1
|
Prada F, Haramaty L, Livnah O, Shaul R, Abramovich S, Mass T, Rosenthal Y, Falkowski PG. Proteomic characterization of a foraminiferal test's organic matrix. Proc Natl Acad Sci U S A 2024; 121:e2417845121. [PMID: 39642195 DOI: 10.1073/pnas.2417845121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/05/2024] [Indexed: 12/08/2024] Open
Abstract
Foraminifera are unicellular protists capable of precipitating calcite tests, which fossilize and preserve geochemical signatures of past environmental conditions dating back to the Cambrian period. The biomineralization mechanisms responsible for the mineral structures, which are key to interpreting palaeoceanographic signals, are poorly understood. Here, we present an extensive analysis of the test-bound proteins. Using liquid chromatography-tandem mass spectrometry, we identify 373 test-bound proteins in the large benthic foraminifer Amphistegina lobifera, the majority of which are highly acidic and rich in negatively charged residues. We detect proteins involved in vesicle formation and active Ca2+ trafficking, but in contrast, do not find similar proteins involved in Mg2+ transport. Considering findings from this study and previous ones, we propose a dual ion transport model involving seawater vacuolization, followed by the active release of Ca2+ from the initial vacuoles and subsequent uptake into newly formed Ca-rich vesicles that consequently enrich the calcification fluid. We further speculate that Mg2+ passively leaks through the membrane from the remaining Mg-rich vesicles, into the calcifying fluid, at much lower concentrations than in seawater. This hypothesis could not only explain the low Mg/Ca ratio in foraminiferal tests compared to inorganic calcite, but could possibly also account for its elevated sensitivity to temperature compared with inorganically precipitated CaCO3.
Collapse
Affiliation(s)
- Fiorella Prada
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Liti Haramaty
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Oded Livnah
- The Wolfson Centre for Applied Structural Biology, Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Racheli Shaul
- Department of Earth and Environmental Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Sigal Abramovich
- Department of Earth and Environmental Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Yair Rosenthal
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
- Department of Earth and Planetary Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Paul G Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
- Department of Earth and Planetary Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| |
Collapse
|
2
|
Gómez-Morón Á, Tsukalov I, Scagnetti C, Pertusa C, Lozano-Prieto M, Martínez-Fleta P, Requena S, Martín P, Alfranca A, Martin-Gayo E, Martin-Cofreces NB. Cytosolic protein translation regulates cell asymmetry and function in early TCR activation of human CD8 + T lymphocytes. Front Immunol 2024; 15:1411957. [PMID: 39114656 PMCID: PMC11303187 DOI: 10.3389/fimmu.2024.1411957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction CD8+ cytotoxic T lymphocytes (CTLs) are highly effective in defending against viral infections and tumours. They are activated through the recognition of peptide-MHC-I complex by the T-cell receptor (TCR) and co-stimulation. This cognate interaction promotes the organisation of intimate cell-cell connections that involve cytoskeleton rearrangement to enable effector function and clearance of the target cell. This is key for the asymmetric transport and mobilisation of lytic granules to the cell-cell contact, promoting directed secretion of lytic mediators such as granzymes and perforin. Mitochondria play a role in regulating CTL function by controlling processes such as calcium flux, providing the necessary energy through oxidative phosphorylation, and its own protein translation on 70S ribosomes. However, the effect of acute inhibition of cytosolic translation in the rapid response after TCR has not been studied in mature CTLs. Methods Here, we investigated the importance of cytosolic protein synthesis in human CTLs after early TCR activation and CD28 co-stimulation for the dynamic reorganisation of the cytoskeleton, mitochondria, and lytic granules through short-term chemical inhibition of 80S ribosomes by cycloheximide and 80S and 70S by puromycin. Results We observed that eukaryotic ribosome function is required to allow proper asymmetric reorganisation of the tubulin cytoskeleton and mitochondria and mTOR pathway activation early upon TCR activation in human primary CTLs. Discussion Cytosolic protein translation is required to increase glucose metabolism and degranulation capacity upon TCR activation and thus to regulate the full effector function of human CTLs.
Collapse
Affiliation(s)
- Álvaro Gómez-Morón
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Ilya Tsukalov
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Camila Scagnetti
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Clara Pertusa
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Marta Lozano-Prieto
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Martínez-Fleta
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Silvia Requena
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Pilar Martín
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Area of Vascular Pathophysiology, Laboratory of Regulatory Molecules of Inflammatory Processes, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain
| | - Aranzazu Alfranca
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Martin-Gayo
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Medicine Faculty, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Infecciosas (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
| | - Noa B Martin-Cofreces
- Immunology Service, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS- Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Videomicroscopy Unit, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, IIS-Princesa, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Ujiié Y, Ishitani Y, Nagai Y, Takaki Y, Toyofuku T, Ishii S. Unique evolution of foraminiferal calcification to survive global changes. SCIENCE ADVANCES 2023; 9:eadd3584. [PMID: 37343099 DOI: 10.1126/sciadv.add3584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 05/15/2023] [Indexed: 06/23/2023]
Abstract
Foraminifera, the most ancient known calcium carbonate-producing eukaryotes, are crucial players in global biogeochemical cycles and well-used environmental indicators in biogeosciences. However, little is known about their calcification mechanisms. This impedes understanding the organismal responses to ocean acidification, which alters marine calcium carbonate production, potentially leading to biogeochemical cycle changes. We conducted comparative single-cell transcriptomics and fluorescent microscopy and identified calcium ion (Ca2+) transport/secretion genes and α-carbonic anhydrases that control calcification in a foraminifer. They actively take up Ca2+ to boost mitochondrial adenosine triphosphate synthesis during calcification but need to pump excess intracellular Ca2+ to the calcification site to prevent cell death. Unique α-carbonic anhydrase genes induce the generation of bicarbonate and proton from multiple CO2 sources. These control mechanisms have evolved independently since the Precambrian to enable the development of large cells and calcification despite decreasing Ca2+ concentrations and pH in seawater. The present findings provide previously unknown insights into the calcification mechanisms and their subsequent function in enduring ocean acidification.
Collapse
Affiliation(s)
- Yurika Ujiié
- Marine Core Research Institute, Kochi University, Kōchi, Japan
| | - Yoshiyuki Ishitani
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yukiko Nagai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- National Museum of Nature and Science, Tokyo, Japan
| | - Yoshihiro Takaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Takashi Toyofuku
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Tokyo University of Marine Science and Technology (TUMSAT), Tokyo, Japan
| | - Shun'ichi Ishii
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
4
|
Carmona B, Marinho HS, Matos CL, Nolasco S, Soares H. Tubulin Post-Translational Modifications: The Elusive Roles of Acetylation. BIOLOGY 2023; 12:biology12040561. [PMID: 37106761 PMCID: PMC10136095 DOI: 10.3390/biology12040561] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Microtubules (MTs), dynamic polymers of α/β-tubulin heterodimers found in all eukaryotes, are involved in cytoplasm spatial organization, intracellular transport, cell polarity, migration and division, and in cilia biology. MTs functional diversity depends on the differential expression of distinct tubulin isotypes and is amplified by a vast number of different post-translational modifications (PTMs). The addition/removal of PTMs to α- or β-tubulins is catalyzed by specific enzymes and allows combinatory patterns largely enriching the distinct biochemical and biophysical properties of MTs, creating a code read by distinct proteins, including microtubule-associated proteins (MAPs), which allow cellular responses. This review is focused on tubulin-acetylation, whose cellular roles continue to generate debate. We travel through the experimental data pointing to α-tubulin Lys40 acetylation role as being a MT stabilizer and a typical PTM of long lived MTs, to the most recent data, suggesting that Lys40 acetylation enhances MT flexibility and alters the mechanical properties of MTs, preventing MTs from mechanical aging characterized by structural damage. Additionally, we discuss the regulation of tubulin acetyltransferases/desacetylases and their impacts on cell physiology. Finally, we analyze how changes in MT acetylation levels have been found to be a general response to stress and how they are associated with several human pathologies.
Collapse
Affiliation(s)
- Bruno Carmona
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| | - H Susana Marinho
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Lopes Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Helena Soares
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| |
Collapse
|
5
|
Morrissette N, Abbaali I, Ramakrishnan C, Hehl AB. The Tubulin Superfamily in Apicomplexan Parasites. Microorganisms 2023; 11:microorganisms11030706. [PMID: 36985278 PMCID: PMC10056924 DOI: 10.3390/microorganisms11030706] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Microtubules and specialized microtubule-containing structures are assembled from tubulins, an ancient superfamily of essential eukaryotic proteins. Here, we use bioinformatic approaches to analyze features of tubulins in organisms from the phylum Apicomplexa. Apicomplexans are protozoan parasites that cause a variety of human and animal infectious diseases. Individual species harbor one to four genes each for α- and β-tubulin isotypes. These may specify highly similar proteins, suggesting functional redundancy, or exhibit key differences, consistent with specialized roles. Some, but not all apicomplexans harbor genes for δ- and ε-tubulins, which are found in organisms that construct appendage-containing basal bodies. Critical roles for apicomplexan δ- and ε-tubulin are likely to be limited to microgametes, consistent with a restricted requirement for flagella in a single developmental stage. Sequence divergence or the loss of δ- and ε-tubulin genes in other apicomplexans appears to be associated with diminished requirements for centrioles, basal bodies, and axonemes. Finally, because spindle microtubules and flagellar structures have been proposed as targets for anti-parasitic therapies and transmission-blocking strategies, we discuss these ideas in the context of tubulin-based structures and tubulin superfamily properties.
Collapse
Affiliation(s)
- Naomi Morrissette
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
- Correspondence: ; Tel.: +1-949-824-9243
| | - Izra Abbaali
- Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Chandra Ramakrishnan
- Institute for Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland
| | - Adrian B. Hehl
- Institute for Parasitology, University of Zurich, Winterthurerstrasse 266a, 8057 Zürich, Switzerland
| |
Collapse
|
6
|
Zhou Q, Fu Z, Li M, Shen Q, Sun C, Feng Y, Liu Y, Jiang J, Qin T, Mao T, Hearne SJ, Wang G, Tang J. Maize tubulin folding cofactor B is required for cell division and cell growth through modulating microtubule homeostasis. THE NEW PHYTOLOGIST 2023. [PMID: 36843261 DOI: 10.1111/nph.18839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Tubulin folding cofactors (TFCs) are required for tubulin folding, α/β tubulin heterodimer formation, and microtubule (MT) dynamics in yeast and mammals. However, the functions of their plant counterparts remain to be characterized. We identified a natural maize crumpled kernel mutant, crk2, which exhibits reductions in endosperm cell number and size, as well as embryo/seedling lethality. Map-based cloning and functional complementation confirmed that ZmTFCB is causal for the mutation. ZmTFCB is targeted mainly to the cytosol. It facilitates α-tubulin folding and heterodimer formation through sequential interactions with the cytosolic chaperonin-containing TCP-1 ε subunit ZmCCT5 and ZmTFCE, thus affecting the organization of both the spindle and phragmoplast MT array and the cortical MT polymerization and array formation, which consequently mediated cell division and cell growth. We detected a physical association between ZmTFCB and the maize MT plus-end binding protein END-BINDING1 (ZmEB1), indicating that ZmTFCB1 may modulate MT dynamics by sequestering ZmEB1. Our data demonstrate that ZmTFCB is required for cell division and cell growth through modulating MT homeostasis, an evolutionarily conserved machinery with some species-specific divergence.
Collapse
Affiliation(s)
- Qingqian Zhou
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengyuan Li
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qingwen Shen
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Canran Sun
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yijian Feng
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yang Liu
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jianjun Jiang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Tao Qin
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Sarah Jane Hearne
- CIMMYT, KM 45 Carretera Mexico-Veracruz, El Batan, Texcoco, Estado de México, 56237, Mexico
| | - Guifeng Wang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
- The Shennong Laboratory, Zhengzhou, Henan, 450002, China
| |
Collapse
|
7
|
Pinho-Correia LM, Prokop A. Maintaining essential microtubule bundles in meter-long axons: a role for local tubulin biogenesis? Brain Res Bull 2023; 193:131-145. [PMID: 36535305 DOI: 10.1016/j.brainresbull.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Axons are the narrow, up-to-meter long cellular processes of neurons that form the biological cables wiring our nervous system. Most axons must survive for an organism's lifetime, i.e. up to a century in humans. Axonal maintenance depends on loose bundles of microtubules that run without interruption all along axons. The continued turn-over and the extension of microtubule bundles during developmental, regenerative or plastic growth requires the availability of α/β-tubulin heterodimers up to a meter away from the cell body. The underlying regulation in axons is poorly understood and hardly features in past and contemporary research. Here we discuss potential mechanisms, particularly focussing on the possibility of local tubulin biogenesis in axons. Current knowledge might suggest that local translation of tubulin takes place in axons, but far less is known about the post-translational machinery of tubulin biogenesis involving three chaperone complexes: prefoldin, CCT and TBC. We discuss functional understanding of these chaperones from a range of model organisms including yeast, plants, flies and mice, and explain what is known from human diseases. Microtubules across species depend on these chaperones, and they are clearly required in the nervous system. However, most chaperones display a high degree of functional pleiotropy, partly through independent functions of individual subunits outside their complexes, thus posing a challenge to experimental studies. Notably, we found hardly any studies that investigate their presence and function particularly in axons, thus highlighting an important gap in our understanding of axon biology and pathology.
Collapse
Affiliation(s)
- Liliana Maria Pinho-Correia
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK.
| |
Collapse
|
8
|
Zheng Y, Yang M, Chen X, Zhang G, Wan S, Zhang B, Huo J, Liu H. Decreased tubulin-binding cofactor B was involved in the formation disorder of nascent astrocyte processes by regulating microtubule plus-end growth through binding with end-binding proteins 1 and 3 after chronic alcohol exposure. Front Cell Neurosci 2022; 16:989945. [PMID: 36385945 PMCID: PMC9641617 DOI: 10.3389/fncel.2022.989945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
Fetal alcohol syndrome (FAS) is a neurological disease caused by excessive drinking during pregnancy and characterized by congenital abnormalities in the structure and function of the fetal brain. This study was proposed to provide new insights into the pathogenesis of FAS by revealing the possible mechanisms of alcohol-induced astrocyte injury. First, a chronic alcohol exposure model of astrocytes was established, and the formation disorder was found in astrocyte processes where tubulin-binding cofactor B (TBCB) was decreased or lost, accompanied by disorganized microtubules (MT). Second, to understand the relationship between TBCB reduction and the formation disorder of astrocyte processes, TBCB was silenced or overexpressed. It caused astrocyte processes to retract or lose after silencing, while the processes increased with expending basal part and obtuse tips after overexpressing. It confirmed that TBCB was one of the critical factors for the formation of astrocyte processes through regulating MT plus-end and provided a new view on the pathogenesis of FAS. Third, to explore the mechanism of TBCB regulating MT plus-ends, we first proved end-binding proteins 1 and 3 (EB1/3) were bound at MT plus-ends in astrocytes. Then, through interference experiments, we found that both EB1 and EB3, which formed in heterodimers, were necessary to mediate TBCB binding to MT plus-ends and thus regulated the formation of astrocyte processes. Finally, the regulatory mechanism was studied and the ERK1/2 signaling pathway was found as one of the main pathways regulating the expression of TBCB in astrocytes after alcohol injury.
Collapse
Affiliation(s)
- Yin Zheng
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- Department of Basic Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Mei Yang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Xiaoqiao Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Gaoli Zhang
- Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shanshan Wan
- Department of Blood Transfusion, Sichuan Cancer Hospital and Institute, Chengdu, China
| | - Bingqiu Zhang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jiechao Huo
- Fujian Province University Engineering Research Center of Mindong She Medicine, Medical College, Ningde Normal University, Ningde, China
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- *Correspondence: Hui Liu
| |
Collapse
|
9
|
Guo Y, Chen Y, Zhang J, Li J, Fan K, Chen R, Liu Y, Zheng J, Fu J, Gu R, Wang G, Cui Y, Du X, Wang J. Epigenetic Mutation in a Tubulin-Folding Cofactor B (ZmTFCB) Gene Arrests Kernel Development in Maize. PLANT & CELL PHYSIOLOGY 2022; 63:1156-1167. [PMID: 35771678 DOI: 10.1093/pcp/pcac092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Epialleles, the heritable epigenetic variants that are not caused by changes in DNA sequences, can broaden genetic and phenotypic diversity and benefit to crop breeding, but very few epialleles related to agricultural traits have been identified in maize. Here, we cloned a small kernel mutant, smk-wl10, from maize, which encoded a tubulin-folding cofactor B (ZmTFCB) protein. Expression of the ZmTFCB gene decreased in the smk-wl10 mutant, which arrested embryo, endosperm and basal endosperm transfer layer developments. Overexpression of ZmTFCB could complement the defective phenotype of smk-wl10. No nucleotide sequence variation in ZmTFCB could be found between smk-wl10 and wild type (WT). Instead, we detected hypermethylation of nucleotide CHG (where H is A, C or T nucleotide) sequence contexts and increased level of histone H3K9me2 methylation in the upstream sequence of ZmTFCB in smk-wl10 compared with WT, which might respond to the attenuating transcription of ZmTFCB. In addition, yeast two-hybrid and bimolecular fluorescence complementation assays identified a strong interaction between ZmTFCB and its homolog ZmTFCE. Thus, our work identifies a novel epiallele of the maize ZmTFCB gene, which might represent a common phenomenon in the epigenetic regulation of important traits such as kernel development in maize.
Collapse
Affiliation(s)
- Yingmei Guo
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yan Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Jie Zhang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jiankun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaijian Fan
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rongrong Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunjun Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Zheng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junjie Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Riliang Gu
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Guoying Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yu Cui
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xuemei Du
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jianhua Wang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Hurst Z, Liu W, Shi Q, Herman PK. A distinct P-body-like granule is induced in response to the disruption of microtubule integrity in Saccharomyces cerevisiae. Genetics 2022; 222:6649695. [PMID: 35876801 PMCID: PMC9434292 DOI: 10.1093/genetics/iyac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
The Processing-body (P-body) is a conserved membraneless organelle that has been implicated in the storage and/or decay of mRNAs. Although P-bodies have been shown to be induced by a variety of conditions, the mechanisms controlling their assembly and their precise physiological roles in eukaryotic cells are still being worked out. In this study, we find that a distinct subtype of P-body is induced in response to conditions that disrupt microtubule integrity in the budding yeast, Saccharomyces cerevisiae. For example, treatment with the microtubule-destabilizing agent, benomyl, led to the induction of these novel ribonucleoprotein (RNP) granules. A link to microtubules had been noted previously and the observations here extend our understanding by demonstrating that the induced foci differ from traditional P-bodies in a number of significant ways. These include differences in overall granule morphology, protein composition and the manner in which their induction is regulated. Of particular note, several key P-body constituents are absent from these Benomyl-Induced Granules (BIGs), including the Pat1 protein that is normally required for efficient P-body assembly. However, these novel RNP structures still contain many known P-body proteins and exhibit similar hallmarks of a liquid-like compartment. In all, the data suggest that the disruption of microtubule integrity leads to the formation of a novel type of P-body granule that may have distinct biological activities in the cell. Future work will aim to identify the biological activities of these BIGs and to determine, in turn, whether these P-body-like granules have any role in the regulation of microtubule dynamics.
Collapse
Affiliation(s)
- Zachary Hurst
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 USA
| | - Wenfang Liu
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 USA
| | - Qian Shi
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 USA
| | - Paul K Herman
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 USA
| |
Collapse
|
11
|
Sorokina I, Mushegian AR, Koonin EV. Is Protein Folding a Thermodynamically Unfavorable, Active, Energy-Dependent Process? Int J Mol Sci 2022; 23:521. [PMID: 35008947 PMCID: PMC8745595 DOI: 10.3390/ijms23010521] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
The prevailing current view of protein folding is the thermodynamic hypothesis, under which the native folded conformation of a protein corresponds to the global minimum of Gibbs free energy G. We question this concept and show that the empirical evidence behind the thermodynamic hypothesis of folding is far from strong. Furthermore, physical theory-based approaches to the prediction of protein folds and their folding pathways so far have invariably failed except for some very small proteins, despite decades of intensive theory development and the enormous increase of computer power. The recent spectacular successes in protein structure prediction owe to evolutionary modeling of amino acid sequence substitutions enhanced by deep learning methods, but even these breakthroughs provide no information on the protein folding mechanisms and pathways. We discuss an alternative view of protein folding, under which the native state of most proteins does not occupy the global free energy minimum, but rather, a local minimum on a fluctuating free energy landscape. We further argue that ΔG of folding is likely to be positive for the majority of proteins, which therefore fold into their native conformations only through interactions with the energy-dependent molecular machinery of living cells, in particular, the translation system and chaperones. Accordingly, protein folding should be modeled as it occurs in vivo, that is, as a non-equilibrium, active, energy-dependent process.
Collapse
Affiliation(s)
| | - Arcady R. Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, Alexandria, VA 22314, USA;
- Clare Hall College, University of Cambridge, Cambridge CB3 9AL, UK
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
12
|
Novel Compound Heterozygous Variants in TBCD Gene Associated with Infantile Neurodegenerative Encephalopathy. CHILDREN 2021; 8:children8121140. [PMID: 34943336 PMCID: PMC8699832 DOI: 10.3390/children8121140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/02/2022]
Abstract
Mutations in tubulin-specific chaperon D (TBCD), the gene encoding one of the co-chaperons required for the assembly and disassembly of the α/β-tubulin heterodimers, have been reported to cause perturbed microtubule dynamics, resulting in debilitating early-onset progressive neurodegenerative disorder. Here, we identified two novel TBCD variants, c.1340C>T (p.Ala447Val), and c.817+2T>C, presented as compound heterozygotes in two affected siblings born to unaffected carrier parents. Clinical features included early-onset neurodegeneration, failure to thrive, respiratory failure, hypotonia, muscle weakness and atrophy and seizures. We established the genotype–phenotype relationship of these TBCD pathogenic variants and provided insight into the protein structural alteration that may contribute to this chaperone-associated tubulinopathy.
Collapse
|
13
|
Tao X, Dou Y, Huang G, Sun M, Lu S, Chen D. α-Tubulin Regulates the Fate of Germline Stem Cells in Drosophila Testis. Sci Rep 2021; 11:10644. [PMID: 34017013 PMCID: PMC8138004 DOI: 10.1038/s41598-021-90116-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
The Drosophila testis provides an exemplary model for analyzing the extrinsic and intrinsic factors that regulate the fate of stem cell in vivo. Using this model, we show that the Drosophila αTub67C gene (full name αTubulin at 67C), which encodes α4-Tubulin (a type of α-Tubulin), plays a new role in controlling the fate of male germline stem cells (GSC). In this study, we have found that Drosophila α4-Tubulin is required intrinsically and extrinsically for GSCs maintenance. Results from green fluorescent protein (GFP)-transgene reporter assays show that the gene αTub67C is not required for Dpp/Gbb signaling silencing of bam expression, suggesting that αTub67C functions downstream of or parallel to bam, and is independent of Gbb/Dpp-bam signaling pathway. Furthermore, overexpression of αTub67C fails to obviously increase the number of GSC/Gonialblast (GB). Given that the α-tubulin genes are evolutionarily conserved from yeast to human, which triggers us to study the more roles of the gene α-tubulin in other animals in the future.
Collapse
Affiliation(s)
- Xiaoqian Tao
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yunqiao Dou
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.,Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Guangyu Huang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.,Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Mingzhong Sun
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Shan Lu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Dongsheng Chen
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China. .,Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, China. .,College of Life Sciences, The Institute of Bioinformatics, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
14
|
Nolasco S, Bellido J, Serna M, Carmona B, Soares H, Zabala JC. Colchicine Blocks Tubulin Heterodimer Recycling by Tubulin Cofactors TBCA, TBCB, and TBCE. Front Cell Dev Biol 2021; 9:656273. [PMID: 33968934 PMCID: PMC8100514 DOI: 10.3389/fcell.2021.656273] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
Colchicine has been used to treat gout and, more recently, to effectively prevent autoinflammatory diseases and both primary and recurrent episodes of pericarditis. The anti-inflammatory action of colchicine seems to result from irreversible inhibition of tubulin polymerization and microtubule (MT) assembly by binding to the tubulin heterodimer, avoiding the signal transduction required to the activation of the entire NLRP3 inflammasome. Emerging results show that the MT network is a potential regulator of cardiac mechanics. Here, we investigated how colchicine impacts in tubulin folding cofactors TBCA, TBCB, and TBCE activities. We show that TBCA is abundant in mouse heart insoluble protein extracts. Also, a decrease of the TBCA/β-tubulin complex followed by an increase of free TBCA is observed in human cells treated with colchicine. The presence of free TBCA is not observed in cells treated with other anti-mitotic agents such as nocodazole or cold shock, neither after translation inhibition by cycloheximide. In vitro assays show that colchicine inhibits tubulin heterodimer dissociation by TBCE/TBCB, probably by interfering with interactions of TBCE with tubulin dimers, leading to free TBCA. Manipulation of TBCA levels, either by RNAi or overexpression results in decreased levels of tubulin heterodimers. Together, these data strongly suggest that TBCA is mainly receiving β-tubulin from the dissociation of pre-existing heterodimers instead of newly synthesized tubulins. The TBCE/TBCB+TBCA system is crucial for controlling the critical concentration of free tubulin heterodimers and MT dynamics in the cells by recycling the tubulin heterodimers. It is conceivable that colchicine affects tubulin heterodimer recycling through the TBCE/TBCB+TBCA system producing the known benefits in the treatment of pericardium inflammation.
Collapse
Affiliation(s)
- Sofia Nolasco
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisbon, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Javier Bellido
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Marina Serna
- Spanish National Cancer Research Center, CNIO, Madrid, Spain
| | - Bruno Carmona
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.,Centro de Química Estrutural - Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Helena Soares
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.,Centro de Química Estrutural - Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Juan Carlos Zabala
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
15
|
Martín-Cófreces NB, Valpuesta JM, Sánchez-Madrid F. Folding for the Immune Synapse: CCT Chaperonin and the Cytoskeleton. Front Cell Dev Biol 2021; 9:658460. [PMID: 33912568 PMCID: PMC8075050 DOI: 10.3389/fcell.2021.658460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Lymphocytes rearrange their shape, membrane receptors and organelles during cognate contacts with antigen-presenting cells (APCs). Activation of T cells by APCs through pMHC-TCR/CD3 interaction (peptide-major histocompatibility complex-T cell receptor/CD3 complexes) involves different steps that lead to the reorganization of the cytoskeleton and organelles and, eventually, activation of nuclear factors allowing transcription and ultimately, replication and cell division. Both the positioning of the lymphocyte centrosome in close proximity to the APC and the nucleation of a dense microtubule network beneath the plasma membrane from the centrosome support the T cell's intracellular polarity. Signaling from the TCR is facilitated by this traffic, which constitutes an important pathway for regulation of T cell activation. The coordinated enrichment upon T cell stimulation of the chaperonin CCT (chaperonin-containing tailless complex polypeptide 1; also termed TRiC) and tubulins at the centrosome area support polarized tubulin polymerization and T cell activation. The proteasome is also enriched in the centrosome of activated T cells, providing a mechanism to balance local protein synthesis and degradation. CCT assists the folding of proteins coming from de novo synthesis, therefore favoring mRNA translation. The functional role of this chaperonin in regulating cytoskeletal composition and dynamics at the immune synapse is discussed.
Collapse
Affiliation(s)
- Noa Beatriz Martín-Cófreces
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autonoma Madrid (UAM), Instituto Investigacion Sanitaria-Instituto Princesa (IIS-IP), Madrid, Spain.,Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Francisco Sánchez-Madrid
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autonoma Madrid (UAM), Instituto Investigacion Sanitaria-Instituto Princesa (IIS-IP), Madrid, Spain.,Area of Vascular Pathophysiology, Laboratory of Intercellular Communication, Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
16
|
Métivier M, Gallaud E, Thomas A, Pascal A, Gagné JP, Poirier GG, Chrétien D, Gibeaux R, Richard-Parpaillon L, Benaud C, Giet R. Drosophila Tubulin-Specific Chaperone E Recruits Tubulin around Chromatin to Promote Mitotic Spindle Assembly. Curr Biol 2021; 31:684-695.e6. [PMID: 33259793 DOI: 10.1016/j.cub.2020.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 09/29/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022]
Abstract
Proper assembly of mitotic spindles requires microtubule nucleation not only at the centrosomes but also around chromatin. In this study, we found that the Drosophila tubulin-specific chaperone dTBCE is required for the enrichment of tubulin in the nuclear space after nuclear envelope breakdown and for subsequent promotion of spindle microtubule nucleation. These events depend on the CAP-Gly motif found in dTBCE and are regulated by Ran and lamin proteins. Our data suggest that during early mitosis, dTBCE and nuclear pore proteins become enriched in the nucleus, where they interact with the Ran GTPase to promote dynamic tubulin enrichment. We propose that this novel mechanism enhances microtubule nucleation around chromatin, thereby facilitating mitotic spindle assembly.
Collapse
Affiliation(s)
- Mathieu Métivier
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Emmanuel Gallaud
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Alexandre Thomas
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Aude Pascal
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Jean-Philippe Gagné
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Pavillon CHUL, Université Laval, Québec City, QC, Canada
| | - Guy G Poirier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Pavillon CHUL, Université Laval, Québec City, QC, Canada
| | - Denis Chrétien
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Romain Gibeaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Laurent Richard-Parpaillon
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Christelle Benaud
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Régis Giet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France.
| |
Collapse
|
17
|
Fourel G, Boscheron C. Tubulin mutations in neurodevelopmental disorders as a tool to decipher microtubule function. FEBS Lett 2020; 594:3409-3438. [PMID: 33064843 DOI: 10.1002/1873-3468.13958] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
Abstract
Malformations of cortical development (MCDs) are a group of severe brain malformations associated with intellectual disability and refractory childhood epilepsy. Human missense heterozygous mutations in the 9 α-tubulin and 10 β-tubulin isoforms forming the heterodimers that assemble into microtubules (MTs) were found to cause MCDs. However, how a single mutated residue in a given tubulin isoform can perturb the entire microtubule population in a neuronal cell remains a crucial question. Here, we examined 85 MCD-associated tubulin mutations occurring in TUBA1A, TUBB2, and TUBB3 and their location in a three-dimensional (3D) microtubule cylinder. Mutations hitting residues exposed on the outer microtubule surface are likely to alter microtubule association with partners, while alteration of intradimer contacts may impair dimer stability and straightness. Other types of mutations are predicted to alter interdimer and lateral contacts, which are responsible for microtubule cohesion, rigidity, and dynamics. MCD-associated tubulin mutations surprisingly fall into all categories, thus providing unexpected insights into how a single mutation may impair microtubule function and elicit dominant effects in neurons.
Collapse
|
18
|
Araujo-Garrido JL, Baisón-Olmo F, Bernal-Bayard J, Romero F, Ramos-Morales F. Tubulin Folding Cofactor TBCB is a Target of the Salmonella Effector Protein SseK1. Int J Mol Sci 2020; 21:ijms21093193. [PMID: 32366039 PMCID: PMC7246435 DOI: 10.3390/ijms21093193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a human and animal pathogen that uses type III secretion system effectors to manipulate the host cell and fulfill infection. SseK1 is a Salmonella effector with glycosyltransferase activity. We carried out a yeast two-hybrid screen and have identified tubulin-binding cofactor B (TBCB) as a new binding partner for this effector. SseK1 catalyzed the addition of N-acetylglucosamine to arginine on TBCB, and its expression promoted the stabilization of the microtubule cytoskeleton of HEK293T cells. The conserved Asp-x-Asp (DxD) motif that is essential for the activity of SseK1 was required for the binding and modification of TBCB and for the effect on the cytoskeleton. Our study has identified a novel target for SseK1 and suggests that this effector may have a role in the manipulation of the host cell microtubule network to provide a safe niche for this pathogen.
Collapse
Affiliation(s)
- Juan Luis Araujo-Garrido
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (J.L.A.-G.); (F.B.-O.); (J.B.-B.)
| | - Fernando Baisón-Olmo
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (J.L.A.-G.); (F.B.-O.); (J.B.-B.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 1058, Chile
| | - Joaquín Bernal-Bayard
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (J.L.A.-G.); (F.B.-O.); (J.B.-B.)
| | - Francisco Romero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (J.L.A.-G.); (F.B.-O.); (J.B.-B.)
- Correspondence:
| |
Collapse
|
19
|
Shaulov Y, Nagaraja S, Sarid L, Trebicz-Geffen M, Ankri S. Formation of oxidised (OX) proteins in Entamoeba histolytica exposed to auranofin and consequences on the parasite virulence. Cell Microbiol 2020; 22:e13174. [PMID: 32017328 DOI: 10.1111/cmi.13174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/28/2022]
Abstract
Metronidazole (MNZ), the first line drug for amoebiasis and auranofin (AF), an emerging antiprotozoan drug, are both inhibiting Entamoeba histolytica thioredoxin reductase. The nature of oxidised proteins (OXs) formed in AF- or MNZ-treated E. histolytica trophozoites is unknown. In order to fill this knowledge gap, we performed a large-scale identification and quantification of the OXs formed in AF- or MNZ-treated E. histolytica trophozoites using resin-assisted capture coupled to mass spectrometry (MS). We detected 661 OXs in MNZ-treated trophozoites and 583 OXs in AF-treated trophozoites. More than 50% of these OXs were shared, and their functions include hydrolases, enzyme modulators, transferases, nucleic acid binding proteins, oxidoreductases, cytoskeletal proteins, chaperones, and ligases. Here, we report that the formation of actin filaments (F-actin) is impaired in AF-treated trophozoites. Consequently, their erythrophagocytosis, cytopathic activity, and their motility are impaired. We also observed that less than 15% of OXs present in H2 O2 -treated trophozoites are also present in AF- or MNZ-treated trophozoites. These results strongly suggest that the formation of OXs in AF- or MNZ-treated trophozoites and in H2 O2 -treated trophozoites occurred by two different mechanisms.
Collapse
Affiliation(s)
- Yana Shaulov
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Lotem Sarid
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Meirav Trebicz-Geffen
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
20
|
Dorsch LM, Schuldt M, dos Remedios CG, Schinkel AFL, de Jong PL, Michels M, Kuster DWD, Brundel BJJM, van der Velden J. Protein Quality Control Activation and Microtubule Remodeling in Hypertrophic Cardiomyopathy. Cells 2019; 8:E741. [PMID: 31323898 PMCID: PMC6678711 DOI: 10.3390/cells8070741] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disorder. It is mainly caused by mutations in genes encoding sarcomere proteins. Mutant forms of these highly abundant proteins likely stress the protein quality control (PQC) system of cardiomyocytes. The PQC system, together with a functional microtubule network, maintains proteostasis. We compared left ventricular (LV) tissue of nine donors (controls) with 38 sarcomere mutation-positive (HCMSMP) and 14 sarcomere mutation-negative (HCMSMN) patients to define HCM and mutation-specific changes in PQC. Mutations in HCMSMP result in poison polypeptides or reduced protein levels (haploinsufficiency, HI). The main findings were 1) several key PQC players were more abundant in HCM compared to controls, 2) after correction for sex and age, stabilizing heat shock protein (HSP)B1, and refolding, HSPD1 and HSPA2 were increased in HCMSMP compared to controls, 3) α-tubulin and acetylated α-tubulin levels were higher in HCM compared to controls, especially in HCMHI, 4) myosin-binding protein-C (cMyBP-C) levels were inversely correlated with α-tubulin, and 5) α-tubulin levels correlated with acetylated α-tubulin and HSPs. Overall, carrying a mutation affects PQC and α-tubulin acetylation. The haploinsufficiency of cMyBP-C may trigger HSPs and α-tubulin acetylation. Our study indicates that proliferation of the microtubular network may represent a novel pathomechanism in cMyBP-C haploinsufficiency-mediated HCM.
Collapse
Affiliation(s)
- Larissa M Dorsch
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands.
| | - Maike Schuldt
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands
| | - Cristobal G dos Remedios
- Sydney Heart Bank, Discipline of Anatomy, Bosch Institute, University of Sydney, Sydney 2006, Australia
| | - Arend F L Schinkel
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Peter L de Jong
- Department of Cardiothoracic Surgery, Thoraxcenter, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Michelle Michels
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081 HV Amsterdam, The Netherlands
- Netherlands Heart Institute, 3511 EP Utrecht, The Netherlands
| |
Collapse
|
21
|
Design, synthesis and antitumour and anti-angiogenesis evaluation of 22 moscatilin derivatives. Bioorg Med Chem 2019; 27:2657-2665. [PMID: 31047774 DOI: 10.1016/j.bmc.2019.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Two series of moscatilin derivatives were designed, synthesized and evaluated as anti-tumor and anti-angiogenesis agents. Most of these compounds showed moderate-to-obvious cytotoxicity against five cancer cell lines (A549, HepG2, MDA-MB-231, MKN-45, HCT116). Among these cell lines, compounds had obvious effects on HCT116. Especially for 8Ae, the IC50 was low to 0.25 μM. 8Ae can inhibit the viability and induce the apoptosis of HCT116 cells but exhibit no cytotoxic activity in noncancerous NCM460 colon cells. 8Ae can also arrest the G2/M cell cycle in HCT116 cells by inhibiting the α-tubulin expression. Zebrafish bioassay-guided screen showed the 22 moscatilin derivatives had potent anti-angiogenic activities and compound 8Ae had better activities than positive compound. Molecular docking indicated 8Ae interacted with tubulin at the affinity of -7.2 Kcal/mol. In conclusion, compound 8Ae was a potential antitumor and anti-angiogenesis candidate for further development.
Collapse
|
22
|
Samavarchi-Tehrani P, Abdouni H, Samson R, Gingras AC. A Versatile Lentiviral Delivery Toolkit for Proximity-dependent Biotinylation in Diverse Cell Types. Mol Cell Proteomics 2018; 17:2256-2269. [PMID: 29991506 DOI: 10.1074/mcp.tir118.000902] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Indexed: 11/06/2022] Open
Abstract
Proximity-dependent biotinylation strategies have emerged as powerful tools to characterize the subcellular context of proteins in living cells. The popular BioID approach employs an abortive E. coli biotin ligase mutant (R118G; denoted as BirA*), which when fused to a bait protein enables the covalent biotinylation of endogenous proximal polypeptides. This approach has been mainly applied to the study of protein proximity in immortalized mammalian cell lines. To expand the application space of BioID, here we describe a set of lentiviral vectors that enable the inducible expression of BirA*-tagged bait fusion proteins for performing proximity-dependent biotinylation in diverse experimental systems. We benchmark this highly adaptable toolkit across immortalized and primary cell systems, demonstrating the ease, versatility and robustness of the system. We also provide guidelines to perform BioID using these reagents.
Collapse
Affiliation(s)
| | - Hala Abdouni
- From the ‡Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Reuben Samson
- From the ‡Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.,§Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anne-Claude Gingras
- From the ‡Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada; .,§Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Xie S, Yang Y, Lin X, Zhou J, Li D, Liu M. Characterization of a novel EB1 acetylation site important for the regulation of microtubule dynamics and cargo recruitment. J Cell Physiol 2018; 233:2581-2589. [PMID: 28777446 DOI: 10.1002/jcp.26133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/03/2017] [Indexed: 01/20/2023]
Abstract
Microtubule plus ends undergo highly dynamic modifications to regulate different aspects of cellular activities. Most microtubule plus-end tracking proteins (+TIPs) are recruited to the microtubule ends by the master loading factor, end-binding protein 1 (EB1). These proteins coordinately regulate microtubule dynamics and cellular plasticity. Acetylation is known to modulate EB1 function; however, the molecular details of EB1 acetylation remain largely unclear. We mapped the acetylation pattern of EB1 and identified several previously uncharacterized sites of EB1 acetylation. We examined the effects of lysine-212 (K212) acetylation and found that acetylation of this site accelerates autophagy-mediated EB1 degradation. By time-lapse microscopy, we found that the acetylation-deficient K212R mutant increased the percentage of fast-growing and long-lived microtubules. Although K212 acetylation did not affect microtubule stability in vitro and the association of EB1 with microtubules, the K212R mutant significantly promoted microtubule regrowth in cells. Coimmunoprecipitation assays further revealed that the K212 site was critical for the recruitment of different +TIP cargoes. These data thus uncover a critical role for a novel EB1 acetylation site in regulating the dynamic structure of microtubules.
Collapse
Affiliation(s)
- Songbo Xie
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Yang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaochen Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
24
|
Pouchucq L, Lobos-Ruiz P, Araya G, Valpuesta JM, Monasterio O. The chaperonin CCT promotes the formation of fibrillar aggregates of γ-tubulin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:519-526. [PMID: 29339327 DOI: 10.1016/j.bbapap.2018.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/29/2022]
Abstract
The type II chaperonin CCT is involved in the prevention of the pathogenesis of numerous human misfolding disorders, as it sequesters misfolded proteins, blocks their aggregation and helps them to achieve their native state. In addition, it has been reported that CCT can prevent the toxicity of non-client amyloidogenic proteins by the induction of non-toxic aggregates, leading to new insight in chaperonin function as an aggregate remodeling factor. Here we add experimental evidence to this alternative mechanism by which CCT actively promotes the formation of conformationally different aggregates of γ-tubulin, a non-amyloidogenic CCT client protein, which are mediated by specific CCT-γ-tubulin interactions. The in vitro-induced aggregates were in some cases long fiber polymers, which compete with the amorphous aggregates. Direct injection of unfolded purified γ-tubulin into single-cell zebra fish embryos allowed us to relate this in vitro activity with the in vivo formation of intracellular aggregates. Injection of a CCT-binding deficient γ-tubulin mutant dramatically diminished the size of the intracellular aggregates, increasing the toxicity of the misfolded protein. These results point to CCT having a role in the remodeling of aggregates, constituting one of its many functions in cellular proteostasis.
Collapse
Affiliation(s)
- Luis Pouchucq
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Laboratorio de Biotecnología Vegetal Ambiental, Departamento de Biotecnología, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Pablo Lobos-Ruiz
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gissela Araya
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - José María Valpuesta
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
25
|
Das R, Bhattacharjee S, Patel AA, Harris JM, Bhattacharya S, Letcher JM, Clark SG, Nanda S, Iyer EPR, Ascoli GA, Cox DN. Dendritic Cytoskeletal Architecture Is Modulated by Combinatorial Transcriptional Regulation in Drosophila melanogaster. Genetics 2017; 207:1401-1421. [PMID: 29025914 PMCID: PMC5714456 DOI: 10.1534/genetics.117.300393] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/04/2017] [Indexed: 01/08/2023] Open
Abstract
Transcription factors (TFs) have emerged as essential cell autonomous mediators of subtype specific dendritogenesis; however, the downstream effectors of these TFs remain largely unknown, as are the cellular events that TFs control to direct morphological change. As dendritic morphology is largely dictated by the organization of the actin and microtubule (MT) cytoskeletons, elucidating TF-mediated cytoskeletal regulatory programs is key to understanding molecular control of diverse dendritic morphologies. Previous studies in Drosophila melanogaster have demonstrated that the conserved TFs Cut and Knot exert combinatorial control over aspects of dendritic cytoskeleton development, promoting actin and MT-based arbor morphology, respectively. To investigate transcriptional targets of Cut and/or Knot regulation, we conducted systematic neurogenomic studies, coupled with in vivo genetic screens utilizing multi-fluor cytoskeletal and membrane marker reporters. These analyses identified a host of putative Cut and/or Knot effector molecules, and a subset of these putative TF targets converge on modulating dendritic cytoskeletal architecture, which are grouped into three major phenotypic categories, based upon neuromorphometric analyses: complexity enhancer, complexity shifter, and complexity suppressor. Complexity enhancer genes normally function to promote higher order dendritic growth and branching with variable effects on MT stabilization and F-actin organization, whereas complexity shifter and complexity suppressor genes normally function in regulating proximal-distal branching distribution or in restricting higher order branching complexity, respectively, with spatially restricted impacts on the dendritic cytoskeleton. Collectively, we implicate novel genes and cellular programs by which TFs distinctly and combinatorially govern dendritogenesis via cytoskeletal modulation.
Collapse
Affiliation(s)
- Ravi Das
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
| | | | - Atit A Patel
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
| | - Jenna M Harris
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
| | | | - Jamin M Letcher
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
| | - Sarah G Clark
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
| | - Sumit Nanda
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030
| | | | - Giorgio A Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030
| | - Daniel N Cox
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302
| |
Collapse
|
26
|
Sun W, Pei L, Liang Z. mRNA and Long Non-coding RNA Expression Profiles in Rats Reveal Inflammatory Features in Sepsis-Associated Encephalopathy. Neurochem Res 2017; 42:3199-3219. [DOI: 10.1007/s11064-017-2357-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 01/31/2023]
|
27
|
Abstract
The tubulin cofactors TBCD and TBCE play an essential role in regulation of the microtubule dynamics in a wide variety of somatic cells, but little information is known about the expression of these cofactors in human sperm and oocytes. In this study, we focused on the investigation of the presence of, and the differential distribution of, the tubulin cofactors TBCD and TBCE in human sperm and during human oocyte maturation. We performed expression assays for TBCD and TBCE by reverse transcription-polymerase chain reaction (RT-PCR), western blot and immunofluorescence and verified the presence of both cofactors in human gametes. TBCD and TBCE were located mainly in the middle region and in the tail of the sperm while in the oocyte the localization was cytosolic. The mRNA of both tubulin cofactors were present in the human oocytes but not in sperm cells. This finding gives a first insight into where TBCD and TBCE could carry out their function in the continuous changes that the cytoskeleton experiences during gametogenesis and also prior to fertilization.
Collapse
|
28
|
HILI destabilizes microtubules by suppressing phosphorylation and Gigaxonin-mediated degradation of TBCB. Sci Rep 2017; 7:46376. [PMID: 28393858 PMCID: PMC5385498 DOI: 10.1038/srep46376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/15/2017] [Indexed: 02/05/2023] Open
Abstract
Human PIWIL2, aka HILI, is a member of PIWI protein family and overexpresses in various tumors. However, the underlying mechanisms of HILI in tumorigenesis remain largely unknown. TBCB has a critical role in regulating microtubule dynamics and is overexpressed in many cancers. Here we report that HILI inhibits Gigaxonin-mediated TBCB ubiquitination and degradation by interacting with TBCB, promoting the binding between HSP90 and TBCB, and suppressing the interaction between Gigaxonin and TBCB. Meanwhile, HILI can also reduce phosphorylation level of TBCB induced by PAK1. Our results showed that HILI suppresses microtubule polymerization and promotes cell proliferation, migration and invasion via TBCB for the first time, revealing a novel mechanism for HILI in tumorigenesis.
Collapse
|
29
|
Gandar A, Laffaille P, Marty-Gasset N, Viala D, Molette C, Jean S. Proteome response of fish under multiple stress exposure: Effects of pesticide mixtures and temperature increase. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 184:61-77. [PMID: 28109940 DOI: 10.1016/j.aquatox.2017.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
Aquatic systems can be subjected to multiple stressors, including pollutant cocktails and elevated temperature. Evaluating the combined effects of these stressors on organisms is a great challenge in environmental sciences. To the best of our knowledge, this is the first study to assess the molecular stress response of an aquatic fish species subjected to individual and combined pesticide mixtures and increased temperatures. For that, goldfish (Carassius auratus) were acclimated to two different temperatures (22 and 32°C) for 15 days. They were then exposed for 96h to a cocktail of herbicides and fungicides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin and tebuconazole) at two environmentally relevant concentrations (total concentrations of 8.4μgL-1 and 42μgL-1) at these two temperatures (22 and 32°C). The molecular response in liver was assessed by 2D-proteomics. Identified proteins were integrated using pathway enrichment analysis software to determine the biological functions involved in the individual or combined stress responses and to predict the potential deleterious outcomes. The pesticide mixtures elicited pathways involved in cellular stress response, carbohydrate, protein and lipid metabolisms, methionine cycle, cellular functions, cell structure and death control, with concentration- and temperature-dependent profiles of response. We found that combined temperature increase and pesticide exposure affected the cellular stress response: the effects of oxidative stress were more marked and there was a deregulation of the cell cycle via apoptosis inhibition. Moreover a decrease in the formation of glucose by liver and in ketogenic activity was observed in this multi-stress condition. The decrease in both pathways could reflect a shift from a metabolic compensation strategy to a conservation state. Taken together, our results showed (1) that environmental cocktails of herbicides and fungicides induced important changes in pathways involved in metabolism, cell structure and cell cycle, with possible deleterious outcomes at higher biological scales and (2) that increasing temperature could affect the response of fish to pesticide exposure.
Collapse
Affiliation(s)
- Allison Gandar
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Pascal Laffaille
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | | | - Didier Viala
- Plate-Forme 'Exploration du Métabolisme', Centre de Clermont-Ferrand, Theix, 63122, Saint Genès Champanelle, France; UMR 1213 Herbivores, INRA, VetAgro Sup, NRA Theix, 63122, Saint Genès Champanelle, France
| | - Caroline Molette
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326 Castanet-Tolosan, France
| | - Séverine Jean
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
30
|
Pode-Shakked B, Barash H, Ziv L, Gripp KW, Flex E, Barel O, Carvalho KS, Scavina M, Chillemi G, Niceta M, Eyal E, Kol N, Ben-Zeev B, Bar-Yosef O, Marek-Yagel D, Bertini E, Duker AL, Anikster Y, Tartaglia M, Raas-Rothschild A. Microcephaly, intractable seizures and developmental delay caused by biallelic variants in TBCD: further delineation of a new chaperone-mediated tubulinopathy. Clin Genet 2016; 91:725-738. [PMID: 27807845 DOI: 10.1111/cge.12914] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 12/19/2022]
Abstract
Microtubule dynamics play a crucial role in neuronal development and function, and several neurodevelopmental disorders have been linked to mutations in genes encoding tubulins and functionally related proteins. Most recently, variants in the tubulin cofactor D (TBCD) gene, which encodes one of the five co-chaperones required for assembly and disassembly of α/β-tubulin heterodimer, were reported to underlie a recessive neurodevelopmental/neurodegenerative disorder. We report on five patients from three unrelated families, who presented with microcephaly, intellectual disability, intractable seizures, optic nerve pallor/atrophy, and cortical atrophy with delayed myelination and thinned corpus callosum on brain imaging. Exome sequencing allowed the identification of biallelic variants in TBCD segregating with the disease in the three families. TBCD protein level was significantly reduced in cultured fibroblasts from one patient, supporting defective TBCD function as the event underlying the disorder. Such reduced expression was associated with accelerated microtubule re-polymerization. Morpholino-mediated TBCD knockdown in zebrafish recapitulated several key pathological features of the human disease, and TBCD overexpression in the same model confirmed previous studies documenting an obligate dependency on proper TBCD levels during development. Our findings confirm the link between inactivating TBCD variants and this newly described chaperone-associated tubulinopathy, and provide insights into the phenotype of this disorder.
Collapse
Affiliation(s)
- B Pode-Shakked
- The Institute for Rare Diseases, The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,The Dr Pinchas Borenstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel
| | - H Barash
- The Institute for Rare Diseases, The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel
| | - L Ziv
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - K W Gripp
- Division of Medical Genetics, A.I. duPont Hospital for Children, Wilmington, DE, USA
| | - E Flex
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - O Barel
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - K S Carvalho
- Section of Pediatric Neurology, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, PA, USA
| | - M Scavina
- Division of Pediatric Neurology, A.I. duPont Hospital for Children, Wilmington, DE, USA
| | - G Chillemi
- SCAI-Super Computing Applications and Innovation Department, CINECA, Rome, Italy
| | - M Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - E Eyal
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - N Kol
- Sheba Cancer Research Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - B Ben-Zeev
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Tel-Hashomer, Israel
| | - O Bar-Yosef
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Tel-Hashomer, Israel
| | - D Marek-Yagel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - E Bertini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - A L Duker
- Division of Medical Genetics, A.I. duPont Hospital for Children, Wilmington, DE, USA
| | - Y Anikster
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Metabolic Disease Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - M Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - A Raas-Rothschild
- The Institute for Rare Diseases, The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
31
|
Flex E, Niceta M, Cecchetti S, Thiffault I, Au MG, Capuano A, Piermarini E, Ivanova AA, Francis JW, Chillemi G, Chandramouli B, Carpentieri G, Haaxma CA, Ciolfi A, Pizzi S, Douglas GV, Levine K, Sferra A, Dentici ML, Pfundt RR, Le Pichon JB, Farrow E, Baas F, Piemonte F, Dallapiccola B, Graham JM, Saunders CJ, Bertini E, Kahn RA, Koolen DA, Tartaglia M. Biallelic Mutations in TBCD, Encoding the Tubulin Folding Cofactor D, Perturb Microtubule Dynamics and Cause Early-Onset Encephalopathy. Am J Hum Genet 2016; 99:962-973. [PMID: 27666370 DOI: 10.1016/j.ajhg.2016.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/09/2016] [Indexed: 12/13/2022] Open
Abstract
Microtubules are dynamic cytoskeletal elements coordinating and supporting a variety of neuronal processes, including cell division, migration, polarity, intracellular trafficking, and signal transduction. Mutations in genes encoding tubulins and microtubule-associated proteins are known to cause neurodevelopmental and neurodegenerative disorders. Growing evidence suggests that altered microtubule dynamics may also underlie or contribute to neurodevelopmental disorders and neurodegeneration. We report that biallelic mutations in TBCD, encoding one of the five co-chaperones required for assembly and disassembly of the αβ-tubulin heterodimer, the structural unit of microtubules, cause a disease with neurodevelopmental and neurodegenerative features characterized by early-onset cortical atrophy, secondary hypomyelination, microcephaly, thin corpus callosum, developmental delay, intellectual disability, seizures, optic atrophy, and spastic quadriplegia. Molecular dynamics simulations predicted long-range and/or local structural perturbations associated with the disease-causing mutations. Biochemical analyses documented variably reduced levels of TBCD, indicating relative instability of mutant proteins, and defective β-tubulin binding in a subset of the tested mutants. Reduced or defective TBCD function resulted in decreased soluble α/β-tubulin levels and accelerated microtubule polymerization in fibroblasts from affected subjects, demonstrating an overall shift toward a more rapidly growing and stable microtubule population. These cells displayed an aberrant mitotic spindle with disorganized, tangle-shaped microtubules and reduced aster formation, which however did not alter appreciably the rate of cell proliferation. Our findings establish that defective TBCD function underlies a recognizable encephalopathy and drives accelerated microtubule polymerization and enhanced microtubule stability, underscoring an additional cause of altered microtubule dynamics with impact on neuronal function and survival in the developing brain.
Collapse
|
32
|
Common variants on 17q25 and gene-gene interactions conferring risk of schizophrenia in Han Chinese population and regulating gene expressions in human brain. Mol Psychiatry 2016; 21:1244-50. [PMID: 26728569 DOI: 10.1038/mp.2015.204] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/11/2015] [Accepted: 11/05/2015] [Indexed: 11/09/2022]
Abstract
Recently, two genome-wide association studies (GWASs) of schizophrenia (SCZ) in Han Chinese identified several susceptibility loci. Replication efforts aiming to validate the GWAS findings were made and focused on the top hits. We conducted a more extensive follow-up study in an independent sample of 1471 cases and 1528 matched controls to verify 26 genetic variants by including nine top single-nucleotide polymorphisms (SNPs) that reached genome-wide significance and 17 promising SNPs nominated in the initial discovery phase. rs8073471 in an intron of tubulin-folding cofactor D (TBCD) obtained nominal significance (P<0.01) in single SNP analysis. Logistic regression identified significant interaction between rs3744165 (5'-untranslated region variant of exon 2 of zinc finger protein 750 (ZNF750), and in an intron of TBCD) and rs8073471 (Deviance test P-value=2.77 × 10(-34)). Both SNPs are located at 17q25, an interesting region that has been implicated in SCZ. By using the Genotype-Tissue Expression (GTEx) data set, we implemented an expression quantitative trait loci epistasis analysis to explore the association between the genotype combinations of the two SNPs and gene expression levels in 13 areas of human central nervous system. We observed that rs3744165 × rs8073471 interaction modulated the expression profile of TEAD3 (P=1.87 × 10(-8)), SH3TC2 (P=2.00 × 10(-8)), KCNK9 (P=5.20 × 10(-7)) and PPDPF (P=1.13 × 10(-6)) in postmortem cortex tissue; EFNA1 (P=7.26 × 10(-9)), RNU4ATAC (P=2.32 × 10(-8)) and NUPL2 (P=6.79 × 10(-8)) in cerebellum tissue. To the best of our knowledge, our study is the first one that links TBCD and ZNF750 mutations to SCZ susceptibility and to the transcript levels in human brain tissues. Further efforts are needed to understand the role of those variants in the pathogenesis of SCZ.
Collapse
|
33
|
Cavazza T, Malgaretti P, Vernos I. The sequential activation of the mitotic microtubule assembly pathways favors bipolar spindle formation. Mol Biol Cell 2016; 27:2935-45. [PMID: 27489339 PMCID: PMC5042580 DOI: 10.1091/mbc.e16-05-0322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/27/2016] [Indexed: 01/22/2023] Open
Abstract
A combination of experimental data obtained in somatic cells and Xenopus egg extracts and modeling suggests a novel function for centrosome maturation that balances the activity of the mitotic microtubule assembly pathways favoring bipolar spindle formation. Centrosome maturation is the process by which the duplicated centrosomes recruit pericentriolar components and increase their microtubule nucleation activity before mitosis. The role of this process in cells entering mitosis has been mostly related to the separation of the duplicated centrosomes and thereby to the assembly of a bipolar spindle. However, spindles can form without centrosomes. In fact, all cells, whether they have centrosomes or not, rely on chromatin-driven microtubule assembly to form a spindle. To test whether the sequential activation of these microtubule assembly pathways, defined by centrosome maturation and nuclear envelope breakdown, plays any role in spindle assembly, we combined experiments in tissue culture cells and Xenopus laevis egg extracts with a mathematical model. We found that interfering with the sequential activation of the microtubule assembly pathways compromises bipolar spindle assembly in tissue culture cells but not in X. laevis egg extracts. Our data suggest a novel function for centrosome maturation that determines the contribution of the chromosomal microtubule assembly pathway and favors bipolar spindle formation in most animal cells in which tubulin is in limiting amounts.
Collapse
Affiliation(s)
- Tommaso Cavazza
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Paolo Malgaretti
- Departament de Fisica Fonamental, Universitat de Barcelona, 08028 Barcelona, Spain Max-Planck-Institut für Intelligente Systeme and IV. Institut für Theoretische Physik, Universität Stuttgart, D-70569 Stuttgart, Germany
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain Institució Catalana de Recerca I Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
34
|
Okumura M, Miura M, Chihara T. The roles of tubulin-folding cofactors in neuronal morphogenesis and disease. Neural Regen Res 2015; 10:1388-9. [PMID: 26604889 PMCID: PMC4625494 DOI: 10.4103/1673-5374.165226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Misako Okumura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan ; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| | - Takahiro Chihara
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan ; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
35
|
Skjærven L, Cuellar J, Martinez A, Valpuesta JM. Dynamics, flexibility, and allostery in molecular chaperonins. FEBS Lett 2015; 589:2522-32. [PMID: 26140986 DOI: 10.1016/j.febslet.2015.06.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022]
Abstract
The chaperonins are a family of molecular chaperones present in all three kingdoms of life. They are classified into Group I and Group II. Group I consists of the bacterial variants (GroEL) and the eukaryotic ones from mitochondria and chloroplasts (Hsp60), while Group II consists of the archaeal (thermosomes) and eukaryotic cytosolic variants (CCT or TRiC). Both groups assemble into a dual ring structure, with each ring providing a protective folding chamber for nascent and denatured proteins. Their functional cycle is powered by ATP binding and hydrolysis, which drives a series of structural rearrangements that enable encapsulation and subsequent release of the substrate protein. Chaperonins have elaborate allosteric mechanisms to regulate their functional cycle. Long-range negative cooperativity between the two rings ensures alternation of the folding chambers. Positive intra-ring cooperativity, which facilitates concerted conformational transitions within the protein subunits of one ring, has only been demonstrated for Group I chaperonins. In this review, we describe our present understanding of the underlying mechanisms and the structure-function relationships in these complex protein systems with a particular focus on the structural dynamics, allostery, and associated conformational rearrangements.
Collapse
Affiliation(s)
- Lars Skjærven
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Jorge Cuellar
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - José María Valpuesta
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
36
|
Barrack KL, Fyfe PK, Finney AJ, Hunter WN. Crystal structure of the C-terminal domain of tubulin-binding cofactor C from Leishmania major. Mol Biochem Parasitol 2015; 201:26-30. [PMID: 25982270 PMCID: PMC4539340 DOI: 10.1016/j.molbiopara.2015.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/01/2015] [Accepted: 05/08/2015] [Indexed: 01/23/2023]
Abstract
Tubulin-binding cofactor C stimulates GTPase activity and contributes to the release of the heterodimeric α/β-tubulin from a super-complex of tubulin monomers and two ancillary cofactors. We have determined the 2.2 Å resolution crystal structure of the C-terminal domain of tubulin-binding cofactor C from Leishmania major based on single wavelength anomalous dispersion measurements targeting a selenomethionine derivative. Although previously predicted to consist of two domains the structure is best described as a single domain dominated by a right-handed β-helix of five turns that form a triangular prism. One face of the prism is covered by the C-terminal residues leaving another face solvent exposed. Comparisons with an orthologous human GTPase activating protein match key residues involved in binding nucleotide and identify the face of the β-helix fold likely involved in interacting with the β-tubulin:GTP complex.
Collapse
Affiliation(s)
- Keri L Barrack
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Paul K Fyfe
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Alex J Finney
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - William N Hunter
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| |
Collapse
|
37
|
Mao Z, Xu B, Ji X, Zhou K, Zhang X, Chen M, Han X, Tang Q, Wang X, Xia Y. Titanium dioxide nanoparticles alter cellular morphology via disturbing the microtubule dynamics. NANOSCALE 2015; 7:8466-8475. [PMID: 25891938 DOI: 10.1039/c5nr01448d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) have been widely used in our daily lives, for example, in the areas of sunscreens, cosmetics, toothpastes, food products, and nanomedical reagents. Recently, increasing concern has been raised about their neurotoxicity, but the mechanisms underlying such toxic effects are still unknown. In this work, we employed a human neuroblastoma cell line (SH-SY5Y) to study the effects of TiO2 NPs on neurological systems. Our results showed that TiO2 NPs did not affect cell viability but induced noticeable morphological changes until 100 μg ml(-1). Immunofluorescence detection showed disorder, disruption, retraction, and decreased intensity of the microtubules after TiO2 NPs treatment. Both α and β tubule expressions did not change in the TiO2 NP-treated group, but the percentage of soluble tubules was increased. A microtubule dynamic study in living cells indicated that TiO2 NPs caused a lower growth rate and a higher shortening rate of microtubules as well as shortened lifetimes of de novo microtubules. TiO2 NPs did not cause changes in the expression and phosphorylation state of tau proteins, but a tau-TiO2 NP interaction was observed. TiO2 NPs could interact with tubule heterodimers, microtubules and tau proteins, which led to the instability of microtubules, thus contributing to the neurotoxicity of TiO2 NPs.
Collapse
Affiliation(s)
- Zhilei Mao
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211100, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gonçalves J, Tavares A, Carvalhal S, Soares H. Revisiting the tubulin folding pathway: new roles in centrosomes and cilia. Biomol Concepts 2015; 1:423-34. [PMID: 25962015 DOI: 10.1515/bmc.2010.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Centrosomes and cilia are critical eukaryotic organelles which have been in the spotlight in recent years given their implication in a myriad of cellular and developmental processes. Despite their recognized importance and intense study, there are still many open questions about their biogenesis and function. In the present article, we review the existing data concerning members of the tubulin folding pathway and related proteins, which have been identified at centrosomes and cilia and were shown to have unexpected roles in these structures.
Collapse
|
39
|
Barrack KL, Fyfe PK, Hunter WN. The structure of tubulin-binding cofactor A from Leishmania major infers a mode of association during the early stages of microtubule assembly. Acta Crystallogr F Struct Biol Commun 2015; 71:539-46. [PMID: 25945706 PMCID: PMC4427162 DOI: 10.1107/s2053230x15000990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/16/2015] [Indexed: 11/13/2022] Open
Abstract
Tubulin-binding cofactor A (TBCA) participates in microtubule formation, a key process in eukaryotic biology to create the cytoskeleton. There is little information on how TBCA might interact with β-tubulin en route to microtubule biogenesis. To address this, the protozoan Leishmania major was targeted as a model system. The crystal structure of TBCA and comparisons with three orthologous proteins are presented. The presence of conserved features infers that electrostatic interactions that are likely to involve the C-terminal tail of β-tubulin are key to association. This study provides a reagent and template to support further work in this area.
Collapse
Affiliation(s)
- Keri L. Barrack
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Paul K. Fyfe
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| |
Collapse
|
40
|
Transcriptional Response to Acute Thermal Exposure in Juvenile Chinook Salmon Determined by RNAseq. G3-GENES GENOMES GENETICS 2015; 5:1335-49. [PMID: 25911227 PMCID: PMC4502368 DOI: 10.1534/g3.115.017699] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thermal exposure is a serious and growing challenge facing fish species worldwide. Chinook salmon (Oncorhynchus tshawytscha) living in the southern portion of their native range are particularly likely to encounter warmer water due to a confluence of factors. River alterations have increased the likelihood that juveniles will be exposed to warm water temperatures during their freshwater life stage, which can negatively impact survival, growth, and development and pose a threat to dwindling salmon populations. To better understand how acute thermal exposure affects the biology of salmon, we performed a transcriptional analysis of gill tissue from Chinook salmon juveniles reared at 12° and exposed acutely to water temperatures ranging from ideal to potentially lethal (12° to 25°). Reverse-transcribed RNA libraries were sequenced on the Illumina HiSeq2000 platform and a de novo reference transcriptome was created. Differentially expressed transcripts were annotated using Blast2GO and relevant gene clusters were identified. In addition to a high degree of downregulation of a wide range of genes, we found upregulation of genes involved in protein folding/rescue, protein degradation, cell death, oxidative stress, metabolism, inflammation/immunity, transcription/translation, ion transport, cell cycle/growth, cell signaling, cellular trafficking, and structure/cytoskeleton. These results demonstrate the complex multi-modal cellular response to thermal stress in juvenile salmon.
Collapse
|
41
|
Serna M, Carranza G, Martín-Benito J, Janowski R, Canals A, Coll M, Zabala JC, Valpuesta JM. The structure of the complex between α-tubulin, TBCE and TBCB reveals a tubulin dimer dissociation mechanism. J Cell Sci 2015; 128:1824-34. [PMID: 25908846 DOI: 10.1242/jcs.167387] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/16/2015] [Indexed: 11/20/2022] Open
Abstract
Tubulin proteostasis is regulated by a group of molecular chaperones termed tubulin cofactors (TBC). Whereas tubulin heterodimer formation is well-characterized biochemically, its dissociation pathway is not clearly understood. Here, we carried out biochemical assays to dissect the role of the human TBCE and TBCB chaperones in α-tubulin-β-tubulin dissociation. We used electron microscopy and image processing to determine the three-dimensional structure of the human TBCE, TBCB and α-tubulin (αEB) complex, which is formed upon α-tubulin-β-tubulin heterodimer dissociation by the two chaperones. Docking the atomic structures of domains of these proteins, including the TBCE UBL domain, as we determined by X-ray crystallography, allowed description of the molecular architecture of the αEB complex. We found that heterodimer dissociation is an energy-independent process that takes place through a disruption of the α-tubulin-β-tubulin interface that is caused by a steric interaction between β-tubulin and the TBCE cytoskeleton-associated protein glycine-rich (CAP-Gly) and leucine-rich repeat (LRR) domains. The protruding arrangement of chaperone ubiquitin-like (UBL) domains in the αEB complex suggests that there is a direct interaction of this complex with the proteasome, thus mediating α-tubulin degradation.
Collapse
Affiliation(s)
- Marina Serna
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Gerardo Carranza
- Departamento de Biología Molecular, Facultad de Medicina, IDIVAL-Universidad de Cantabria, Santander 39011, Spain
| | - Jaime Martín-Benito
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Robert Janowski
- Departamento de Biología Estructural y Computacional, Institute for Research in Biomedicine (IRB-Barcelona), Barcelona 08028, Spain Departamento de Biología Estructural, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Albert Canals
- Departamento de Biología Estructural y Computacional, Institute for Research in Biomedicine (IRB-Barcelona), Barcelona 08028, Spain Departamento de Biología Estructural, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Miquel Coll
- Departamento de Biología Estructural y Computacional, Institute for Research in Biomedicine (IRB-Barcelona), Barcelona 08028, Spain Departamento de Biología Estructural, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Juan Carlos Zabala
- Departamento de Biología Molecular, Facultad de Medicina, IDIVAL-Universidad de Cantabria, Santander 39011, Spain
| | - José María Valpuesta
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| |
Collapse
|
42
|
Zhang X, Chen X, Jiang J, Yu M, Yin Y, Ma Z. The tubulin cofactor A is involved in hyphal growth, conidiation and cold sensitivity in Fusarium asiaticum. BMC Microbiol 2015; 15:35. [PMID: 25886735 PMCID: PMC4342098 DOI: 10.1186/s12866-015-0374-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/04/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Tubulin cofactor A (TBCA), one of the members of tubulin cofactors, is of great importance in microtubule functions through participating in the folding of α/β-tubulin heterodimers in Saccharomyces cerevisiae. However, little is known about the roles of TBCA in filamentous fungi. RESULTS In this study, we characterized a TBCA orthologue FaTBCA in Fusarium asiaticum. The deletion of FaTBCA caused dramatically reduced mycelial growth and abnormal conidiation. The FaTBCA deletion mutant (ΔFaTBCA-3) showed increased sensitivity to low temperatures and even lost the ability of growth at 4°C. Microscopic observation found that hyphae of ΔFaTBCA-3 exhibited blebbing phenotypes after shifting from 25 to 4°C for 1- or 3-day incubation and approximately 72% enlarged nodes contained several nuclei after 3-day incubation at 4°C. However, hyphae of the wild type incubated at 4°C were phenotypically indistinguishable from those incubated at 25°C. These results indicate that FaTBCA is involved in cell division under cold stress (4°C) in F. asiaticum. Unexpectedly, ΔFaTBCA-3 did not exhibit increased sensitivity to the anti-microtubule drug carbendazim although quantitative real-time assays showed that the expression of FaTBCA was up-regulated after treatment with carbendazim. In addition, pathogenicity assays showed that ΔFaTBCA-3 exhibited decreased virulence on wheat head and on non-host tomato. CONCLUSION Taken together, results of this study indicate that FaTBCA plays crucial roles in vegetative growth, conidiation, temperature sensitivity and virulence in F. asiaticum.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| | - Xiang Chen
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| | - Jinhua Jiang
- Institute of Agriculture Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Menghao Yu
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| | - Yanni Yin
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
43
|
Johnson CR, Weems AD, Brewer JM, Thorner J, McMurray MA. Cytosolic chaperones mediate quality control of higher-order septin assembly in budding yeast. Mol Biol Cell 2015; 26:1323-44. [PMID: 25673805 PMCID: PMC4454179 DOI: 10.1091/mbc.e14-11-1531] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Septin hetero-oligomers polymerize into cytoskeletal filaments with essential functions in many eukaryotic cell types. Mutations within the oligomerization interface that encompasses the GTP-binding pocket of a septin (its "G interface") cause thermoinstability of yeast septin hetero-oligomer assembly, and human disease. When coexpressed with its wild-type counterpart, a G interface mutant is excluded from septin filaments, even at moderate temperatures. We show that this quality control mechanism is specific to G interface mutants, operates during de novo septin hetero-oligomer assembly, and requires specific cytosolic chaperones. Chaperone overexpression lowers the temperature permissive for proliferation of cells expressing a G interface mutant as the sole source of a given septin. Mutations that perturb the septin G interface retard release from these chaperones, imposing a kinetic delay on the availability of nascent septin molecules for higher-order assembly. Un-expectedly, the disaggregase Hsp104 contributes to this delay in a manner that does not require its "unfoldase" activity, indicating a latent "holdase" activity toward mutant septins. These findings provide new roles for chaperone-mediated kinetic partitioning of non-native proteins and may help explain the etiology of septin-linked human diseases.
Collapse
Affiliation(s)
- Courtney R Johnson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew D Weems
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Jennifer M Brewer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Jeremy Thorner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
44
|
Lu Y, Liu C, Xu YF, Cheng H, Shi S, Wu CT, Yu XJ. Stathmin destabilizing microtubule dynamics promotes malignant potential in cancer cells by epithelial-mesenchymal transition. Hepatobiliary Pancreat Dis Int 2014; 13:386-94. [PMID: 25100123 DOI: 10.1016/s1499-3872(14)60038-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Stathmin is a ubiquitous cytosolic regulatory phosphoprotein and is overexpressed in different human malignancies. The main physiological function of stathmin is to interfere with microtubule dynamics by promoting depolymerization of microtubules or by preventing polymerization of tubulin heterodimers. Stathmin plays important roles in regulating many cellular functions as a result of its microtubule-destabilizing activity. Currently, the critical roles of stathmin in cancer cells, as well as in lymphocytes have been valued. This review discusses stathmin and microtubule dynamics in cancer development, and hypothesizes their possible relationship with epithelial-mesenchymal transition (EMT). DATA SOURCES A PubMed search using such terms as "stathmin", "microtubule dynamics", "epithelial-mesenchymal transition", "EMT", "malignant potential" and "cancer" was performed to identify relevant studies published in English. More than 100 related articles were reviewed. RESULTS The literature clearly documented the relationship between stathmin and its microtubule-destabilizing activity of cancer development. However, the particular mechanism is poorly understood. Microtubule disruption is essential for EMT, which is a crucial process during cancer development. As a microtubule-destabilizing protein, stathmin may promote malignant potential in cancer cells by initiating EMT. CONCLUSIONS We propose that there is a stathmin-microtubule dynamics-EMT (S-M-E) axis during cancer development. By this axis, stathmin together with its microtubule-destabilizing activity contributes to EMT, which stimulates the malignant potential in cancer cells.
Collapse
Affiliation(s)
- Yu Lu
- Pancreatic Cancer Institute, Fudan University; Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Poulton CJ, Schot R, Seufert K, Lequin MH, Accogli A, Annunzio GD, Villard L, Philip N, de Coo R, Catsman-Berrevoets C, Grasshoff U, Kattentidt-Mouravieva A, Calf H, de Vreugt-Gronloh E, van Unen L, Verheijen FW, Galjart N, Morris-Rosendahl DJ, Mancini GMS. Severe presentation ofWDR62mutation: Is there a role for modifying genetic factors? Am J Med Genet A 2014; 164A:2161-71. [DOI: 10.1002/ajmg.a.36611] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 04/06/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Cathryn J. Poulton
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam Germany
| | - Rachel Schot
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam Germany
| | - Katja Seufert
- Institute of Human Genetics; Albert-Ludwigs University Medical Centre Freiburg; Freiburg Germany
| | | | - Andrea Accogli
- Department of Pediatrics; Gaslini Institute; Genova Italy
| | | | | | - Nicole Philip
- Inserm U910; Aix Marseille University; Marseille France
| | - René de Coo
- Department of Child Neurology; Erasmus Medical Center; Rotterdam Germany
| | | | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics; University Hospital Tuebingen; Tuebingen Germany
| | | | - Hans Calf
- ASVZ Zuid West; Rotterdam the Netherlands
| | | | - Leontine van Unen
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam Germany
| | - Frans W. Verheijen
- Department of Clinical Genetics; Erasmus Medical Center; Rotterdam Germany
| | - Niels Galjart
- Department of Cell Biology; Erasmus Medical Center; Rotterdam the Netherlands
| | | | | |
Collapse
|
46
|
Tracy CM, Gray AJ, Cuéllar J, Shaw TS, Howlett AC, Taylor RM, Prince JT, Ahn NG, Valpuesta JM, Willardson BM. Programmed cell death protein 5 interacts with the cytosolic chaperonin containing tailless complex polypeptide 1 (CCT) to regulate β-tubulin folding. J Biol Chem 2013; 289:4490-502. [PMID: 24375412 DOI: 10.1074/jbc.m113.542159] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Programmed cell death protein 5 (PDCD5) has been proposed to act as a pro-apoptotic factor and tumor suppressor. However, the mechanisms underlying its apoptotic function are largely unknown. A proteomics search for binding partners of phosducin-like protein, a co-chaperone for the cytosolic chaperonin containing tailless complex polypeptide 1 (CCT), revealed a robust interaction between PDCD5 and CCT. PDCD5 formed a complex with CCT and β-tubulin, a key CCT-folding substrate, and specifically inhibited β-tubulin folding. Cryo-electron microscopy studies of the PDCD5·CCT complex suggested a possible mechanism of inhibition of β-tubulin folding. PDCD5 bound the apical domain of the CCTβ subunit, projecting above the folding cavity without entering it. Like PDCD5, β-tubulin also interacts with the CCTβ apical domain, but a second site is found at the sensor loop deep within the folding cavity. These orientations of PDCD5 and β-tubulin suggest that PDCD5 sterically interferes with β-tubulin binding to the CCTβ apical domain and inhibits β-tubulin folding. Given the importance of tubulins in cell division and proliferation, PDCD5 might exert its apoptotic function at least in part through inhibition of β-tubulin folding.
Collapse
Affiliation(s)
- Christopher M Tracy
- From the Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gao J, Li J, Feng C, Hu Z, Liu W, Liang S, Yin D. Isolation technique and proteomic analysis of the erythrocyte ghosts of red-eared turtle (Trachemys scripta). Electrophoresis 2013; 34:215-23. [PMID: 23160936 DOI: 10.1002/elps.201200243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/29/2012] [Accepted: 08/09/2012] [Indexed: 11/05/2022]
Abstract
To proceed proteomic analysis of erythrocyte of the red-eared turtle Trachemys scripta, a method for obtaining turtle erythrocyte ghosts (TEG) was first developed. After hypotonic lysis using a special buffer, forcing the erythrocyte through the syringe with an "N"-shaped needle, applying low speed homogenizing and differential centrifugation, highly purified TEG fractions were obtained. The isolated TEG proteins were treated with in-gel digestion separated by SDS-PAGE or in-solution digestion followed by HPLC predissociation, and then identified by nano-ESI-LC MS/MS techniques. A total of 169 TEG proteins was identified, validated, and categorized. Among these proteins, tubulins, and cell-surface-located F-type ATP synthase revealed important information into the super tolerance of Trachemys scripta in anoxia and low temperature exposure. Altogether, this study not only provided a method to isolate high quality TEG and a dataset of comprehensive characterization of TEG proteins, but also provides a tool for proteomic research of all nucleated red blood cells, and thus opened a new research field for exploring the mechanisms of super tolerance of turtles in harsh environment.
Collapse
Affiliation(s)
- Jun Gao
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Mori R, Toda T. The dual role of fission yeast Tbc1/cofactor C orchestrates microtubule homeostasis in tubulin folding and acts as a GAP for GTPase Alp41/Arl2. Mol Biol Cell 2013; 24:1713-24, S1-8. [PMID: 23576550 PMCID: PMC3667724 DOI: 10.1091/mbc.e12-11-0792] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/22/2013] [Accepted: 03/29/2013] [Indexed: 11/11/2022] Open
Abstract
Supplying the appropriate amount of correctly folded α/β-tubulin heterodimers is critical for microtubule dynamics. Formation of assembly-competent heterodimers is remarkably elaborate at the molecular level, in which the α- and β-tubulins are separately processed in a chaperone-dependent manner. This sequential step is performed by the tubulin-folding cofactor pathway, comprising a specific set of regulatory proteins: cofactors A-E. We identified the fission yeast cofactor: the orthologue of cofactor C, Tbc1. In addition to its roles in tubulin folding, Tbc1 acts as a GAP in regulating Alp41/Arl2, a highly conserved small GTPase. Of interest, the expression of GDP- or GTP-bound Alp41 showed the identical microtubule loss phenotype, suggesting that continuous cycling between these forms is important for its functions. In addition, we found that Alp41 interacts with Alp1(D), the orthologue of cofactor D, specifically when in the GDP-bound form. Intriguingly, Alp1(D) colocalizes with microtubules when in excess, eventually leading to depolymerization, which is sequestered by co-overproducing GDP-bound Alp41. We present a model of the final stages of the tubulin cofactor pathway that includes a dual role for both Tbc1 and Alp1(D) in opposing regulation of the microtubule.
Collapse
Affiliation(s)
- Risa Mori
- Cell Regulation Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
| | - Takashi Toda
- Cell Regulation Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
| |
Collapse
|
50
|
Qi LM, Wade J. Sexually dimorphic and developmentally regulated expression of tubulin-specific chaperone protein A in the LMAN of zebra finches. Neuroscience 2013; 247:182-90. [PMID: 23727504 DOI: 10.1016/j.neuroscience.2013.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 01/06/2023]
Abstract
Sex differences in brain and behavior exist across vertebrates, but the molecular factors regulating their development are largely unknown. Songbirds exhibit substantial sexual dimorphisms. In zebra finches, only males sing, and the brain areas regulating song learning and production are much larger in males. Recent data suggest that sex chromosome genes (males ZZ; females ZW) may play roles in sexual differentiation. The present studies tested the hypothesis that a Z-gene, tubulin-specific chaperone protein A (TBCA), contributes to sexual differentiation of the song system. This taxonomically conserved gene is integral to microtubule synthesis, and within the song system, its mRNA is specifically increased in males compared to females in the lateral magnocellular nucleus of the anterior nidopallium (LMAN), a region critical for song learning and plasticity. Using in situ hybridization, Western blot analysis, and immunohistochemistry, we observed effects of both age and sex on TBCA mRNA and protein expression. The transcript is increased in males compared to females at three juvenile ages, but not in adults. TBCA protein, both the number of immunoreactive cells and relative concentration in LMAN, is diminished in adults compared to juveniles. The latter was also increased in males compared to females at post-hatching day 25. With double-label immunofluorescence and retrograde tract tracing, we also document that the majority of TBCA+ cells in LMAN are neurons, and that they include robust nucleus of the arcopallium-projecting cells. These results indicate that TBCA is both temporally and spatially primed to facilitate the development of a sexually dimorphic neural pathway critical for song.
Collapse
Affiliation(s)
- L M Qi
- Neuroscience Program, Michigan State University, East Lansing, MI 48824-1101, USA.
| | | |
Collapse
|