400 094, India
| | - Rajani Kant Chittela
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India; Homi Bhabha National Institute, Mumbai, 400 094, India.
| |
Collapse
|
5
|
Chittela RK, Gupta GD, Ballal A. Characterization of a plant (rice) translin and its comparative analysis with human translin. PLANTA 2014; 240:357-368. [PMID: 24863060 DOI: 10.1007/s00425-014-2092-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 04/29/2014] [Indexed: 06/03/2023]
Abstract
For the first time, a plant (rice) translin was characterized. The rice translin protein, which was octameric in native state, bound efficiently to single-stranded DNA and RNA. Translin, a DNA-/RNA-binding protein, is expressed in brain, testis and in certain malignancies. It is involved in chromosomal translocation, mRNA metabolism, transcriptional regulation and telomere protection. Studies from human, mice, drosophila and yeast have revealed that it forms an octameric ring, which is important for its function. In spite of the absence of neuronal functions and cancer processes, translin is present in plant systems, but information on plant translin is lacking. Here we report the characterization of a plant (rice) translin. Translin cDNA from O. sativa was cloned into an expression vector; protein was over-expressed in E. coli and subsequently purified to homogeneity. Circular dichroism and homology-based modeling showed that the rice translin protein was similar to the other translin proteins. Native PAGE and gel-filtration analyses showed rice translin to form an octamer and this octameric assembly was independent of disulphide bonds. Rice translin bound to single-stranded DNA sequences like human translin, but not to the double-stranded DNA. Rice translin bound more efficiently to linear DNA (with staggered ends) than open or closed circular DNA. Rice translin also bound to RNA, like its human counterpart. Rice translin displays all the characteristic properties of the translin group of proteins and does indeed qualify as a bonafide "translin" protein. To our knowledge, this is the first report wherein the translin protein from a plant source has been functionally characterized. Understanding the translin biology from plant systems will give the new insights into its functional role during plant development.
Collapse
Affiliation(s)
- Rajani Kant Chittela
- Biomolecular Damage and Repair Section, Molecular Biology Division, Bhabha Atomic Research Center, Trombay, Mumbai, 400085, India,
| | | | | |
Collapse
|
6
|
Pérez-Cano L, Eliahoo E, Lasker K, Wolfson HJ, Glaser F, Manor H, Bernadó P, Fernández-Recio J. Conformational transitions in human translin enable nucleic acid binding. Nucleic Acids Res 2013; 41:9956-66. [PMID: 23980029 PMCID: PMC3834833 DOI: 10.1093/nar/gkt765] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Translin is a highly conserved RNA- and DNA-binding protein that plays essential roles in eukaryotic cells. Human translin functions as an octamer, but in the octameric crystallographic structure, the residues responsible for nucleic acid binding are not accessible. Moreover, electron microscopy data reveal very different octameric configurations. Consequently, the functional assembly and the mechanism of nucleic acid binding by the protein remain unclear. Here, we present an integrative study combining small-angle X-ray scattering (SAXS), site-directed mutagenesis, biochemical analysis and computational techniques to address these questions. Our data indicate a significant conformational heterogeneity for translin in solution, formed by a lesser-populated compact octameric state resembling the previously solved X-ray structure, and a highly populated open octameric state that had not been previously identified. On the other hand, our SAXS data and computational analyses of translin in complex with the RNA oligonucleotide (GU)12 show that the internal cavity found in the octameric assemblies can accommodate different nucleic acid conformations. According to this model, the nucleic acid binding residues become accessible for binding, which facilitates the entrance of the nucleic acids into the cavity. Our data thus provide a structural basis for the functions that translin performs in RNA metabolism and transport.
Collapse
Affiliation(s)
- Laura Pérez-Cano
- Joint BSC-IRB research programme in Computational Biology, Barcelona Supercomputing Center (BSC), Jordi Girona 29, Barcelona 08034, Spain, Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel, Blavatnik School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel, Bioinformatics Knowledge Unit, The Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel and Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université Montpellier 1 and 2, F-34090 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ye X, Huang N, Liu Y, Paroo Z, Huerta C, Li P, Chen S, Liu Q, Zhang H. Structure of C3PO and mechanism of human RISC activation. Nat Struct Mol Biol 2011; 18:650-7. [PMID: 21552258 PMCID: PMC3109212 DOI: 10.1038/nsmb.2032] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 02/08/2011] [Indexed: 01/07/2023]
Abstract
Assembly of the RNA-induced silencing complex (RISC) consists of loading duplex (guide-passenger) siRNA onto Argonaute (Ago2) and removing the passenger strand. Ago2 contributes critically to RISC activation by nicking the passenger strand. Here we reconstituted duplex siRNA-initiated RISC activity using recombinant human Ago2 (hAgo2) and C3PO, indicating that C3PO has a critical role in hAgo2-RISC activation. Consistently, genetic depletion of C3PO compromised RNA silencing in mammalian cells. We determined the crystal structure of hC3PO, which reveals an asymmetric octamer barrel consisting of six translin and two TRAX subunits. This asymmetric assembly is critical for the function of C3PO as an endonuclease that cleaves RNA at the interior surface. The current work supports a Dicer-independent mechanism for human RISC activation, in which Ago2 directly binds duplex siRNA and nicks the passenger strand, and then C3PO activates RISC by degrading the Ago2-nicked passenger strand.
Collapse
Affiliation(s)
- Xuecheng Ye
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nian Huang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ying Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zain Paroo
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carlos Huerta
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peng Li
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - She Chen
- National Institute of Biological Sciences, No.7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Qinghua Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hong Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Tian Y, Simanshu DK, Ascano M, Diaz-Avalos R, Park AY, Juranek SA, Rice WJ, Yin Q, Robinson CV, Tuschl T, Patel DJ. Multimeric assembly and biochemical characterization of the Trax-translin endonuclease complex. Nat Struct Mol Biol 2011; 18:658-64. [PMID: 21552261 PMCID: PMC3109869 DOI: 10.1038/nsmb.2069] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 04/13/2011] [Indexed: 11/08/2022]
Abstract
Trax-translin heteromers, also known as C3PO, have been proposed to activate the RNA-induced silencing complex (RISC) by facilitating endonucleolytic cleavage of the siRNA passenger strand. We report on the crystal structure of hexameric Drosophila C3PO formed by truncated translin and Trax, along with electron microscopic and mass spectrometric studies on octameric C3PO formed by full-length translin and Trax. Our studies establish that Trax adopts the translin fold, possesses catalytic centers essential for C3PO's endoRNase activity and interacts extensively with translin to form an octameric assembly. The catalytic pockets of Trax subunits are located within the interior chamber of the octameric scaffold. Truncated C3PO, like full-length C3PO, shows endoRNase activity that leaves 3'-hydroxyl-cleaved ends. We have measured the catalytic activity of C3PO and shown it to cleave almost stoichiometric amounts of substrate per second.
Collapse
Affiliation(s)
- Yuan Tian
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA. Graduate Program in Neuroscience, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Biological roles of translin and translin-associated factor-X: RNA metabolism comes to the fore. Biochem J 2010; 429:225-34. [PMID: 20578993 DOI: 10.1042/bj20100273] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Translin, and its binding partner protein TRAX (translin-associated factor-X) are a paralogous pair of conserved proteins, which have been implicated in a broad spectrum of biological activities, including cell growth regulation, mRNA processing, spermatogenesis, neuronal development/function, genome stability regulation and carcinogenesis, although their precise role in some of these processes remains unclear. Furthermore, translin (with or without TRAX) has nucleic-acid-binding activity and it is apparent that controlling nucleic acid metabolism and distribution are central to the biological role(s) of this protein and its partner TRAX. More recently, translin and TRAX have together been identified as enhancer components of an RNAi (RNA interference) pathway in at least one organism and this might provide critical insight into the biological roles of this enigmatic partnership. In the present review we discuss the biological and the biochemical properties of these proteins that indicate that they play a central and important role in eukaryotic cell biology.
Collapse
|
10
|
Lluis M, Hoe W, Schleit J, Robertus J. Analysis of nucleic acid binding by a recombinant translin-trax complex. Biochem Biophys Res Commun 2010; 396:709-13. [PMID: 20450889 PMCID: PMC2901993 DOI: 10.1016/j.bbrc.2010.04.166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 04/30/2010] [Indexed: 11/22/2022]
Abstract
Translin is a highly conserved mammalian RNA and DNA-binding protein involved in DNA recombination and RNA trafficking. Crystal structures of mouse and human translin have been solved, but do not provide information about nucleic acid binding or recognition. Translin has a partner protein, translin-associated factor x (trax), which is believed to regulate translin's subcellular locale and affinity for certain RNA and DNA sequences. Here we present a comparative study of recombinant translin and translin-trax complex binding to specific RNA and DNA sequences. It was observed that translin preferentially binds to G-rich RNA sequences whereas translin-trax preferentially binds G-rich DNA sequences. Translin can bind mRNA sequences with sub-micromolar K(d) values, and the complex with trax can bind G-rich DNA with similar affinity. We conclude that trax acts to regulate translin's RNA and DNA binding affinities as part of a cellular RNA trafficking mechanism.
Collapse
Affiliation(s)
- Matthew Lluis
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
11
|
Eliahoo E, Ben Yosef R, Pérez-Cano L, Fernández-Recio J, Glaser F, Manor H. Mapping of interaction sites of the Schizosaccharomyces pombe protein Translin with nucleic acids and proteins: a combined molecular genetics and bioinformatics study. Nucleic Acids Res 2010; 38:2975-89. [PMID: 20081200 PMCID: PMC2875027 DOI: 10.1093/nar/gkp1230] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Translin is a single-stranded RNA- and DNA-binding protein, which has been highly conserved in eukaryotes, from man to Schizosaccharomyces pombe. TRAX is a Translin paralog associated with Translin, which has coevolved with it. We generated structural models of the S. pombe Translin (spTranslin), based on the solved 3D structure of the human ortholog. Using several bioinformatics computation tools, we identified in the equatorial part of the protein a putative nucleic acids interaction surface, which includes many polar and positively charged residues, mostly arginines, surrounding a shallow cavity. Experimental verification of the bioinformatics predictions was obtained by assays of nucleic acids binding to amino acid substitution variants made in this region. Bioinformatics combined with yeast two-hybrid assays and proteomic analyses of deletion variants, also identified at the top of the spTranslin structure a region required for interaction with spTRAX, and for spTranslin dimerization. In addition, bioinformatics predicted the presence of a second protein-protein interaction site at the bottom of the spTranslin structure. Similar nucleic acid and protein interaction sites were also predicted for the human Translin. Thus, our results appear to generally apply to the Translin family of proteins, and are expected to contribute to a further elucidation of their functions.
Collapse
Affiliation(s)
- Elad Eliahoo
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | |
Collapse
|
12
|
Li Z, Wu Y, Baraban JM. The Translin/Trax RNA binding complex: clues to function in the nervous system. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:479-85. [PMID: 18424275 PMCID: PMC2561206 DOI: 10.1016/j.bbagrm.2008.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/26/2008] [Accepted: 03/19/2008] [Indexed: 01/11/2023]
Abstract
Translin and Trax are components of an evolutionarily conserved RNA binding complex. Deletion of Translin in yeast, Drosophila and mouse produces a dramatic loss of Trax protein indicating that its stable expression is dependent on its association with Translin. Analysis of Translin KO mice has revealed multiple behavioral abnormalities and alterations in levels of transcripts encoding synaptic proteins. A confluence of localization, biochemical and RNA trafficking studies supports the view that this complex mediates dendritic trafficking of RNAs, a process thought to play a critical role in synaptic plasticity. However, further studies are needed to define its RNA cargoes, its precise role in this process, and how its binding activity and localization are regulated. Nevertheless, there is sufficient evidence to suggest that the Translin/Trax complex be included among the cadre of RNA binding complexes, such as Staufen and CPEB, that regulate dendritic trafficking of RNA in neurons.
Collapse
Affiliation(s)
- Zhi Li
- Solomon H Snyder Department of Neuroscience, Johns Hopkins School of Medicine, USA
| | | | | |
Collapse
|
13
|
Gupta GD, Makde RD, Rao BJ, Kumar V. Crystal structures of Drosophila mutant translin and characterization of translin variants reveal the structural plasticity of translin proteins. FEBS J 2008; 275:4235-49. [PMID: 18647346 DOI: 10.1111/j.1742-4658.2008.06571.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Translin protein is highly conserved in eukaryotes. Human translin binds both ssDNA and RNA. Its nucleic acid binding site results from a combination of basic regions in the octameric structure. We report here the first biochemical characterization of wild-type Drosophila melanogaster (drosophila) translin and a chimeric translin, and present 3.5 A resolution crystal structures of drosophila P168S mutant translin from two crystal forms. The wild-type drosophila translin most likely exists as an octamer/decamer, and binds to the ssDNA Bcl-CL1 sequence. In contrast, ssDNA binding-incompetent drosophila P168S mutant translin exists as a tetramer. The structures of the mutant translin are identical in both crystal forms, and their C-terminal residues are disordered. The chimeric protein, possessing two nucleic acid binding motifs of drosophila translin, the C-terminal residues of human translin, and serine at position 168, attains the octameric state and binds to ssDNA. The present studies suggest that the oligomeric status of translin critically influences the DNA binding properties of translin proteins.
Collapse
Affiliation(s)
- Gagan D Gupta
- High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | | | | |
Collapse
|
14
|
Jaendling A, Ramayah S, Pryce DW, McFarlane RJ. Functional characterisation of the Schizosaccharomyces pombe homologue of the leukaemia-associated translocation breakpoint binding protein translin and its binding partner, TRAX. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:203-13. [PMID: 18062930 DOI: 10.1016/j.bbamcr.2007.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 09/10/2007] [Accepted: 10/25/2007] [Indexed: 11/25/2022]
Abstract
Translin is a conserved protein which associates with the breakpoint junctions of chromosomal translocations linked with the development of some human cancers. It binds to both DNA and RNA and has been implicated in mRNA metabolism and regulation of genome stability. It has a binding partner, translin-associated protein X (TRAX), levels of which are regulated by the translin protein in higher eukaryotes. In this study we find that this regulatory function is conserved in the lower eukaryotes, suggesting that translin and TRAX have important functions which provide a selective advantage to both unicellular and multi-cellular eukaryotes, indicating that this function may not be tissue-specific in nature. However, to date, the biological importance of translin and TRAX remains unclear. Here we systematically investigate proposals that suggest translin and TRAX play roles in controlling mitotic cell proliferation, DNA damage responses, genome stability, meiotic/mitotic recombination and stability of GT-rich repeat sequences. We find no evidence for translin and/or TRAX primary function in these pathways, indicating that the conserved biochemical function of translin is not implicated in primary pathways for regulating genome stability and/or segregation.
Collapse
Affiliation(s)
- Alessa Jaendling
- North West Cancer Research Fund Institute, University of Wales Bangor, Bangor, Gwynedd, LL57 2UW, United Kingdom
| | | | | | | |
Collapse
|
15
|
Suseendranathan K, Sengupta K, Rikhy R, D'Souza JS, Kokkanti M, Kulkarni MG, Kamdar R, Changede R, Sinha R, Subramanian L, Singh K, Rodrigues V, Rao BJ. Expression pattern of Drosophila translin and behavioral analyses of the mutant. Eur J Cell Biol 2007; 86:173-86. [PMID: 17275950 DOI: 10.1016/j.ejcb.2006.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 10/21/2006] [Accepted: 11/01/2006] [Indexed: 11/29/2022] Open
Abstract
Translin is an evolutionarily conserved approximately 27-kDa protein that binds to specific DNA and RNA sequences and has diverse cellular functions. Here, we report the cloning and characterization of the translin orthologue from the fruit fly Drosophila melanogaster. Under protein-denaturing conditions, purified Drosophila translin exists as a mixture of dimers and monomers just like human translin. In contrast to human translin, the Drosophila translin dimers do not appear to be stabilized by disulfide interactions. Drosophila translin shows a ubiquitous cytoplasmic localization in early embryonal syncytial stage, with an enhanced staining in ventral neuroblasts at later stages (8-9), which are probably at metaphase. An elevated expression was seen in several other cell types, such as cells around the tracheal pits in the embryo and oenocytes in the third instar larva. RNA in situ hybridization showed an increased expression in the ventral midline cells of the larval brain, suggesting a neuronal expression, which was corroborated by protein immunostaining. In adult flies, Drosophila translin is localized in the brain neuronal cell bodies and in early spermatocytes. Interestingly, Drosophila translin mutants exhibit an impaired motor response which is sex specific. Taken together, the multiple cellular localizations, the high neuronal expression and the attendant locomotor defect of the Drosophila translin mutant suggest that Drosophila translin may have roles in neuronal development and behavior analogous to that of mouse translin.
Collapse
Affiliation(s)
- Kumud Suseendranathan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
An unusual class of nanoscopic, ring-shaped, single-walled biopolymers arises when alphabeta-tubulin is mixed with certain small peptides obtained from various marine organisms and cyanobacteria. The single-ring structures, whose mean molecular weight depends on the specific peptide added to the reaction mixture, usually have sharp mass distributions corresponding, e.g., to rings containing eight tubulin dimers (when the added peptide is cryptophycin) and 14 dimers (e.g., with dolastatin). Although the ring-forming peptides have been shown to possess antimitotic properties when tested with cultured eukaryotic cells (and thus have generated considerable interest as possible agents to be used in the treatment of cancer), it is not our intention to extensively discuss the potential pharmacological properties of the peptides. Rather, we will review the polymeric structures that form and illustrate how certain physical techniques can be used to characterize their properties and interactions. The nanoscopic size and particular geometry of the individual rings make them appropriate targets for scattering and hydrodynamic techniques that provide details about their structure in solution, but it is necessary to relate measured data to postulated structures by nontrivial, albeit straight-forward, mathematical, and computational means. We will discuss how this is done when one uses such methods as small angle neutron scattering, dynamic light scattering, fluorescence correlation spectroscopy, and sedimentation velocity measurements. Moreover, we show that, by using several techniques, one can eliminate degeneracy to provide better discrimination between model structures.
Collapse
Affiliation(s)
- Hacène Boukari
- Laboratory of Integrative and Medical Biophysics, NICHD, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
17
|
Sengupta K, Kamdar RP, D'Souza JS, Mustafi SM, Rao BJ. GTP-induced conformational changes in translin: a comparison between human and Drosophila proteins. Biochemistry 2006; 45:861-70. [PMID: 16411762 DOI: 10.1021/bi050540e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human translin is a conserved protein, unique in its ability to bind both RNA and DNA. Interestingly, GTP binding has been implicated as a regulator of RNA/DNA binding function of mouse translin (TB-RBP). We cloned and overexpressed the translin orthologue from Drosophila melanogaster and compared its DNA/RNA binding properties in relation to GTP effects with that of human protein. Human translin exhibits a stable octameric state and binds ssDNA/RNA/dsDNA targets, all of which get attenuated when GTP is added. Conversely, Drosophila translin exhibits a stable dimeric state that assembles into a suboctameric (tetramer/hexamer) form and fails to bind ssDNA and RNA targets. Interestingly enough, CD spectral analyses, partial protease digestion profile revealed GTP-specific conformational changes in human translin, whereas the same were largely missing in Drosophila protein. Isothermal calorimetry delineated specific heat changes associated with GTP binding in human translin, which invoked subunit "loosening" in its octamers; the same effect was absent in Drosophila protein. We propose that GTP acts as a specific molecular "switch" that modulates the nucleic acid binding function selectively in human translin, perhaps by affecting its octameric configuration.
Collapse
Affiliation(s)
- Kundan Sengupta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
| | | | | | | | | |
Collapse
|
18
|
Kaluzhny D, Laufman O, Timofeev E, Borisova O, Manor H, Shchyolkina A. Conformational changes induced in the human protein translin and in the single-stranded oligodeoxynucleotides d(GT)(12) and d(TTAGGG)(5) upon binding of these oligodeoxynucleotides by translin. J Biomol Struct Dyn 2005; 23:257-65. [PMID: 16218753 DOI: 10.1080/07391102.2005.10507064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Translin is a human single-stranded DNA and RNA binding protein that has been highly conserved in eukaryotic evolution. It consists of eight subunits having a highly helical secondary structure that assemble into a ring. The DNA and the RNA are bound inside the ring. Recently, some of us demonstrated that the human translin specifically binds the single-stranded microsatellite repeats, d(GT)(n), the human telomeric repeats, d(TTAGGG)(n), and the Tetrahymena telomeric repeats, d(GGGGTT)(n). These data suggested that translin might be involved in recombination at d(GT)(n).d(AC)(n) microsatellites and in telomere metabolism. Other data indicated that translin might stimulate binding of telomerase to single-stranded telomeric overhangs by unwinding secondary structures formed by the telomeric repeats. Here we present a circular dichroism (CD) analysis of complexes formed between the human translin and the microsatellite and telomeric oligodeoxynucleotides d(GT)(12) and d(TTAGGG)(5). We report that conformational changes occur in both the translin and the oligodeoxynucleotides upon formation of the complexes. In translin octamers bound to the oligodeoxynucleotide d(GT)(12), the fraction of alpha-helices decreases from approximately 67% to approximately 50%, while the fraction of turns and of the unordered structure increases from approximately 11% to approximately 17% and from approximately 19% to approximately 24%, respectively. In the bound oligodeoxynucleotide d(GT)(12), we observed CD shifts which are consistent with a decrease of base stacking and a putative anti-syn switch of some guanines. The oligodeoxynucleotide d(TTAGGG)(5) formed intramolecular quadruplexes under the conditions of our assays and translin was found to unfold the quadruplexes into structures consisting of a single hairpin and three unwound single-stranded d(TTAGGG) repeats. We suggest that such unfolding could account for the stimulation of telomerase activity by translin mentioned above.
Collapse
Affiliation(s)
- D Kaluzhny
- Engelhardt Institute of Molecular Biology RASc, Vavilova 32, 119991 Moscow, Russian Federation
| | | | | | | | | | | |
Collapse
|
19
|
Laufman O, Yosef RB, Adir N, Manor H. Cloning and characterization of the Schizosaccharomyces pombe homologs of the human protein Translin and the Translin-associated protein TRAX. Nucleic Acids Res 2005; 33:4128-39. [PMID: 16043634 PMCID: PMC1180670 DOI: 10.1093/nar/gki727] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Translin is a human octameric protein that specifically binds the single-stranded microsatellite repeats d(GT)n and the corresponding transcripts (GU)n. It also binds, with lesser affinities, other single-stranded G-rich DNA and RNA sequences. TRAX is a human protein that bears a homology to Translin and interacts with it. Translin and TRAX have been proposed to be involved in DNA recombination, chromosomal translocation and mRNA transport and translation. Both proteins are highly conserved in eukaryotes, including the fission yeast Schizosaccharomyces pombe, which is amenable to genetic analysis. Here, we report the first study of the S.pombe Translin and TRAX homologs. We have deleted the genes encoding Translin and TRAX in S.pombe and found that the proliferation of the mutant cells was slightly stimulated, suggesting that these genes are not essential for the fission yeast. We have also shown that the S.pombe Translin and TRAX interact. Biochemical analysis of the S.pombe Translin, which was cloned and expressed in Escherichia coli, revealed that it is octameric and that it selectively binds d(GT)n and d(GTT)n microsatellite repeats. However, unlike the human protein, it has much higher affinities for the homologous RNA sequences (GU)n and (GUU)n. These data suggest that the S.pombe Translin is primarily involved in functions related to RNA metabolism.
Collapse
Affiliation(s)
| | | | - Noam Adir
- Department of Chemistry, Technion-Israel Institute of TechnologyHaifa 32,000, Israel
| | - Haim Manor
- To whom correspondence should be addressed. Tel: +972 4 8293456; Fax: +972 4 8225153;
| |
Collapse
|
20
|
Jacob E, Pucshansky L, Zeruya E, Baran N, Manor H. The human protein translin specifically binds single-stranded microsatellite repeats, d(GT)n, and G-strand telomeric repeats, d(TTAGGG)n: a study of the binding parameters. J Mol Biol 2005; 344:939-50. [PMID: 15544804 DOI: 10.1016/j.jmb.2004.09.095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 09/23/2004] [Accepted: 09/29/2004] [Indexed: 11/17/2022]
Abstract
We have previously identified in human fibroblasts a multisubunit protein (designated PGB) that specifically bound single-stranded G-rich microsatellite DNA sequences. PGB was later found to be identical, or closely related to translin, an octameric protein that bound single-stranded DNA consisting of sequences flanking chromosomal translocations. Here, we report that recombinant translin binds single-stranded microsatellite repeats, d(GT)n, and G-strand telomeric repeats, d(TTAGGG)n, with higher affinities (Kdis approximately = 2 nM and Kdis approximately = 12.5 nM, respectively, in 100 mM NaCl and 25 degrees C) than the affinity with which it binds a prototypical sequence flanking translocation sites (Kdis approximately = 23 nM). Translin also binds d(GT)n and d(TTAGGG)n overhangs linked to double-stranded DNA with equilibrium constants in the nanomolar range. Formation of DNA quadruplexes by the d(TTAGGG)n repeats inhibits their binding to translin. A further study of the binding parameters revealed that the minimal length of d(GT)n and d(TTAGGG)n oligonucleotides that a translin octamer can bind is 11 nucleotides, but that such oligonucleotides containing up to 30 nucleotides can bind only a single translin octamer. However, the oligonucleotides d(GT)27 and d(TTAGGG)9 bind two octamers with negative cooperativity. Translin does not detectably bind single-stranded d(GT)n sequences embedded within double-stranded DNA. Based on our data, we propose that translin might be involved in the control of recombination at d(GT)n.d(AC)n microsatellites and in telomere maintenance.
Collapse
Affiliation(s)
- Eyal Jacob
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32,000, Israel
| | | | | | | | | |
Collapse
|
21
|
Cohen S, Jacob E, Manor H. Effects of single-stranded DNA binding proteins on primer extension by telomerase. ACTA ACUST UNITED AC 2004; 1679:129-40. [PMID: 15297146 DOI: 10.1016/j.bbaexp.2004.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 05/03/2004] [Accepted: 06/04/2004] [Indexed: 10/26/2022]
Abstract
We present a biochemical analysis of the effects of three single-stranded DNA binding proteins on extension of oligonucleotide primers by the Tetrahymena telomerase. One of them, a human protein designated translin, which was shown to specifically bind the G-rich Tetrahymena and human telomeric repeats, slightly stimulated the primer extension reactions at molar ratios of translin/primer of <1:2. At higher molar ratios, it inhibited the reactions by up to 80%. The inhibition was caused by binding of translin to the primers, rather than by a direct interaction of this protein with telomerase. A second protein, the general human single-stranded DNA binding protein Replication Protein A (RPA), similarly affected the primer extension by telomerase, even though its mode of binding to DNA differs from that of translin. A third protein, the E. coli single-stranded DNA binding protein (SSB), whose binding to DNA is highly cooperative, caused more substantial stimulation and inhibition at the lower and the higher molar ratios of SSB/primer, respectively. Both telomere-specific and general single-stranded DNA binding proteins are found in living cells in telomeric complexes. Based on our data, we propose that these proteins may exert either stimulatory or inhibitory effects on intracellular telomerases, depending on their local concentrations.
Collapse
Affiliation(s)
- Shlomit Cohen
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32,000, Israel
| | | | | |
Collapse
|
22
|
Wang J, Boja ES, Oubrahim H, Chock PB. Testis brain ribonucleic acid-binding protein/translin possesses both single-stranded and double-stranded ribonuclease activities. Biochemistry 2004; 43:13424-31. [PMID: 15491149 DOI: 10.1021/bi048847l] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA interference (RNAi) is a biological process in which animal and plant cells destroy double-stranded RNA (dsRNA) and consequently the mRNA that shares sequence homology to the dsRNA. Although it is known that the enzyme Dicer is responsible for the digestion of dsRNA into approximately 22 bp fragments, the mechanism through which these fragments are associated with the RNA-induced silencing complex (RISC) is mostly unknown. To find protein components in RISC that interact with the approximately 22 bp fragment, we synthesized a (32)P- and photoaffinity moiety-labeled 22 bp dsRNA fragment and used it as bait to fish out protein(s) directly interacting with the dsRNA fragment. One of the proteins that we discovered by mass spectrometric analysis was TB-RBP/translin. Further analysis of this DNA/RNA binding protein showed that it possesses both ssRNase and dsRNase activities but not DNase activity. The protein processes long dsRNA mainly into approximately 25 bp fragments by binding to the open ends of dsRNA and cutting it with almost no turnover due to its high affinity toward the products. The activity requires physiological ionic strength. However, with single-stranded RNA as substrate, the digestion appeared to be more complete. Both ssRNase and dsRNase activities are inhibited by high levels of common RNase inhibitors. Interestingly, both activities can be enhanced greatly by EDTA.
Collapse
Affiliation(s)
- Jun Wang
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-8012, USA
| | | | | | | |
Collapse
|
23
|
Cho YS, Chennathukuzhi VM, Handel MA, Eppig J, Hecht NB. The relative levels of translin-associated factor X (TRAX) and testis brain RNA-binding protein determine their nucleocytoplasmic distribution in male germ cells. J Biol Chem 2004; 279:31514-23. [PMID: 15138261 DOI: 10.1074/jbc.m401442200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Testis brain RNA-binding protein (TB-RBP), the mouse orthologue of human translin, is an RNA and single-stranded DNA-binding protein abundant in testis and brain. Translin-associated factor X (TRAX) was identified as a protein that interacts with TB-RBP and is dependent upon TB-RBP for stabilization. Using immunohistochemistry to investigate the subcellular locations of TB-RBP and TRAX during spermatogenesis, both proteins localize in nuclei in meiotic pachytene spermatocytes and in the cytoplasm of subsequent meiotic and post-meiotic cells. An identical subcellular distribution is seen in female germ cells. Western blot analysis of germ cell protein extracts reveals an increased ratio of TRAX to TB-RBP in meiotic pachytene spermatocytes compared with the post-meiotic round and elongated spermatids. Using COS-1 cells and mouse embryonic fibroblasts derived from TB-RBP null mice as model systems to examine the shuttling of TB-RBP and TRAX, we demonstrate that TRAX contains a functional nuclear localization signal and TB-RBP contains a functional nuclear export signal. Coexpression of both proteins in COS-1 cells and TB-RBP-deficient mouse embryonic fibroblasts reveals that the ratio of TRAX to TB-RBP determines their subcellular locations, i.e. increased TRAX to TB-RBP ratios lead to nuclear localizations, whereas TRAX remains in the cytoplasm when TB-RBP levels are elevated. These subcellular distributions require interaction between TB-RBP and TRAX. We propose that the subcellular locations of TB-RBP and TRAX in male germ cells are modulated by the relative ratios of TRAX and TB-RBP.
Collapse
Affiliation(s)
- Yoon Shin Cho
- Center for Research on Reproduction and Women's Health, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
24
|
Yang S, Cho YS, Chennathukuzhi VM, Underkoffler LA, Loomes K, Hecht NB. Translin-associated factor X is post-transcriptionally regulated by its partner protein TB-RBP, and both are essential for normal cell proliferation. J Biol Chem 2004; 279:12605-14. [PMID: 14711818 DOI: 10.1074/jbc.m313133200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the functions of the DNA/RNA-binding protein TB-RBP in somatic cells, we examined cultured primary mouse embryonic fibroblasts (MEFs) derived from TB-RBP-deficient mice. The TB-RBP-deficient MEFs exhibit a reduced growth rate compared with MEFs from littermates. Reintroduction of TB-RBP remedies this defect. A partner protein of TB-RBP, Translin-associated factor X (TRAX), was absent in TB-RBP-deficient MEFs, despite normal TRAX mRNA levels. TRAX is dependent upon the presence of TB-RBP and is removed from null MEFs following ubiquitination. Re-introduction of TB-RBP, but not TB-RBP lacking an oligomerization domain, into null MEFs stabilized TRAX protein without changing TRAX mRNA levels. The coordinated expression of TB-RBP and TRAX is also seen in synchronized cells, where the amount of TRAX protein but not TRAX RNA closely parallels TB-RBP levels throughout the cell cycle. In transgenic mice overexpressing TRAX in testis, total TB-RBP and TRAX levels are constant with reductions of endogenous TRAX compensating for exogenous TRAX. Using RNA interference, reductions of either TB-RBP or TRAX (without affecting TB-RBP) slow cell growth rates. We conclude that TRAX is post-transcriptionally stabilized by TB-RBP and both proteins are needed for normal cell proliferation.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Western
- Carrier Proteins/biosynthesis
- Carrier Proteins/chemistry
- Carrier Proteins/physiology
- Cell Cycle
- Cell Division
- Cells, Cultured
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/physiology
- Dose-Response Relationship, Drug
- Embryo, Mammalian/cytology
- Fibroblasts/metabolism
- Flow Cytometry
- HeLa Cells
- Heterozygote
- Humans
- Kinetics
- Leucine/chemistry
- Mice
- Mice, Transgenic
- Microscopy, Fluorescence
- NIH 3T3 Cells
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/chemistry
- Nuclear Proteins/physiology
- Plasmids/metabolism
- Protein Binding
- Protein Structure, Tertiary
- RNA Interference
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- RNA-Binding Proteins
- Time Factors
- Transfection
- Transgenes
- Ubiquitin/chemistry
- Ubiquitin/metabolism
Collapse
Affiliation(s)
- Shicheng Yang
- Center for Research on Reproduction and Women's Health, University of Pennsylvania School of Medicine, 1310 Biomedical Research Building II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6142, USA
| | | | | | | | | | | |
Collapse
|
25
|
Chennathukuzhi V, Stein JM, Abel T, Donlon S, Yang S, Miller JP, Allman DM, Simmons RA, Hecht NB. Mice deficient for testis-brain RNA-binding protein exhibit a coordinate loss of TRAX, reduced fertility, altered gene expression in the brain, and behavioral changes. Mol Cell Biol 2003; 23:6419-34. [PMID: 12944470 PMCID: PMC193699 DOI: 10.1128/mcb.23.18.6419-6434.2003] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Testis-brain RNA-binding protein (TB-RBP), the mouse orthologue of the human protein Translin, is a widely expressed and highly conserved protein with proposed functions in chromosomal translocations, mitotic cell division, and mRNA transport and storage. To better define the biological roles of TB-RBP, we generated mice lacking TB-RBP. Matings between heterozygotes gave rise to viable, apparently normal homozygous mutant mice at a normal Mendelian ratio. The TB-RBP-related and -interacting protein Translin-associated factor X was reduced to 50% normal levels in heterozygotes and was absent in TB-RBP-null animals. The null mice were 10 to 30% smaller than their wild-type or heterozygote littermates at birth and remained so to about 6 to 9 months of age, showed normal B- and T-cell development, and accumulated visceral fat. TB-RBP-null male mice were fertile and sired offspring but had abnormal seminiferous tubules and reduced sperm counts. Null female mice were subfertile and had reduced litter sizes. Microarray analysis of total brain RNA from null and wild-type mice revealed an altered gene expression profile with the up-regulation of 14 genes and the down-regulation of 217 genes out of 12,473 probe sets. Numerous neurotransmitter receptors and ion channels, including gamma-aminobutyric acid A receptor alpha1 and glutamate receptor alpha3, were strongly down-regulated. Behavioral abnormalities were also seen. Compared to littermates, the TB-RBP-null mice appeared docile and exhibited reduced Rota-Rod performance.
Collapse
Affiliation(s)
- Vargheese Chennathukuzhi
- Center for Research on Reproduction and Women's Health, School of Medicine, Department of Biology, University of Pennsylvania, 1310 Biomedical Research Building II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yang J, Chennathukuzhi V, Miki K, O'Brien DA, Hecht NB. Mouse testis brain RNA-binding protein/translin selectively binds to the messenger RNA of the fibrous sheath protein glyceraldehyde 3-phosphate dehydrogenase-S and suppresses its translation in vitro. Biol Reprod 2003; 68:853-9. [PMID: 12604635 DOI: 10.1095/biolreprod.102.008631] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The testis brain RNA-binding protein (TB-RBP/translin) is a DNA- and RNA-binding protein with multiple functions. As an RNA-binding protein, TB-RBP binds to conserved sequence elements often present in the 3' untranslated regions (UTRs) of specific mRNAs modulating their translation and transport. To identify additional mRNA targets of TB-RBP, immunoprecipitation and reverse transcription-polymerase chain reaction (RT-PCR) assays were carried out using an affinity-purified antibody to TB-RBP with testicular extracts. Gapds mRNA was found to be selectively precipitated in a TB-RBP-mRNA complex. Consistent with the delayed translation of GAPDS and the subcellular ribonucleoprotein location of TB-RBP, polysomal gradient analysis showed that most of the Gapds mRNA in adult testis extracts was present in the nonpolysomal fractions. In vitro translation assays revealed that Gapds mRNA translation was inhibited by recombinant TB-RBP or by a TB-RBP mutant protein, Nb, capable of binding RNA. No inhibition was seen with mutant forms of TB-RBP lacking domains required for RNA binding, including the TB-RBP Cb mutant and the C-terminal-truncated form of TB-RBP that disrupts the leucine zipper. As an additional indicator of the specificity of TB-RBP inhibition of Gapds mRNA translation, a putative TB-RBP binding H-element was deleted from the 5' UTR of the Gapds mRNA. No translational inhibition by recombinant TB-RBP was seen with Gapds mRNA lacking the H element. These data suggest that TB-RBP is involved in the posttranscriptional regulation of Gapds gene expression during spermiogenesis. Moreover, the Gapds mRNA is the first mRNA shown to have a functional TB-RBP binding site in its 5' UTR.
Collapse
Affiliation(s)
- Juxiang Yang
- Center for Research on Reproduction and Women's Health, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
27
|
Sengupta K, Rao BJ. Translin binding to DNA: recruitment through DNA ends and consequent conformational transitions. Biochemistry 2002; 41:15315-26. [PMID: 12484770 DOI: 10.1021/bi026378m] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human translin protein binds a variety of sequences (chromosomal breakpoint consensus sequences, their sequence variants, as well as nonbreakpoint sequences such as simple AT and GC repeats) at nanomolar protein concentration when short single strands ( approximately 20-30mers) are used as DNA targets. The protein, which is known to exist as an octamer in its free state, undergoes a conformational transition upon binding to short single strands leading either to a compaction or to the dissociation of the oligomer. Moreover, the protein oligomers tend to aggregate into complexes that get progressively larger as the length of the single-stranded DNA target increases. The protein loads onto duplexes via the free ends of DNA, generating higher oligomeric complexes as a function of protein concentration. Interestingly, the conformation of DNA targets encased by translin oligomer is significantly altered such that the single strand is rendered hypersensitive to DNase I. Furthermore, the loading of translin oligomers leads to tighter clamping of duplex ends. All of these observations, taken together, suggest that translin is a bona fide binder of DNA ends, thereby subjecting the DNA to a conformation conducive for repair steps during translocation events. We discuss the results in the perspective of translin biology.
Collapse
Affiliation(s)
- Kundan Sengupta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India
| | | |
Collapse
|
28
|
Abstract
Translin is a nucleic acid binding protein that has been implicated in regulating the targeting and translation of dendritic RNA. In previous studies, we found that Translin and its partner protein, Trax, are components of a gel-shift complex that is highly enriched in brain extracts. In those studies, we employed a DNA oligonucleotide, GS1, as a probe to label the complex. Translin has also been identified as a component of a gel-shift complex detected using an RNA oligonucleotide probe, derived from the 3' UTR of protamine-2 mRNA. Although we had assumed that these probes labeled the same complex, recent studies indicate that association of Trax with Translin suppresses its RNA binding activity. As these findings challenge this assumption and suggest that the native RNA binding complex does not contain Trax, we have re-examined this issue. We have found that the gel-shift complexes labeled with either GS1 or protamine-2 probes are "supershifted" by addition of Trax antibodies, indicating that both are heteromeric Translin/Trax complexes. In addition, cross-competition studies provide additional evidence that these probes label the same complex. Furthermore, analysis of recombinant Translin/Trax complexes generated by co-transfection of Trax with Translin in hEK293T demonstrates that they are labeled with either probe. Although recombinant Translin forms a homomeric nucleic acid binding complex in vitro, our findings indicate that both Trax and Translin are components of the native gel-shift complex labeled with either GS1 or protamine-2 probes.
Collapse
Affiliation(s)
- Patricia M Finkenstadt
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
29
|
Ishida R, Okado H, Sato H, Shionoiri C, Aoki K, Kasai M. A role for the octameric ring protein, Translin, in mitotic cell division. FEBS Lett 2002; 525:105-10. [PMID: 12163170 DOI: 10.1016/s0014-5793(02)03095-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The octameric ring protein, Translin, demonstrates marked similarities to the family of helicase enzymes regarding its quaternary organization and dimerization of subunits. Here we show that the level of Translin closely parallels the proliferative state in various cell types. Expression is periodic during the cell cycle, with protein synthesis becoming maximal in the S and mitosis phases, consistent with a role in cell division. Moreover, induced overexpression of Translin was found to accelerate cell proliferation. Confocal microscopic analysis revealed that Translin is localized at the centrosomes at prophase and the mitotic spindle at metaphase, then translocating to the spindle midbodies during cytokinesis. This novel localization is attributable to specific interactions with microtubules of the mitotic spindles, and especially gamma-tubulin. The results suggest that Translin participates in processes ensuring the segregation of chromosomes and cytokinesis.
Collapse
Affiliation(s)
- Reiko Ishida
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, 162, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Pascal JM, Hart PJ, Hecht NB, Robertus JD. Crystal structure of TB-RBP, a novel RNA-binding and regulating protein. J Mol Biol 2002; 319:1049-57. [PMID: 12079346 DOI: 10.1016/s0022-2836(02)00364-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The testis/brain-RNA-binding protein (TB-RBP) spatially and temporally controls the expression of specific mRNAs in developing male germ cells and brain cells, and is implicated in DNA recombination and repair events. We report the 2.65 A crystal structure of mouse TB-RBP. The structure is predominantly alpha-helical and exhibits a novel protein fold and mode of assembly. Crystal symmetry and molecular symmetry combine to form an octet of TB-RBP monomers in the shape of an elongated spherical particle with a large cavity at its center. Amino acid residues that affect RNA and DNA binding are located on the interior surface of the assembled particle, and a putative nucleotide-binding domain that controls RNA binding is located at a dimer interface. Other modes of assembly are suggested for TB-RBP based on our structure and recently reported electron microscopic reconstructions of human TB-RBP.
Collapse
Affiliation(s)
- John M Pascal
- Institute for Cellular and Molecular Biology and the Department of Chemistry and Biochemistry, University of Texas at Austin, 78712, USA
| | | | | | | |
Collapse
|