1
|
von Bohlen Und Halbach O, Klausch M. The Neurotrophin System in the Postnatal Brain-An Introduction. BIOLOGY 2024; 13:558. [PMID: 39194496 DOI: 10.3390/biology13080558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Neurotrophins can bind to and signal through specific receptors that belong to the class of the Trk family of tyrosine protein kinase receptors. In addition, they can bind and signal through a low-affinity receptor, termed p75NTR. Neurotrophins play a crucial role in the development, maintenance, and function of the nervous system in vertebrates, but they also have important functions in the mature nervous system. In particular, they are involved in synaptic and neuronal plasticity. Thus, it is not surprisingly that they are involved in learning, memory and cognition and that disturbance in the neurotrophin system can contribute to psychiatric diseases. The neurotrophin system is sensitive to aging and changes in the expression levels correlate with age-related changes in brain functions. Several polymorphisms in genes coding for the different neurotrophins or neurotrophin receptors have been reported. Based on the importance of the neurotrophins for the central nervous system, it is not surprisingly that several of these polymorphisms are associated with psychiatric diseases. In this review, we will shed light on the functions of neurotrophins in the postnatal brain, especially in processes that are involved in synaptic and neuronal plasticity.
Collapse
Affiliation(s)
- Oliver von Bohlen Und Halbach
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23c, 17489 Greifswald, Germany
| | - Monique Klausch
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23c, 17489 Greifswald, Germany
| |
Collapse
|
2
|
Aarão TLDS, de Sousa JR, Falcão ASC, Falcão LFM, Quaresma JAS. Nerve Growth Factor and Pathogenesis of Leprosy: Review and Update. Front Immunol 2018; 9:939. [PMID: 29867937 PMCID: PMC5949531 DOI: 10.3389/fimmu.2018.00939] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
Neurotrophins are a family of proteins that regulate different aspects of biological development and neural function and are of great importance in neuroplasticity. This group of proteins has multiple functions in neuronal cells, as well as in other cellular populations. Nerve growth factor (NGF) is a neurotrophin that is endogenously produced during development and maturation by multiple cell types, including neurons, Schwann cells, oligodendrocytes, lymphocytes, mast cells, macrophages, keratinocytes, and fibroblasts. These cells produce proNGF, which is transformed by proteolytic cleavage into the biologically active NGF in the endoplasmic reticulum. The present review describes the role of NGF in the pathogenesis of leprosy and its correlations with different clinical forms of the disease and with the phenomena of regeneration and neural injury observed during infection. We discuss the involvement of NGF in the induction of neural damage and the pathophysiology of pain associated with peripheral neuropathy in leprosy. We also discuss the roles of immune factors in the evolution of this pathological process. Finally, we highlight avenues of investigation for future research to broaden our understanding of the role of NGF in the pathogenesis of leprosy. Our analysis of the literature indicates that NGF plays an important role in the evolution and outcome of Mycobacterium leprae infection. The findings described here highlight an important area of investigation, as leprosy is one of the main causes of infection in the peripheral nervous system.
Collapse
Affiliation(s)
| | | | | | | | - Juarez Antônio Simões Quaresma
- Center of Health and Biological Sciences, State University of Para, Belem, Brazil.,Tropical Medicine Center, Federal University of Para, Belem, Brazil.,Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| |
Collapse
|
3
|
Marinova TT, Velikova KK, Petrov DB, Kutev NS, Stankulov IS, Chaldakov GN, Triaca V, Manni L, Aloe L. Structural and Ultrastructural Localization of NGF and NGF Receptors in the Thymus of Subjects Affected by Myasthenia Gravis. Autoimmunity 2009; 37:587-92. [PMID: 15763921 DOI: 10.1080/08916930400016717] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have previously reported that the thymus of patients affected by myasthenia gravis (MG) is characterized by an elevated level of nerve growth factor (NGF), an endogenous polypeptide which plays a marked role in the cell biology of nervous and immune system. A consistent number of studies has shown altered expression of NGF in diseases associated with inflammatory and/or autoimmune responses. To evaluate the biochemical and molecular mechanisms implicated in NGF action in human myasthenic thymus, it is important to identify the cellular and structural organization of NGF receptors. To address this question, we investigated, both at light and electron microscopic levels, the cellular distribution of immunoreactivity for NGF and its low-affinity receptors, (p75) and its high-affinity receptor (TrkA) in the thymus of patients with MG. The present investigation shows that NGF and NGF receptors are overexpressed in the thymic cells of patients with MG compared to control subjects.
Collapse
|
4
|
Gärtner A, Polnau DG, Staiger V, Sciarretta C, Minichiello L, Thoenen H, Bonhoeffer T, Korte M. Hippocampal long-term potentiation is supported by presynaptic and postsynaptic tyrosine receptor kinase B-mediated phospholipase Cgamma signaling. J Neurosci 2006; 26:3496-504. [PMID: 16571757 PMCID: PMC6673845 DOI: 10.1523/jneurosci.3792-05.2006] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurotrophins have been shown to play a critical role in activity-dependent synaptic plasticity such as long-term potentiation (LTP) in the hippocampus. Although the role of brain-derived neurotrophic factor (BDNF) and its tyrosine kinase receptor [tyrosine receptor kinase B (TrkB)] is well documented, it still remains unresolved whether presynaptic or postsynaptic activation of TrkB is involved in the induction of LTP. To address this question, we locally and specifically interfered with a downstream target of the TrkB receptor, phospholipase Cgamma (PLCgamma). We prevented PLCgamma signaling by overexpression of the PLCgamma pleckstrin homology (PH) domain with a Sindbis virus vector. The isolated PH domain has an inhibitory effect and thereby blocks endogenous PLCgamma signaling and consequently also IP3 production. Surprisingly, concurrent presynaptic and postsynaptic blockade of PLCgamma signaling was required to reduce LTP to levels comparable with those in TrkB and BDNF knock-out mice. Blockade of presynaptic or postsynaptic signaling alone did not result in a significant reduction of LTP.
Collapse
|
5
|
Abstract
INTRODUCTION The nerve growth factor (NGF) is known as a factor involved in neuronal growth and survival. From recent studies it may also be considered as a mediator of inflammation, in particular in the airways. STATE OF ART Several animal studies have shown that NGF may increase the sensory innervation, and participate in the bronchial hyperresponsiveness and inflammation observed in the airways of asthmatic patients. Different cell types are capable of secreting NGF: inflammatory cells that infiltrate the bronchial mucosa, and structural cells such as epithelial cells, smooth muscle cells and pulmonary fibroblasts. Furthermore, increased NGF levels have been detected in the bronchoalveolar lavage fluid from asthmatic patients. PERSPECTIVES AND CONCLUSION Altogether, these results suggest that NGF may play a role in inflammation, bronchial hyperresponsiveness and airway remodelling in asthma, and may lead to a better understanding of the mechanisms occurring in chronic inflammatory diseases, in particular asthma.
Collapse
Affiliation(s)
- V Freund
- EA 3771 Inflammation et environnement dans l'asthme, Université Louis Pasteur-Strasbourg-I, Faculté de Pharmacie, Illkirch, France
| | | |
Collapse
|
6
|
Abstract
The proteins of the mammalian neurotrophin family (nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5)) were originally identified as neuronal survival factors. During the last decade, evidence has accumulated implicating them (especially BDNF) in addition in the regulation of synaptic transmission and synaptogenesis in the CNS. However, a detailed understanding of the secretion of neurotrophins from neurons is required to delineate their role in regulating synaptic function. Some crucial questions that need to be addressed include the sites of neurotrophin secretion (i.e. axonal versus dendritic; synaptic versus extrasynaptic) and the neuronal and synaptic activity patterns that trigger the release of neurotrophins. In this article, we review the current knowledge in the field of neurotrophin secretion, focussing on activity-dependent synaptic release of BDNF. The modality and the site of neurotrophin secretion are dependent on the processing and subsequent targeting of the neurotrophin precursor molecules. Therefore, the available data regarding formation and trafficking of neurotrophins in the secreting neurons are critically reviewed. In addition, we discuss existing evidence that the characteristics of neurotrophin secretion are similar (but not identical) to those of other neuropeptides. Finally, since BDNF has been proposed to play a critical role as an intercellular synaptic messenger in long-term potentiation (LTP) in the hippocampus, we try to reconcile this possible role of BDNF in LTP with the recently described features of synaptic BDNF secretion.
Collapse
Affiliation(s)
- Volkmar Lessmann
- Department of Physiology and Pathophysiology, Johannes Gutenberg-University Mainz, Duesbergweg 6, Mainz 55128, Germany.
| | | | | |
Collapse
|
7
|
Malcangio M, Lessmann V. A common thread for pain and memory synapses? Brain-derived neurotrophic factor and trkB receptors. Trends Pharmacol Sci 2003; 24:116-21. [PMID: 12628355 DOI: 10.1016/s0165-6147(03)00025-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent evidence indicates that trophic factors can exert fast effects on neurones and so alter synaptic plasticity. Here, we focus on brain-derived neurotrophic factor (BDNF), which exerts a modulatory action at hippocampal synapses that are involved in learning and memory, and at the first pain synapse between primary sensory neurones and dorsal horn neurones. Hippocampal and sensory neurones share some properties for the release of endogenous BDNF. In the Schaffer collateral pathway of the hippocampus, binding of BDNF to high-affinity trkB receptors is essential for the induction of long-term potentiation, a specific type of synaptic plasticity. However, the consequences of BDNF binding to trkB receptors in the dorsal horn in relation to pain mechanisms are less well established and are considered in detail.
Collapse
Affiliation(s)
- Marzia Malcangio
- Sensory Function, Centre for Neuroscience, King's College London, London SE1 1UL, UK.
| | | |
Collapse
|
8
|
von Bartheld CS. Axonal transport and neuronal transcytosis of trophic factors, tracers, and pathogens. ACTA ACUST UNITED AC 2003; 58:295-314. [PMID: 14704960 DOI: 10.1002/neu.10315] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurons can specifically internalize macromolecules, such as trophic factors, lectins, toxins, and other pathogens. Upon internalization in terminals, proteins can move retrogradely along axons, or, upon internalization at somatodendritic domains, they can move into an anterograde axonal transport pathway. Release of internalized proteins from neurons after either retrograde or anterograde axonal transport results in transcytosis and trafficking of proteins across multiple synapses. Recent studies of binding properties of several such proteins suggest that pathogens and lectins may utilize existing transport machineries designed for trafficking of trophic factors. Specific pathways may protect trophic factors, pathogens, and toxins from degradation after internalization and may target the trophic or pathogenic cargo for transcytosis after either retrograde or anterograde transport along axons. Elucidating the molecular mechanisms of sorting steps and transport pathways will further our understanding of trophic signaling and could be relevant for an understanding and possible treatment of neurological diseases such as rabies, Alzheimer's disease, and prion encephalopathies. At present, our knowledge is remarkably sparse about the types of receptors used by pathogens for trafficking, the signals that sort trophins or pathogens into recycling or degradation pathways, and the mechanisms that regulate their release from somatodendritic domains or axon terminals. This review intends to draw attention to potential convergences and parallels in trafficking of trophic and pathogenic proteins. It discusses axonal transport/trafficking mechanisms that may help to understand and eventually treat neurological diseases by targeted drug delivery.
Collapse
Affiliation(s)
- Christopher S von Bartheld
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA.
| |
Collapse
|
9
|
Specht H, Peterziel H, Bajohrs M, Gerdes HH, Krieglstein K, Unsicker K. Transforming growth factor beta2 is released from PC12 cells via the regulated pathway of secretion. Mol Cell Neurosci 2003; 22:75-86. [PMID: 12595240 DOI: 10.1016/s1044-7431(02)00023-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transforming growth factor beta2 (TGF-beta2), a prototypic member of a large superfamily of multifunctional cytokines, is expressed by neurons and glial cells. Its subcellular compartmentalization and release from neurons, however, are largely unknown. Here we show that TGF-beta2 colocalizes with the trans-Golgi network marker TGN38 and a marker molecule for secretory granules, chromogranin B (CgB), in PC12 cells. Similarly, primary hippocampal neurons show colocalization of TGN38 and TGF-beta2. A substantial amount of endogenous as well as transfected TGF-beta2 in PC12 cells comigrates with CgB on an equilibrium gradient, suggesting costorage in secretory granules. TGF-beta biological activity peaks in identical fractions. Depolarization of PC12 cells with high potassium triggers colocalization of CgB and TGF-beta2 at the cell surface, suggesting their regulated corelease from secretory granules. High potassium also liberates biologically active TGF-beta from PC12 cells and primary neurons. Our results indicate that a substantial portion of TGF-beta2 is secreted by the regulated secretory pathway in PC12 cells and hippocampal neurons.
Collapse
Affiliation(s)
- Heike Specht
- Neuroanatomy and Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 307, 2.OG, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Yamaguchi Y. Glycobiology of the synapse: the role of glycans in the formation, maturation, and modulation of synapses. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1573:369-76. [PMID: 12417420 DOI: 10.1016/s0304-4165(02)00405-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Synapses, which are the fundamental functional unit of the nervous system, are considered to be highly specialized cell adhesion structures. Studies since the 1960s demonstrated that various carbohydrates and glycoproteins are expressed in synapses in the central and peripheral nervous system. Although the functional roles of these synaptic carbohydrates and glycoproteins remain to be determined, rapidly accumulating data suggest that they may play critical roles in the formation, maturation, and functional modulation of synapses.
Collapse
Affiliation(s)
- Yu Yamaguchi
- Neurobiology Program, The Burnham Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Gärtner A, Staiger V. Neurotrophin secretion from hippocampal neurons evoked by long-term-potentiation-inducing electrical stimulation patterns. Proc Natl Acad Sci U S A 2002; 99:6386-91. [PMID: 11983920 PMCID: PMC122958 DOI: 10.1073/pnas.092129699] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2001] [Accepted: 03/06/2002] [Indexed: 01/19/2023] Open
Abstract
The neurotrophin (NT) brain-derived neurotrophic factor (BDNF) plays an essential role in the formation of long-term potentiation (LTP). Here, we address whether this modulation by BDNF requires its continuous presence, or whether a local increase in BDNF is necessary during a specific time period of LTP initiation. Using electrical field stimulation of primary cultures of hippocampal neurons, we demonstrate that short high-frequency bursts of stimuli that induce LTP evoke also an instantaneous secretion of BDNF. In contrast, stimuli at low frequencies, inducing long-term depression, do not enhance BDNF secretion, suggesting that BDNF is specifically present, and thus required, at the time of LTP induction. The field-stimulation-mediated BDNF secretion depends on the formation of action potentials and is induced by IP(3)-mediated Ca(2+) release from intracellular stores. Experiments, aimed at determining the sites of NT secretion that use NT6, showed similar patterns of surface labeling by field stimulation to those shown previously by high potassium.
Collapse
Affiliation(s)
- Annette Gärtner
- Max Planck Institute of Neurobiology, Am Klopferspitz 18A, 82152 Martinsried, Germany.
| | | |
Collapse
|
12
|
Canossa M, Giordano E, Cappello S, Guarnieri C, Ferri S. Nitric oxide down-regulates brain-derived neurotrophic factor secretion in cultured hippocampal neurons. Proc Natl Acad Sci U S A 2002; 99:3282-7. [PMID: 11867712 PMCID: PMC122510 DOI: 10.1073/pnas.042504299] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulation of neurotrophin (NT) secretion is critical for many aspects of NT-mediated neuronal plasticity. Neurons release NTs by activity-regulated secretion pathways, initiated either by neurotransmitters and/or by existing NTs by a positive-feedback mechanism. This process depends on calcium release from intracellular stores. Little is known, however, about potential pathways that down-regulate NT secretion. Here we demonstrate that nitric oxide (NO) induces a rapid down-regulation of brain-derived neurotrophic factor (BDNF) secretion in cultured hippocampal neurons. Similar effects occur by activating a downstream target of intracellular NO, the soluble guanylyl cyclase, or by increasing the levels of its product, cGMP. Furthermore, down-regulation of BDNF secretion is mediated by cGMP-activated protein kinase G, which prevents calcium release from inositol 1,4,5-trisphosphate-sensitive stores. Our data indicate that the NO/cGMP/protein kinase G pathway represents a signaling mechanism by which neurons can rapidly down-regulate BDNF secretion and suggest that, in hippocampal neurons, NT secretion is finely tuned by both stimulatory and inhibitory signals.
Collapse
Affiliation(s)
- Marco Canossa
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40216 Bologna, Italy.
| | | | | | | | | |
Collapse
|
13
|
Regional differences in neurotrophin availability regulate selective expression of VGF in the developing limbic cortex. J Neurosci 2002. [PMID: 11717365 DOI: 10.1523/jneurosci.21-23-09315.2001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gene and protein expression patterns in the cerebral cortex are complex and often change spatially and temporally through development. The signals that regulate these patterns are primarily unknown. In the present study, we focus on the regulation of VGF expression, which is limited to limbic cortical areas early in development but later expands into sensory and motor areas. We isolated neurons from embryonic day 17 rat cortex and demonstrate that the profile of VGF expression in perirhinal (expressing) and occipital (nonexpressing) populations in vitro is similar to that in the perinatal cortex in vivo. The addition of neutralizing neurotrophin antibodies indicates that endogenous brain-derived neurotrophic factor (BDNF) is necessary for the normal complement of VGF-expressing neurons in the perirhinal cortex, although endogenous neurotrophin-3 (NT-3) regulates the expression of VGF in a subpopulation of cells. ELISA analysis demonstrates that there is significantly more BDNF present in the perirhinal cortex compared with the occipital cortex in the perinatal period. However, the total amount of NT-3 is similar between the two regions and, moreover, there is considerably more NT-3 than BDNF in both areas, a finding seemingly in conflict with regional VGF expression. Quantification of the extracellular levels of neurotrophins in perirhinal and occipital cultures using ELISA in situ analysis indicates that perirhinal neurons release significantly more BDNF than the occipital population. Furthermore, the amount of NT-3 released by the perirhinal neurons is significantly less than the amount of BDNF. Local injection of BDNF in vivo into a normally negative VGF region results in robust ectopic expression of VGF. These data suggest that the local availability of specific neurotrophins for receptor occupation, rather than the total amount of neurotrophin, is a critical parameter in determining the selective expression of VGF in the developing limbic cortex.
Collapse
|
14
|
von Bartheld CS, Wang X, Butowt R. Anterograde axonal transport, transcytosis, and recycling of neurotrophic factors: the concept of trophic currencies in neural networks. Mol Neurobiol 2001; 24:1-28. [PMID: 11831547 DOI: 10.1385/mn:24:1-3:001] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Traditional views of neurotrophic factor biology held that trophic factors are released from target cells, retrogradely transported along their axons, and rapidly degraded upon arrival in cell bodies. Increasing evidence indicates that several trophic factors such as brain-derived neurotrophic factor (BDNF), fibroblast growth factor (FGF-2), glial cell-line derived neurotrophic factor (GDNF), insulin-like growth factor (IGF-I), and neurotrophin-3 (NT-3), can move anterogradely along axons. They can escape the degradative pathway upon internalization and are recycled for future uses. Internalized ligands can move through intermediary cells by transcytosis, presumably by endocytosis via endosomes to the Golgi system, by trafficking of the factor to dendrites or by sorting into anterograde axonal transport with subsequent release from axon terminals and uptake by second- or third-order target neurons. Such data suggest the existence of multiple "trophic currencies," which may be used over several steps in neural networks to enable nurturing relationships between connected neurons or glial cells, not unlike currency exchanges between trading partners in the world economy. Functions of multistep transfer of trophic material through neural networks may include regulation of neuronal survival, differentiation of phenotypes and dendritic morphology, synapse plasticity, as well as excitatory neurotransmission. The molecular mechanisms of sorting, trafficking, and release of trophic factors from distinct neuronal compartments are important for an understanding of neurotrophism, but they present challenging tasks owing to the low levels of the endogenous factors.
Collapse
Affiliation(s)
- C S von Bartheld
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno 89557, USA.
| | | | | |
Collapse
|
15
|
Canossa M, Gärtner A, Campana G, Inagaki N, Thoenen H. Regulated secretion of neurotrophins by metabotropic glutamate group I (mGluRI) and Trk receptor activation is mediated via phospholipase C signalling pathways. EMBO J 2001; 20:1640-50. [PMID: 11285228 PMCID: PMC145457 DOI: 10.1093/emboj/20.7.1640] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurotrophins (NTs) play an essential role in modulating activity-dependent neuronal plasticity. In this context, the site and extent of NT secretion are of crucial importance. Here, we demonstrate that the activation of phospolipase C (PLC) and the subsequent mobilization of Ca(2+) from intracellular stores are essential for NT secretion initiated by both Trk and glutamate receptor activation. Mutational analysis of tyrosine residues, highly conserved in the cytoplasmic domain of all Trk receptors, revealed that the activation of PLC-gamma in cultured hippocampal neurons and nnr5 cells is necessary to mobilize Ca(2+) from intracellular stores, the key mechanism for regulated NT secretion. A similar signalling mechanism has been identified for glutamate-mediated NT secretion-which in part depends on the activation of PLC via metabotropic receptors-leading to the mobilization of Ca(2+) from internal stores by inositol trisphosphate. Thus, PLC-mediated signal transduction pathways are the common mechanisms for both Trk- and mGluRI-mediated NT secretion.
Collapse
Affiliation(s)
- Marco Canossa
- Department of Neurobiochemistry, Max-Planck Institute of Neurobiology, Am Klopferspitz 18A, D-82152 Martinsried, Germany, Department of Pharmacology, University of Bologna, Irnerio 48, I-40126 Bologna, Italy and Division of Signal Transduction, Nara Institute of Science and Technology, Ikoma 630-0101, Japan Corresponding author e-mail:
| | - Annette Gärtner
- Department of Neurobiochemistry, Max-Planck Institute of Neurobiology, Am Klopferspitz 18A, D-82152 Martinsried, Germany, Department of Pharmacology, University of Bologna, Irnerio 48, I-40126 Bologna, Italy and Division of Signal Transduction, Nara Institute of Science and Technology, Ikoma 630-0101, Japan Corresponding author e-mail:
| | - Gabriele Campana
- Department of Neurobiochemistry, Max-Planck Institute of Neurobiology, Am Klopferspitz 18A, D-82152 Martinsried, Germany, Department of Pharmacology, University of Bologna, Irnerio 48, I-40126 Bologna, Italy and Division of Signal Transduction, Nara Institute of Science and Technology, Ikoma 630-0101, Japan Corresponding author e-mail:
| | - Naoyuki Inagaki
- Department of Neurobiochemistry, Max-Planck Institute of Neurobiology, Am Klopferspitz 18A, D-82152 Martinsried, Germany, Department of Pharmacology, University of Bologna, Irnerio 48, I-40126 Bologna, Italy and Division of Signal Transduction, Nara Institute of Science and Technology, Ikoma 630-0101, Japan Corresponding author e-mail:
| | - Hans Thoenen
- Department of Neurobiochemistry, Max-Planck Institute of Neurobiology, Am Klopferspitz 18A, D-82152 Martinsried, Germany, Department of Pharmacology, University of Bologna, Irnerio 48, I-40126 Bologna, Italy and Division of Signal Transduction, Nara Institute of Science and Technology, Ikoma 630-0101, Japan Corresponding author e-mail:
| |
Collapse
|
16
|
Affiliation(s)
- H Thoenen
- Max-Planck-Institute of Neurobiology, Department of Neurobiochemistry, Martinsried, Germany
| |
Collapse
|
17
|
Bibel M, Barde YA. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 2000; 14:2919-37. [PMID: 11114882 DOI: 10.1101/gad.841400] [Citation(s) in RCA: 796] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- M Bibel
- Department of Neurobiochemistry, Max-Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | | |
Collapse
|
18
|
Abstract
In previous experiments, a causal relationship between sodium influx and secretion of nerve growth factor (NGF) was deduced from the observation that the sodium substitute N-methyl-D-glucamine (NMDG) abolished any activity-mediated NGF secretion that depends on intact internal calcium stores. However, all available experimental evidence speaks against sodium-mediated calcium mobilization from these stores under physiological conditions. We now report that rapid sodium influx initiated by monensin or ouabain did not induce brain-derived neurotrophic factor (BDNF) secretion from either native hippocampal slices or BDNF-transduced hippocampal neuronal cultures. Additionally, we found marked differences between the replacement of sodium by NMDG and sucrose on the one hand, and choline and lithium on the other. Replacement of 100% (and as little as 10%) sodium by NMDG or sucrose not only blocked the activity-mediated neurotrophin secretion, but itself led to a rapid and substantial increase of neurotrophin secretion. In contrast, the replacement of sodium (10% and 100%) by lithium and choline did not result in a release of neurotrophins, and only 100% replacement blocked the activity-mediated neurotrophin secretion. We conclude that the blocking effects of NMDG and sucrose on neurotrophin secretion do not reflect the sodium replacement, but instead represent an independent blocking effect. These differences were also reflected in part by electrophysiological investigations in individually patched hippocampal neurons. The importance of the present observations lies not only in the reevaluation of the involvement of sodium in activity-dependent neurotrophin secretion, but also in the demonstration that sodium replacement may initiate 'side effects' that are unrelated to sodium replacement.
Collapse
Affiliation(s)
- M C Hoener
- Max-Planck Institute of Neurobiology, Department of Neurobiochemistry, D-82152 Martinsried, Germany.
| |
Collapse
|