1
|
Shvedov NR, Analoui S, Dafalias T, Bedell BL, Gardner TJ, Scott BB. In vivo imaging in transgenic songbirds reveals superdiffusive neuron migration in the adult brain. Cell Rep 2024; 43:113759. [PMID: 38345898 DOI: 10.1016/j.celrep.2024.113759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/01/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Neuron migration is a key phase of neurogenesis, critical for the assembly and function of neuronal circuits. In songbirds, this process continues throughout life, but how these newborn neurons disperse through the adult brain is unclear. We address this question using in vivo two-photon imaging in transgenic zebra finches that express GFP in young neurons and other cell types. In juvenile and adult birds, migratory cells are present at a high density, travel in all directions, and make frequent course changes. Notably, these dynamic migration patterns are well fit by a superdiffusive model. Simulations reveal that these superdiffusive dynamics are sufficient to disperse new neurons throughout the song nucleus HVC. These results suggest that superdiffusive migration may underlie the formation and maintenance of nuclear brain structures in the postnatal brain and indicate that transgenic songbirds are a useful resource for future studies into the mechanisms of adult neurogenesis.
Collapse
Affiliation(s)
- Naomi R Shvedov
- Graduate Program for Neuroscience, Boston University, Boston, MA 02215, USA
| | - Sina Analoui
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Theresia Dafalias
- Graduate Program for Neuroscience, Boston University, Boston, MA 02215, USA
| | - Brooke L Bedell
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Timothy J Gardner
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Benjamin B Scott
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA; Neurophotonics Center, Photonics Center, and Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Garcia-Segura LM, Méndez P, Arevalo MA, Azcoitia I. Neuroestradiol and neuronal development: Not an exclusive male tale anymore. Front Neuroendocrinol 2023; 71:101102. [PMID: 37689249 DOI: 10.1016/j.yfrne.2023.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The brain synthesizes a variety of neurosteroids, including neuroestradiol. Inhibition of neuroestradiol synthesis results in alterations in basic neurodevelopmental processes, such as neurogenesis, neuroblast migration, neuritogenesis and synaptogenesis. Although the neurodevelopmental actions of neuroestradiol are exerted in both sexes, some of them are sex-specific, such as the well characterized effects of neuroestradiol derived from the metabolism of testicular testosterone during critical periods of male brain development. In addition, recent findings have shown sex-specific actions of neuroestradiol on neuroblast migration, neuritic growth and synaptogenesis in females. Among other factors, the epigenetic regulation exerted by X linked genes, such as Kdm6a/Utx, may determine sex-specific actions of neuroestradiol in the female brain. This review evidences the impact of neuroestradiol on brain formation in both sexes and highlights the interaction of neural steriodogenesis, hormones and sex chromosomes in sex-specific brain development.
Collapse
Affiliation(s)
- Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain.
| | - Pablo Méndez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain
| | - M Angeles Arevalo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, 28002 Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain.
| | - Iñigo Azcoitia
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Nacional de Salud Carlos III, Madrid, Spain; Department of Cell Biology, Universidad Complutense de Madrid, C José Antonio Nováis 12, 28040 Madrid, Spain
| |
Collapse
|
3
|
Immature excitatory neurons in the amygdala come of age during puberty. Dev Cogn Neurosci 2022; 56:101133. [PMID: 35841648 PMCID: PMC9289873 DOI: 10.1016/j.dcn.2022.101133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
The human amygdala is critical for emotional learning, valence coding, and complex social interactions, all of which mature throughout childhood, puberty, and adolescence. Across these ages, the amygdala paralaminar nucleus (PL) undergoes significant structural changes including increased numbers of mature neurons. The PL contains a large population of immature excitatory neurons at birth, some of which may continue to be born from local progenitors. These progenitors disappear rapidly in infancy, but the immature neurons persist throughout childhood and adolescent ages, indicating that they develop on a protracted timeline. Many of these late-maturing neurons settle locally within the PL, though a small subset appear to migrate into neighboring amygdala subnuclei. Despite its prominent growth during postnatal life and possible contributions to multiple amygdala circuits, the function of the PL remains unknown. PL maturation occurs predominately during late childhood and into puberty when sex hormone levels change. Sex hormones can promote developmental processes such as neuron migration, dendritic outgrowth, and synaptic plasticity, which appear to be ongoing in late-maturing PL neurons. Collectively, we describe how the growth of late-maturing neurons occurs in the right time and place to be relevant for amygdala functions and neuropsychiatric conditions.
Collapse
|
4
|
Velíšek L, Velíšková J. Modeling epileptic spasms during infancy: Are we heading for the treatment yet? Pharmacol Ther 2020; 212:107578. [PMID: 32417271 PMCID: PMC7299814 DOI: 10.1016/j.pharmthera.2020.107578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/07/2020] [Indexed: 12/22/2022]
Abstract
Infantile spasms (IS or epileptic spasms during infancy) were first described by Dr. William James West (aka West syndrome) in his own son in 1841. While rare by definition (occurring in 1 per 3200-3400 live births), IS represent a major social and treatment burden. The etiology of IS varies - there are many (>200) different known pathologies resulting in IS and still in about one third of cases there is no obvious reason. With the advancement of genetic analysis, role of certain genes (such as ARX or CDKL5 and others) in IS appears to be important. Current treatment strategies with incomplete efficacy and serious potential adverse effects include adrenocorticotropin (ACTH), corticosteroids (prednisone, prednisolone) and vigabatrin, more recently also a combination of hormones and vigabatrin. Second line treatments include pyridoxine (vitamin B6) and ketogenic diet. Additional treatment approaches use rapamycin, cannabidiol, valproic acid and other anti-seizure medications. Efficacy of these second line medications is variable but usually inferior to hormonal treatments and vigabatrin. Thus, new and effective models of this devastating condition are required for the search of additional treatment options as well as for better understanding the mechanisms of IS. Currently, eight models of IS are reviewed along with the ideas and mechanisms behind these models, drugs tested using the models and their efficacy and usefulness. Etiological variety of IS is somewhat reflected in the variety of the models. However, it seems that for finding precise personalized approaches, this variety is necessary as there is no "one-size-fits-all" approach possible for both IS in particular and epilepsy in general.
Collapse
Affiliation(s)
- Libor Velíšek
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA; Departments of Pediatrics, New York Medical College, Valhalla, NY, USA; Departments of Neurology, New York Medical College, Valhalla, NY, USA.
| | - Jana Velíšková
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA; Departments of Neurology, New York Medical College, Valhalla, NY, USA; Departments of Obstetrics & Gynecology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
5
|
Haumann I, Sturm MA, Anstötz M, Rune GM. GPER1 Signaling Initiates Migration of Female V-SVZ-Derived Cells. iScience 2020; 23:101077. [PMID: 32361597 PMCID: PMC7200306 DOI: 10.1016/j.isci.2020.101077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/01/2019] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
In the rodent ventricular-subventricular zone (V-SVZ) neurons are generated throughout life. They migrate along the rostral migratory stream (RMS) into the olfactory bulb before their final differentiation into interneurons and integration into local circuits. Estrogen receptors (ERs) are steroid hormone receptors with important functions in neurogenesis and synaptic plasticity. In this study, we show that the ER GPER1 is expressed in subsets of cells within the V-SVZ of female animals and provide evidence for a potential local estrogen source from aromatase-positive astrocytes surrounding the RMS. Blocking of GPER1 in Matrigel cultures of female animals significantly impairs migration of V-SVZ-derived cells. This outgrowth is accompanied by regulation of phosphorylation of the actin-binding protein cofilin by GPER1 signaling including an involvement of the p21-Ras pathway. Our results point to a prominent role of GPER1 in the initiation of neuronal migration from the V-SVZ to the olfactory bulb. GPER1 is expressed within all cell types of the stem cell lineage in the V-SVZ Blocking of GPER1 leads to a decrease in migration of V-SVZ-derived neuroblasts GPER1 signaling in V-SVZ Matrigel cultures involves Ras-induced p21 Blocking of GPER1 signaling leads to an increase in the ratio of p-cofilin/cofilin
Collapse
Affiliation(s)
- Iris Haumann
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Muriel Anne Sturm
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Max Anstötz
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Gabriele M Rune
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
6
|
Shevchouk OT, Ghorbanpoor S, Ball GF, Cornil CA, Balthazart J. Testosterone-induced neuroendocrine changes in the medial preoptic area precede song activation and plasticity in song control nuclei of female canaries. Eur J Neurosci 2017; 45:886-900. [DOI: 10.1111/ejn.13530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/26/2016] [Accepted: 01/24/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Olesya T. Shevchouk
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| | - Samar Ghorbanpoor
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| | - Gregory F. Ball
- Department of Psychology; University of Maryland; College Park MD USA
| | - Charlotte A. Cornil
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| | - Jacques Balthazart
- GIGA Neurosciences; University of Liege; 15 avenue Hippocrate B-4000 Liège Belgium
| |
Collapse
|
7
|
Chachua T, Di Grazia P, Chern CR, Johnkutty M, Hellman B, Lau HA, Shakil F, Daniel M, Goletiani C, Velíšková J, Velíšek L. Estradiol does not affect spasms in the betamethasone-NMDA rat model of infantile spasms. Epilepsia 2016; 57:1326-36. [PMID: 27328917 PMCID: PMC10765244 DOI: 10.1111/epi.13434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study attempted to validate the effects of neonatal estradiol in ameliorating the spasms in the prenatally betamethasone-primed N-methyl-d-aspartate (NMDA) model of infantile spasms in rats as shown previously in a mouse Arx gene knock-in expansion model of infantile spasms. METHODS Neonatal rats prenatally exposed to betamethasone (on day 15 of pregnancy) were treated with subcutaneous 40 ng/g estradiol benzoate (EB) between postnatal days (P)3-P10 or P0-P5. A synthetic estrogen analogue, diethylstilbestrol, was used between P0 and P5 (2 μg per rat, s.c.). On P12, P13, and P15, the rats were subjected to NMDA-triggered spasms, and latency to onset and number of spasms were evaluated. Rats with EB on P3-P10 were tested after spasms in the open field, novel object recognition, and elevated plus maze to determine effects of treatment on behavior. Additional rats with P3-P10 or P0-P5 EB were investigated for γ-aminobutyric acid (GABA)ergic neurons (glutamate decarboxylase [GAD]67 expression) in the neocortex. As a positive control, a group of rats received either subcutaneous adrenocorticotropic hormone (ACTH) (2 × 0.3 mg/kg on P12 and 3 × 0.3 mg/kg on P13 and P14) or vehicle after the first episode of spasms on P12. RESULTS Neither EB treatment nor diethylstilbestrol consistently affected expression of spasms in this model, although we found a significant increase in GAD67-immunopositive cells in the neocortex after P3-P10 and P0-P5 EB treatment, consistent with a study in mice. Behavioral tests showed increase in lateralization in male rats treated with P3-P10 EB, a behavioral trait usually associated with female sex. Diethylstilbestrol treatment in male rats resulted in arrested pubertal descent of testes. ACTH had robust effects in suppressing spasms. SIGNIFICANCE Treatment of infantile spasms (IS) using neonatal EB may be justified in those cases of IS that present with detectable deficits in GABAergic neurons. In other types of IS, the efficacy of neonatal EB and its analogues is not supported.
Collapse
Affiliation(s)
- Tamar Chachua
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Paola Di Grazia
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Chian-Ru Chern
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Meenu Johnkutty
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Benjamin Hellman
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Ho An Lau
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Faariah Shakil
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Margaret Daniel
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Cezar Goletiani
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Jana Velíšková
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Obstetrics & Gynecology, New York Medical College, Valhalla, NY, USA
- Department of Neurology, New York Medical College, Valhalla, NY, USA
| | - Libor Velíšek
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Neurology, New York Medical College, Valhalla, NY, USA
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
8
|
Olivetti PR, Maheshwari A, Noebels JL. Neonatal estradiol stimulation prevents epilepsy in Arx model of X-linked infantile spasms syndrome. Sci Transl Med 2014; 6:220ra12. [PMID: 24452264 DOI: 10.1126/scitranslmed.3007231] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Infantile spasms are a catastrophic form of pediatric epilepsy with inadequate treatment. In patients, mutation of ARX, a transcription factor selectively expressed in neuronal precursors and adult inhibitory interneurons, impairs cell migration and causes a major inherited subtype of the disease X-linked infantile spasms syndrome. Using an animal model, the Arx((GCG)10+7) mouse, we determined that brief estradiol (E2) administration during early postnatal development prevented spasms in infancy and seizures in adult mutants. E2 was ineffective when delivered after puberty or 30 days after birth. Early E2 treatment altered mRNA levels of three downstream targets of Arx (Shox2, Ebf3, and Lgi1) and restored depleted interneuron populations without increasing GABAergic synaptic density. Postnatal E2 treatment may induce lasting transcriptional changes that lead to enduring disease modification and could potentially serve as a therapy for inherited interneuronopathies.
Collapse
Affiliation(s)
- Pedro R Olivetti
- Blue Bird Circle Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
9
|
London SE. Genome-brain-behavior interdependencies as a framework to understand hormone effects on learned behavior. Gen Comp Endocrinol 2013; 190:176-81. [PMID: 23684969 DOI: 10.1016/j.ygcen.2013.04.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/28/2013] [Accepted: 04/30/2013] [Indexed: 12/16/2022]
Abstract
Hormones have profound effects on the maturation and function of the zebra finch song system. Hormones often signal through receptors that directly or indirectly regulate transcription. In this way, hormones and the genome are functionally connected. Genome-brain-behavior interdependencies are often studied on evolutionary timescales but we can now apply and test these relationships on short timescales, relevant to an individual. Here, we begin to place patterns of hormone-related gene expression into the timeframe of an individual's lifespan to consider how hormones contribute to organization of neural systems necessary for learned behavior, and how they might signal during experience in ways that affect future behavior. This framework illustrates both how much investigations into genome and hormone function are intertwined, and how much we still need to learn.
Collapse
Affiliation(s)
- Sarah E London
- Department of Psychology, Institute for Mind and Biology, Committee on Neurobiology, University of Chicago, 129A BPSB, 940 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Duncan KA, Walters BJ, Saldanha CJ. Traumatized and inflamed--but resilient: glial aromatization and the avian brain. Horm Behav 2013; 63:208-15. [PMID: 22414444 PMCID: PMC9366899 DOI: 10.1016/j.yhbeh.2012.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/26/2012] [Accepted: 02/27/2012] [Indexed: 01/08/2023]
Abstract
Steroids like estrogens have potent effects on the vertebrate brain, and are provided to neural targets from peripheral and central sources. Estradiol synthesized within the vertebrate CNS modulates neural structure and function, including the pathways involved in neuroprotection, and perhaps, neural repair. Specifically, aromatase; the enzyme responsible for the conversion of testosterone to estradiol, is upregulated in the avian and mammalian brain following disruption of the neuropil by multiple forms of perturbation including mechanical injury, ischemia and excitotoxicity. This injury induced aromatase expression is somewhat unique in that it occurs in astroglia rather than neurons, and is stimulated in response to factors associated with brain damage. In this review, we focus on the induction, expression and consequences of glial aromatization in the songbird brain. We begin with a review of the anatomical consequences of glial estrogen provision followed by a discussion of the cellular mechanisms whereby glial aromatization may affect injury-induced neuroplasticity. We then present the current status of our understanding regarding the inductive role of inflammatory processes in the transcription and translation of astrocytic aromatase. We consider the functional aspects of glial aromatization before concluding with unanswered questions and suggestions for future studies. Birds have long informed us about fundamental questions in endocrinology, immunology, and neuroplasticity; and their unique anatomical and physiological characteristics continue to provide an excellent system in which to learn about brain trauma, inflammation, and neuroprotection.
Collapse
Affiliation(s)
- Kelli A. Duncan
- Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA
| | - Bradley J. Walters
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Colin J. Saldanha
- Department of Biology, American University, Washington DC, 20016, USA
- Department of Psychology, American University, Washington DC, 20016, USA
| |
Collapse
|
11
|
Testosterone modulation of angiogenesis and neurogenesis in the adult songbird brain. Neuroscience 2013; 239:139-48. [PMID: 23291451 DOI: 10.1016/j.neuroscience.2012.12.043] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 01/17/2023]
Abstract
Throughout life, new neurons arise from the ventricular zone of the adult songbird brain and are recruited to the song control nucleus higher vocal center (HVC), from which they extend projections to its target, nucleus robustus of the arcopallium (RA). This process of ongoing parenchymal neuronal addition and circuit integration is both triggered and modulated by seasonal surges in systemic testosterone. Brain aromatase converts circulating testosterone to estradiol, so that HVC is concurrently exposed to both androgenic and estrogenic stimulation. These two signals cooperate to trigger HVC endothelial cell division and angiogenesis, by inducing the regionally-restricted expression of vascular endothelial growth factor (VEGF), its matrix-releasing protease MMP9, and its endothelial receptor VEGFR2. The expanded HVC microvascular network then secretes the neurotrophic factor BDNF, which in turn supports the recruitment of newly generated neurons. This process is striking for its spatial restriction and hence functional specificity. While androgen receptors are broadly expressed by the nuclei of the vocal control system, estrogen receptor (ERα) expression is largely restricted to HVC and its adjacent mediocaudal neopallium. The geographic overlap of these receptor phenotypes in HVC provides the basis for a regionally-defined set of paracrine interactions between the vascular bed and neuronal progenitor pool that both characterize and distinguish this nucleus. These interactions culminate in the focal attraction of new neurons to the adult HVC, the integration of those neurons into the extant vocal control circuits, and ultimately the acquisition and elaboration of song.
Collapse
|
12
|
Sanchez AM, Flamini MI, Polak K, Palla G, Spina S, Mannella P, Genazzani AD, Simoncini T. Actin cytoskeleton remodelling by sex steroids in neurones. J Neuroendocrinol 2012; 24:195-201. [PMID: 22103470 DOI: 10.1111/j.1365-2826.2011.02258.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell morphology and its interaction with the extracellular environment are integrated processes involving a number of intracellular controllers orchestrating cytoskeletal proteins and their interaction with the cell membrane and anchorage proteins. Sex steroids are effective regulators of cell morphology and tissue organisation, and recent evidence indicates that this is obtained through the regulation of the actin cytoskeleton. Intriguingly, many of these regulatory actions related to cell morphology are achieved through the rapid, nonclassical signalling of sex steroid receptors to kinase cascades, independently from nuclear alteration of gene expression or protein synthesis. The identification of the mechanistic basis for these rapid actions on cell cytoskeleton has special relevance for the characterisation of the effects of sex steroids under physiological conditions, such as for the development of neurone/neurone interconnections and dendritic spine density. This is considered to be critical for gender-specific differences in brain function and dysfunction. Recent advancements in the characterisation of the molecular basis of the extranuclear signalling of sex steroids help to clarify the role of oestrogen and progesterone in the brain, and may turn out to be of relevance for clinical purposes. This review highlights the regulatory effects of oestrogens and progesterone on actin cytoskeleton and neurone morphology, as well as recent progresses in the characterisation of these mechanisms, providing insights and working hypotheses on possible clinical applications for the modulation of these pathways in the central nervous system.
Collapse
Affiliation(s)
- A M Sanchez
- Institute of Medicine and Experimental Biology of Cuyo, CCT-CONICET Mendoza, National University of Cuyo, Parque General San Martin s/n, Mendoza, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Barnea A, Pravosudov V. Birds as a model to study adult neurogenesis: bridging evolutionary, comparative and neuroethological approaches. Eur J Neurosci 2011; 34:884-907. [PMID: 21929623 PMCID: PMC3177424 DOI: 10.1111/j.1460-9568.2011.07851.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the last few decades, evidence has demonstrated that adult neurogenesis is a well-preserved feature throughout the animal kingdom. In birds, ongoing neuronal addition occurs rather broadly, to a number of brain regions. This review describes adult avian neurogenesis and neuronal recruitment, discusses factors that regulate these processes, and touches upon the question of their genetic control. Several attributes make birds an extremely advantageous model to study neurogenesis. First, song learning exhibits seasonal variation that is associated with seasonal variation in neuronal turnover in some song control brain nuclei, which seems to be regulated via adult neurogenesis. Second, food-caching birds naturally use memory-dependent behavior in learning the locations of thousands of food caches scattered over their home ranges. In comparison with other birds, food-caching species have relatively enlarged hippocampi with more neurons and intense neurogenesis, which appears to be related to spatial learning. Finally, migratory behavior and naturally occurring social systems in birds also provide opportunities to investigate neurogenesis. This diversity of naturally occurring memory-based behaviors, combined with the fact that birds can be studied both in the wild and in the laboratory, make them ideal for investigation of neural processes underlying learning. This can be done by using various approaches, from evolutionary and comparative to neuroethological and molecular. Finally, we connect the avian arena to a broader view by providing a brief comparative and evolutionary overview of adult neurogenesis and by discussing the possible functional role of the new neurons. We conclude by indicating future directions and possible medical applications.
Collapse
Affiliation(s)
- Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, PO Box 808, Ra'anana 43107, Israel.
| | | |
Collapse
|
14
|
Sanchez AM, Simoncini T. Extra-nuclear signaling of ERalpha to the actin cytoskeleton in the central nervous system. Steroids 2010; 75:528-32. [PMID: 20018203 DOI: 10.1016/j.steroids.2009.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/30/2009] [Accepted: 12/02/2009] [Indexed: 11/19/2022]
Abstract
Cell morphology is controlled by a complex and redundant array of intracellular signaling pathways devoted to the regulation of the actin cytoskeleton and of its relationship with the cell membrane and the extracellular matrix. Sex steroids are effective regulators of cell morphology and tissue organization, and recent evidence indicates that this is obtained through the regulation of the cytoskeleton. Intriguingly, many of these regulatory actions related to cell morphology are achieved through rapid, non-classical signaling of sex steroid receptors to kinase cascades, independently from nuclear alteration of gene expression or protein synthesis. The identification of the mechanistic basis for these rapid actions on cell cytoskeleton has special relevance for the characterization of the effects of sex steroids in physiological conditions, such as their role in the control of brain cell remodeling. Brain cell morphology is controlled by estrogens that regulate the development of neuron/neuron interconnections and dendritic spine density. This is thought to be critical for gender-specific differences in brain function and dysfunction. The recent advancements in the characterization of the molecular basis of the extra-nuclear signaling of estrogen helps to understand the role of estrogen in the brain, and may in the future turn out to be of relevance for clinical purposes. This review highlights the regulatory effects on the cytoskeleton and cell morphology of estrogens as well as the recent advances in the characterization of these mechanisms, providing insights and working hypotheses on possible clinical applications for the modulation of these pathways in the central nervous system.
Collapse
Affiliation(s)
- Angel Matias Sanchez
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa 56100, Italy
| | | |
Collapse
|
15
|
Mirzatoni A, Dong SM, Guerra M, Zhen Y, Katz A, Schlinger BA. Steroidal and gonadal effects on neural cell proliferation in vitro in an adult songbird. Brain Res 2010; 1351:41-49. [PMID: 20637746 DOI: 10.1016/j.brainres.2010.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 01/16/2023]
Abstract
Neurogenesis in the adult songbird brain occurs along the ventricular zone (VZ), a specialized cell layer surrounding the lateral ventricles. To examine the acute effects of sex steroids on VZ cell proliferation, male and female adult zebra finch brain slices containing the VZ were exposed to 5-bromo-2'-deoxyuridine-5'-monophosphate (BrdU) in vitro. Slices from one hemisphere served as the control, while contralateral slices were treated with steroids, steroidogenic enzyme inhibitors or gonadal tissue itself. There were no significant effects on VZ cell proliferation in either sexes by acute exposure to 17beta-estradiol (E2), dihydrotestosterone (DHT), a cocktail of four sex steroids, and inhibitors of sex steroid synthesis (aminoglutethimide, ketoconazole, and fadrozole), or by activation of a mitochondrial cholesterol transporter. By contrast, dehydroepiandrosterone (DHEA) suppressed VZ cell proliferation in males, but not females, replicating previous observations involving treatments with corticosterone and RU-486. This suggests that DHEA suppresses proliferation in males via a glucocorticoid receptor-related mechanism. These results suggest that neurosteroidogenesis per se has little effect on acute VZ cell proliferation. Co-incubation with an ovary of female, but not male, slices significantly increased VZ cell proliferation; testicular tissue had no impact on proliferation in males or females. This suggests a role for a non-steroidal ovarian factor on adult female VZ cell proliferation. We also have evidence that previously reported sex-differences in BrdU-labeling along the adult VZ (males>females) result from a more rapid loss of cells in females. Sex differences in steroid action and cell death along the VZ may contribute to the maintenance of the sexually dimorphic song system.
Collapse
Affiliation(s)
- Anahid Mirzatoni
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, California, 90095, USA.
| | - Stephanie M Dong
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, California, 90095, USA
| | - Marjorie Guerra
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, California, 90095, USA
| | - Yin Zhen
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, California, 90095, USA
| | - Amnon Katz
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, California, 90095, USA
| | - Barney A Schlinger
- Department of Integrative Biology and Physiology and Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, California, 90095, USA
| |
Collapse
|
16
|
London SE, Remage-Healey L, Schlinger BA. Neurosteroid production in the songbird brain: a re-evaluation of core principles. Front Neuroendocrinol 2009; 30:302-14. [PMID: 19442685 PMCID: PMC2724309 DOI: 10.1016/j.yfrne.2009.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 05/01/2009] [Accepted: 05/04/2009] [Indexed: 11/17/2022]
Abstract
Concepts of brain-steroid signaling have traditionally placed emphasis on the gonads and adrenals as the source of steroids, the strict dichotomy of early developmental ("organizational") and mature ("activational") effects, and a relatively slow mechanism of signaling through intranuclear receptors. Continuing research shows that these concepts are not inaccurate, but they are certainly incomplete. In this review, we focus on the song control circuit of songbird species to demonstrate how each of these concepts is limited. We discuss the solid evidence for steroid synthesis within the brain ("neurosteroidogenesis"), the role of neurosteroids in organizational events that occur both early in development and later in life, and how neurosteroids can act in acute and non-traditional ways. The songbird model therefore illustrates how neurosteroids can dramatically increase the diversity of steroid-sensitive brain functions in a behaviorally-relevant system. We hope this inspires further research and thought into neurosteroid signaling in songbirds and other animals.
Collapse
Affiliation(s)
- Sarah E. London
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Luke Remage-Healey
- Department of Physiological Science &, Ecology and Evolutionary Biology, Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Barney A. Schlinger
- Department of Physiological Science &, Ecology and Evolutionary Biology, Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
17
|
Remage-Healey L, London SE, Schlinger BA. Birdsong and the neural production of steroids. J Chem Neuroanat 2009; 39:72-81. [PMID: 19589382 DOI: 10.1016/j.jchemneu.2009.06.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/30/2009] [Accepted: 06/25/2009] [Indexed: 10/20/2022]
Abstract
The forebrain circuits involved in singing and audition (the 'song system') in songbirds exhibit a remarkable capacity to synthesize and respond to steroid hormones. This review considers how local brain steroid production impacts the development, sexual differentiation, and activity of song system circuitry. The songbird forebrain contains all of the enzymes necessary for the de novo synthesis of steroids - including neuroestrogens - from cholesterol. Steroid production enzymes are found in neuronal cell bodies, but they are also expressed in pre-synaptic terminals in the song system, indicating a novel mode of brain steroid delivery to local circuits. The song system expresses nuclear hormone receptors, consistent with local action of brain-derived steroids. Local steroid production also occurs in brain regions that do not express nuclear hormone receptors, suggesting a non-classical mode of action. Recent evidence indicates that local steroid levels can change rapidly within the forebrain, in a manner similar to traditional neuromodulators. Lastly, we consider growing evidence for modulatory interactions between brain-derived steroids and neurotransmitter/neuropeptide networks within the song system. Songbirds have therefore emerged as a rich and powerful model system to explore the neural and neurochemical regulation of social behavior.
Collapse
Affiliation(s)
- Luke Remage-Healey
- Department of Physiological Science & Ecology and Evolutionary Biology, Brain Research Institute, University of California, Los Angeles, CA 90095, United States
| | | | | |
Collapse
|
18
|
Tobet S, Knoll JG, Hartshorn C, Aurand E, Stratton M, Kumar P, Searcy B, McClellan K. Brain sex differences and hormone influences: a moving experience? J Neuroendocrinol 2009; 21:387-92. [PMID: 19207813 PMCID: PMC2669491 DOI: 10.1111/j.1365-2826.2009.01834.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sex differences in the nervous system come in many forms. Although a majority of sexually dimorphic characteristics in the brain have been described in older animals, mechanisms that determine sexually differentiated brain characteristics often operate during critical perinatal periods. Both genetic and hormonal factors likely contribute to physiological mechanisms in development to generate the ontogeny of sexual dimorphisms in brain. Relevant mechanisms may include neurogenesis, cell migration, cell differentiation, cell death, axon guidance and synaptogenesis. On a molecular level, there are several ways to categorize factors that drive brain development. These range from the actions of transcription factors in cell nuclei that regulate the expression of genes that control cell development and differentiation, to effector molecules that directly contribute to signalling from one cell to another. In addition, several peptides or proteins in these and other categories might be referred to as 'biomarkers' of sexual differentiation with undetermined functions in development or adulthood. Although a majority of sex differences are revealed as a direct consequence of hormone actions, some may only be revealed after genetic or environmental disruption. Sex differences in cell positions in the developing hypothalamus, and steroid hormone influences on cell movements in vitro, suggest that cell migration may be one target for early molecular actions that impact brain development and sexual differentiation.
Collapse
Affiliation(s)
- S Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Katz A, Mirzatoni A, Zhen Y, Schlinger BA. Sex differences in cell proliferation and glucocorticoid responsiveness in the zebra finch brain. Eur J Neurosci 2008; 28:99-106. [PMID: 18662338 DOI: 10.1111/j.1460-9568.2008.06303.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neural proliferation is a conserved property of the adult vertebrate brain. In mammals, stress reduces hippocampal neuronal proliferation and the effect is stronger in males than in females. We tested the effects of glucocorticoids on ventricular zone cell proliferation in adult zebra finches where neurons are produced that migrate to and incorporate within the neural circuits controlling song learning and performance. Adult male zebra finches sing and have an enlarged song circuitry; females do not sing and the song circuit is poorly developed. Freshly prepared slices from adult males and females containing the lateral ventricles were incubated with the mitotic marker BrdU with or without steroid treatments. BrdU-labeled cells were revealed immunocytochemically and all labeled cells within the ventricular zone were counted. We identified significantly higher rates of proliferation along the ventricular zone of males than in females. Moreover, acute administration of corticosterone significantly reduced proliferation in males with no effects in females. This effect in males was replicated by RU-486, which appears to act as an agonist of the glucocorticoid receptor in the songbird brain. The corticosterone effect was reversed by Thiram, which disrupts corticosterone action on the glucocorticoid receptor. Sex differences in proliferation and responses to stress hormones may contribute to the sexually dimorphic and seasonal growth of the neural song system of songbirds.
Collapse
Affiliation(s)
- Amnon Katz
- Department of Physiological Science and Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
20
|
Testosterone-induced matrix metalloproteinase activation is a checkpoint for neuronal addition to the adult songbird brain. J Neurosci 2008; 28:208-16. [PMID: 18171938 DOI: 10.1523/jneurosci.3674-07.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Testosterone-induced neuronal addition to the adult songbird vocal control center, HVC, requires the androgenic induction of vascular endothelial growth factor (VEGF), followed by VEGF-stimulated angiogenesis. The expanded vasculature acts as a source of BDNF, which supports the immigration of new neurons from the overlying ventricular zone. In tumorigenesis, a similar process of adult angiogenesis is regulated by matrix metalloproteinase (MMP) activity, in particular that of the gelatinases. We therefore investigated the role of the gelatinases in neuronal addition to the HVC of adult female canaries. In situ zymography of the caudal forebrain revealed that testosterone-induced perivascular gelatinase activity that was most prominent in HVC. High-resolution gels revealed distinct MMP activities that comigrated with MMP2 and MMP9, and PCR cloning yielded MMP2 and MMP9 orthologues of 1465 and 1044 bp, respectively. Quantitative PCR revealed that HVC MMP2 mRNA levels doubled within 8 d of testosterone, whereas MMP9 transcript levels were stable. Moreover, isolated adult canary forebrain endothelial cells secreted MMP2, and VEGF substantially increased endothelial MMP2 gelatinase activity. To assess the importance of androgen-regulated, VEGF-induced MMP2 to adult angiogenesis and neurogenesis, we treated testosterone-implanted females with the gelatinase inhibitor SB-3CT. In situ zymography confirmed that SB-3CT suppressed gelatinase activity in HVC, and histological analysis revealed that SB-3CT-treated birds exhibited a decreased endothelial mitotic index and substantially diminished neuronal recruitment to HVC. These data suggest that the androgenic induction of endothelial MMP2 is a critical regulator of neuronal addition to the adult HVC, and as such comprises an important regulatory step in adult neurogenesis.
Collapse
|
21
|
Knoll JG, Wolfe CA, Tobet SA. Estrogen modulates neuronal movements within the developing preoptic area-anterior hypothalamus. Eur J Neurosci 2007; 26:1091-9. [PMID: 17767488 PMCID: PMC2295210 DOI: 10.1111/j.1460-9568.2007.05751.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The preoptic area-anterior hypothalamus (POA-AH) is characterized by sexually dimorphic features in a number of vertebrates and is a key region of the forebrain for regulating physiological responses and sexual behaviours. Using live-cell fluorescence video microscopy with organotypic brain slices, the current study examined sex differences in the movement characteristics of neurons expressing yellow fluorescent protein (YFP) driven by the Thy-1 promoter. Cells in slices from embryonic day 14 (E14), but not E13, mice displayed significant sex differences in their basal neuronal movement characteristics. Exposure to 10 nm estradiol-17beta (E2), but not 100 nm dihydrotestosterone, significantly altered cell movement characteristics within minutes of exposure, in a location-specific manner. E2 treatment decreased the rate of motion of cells located in the dorsal POA-AH but increased the frequency of movement in cells located more ventrally. These effects were consistent across age and sex. To further determine whether early-developing sex differences in the POA-AH depend upon gonadal steroids, we examined cell positions in mice with a disruption of the steroidogenic factor-1 gene, in which gonads do not form. An early-born cohort of cells were labelled with the mitotic indicator bromodeoxyuridine (BrdU) on E11. More cells were found in the POA-AH of females than males on the day of birth (P0) regardless of gonadal status. These results support the hypothesis that estrogen partially contributes to brain sexual dimorphism through its influence on cell movements during development. Estrogen's influence may be superimposed upon a pre-existing genetic bias.
Collapse
Affiliation(s)
- John Gabriel Knoll
- Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
22
|
Peterson RS, Fernando G, Day L, Allen TA, Chapleau JD, Menjivar J, Schlinger BA, Lee DW. Aromatase expression and cell proliferation following injury of the adult zebra finch hippocampus. Dev Neurobiol 2007; 67:1867-78. [PMID: 17823932 DOI: 10.1002/dneu.20548] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Estrogens can be neuroprotective following traumatic brain injury. Immediately after trauma to the zebra finch hippocampus, the estrogen-synthetic enzyme aromatase is rapidly upregulated in astrocytes and radial glia around the lesion site. Brain injury also induces high levels of cell proliferation. Estrogens promote neuronal differentiation, migration, and survival naturally in the avian brain. We suspect that glia are a source of estrogens promoting cell proliferation after neural injury. To explore this hypothesis, we examined the spatial and temporal relationship between glial aromatase expression and cell proliferation after neural injury in adult female zebra finches. Birds were ovariectomized and given a blank implant or one filled with estradiol; some birds were also administered an aromatase inhibitor or vehicle. All birds received penetrating injuries to the right hippocampus. Twenty-four hours after lesioning, birds were injected once with BrdU to label mitotically active cells and euthanized 2 h, 24 h, or 7 days later. The brains were processed for double-label BrdU and aromatase immunocytochemistry. Injury-induced glial aromatase expression was unaffected by survival time and aromatase inhibition. BrdU labeling was significantly reduced at 24 h by ovariectomy and by aromatase inhibition; effects were partially reversed by E2 replacement. Irrespective of ovariectomy, the densities of aromatase immunoreactive astrocytes and BrdU-labeled cells at known distances from the lesion site were highly correlated. These data suggest that injury-induced glial aromatization may influence the reorganization of injured tissue by providing a rich estrogenic environment available to influence cellular incorporation.
Collapse
Affiliation(s)
- R Scott Peterson
- Department of Physiological Science, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lee DW, Fernando G, Peterson RS, Allen TA, Schlinger BA. Estrogen mediation of injury-induced cell birth in neuroproliferative regions of the adult zebra finch brain. Dev Neurobiol 2007; 67:1107-17. [PMID: 17565708 DOI: 10.1002/dneu.20399] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Estrogens influence neuronal differentiation, migration, and survival in intact brains. In injured brains, estrogens can also be neuroprotective. In Experiment 1, following a unilateral penetrating injury to the hippocampus (HP), adult female zebra finches were injected once with BrdU to label mitotic cells then sacrificed 2 h, 1 day, or 7 days postinjection. Cell proliferation was dramatically enhanced in the ipsilateral HP, as well as in neuroproliferative areas including the subventricular zone (SVZ) proximal to the injury. This increase was seen at all time points investigated. Ovariectomy (OVX) substantially suppressed proliferation bilaterally especially in the SVZ indicating that gonadal hormones influenced cell proliferation in both the intact and injured hemisphere. To determine if estrogens were directly involved, estrogen was depleted in Experiment 2 through either OVX or administration of the aromatase inhibitor fadrozole (FAD). Birds were implanted with estradiol or blank followed 2 weeks later by a unilateral penetrating lesion to the HP. Injury-induced substantial proliferation, which was again significantly suppressed bilaterally in both OVX and FAD birds. Estrogen replacement reversed this effect in FAD but not OVX birds therefore the suppression following OVX may be due in part to nonestrogenic influences. Suppression of cell birth in FAD birds was indeed due to the removal of endogenous sources of estrogen. Results therefore indicate that estrogens are directly involved in the brain's response to injury and may be acting to provide a rich environment for the production and perhaps protection of new cells.
Collapse
Affiliation(s)
- Diane W Lee
- Department of Psychology, California State University, Long Beach, California 90840, USA.
| | | | | | | | | |
Collapse
|
24
|
London SE, Schlinger BA. Steroidogenic enzymes along the ventricular proliferative zone in the developing songbird brain. J Comp Neurol 2007; 502:507-21. [PMID: 17394140 DOI: 10.1002/cne.21335] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neural development requires regulation and coordination of the differentiation, migration, and survival of newly divided cells, most of which derive from the region surrounding the lateral ventricles. While many factors are involved in these maturational processes, studies of cell proliferation and neurogenesis in songbirds indicate that sex steroids may provide crucial cues to newly divided cells and may be fundamental to the organization of a specific neural circuit, the song system. In the case of the zebra finch, steroids that impact song system masculinization are most likely not synthesized from the gonads but from the brain, and evidence is mounting that both developing and adult zebra finches have the capacity for neurosteroidogenesis. Therefore, we hypothesized that during early development, all of the genes required for de novo sex steroid synthesis would be expressed in regions that would indicate a role for neurosteroids in neural organization. We found that the genes necessary for de novo neurosteroid synthesis at posthatch day 1 (P1) and P5 show a broad expression distribution. Most strikingly, the spatial distribution of expression for all of the genes necessary for androgen synthesis is similar to the previously described pattern of proliferating neuronal precursors along the lateral border of the lateral ventricle. Due to the increasing evidence for neurosteroid action on multiple cell traits, it may be that locally synthesized neurosteroids impact cells along the proliferative zone to influence early events in neural development generally and song system masculinization specifically.
Collapse
Affiliation(s)
- Sarah E London
- Interdepartmental Program in Neuroscience, Department of Physiological Science, Laboratory of Neuroendocrinology, University of California, Los Angeles, California 90095-1606, USA
| | | |
Collapse
|
25
|
Takao T, Flint N, Lee L, Ying X, Merrill J, Chandross KJ. 17beta-estradiol protects oligodendrocytes from cytotoxicity induced cell death. J Neurochem 2004; 89:660-73. [PMID: 15086523 DOI: 10.1111/j.1471-4159.2004.02370.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During pregnancy, changes in circulating levels of hormones, including estrogens, correlates with a significant decrease in the relapse incidence in women with Multiple Sclerosis (MS). In the present study, we demonstrate that both primary and cell line cultures of rat oligodendrocytes express the estrogen receptor (ER)-alpha and ERbeta estrogen receptors in the cytosol and nucleus, and that nuclear compartmentalization becomes more pronounced as the cells mature. Moreover, 17beta-estradiol significantly decreases the cytotoxic effects of the peroxynitrite generator 3-(4-morpholinyl)-sydnonimine (SIN-1) in both immature and mature oligodendrocytes in a dose dependent manner. This protective mechanism requires pretreatment with 17beta-estradiol and is blocked by ICI 182,780, a selective ERalpha/ERbeta antagonist. These results strongly suggest that 17beta-estradiol protects oligodendrocytes against SIN-1 mediated cytotoxicity through the activation of the estrogen receptors and provides new insights into the roles of the estrogen signaling pathways in myelin forming cells that are lost in demyelinating disorders.
Collapse
Affiliation(s)
- Toshihiro Takao
- Second Department of Internal Medicine, Kochi Medical School, Nankoku, Japan
| | | | | | | | | | | |
Collapse
|
26
|
London SE, Boulter J, Schlinger BA. Cloning of the zebra finch androgen synthetic enzyme CYP17: a study of its neural expression throughout posthatch development. J Comp Neurol 2004; 467:496-508. [PMID: 14624484 DOI: 10.1002/cne.10936] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Male zebra finches develop a robust neural song system that supports singing, but females have a minimal song circuit and do not sing. Estrogens masculinize the song circuit and are especially potent during the first 3 weeks of posthatch development. The gonads do not seem to supply the masculinizing steroids, implying that another tissue synthesizes steroids. Evidence suggests that the brain is capable of synthesizing neurosteroids, which in developing zebra finches may be required for song system differentiation. Aromatase, the enzyme that synthesizes estrogen from androgen, is equally abundant in male and female brains. To investigate further the potential for neurosteroidogenesis in the zebra finch brain, we cloned and examined the expression of 17alpha-hydroxylase/17,20 lyase (CYP17), the enzyme that synthesizes the androgenic substrate for aromatase. We used Northern blots, reverse transcription-polymerase chain reaction, and in situ hybridization to show that CYP17 is transcribed in developing and adult brains. CYP17 is transcribed at developmental stages and in brain areas potentially important to aspects of the developing song system, although no sex difference was detected in mRNA levels. Our results support the hypothesis that neurosteroids may act to influence brain organization and function in the zebra finch.
Collapse
Affiliation(s)
- Sarah E London
- Interdepartmental Graduate Program in Neuroscience, University of California--Los Angeles, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
27
|
Peterson RS, Lee DW, Fernando G, Schlinger BA. Radial glia express aromatase in the injured zebra finch brain. J Comp Neurol 2004; 475:261-9. [PMID: 15211466 DOI: 10.1002/cne.20157] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Estrogens have neurotrophic and neuroprotective properties. The synthesis of estrogen occurs via the expression of aromatase. Previous studies have shown that injury to the vertebrate brain results in a rapid and dramatic up-regulation of aromatase expression in astrocytes around the lesion. As part of experiments examining injury-induced glial aromatization, we identified aromatase in radial glia of the zebra finch brain. Adult female zebra finches received a penetrating injury to the right hippocampus. Twenty-four hours after lesioning, birds were administered bromodeoxyuridine (BrdU) and sacrificed 2 hours, 1 day, or 7 days later. We determined the distribution of aromatase and BrdU labeling by using immunocytochemistry. Radial aromatase was localized to cells lining the lateral ventricle adjacent to the lesioned hippocampus. Injury also induced a dramatic accumulation of newly generated cells labeled with BrdU around the lesion. BrdU labeling was strongly associated with aromatase-positive radial fibers, suggesting the migration of newly generated cells along these fibers. In the songbird brain, estrogen supports neuronal recruitment and promotes the survival and addition of new neurons. The presence of aromatase in radial glia provides a mechanism of estrogen delivery to postmitotic cells. Radial aromatization may be a key feature in the repair of the vertebrate brain following neural injury.
Collapse
Affiliation(s)
- Richard S Peterson
- Department of Physiological Science, University of California, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
28
|
Gahr M, Leitner S, Fusani L, Rybak F. What is the adaptive role of neurogenesis in adult birds? PROGRESS IN BRAIN RESEARCH 2002; 138:233-54. [PMID: 12432773 DOI: 10.1016/s0079-6123(02)38081-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Manfred Gahr
- Institute of Neuroscience, Department of Developmental Neurobiology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|