1
|
Ganesan S, Dharmarajan A, Sudhir G, Perumalsamy LR. Unravelling the Road to Recovery: Mechanisms of Wnt Signalling in Spinal Cord Injury. Mol Neurobiol 2024; 61:7661-7679. [PMID: 38421469 DOI: 10.1007/s12035-024-04055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Spinal cord injury (SCI) is a complex neurodegenerative pathology that consistently harbours a poor prognostic outcome. At present, there are few therapeutic strategies that can halt neuronal cell death and facilitate functional motor recovery. However, recent studies have highlighted the Wnt pathway as a key promoter of axon regeneration following central nervous system (CNS) injuries. Emerging evidence also suggests that the temporal dysregulation of Wnt may drive cell death post-SCI. A major challenge in SCI treatment resides in developing therapeutics that can effectively target inflammation and facilitate glial scar repair. Before Wnt signalling is exploited for SCI therapy, further research is needed to clarify the implications of Wnt on neuroinflammation during chronic stages of injury. In this review, an attempt is made to dissect the impact of canonical and non-canonical Wnt pathways in relation to individual aspects of glial and fibrotic scar formation. Furthermore, it is also highlighted how modulating Wnt activity at chronic time points may aid in limiting lesion expansion and promoting axonal repair.
Collapse
Affiliation(s)
- Suchita Ganesan
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA, 6102, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
- School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia
- Sri Ramachandra Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - G Sudhir
- Department of Orthopedics and Spine Surgery, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| | - Lakshmi R Perumalsamy
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India.
| |
Collapse
|
2
|
Yi C, Verkhratsky A, Niu J. Pathological potential of oligodendrocyte precursor cells: terra incognita. Trends Neurosci 2023:S0166-2236(23)00103-0. [PMID: 37183154 DOI: 10.1016/j.tins.2023.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
Adult oligodendrocyte precursor cells (aOPCs), transformed from fetal OPCs, are idiosyncratic neuroglia of the central nervous system (CNS) that are distinct in many ways from other glial cells. OPCs have been classically studied in the context of their remyelinating capacity. Recent studies, however, revealed that aOPCs not only contribute to post-lesional remyelination but also play diverse crucial roles in multiple neurological diseases. In this review we briefly present the physiology of aOPCs and summarize current knowledge of the beneficial and detrimental roles of aOPCs in different CNS diseases. We discuss unique features of aOPC death, reactivity, and changes during senescence, as well as aOPC interactions with other glial cells and pathological remodeling during disease. Finally, we outline future perspectives for the study of aOPCs in brain pathologies which may instigate the development of aOPC-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China; Department of Pathology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PL, UK; Achucarro Centre for Neuroscience, Basque Foundation for Science (IKERBASQUE), Bilbao 48011, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
3
|
Sanchez-Gonzalez R, Koupourtidou C, Lepko T, Zambusi A, Novoselc KT, Durovic T, Aschenbroich S, Schwarz V, Breunig CT, Straka H, Huttner HB, Irmler M, Beckers J, Wurst W, Zwergal A, Schauer T, Straub T, Czopka T, Trümbach D, Götz M, Stricker SH, Ninkovic J. Innate Immune Pathways Promote Oligodendrocyte Progenitor Cell Recruitment to the Injury Site in Adult Zebrafish Brain. Cells 2022; 11:520. [PMID: 35159329 PMCID: PMC8834209 DOI: 10.3390/cells11030520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 01/13/2023] Open
Abstract
The oligodendrocyte progenitors (OPCs) are at the front of the glial reaction to the traumatic brain injury. However, regulatory pathways steering the OPC reaction as well as the role of reactive OPCs remain largely unknown. Here, we compared a long-lasting, exacerbated reaction of OPCs to the adult zebrafish brain injury with a timely restricted OPC activation to identify the specific molecular mechanisms regulating OPC reactivity and their contribution to regeneration. We demonstrated that the influx of the cerebrospinal fluid into the brain parenchyma after injury simultaneously activates the toll-like receptor 2 (Tlr2) and the chemokine receptor 3 (Cxcr3) innate immunity pathways, leading to increased OPC proliferation and thereby exacerbated glial reactivity. These pathways were critical for long-lasting OPC accumulation even after the ablation of microglia and infiltrating monocytes. Importantly, interference with the Tlr1/2 and Cxcr3 pathways after injury alleviated reactive gliosis, increased new neuron recruitment, and improved tissue restoration.
Collapse
Affiliation(s)
- Rosario Sanchez-Gonzalez
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Department Biology II, University of Munich, 80539 München, Germany;
| | - Christina Koupourtidou
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Tjasa Lepko
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Alessandro Zambusi
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Klara Tereza Novoselc
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Tamara Durovic
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Sven Aschenbroich
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Veronika Schwarz
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Graduate School Systemic Neurosciences, LMU, 80539 Munich, Germany
| | - Christopher T. Breunig
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, 80539 München, Germany; (C.T.B.); (S.H.S.)
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany
| | - Hans Straka
- Department Biology II, University of Munich, 80539 München, Germany;
| | - Hagen B. Huttner
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392 Giessen, Germany;
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (M.I.); (J.B.)
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (M.I.); (J.B.)
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Sciences Weihenstephan, Technical University Munich, 80333 München, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (W.W.); (D.T.)
- Munich Cluster for Systems Neurology SYNERGY, LMU, 80539 Munich, Germany
- Chair of Developmental Genetics c/o Helmholtz Zentrum München, School of Life Sciences Weihenstephan, Technical University Munich, 80333 München, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Munich, 80539 Munich, Germany
| | - Andreas Zwergal
- Department of Neurology, Ludwig-Maximilians University, Campus Grosshadern, 81377 Munich, Germany;
| | - Tamas Schauer
- Biomedical Center (BMC), Bioinformatic Core Facility, Faculty of Medicine, LMU Munich, 80539 München, Germany; (T.S.); (T.S.)
| | - Tobias Straub
- Biomedical Center (BMC), Bioinformatic Core Facility, Faculty of Medicine, LMU Munich, 80539 München, Germany; (T.S.); (T.S.)
| | - Tim Czopka
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH8 9YL, UK;
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (W.W.); (D.T.)
| | - Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Munich Cluster for Systems Neurology SYNERGY, LMU, 80539 Munich, Germany
- Biomedical Center (BMC), Division of Physiological Genomics, Faculty of Medicine, LMU Munich, 80539 München, Germany
| | - Stefan H. Stricker
- Reprogramming and Regeneration, Biomedical Center (BMC), Physiological Genomics, Faculty of Medicine, LMU Munich, 80539 München, Germany; (C.T.B.); (S.H.S.)
- Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Oberschleißheim, Germany; (R.S.-G.); (C.K.); (T.L.); (A.Z.); (K.T.N.); (T.D.); (S.A.); (V.S.); (M.G.)
- Biomedical Center (BMC), Division of Cell Biology and Anatomy, Faculty of Medicine, LMU Munich, 80539 München, Germany
- Munich Cluster for Systems Neurology SYNERGY, LMU, 80539 Munich, Germany
| |
Collapse
|
4
|
Rigby MJ, Gomez TM, Puglielli L. Glial Cell-Axonal Growth Cone Interactions in Neurodevelopment and Regeneration. Front Neurosci 2020; 14:203. [PMID: 32210757 PMCID: PMC7076157 DOI: 10.3389/fnins.2020.00203] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
The developing nervous system is a complex yet organized system of neurons, glial support cells, and extracellular matrix that arranges into an elegant, highly structured network. The extracellular and intracellular events that guide axons to their target locations have been well characterized in many regions of the developing nervous system. However, despite extensive work, we have a poor understanding of how axonal growth cones interact with surrounding glial cells to regulate network assembly. Glia-to-growth cone communication is either direct through cellular contacts or indirect through modulation of the local microenvironment via the secretion of factors or signaling molecules. Microglia, oligodendrocytes, astrocytes, Schwann cells, neural progenitor cells, and olfactory ensheathing cells have all been demonstrated to directly impact axon growth and guidance. Expanding our understanding of how different glial cell types directly interact with growing axons throughout neurodevelopment will inform basic and clinical neuroscientists. For example, identifying the key cellular players beyond the axonal growth cone itself may provide translational clues to develop therapeutic interventions to modulate neuron growth during development or regeneration following injury. This review will provide an overview of the current knowledge about glial involvement in development of the nervous system, specifically focusing on how glia directly interact with growing and maturing axons to influence neuronal connectivity. This focus will be applied to the clinically-relevant field of regeneration following spinal cord injury, highlighting how a better understanding of the roles of glia in neurodevelopment can inform strategies to improve axon regeneration after injury.
Collapse
Affiliation(s)
- Michael J Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Timothy M Gomez
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Waisman Center, University of Wisconsin-Madison, Madison, WI, United States.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, United States
| |
Collapse
|
5
|
Pearson CS, Solano AG, Tilve SM, Mencio CP, Martin KR, Geller HM. Spatiotemporal distribution of chondroitin sulfate proteoglycans after optic nerve injury in rodents. Exp Eye Res 2019; 190:107859. [PMID: 31705897 DOI: 10.1016/j.exer.2019.107859] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/16/2019] [Accepted: 10/22/2019] [Indexed: 02/08/2023]
Abstract
The accumulation of chondroitin sulfate proteoglycans (CSPGs) in the glial scar following acute damage to the central nervous system (CNS) limits the regeneration of injured axons. Given the rich diversity of CSPG core proteins and patterns of GAG sulfation, identifying the composition of these CSPGs is essential for understanding their roles in injury and repair. Differential expression of core proteins and sulfation patterns have been characterized in the brain and spinal cord of mice and rats, but a comprehensive study of these changes following optic nerve injury has not yet been performed. Here, we show that the composition of CSPGs in the optic nerve and retina following optic nerve crush (ONC) in mice and rats exhibits an increase in aggrecan, brevican, phosphacan, neurocan and versican, similar to changes following spinal cord injury. We also observe an increase in inhibitory 4-sulfated (4S) GAG chains, which suggests that the persistence of CSPGs in the glial scar opposes the growth of CNS axons, thereby contributing to the failure of regeneration and recovery of function.
Collapse
Affiliation(s)
- Craig S Pearson
- Laboratory of Developmental Neurobiology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, USA; Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Andrea G Solano
- Laboratory of Developmental Neurobiology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharada M Tilve
- Laboratory of Developmental Neurobiology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Caitlin P Mencio
- Laboratory of Developmental Neurobiology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Keith R Martin
- Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Płatek R, Grycz K, Więckowska A, Czarkowska-Bauch J, Skup M. L1 Cell Adhesion Molecule Overexpression Down Regulates Phosphacan and Up Regulates Structural Plasticity-Related Genes Rostral and Caudal to the Complete Spinal Cord Transection. J Neurotrauma 2019; 37:534-554. [PMID: 31426714 DOI: 10.1089/neu.2018.6103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
L1 cell adhesion molecule (L1CAM) supports spinal cord cellular milieu after contusion and compression lesions, contributing to neuroprotection, promoting axonal outgrowth, and reducing outgrowth-inhibitory molecules in lesion proximity. We extended investigations into L1CAM molecular targets and explored long-distance effects of L1CAM rostral and caudal to complete spinal cord transection (SCT) in adult rats. L1CAM overexpression in neurons and glia after Th10/Th11 SCT was achieved using adeno-associated viral vector serotype 5 (AAV5) injected into an L1-lumbar segment immediately after transection. At 5 weeks, a L1CAM mRNA profound decrease detected rostral and caudal to the transection site was alleviated by AAV5-L1CAM treatment, with increased endogenous L1CAM rostral to the SCT. Transected corticospinal tract fibers showed attenuated retraction after treatment, accompanied by a multi-segmental increase of lesion-reduced expression of adenylate cyclase 1 (Adcy1), synaptophysin, growth-associated protein 43, and myelin basic protein genes caudal to transection, and Adcy1 rostral to transection. In parallel, chondroitin sulfate proteoglycan phosphacan elevated after SCT was downregulated after treatment. Low-molecular L1CAM isoforms generated after spinalization indicated the involvement of sheddases in L1CAM processing and long-distance effects. A disintegrin and metalloproteinase (ADAM)10 sheddase immunoreactivity, stronger in AAV5-L1CAM than AAV5- enhanced green fluorescent protein (EGFP)-transduced motoneurons indicated local ADAM10 upregulation by L1CAM. The results suggest that increased L1CAM availability and penetration of diffusible L1CAM fragments post-lesion induce both local and long-distance neuronal and glial responses toward better neuronal maintenance, neurite growth, and myelination. Despite the fact that intervention promoted beneficial molecular changes, kinematic analysis of hindlimb movements showed minor improvement, indicating that spinalized rats require longer L1CAM treatment to regain locomotor functions.
Collapse
Affiliation(s)
- Rafał Płatek
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Kamil Grycz
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | |
Collapse
|
7
|
Galloway DA, Gowing E, Setayeshgar S, Kothary R. Inhibitory milieu at the multiple sclerosis lesion site and the challenges for remyelination. Glia 2019; 68:859-877. [PMID: 31441132 DOI: 10.1002/glia.23711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/26/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022]
Abstract
Regeneration of myelin, following injury, can occur within the central nervous system to reinstate proper axonal conductance and provide trophic support. Failure to do so renders the axons vulnerable, leading to eventual degeneration, and neuronal loss. Thus, it is essential to understand the mechanisms by which remyelination or failure to remyelinate occur, particularly in the context of demyelinating and neurodegenerative disorders. In multiple sclerosis, oligodendrocyte progenitor cells (OPCs) migrate to lesion sites to repair myelin. However, during disease progression, the ability of OPCs to participate in remyelination diminishes coincident with worsening of the symptoms. Remyelination is affected by a broad range of cues from intrinsic programming of OPCs and extrinsic local factors to the immune system and other systemic elements including diet and exercise. Here we review the literature on these diverse inhibitory factors and the challenges they pose to remyelination. Results spanning several disciplines from fundamental preclinical studies to knowledge gained in the clinic will be discussed.
Collapse
Affiliation(s)
- Dylan A Galloway
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Elizabeth Gowing
- Neurosciences Department, Faculty of Medicine, Centre de recherche du CHUM, Université de Montreal, Montreal, Quebec, Canada
| | - Solmaz Setayeshgar
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Medicine, Department of Biochemistry, Microbiology and Immunology, and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Wang L, Xu J, Guo D, Zhou X, Jiang W, Wang J, Tang J, Zou Y, Bi M, Li Q. Fasudil alleviates brain damage in rats after carbon monoxide poisoning through regulating neurite outgrowth inhibitor/oligodendrocytemyelin glycoprotein signalling pathway. Basic Clin Pharmacol Toxicol 2019; 125:152-165. [PMID: 30916885 DOI: 10.1111/bcpt.13233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
Carbon monoxide (CO) poisoning can lead to many serious neurological symptoms. Currently, there are no effective therapies for CO poisoning. In this study, rats exposed to CO received hyperbaric oxygen therapy, and those in the Fasudil group were given additional Fasudil injection once daily. We found that the escape latency in CO poisoning group (CO group) was significantly prolonged, the T1 /Ttotal was obviously decreased, and the mean escape time and the active escape latency were notably extended compared with those in normal control group (NC group, P < 0.05). After administration of Fasudil, the escape latency was significantly shortened, T1 /Ttotal was gradually increased as compared with CO group (>1 week, P < 0.05). Ultrastructural damage of neurons and blood-brain barrier of rats was serious in CO group, while the structural and functional integrity of neuron and mitochondria maintained relatively well in Fasudil group. Moreover, we also noted that the expressions of neurite outgrowth inhibitor (Nogo), oligodendrocyte-myelin glycoprotein (OMgp) and Rock in brain tissue were significantly increased in CO group, and the elevated levels of the three proteins were still observed at 2 months after CO poisoning. Fasudil markedly reduced their expressions compared with those of CO group (P < 0.05). In summary, the activation of Nogo-OMgp/Rho signalling pathway is associated with brain injury in rats with CO poisoning. Fasudil can efficiently down-regulate the expressions of Nogo, OMgp and Rock proteins, paving a way for the treatment of acute brain damage after CO poisoning.
Collapse
Affiliation(s)
- Li Wang
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan Shandong, China.,Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Jianghua Xu
- Department of neurology, Yantai YEDA Hospital, Yantai Shandong, China
| | - Dadong Guo
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan Shandong, China
| | - Xudong Zhou
- The First Affiliated Hospital of Shandong, University of Traditional Chinese Medicine, Jinan Shandong, China
| | - Wenwen Jiang
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Jinglin Wang
- Emergency Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Jiyou Tang
- Department of Neurology, Qianfoshan Hospital Affiliated to Shandong University, Jinan Shandong, China
| | - Yong Zou
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Mingjun Bi
- Emergency Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| | - Qin Li
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai Shandong, China
| |
Collapse
|
9
|
Motavaf M, Sadeghizadeh M, Javan M. Attempts to Overcome Remyelination Failure: Toward Opening New Therapeutic Avenues for Multiple Sclerosis. Cell Mol Neurobiol 2017; 37:1335-1348. [PMID: 28224237 PMCID: PMC11482203 DOI: 10.1007/s10571-017-0472-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/12/2017] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated disorder of the central nervous system that results in destruction of the myelin sheath wrapped around the axons and eventual axon degeneration. The disease is pathologically heterogeneous; however, perhaps its most frustrating aspect is the lack of efficient regenerative response for remyelination. Current treatment strategies are based on anti-inflammatory or immunomodulatory medications that have the potential to reduce the numbers of newly evolving lesions. However, therapies are still required that can repair already damaged myelin for which current treatments are not effective. A prerequisite for the development of such new treatments is understanding the reasons for insufficient endogenous repair. This review briefly summarizes the currently suggested causes of remyelination failure in MS and possible solutions.
Collapse
Affiliation(s)
- Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Islamic Republic of Iran.
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Islamic Republic of Iran.
| |
Collapse
|
10
|
Krityakiarana W, Sompup K, Jongkamonwiwat N, Mukda S, Pinilla FG, Govitrapong P, Phansuwan-Pujito P. Effects of melatonin on severe crush spinal cord injury-induced reactive astrocyte and scar formation. J Neurosci Res 2016; 94:1451-1459. [PMID: 27717042 DOI: 10.1002/jnr.23930] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023]
Abstract
The present work aimed at analyzing the effects of melatonin on scar formation after spinal cord injury (SCI). Upregulation of reactive astrocyte under SCI pathological conditions has been presented in several studies. It has been proved that the crucial factor in triggering this upregulation is proinflammatory cytokines. Moreover, scar formation is an important barrier to axonal regeneration through the lesion area. Melatonin plays an important role in reducing inflammation, but its effects on scar formation in the injured spinal cord remain unknown. Hence, we used the model of severe crush injury in mice to investigate the effects of melatonin on scar formation. Mice were randomly separated into four groups; SCI, SCI+Melatonin 1 (single dose), SCI+Melatonin 14 (14 daily doses), and control. Melatonin was administered by intraperitoneal injection (10 mg/kg) after injury. Immunohistochemical analysis, Western blot, and behavioral evaluation were used to explore the effects of melatonin after SCI for 14 days. The melatonin-treated mice presented higher expression of neuronal markers (P < 0.001). Remarkably, the inflammatory response appeared to be greatly reduced in the SCI+Melatonin 14 group (P < 0.001), which also displayed less scar formation (P < 0.05). These findings suggest that melatonin inhibits scar formation by acting on inflammatory cytokines after SCI. Overall, our results suggest that melatonin is a promising treatment strategy after SCI that deserves further investigation. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Warin Krityakiarana
- Division of Physical Therapy, Faculty of Health Science, Srinakharinwirot University, Nakhon-Nayok, Thailand. .,Department of Rehabilitation for Persons with Disabilities, Ratchasuda College, Mahidol University, Nakhonpathom, Thailand.
| | - Kamonrapat Sompup
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
| | - Nopporn Jongkamonwiwat
- Division of Physical Therapy, Faculty of Health Science, Srinakharinwirot University, Nakhon-Nayok, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand
| | - Fernando Gomez Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom, Thailand.,Center for Neuroscience and Department for Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
11
|
Chao LL, Tosun D, Woodward SH, Kaufer D, Neylan TC. Preliminary Evidence of Increased Hippocampal Myelin Content in Veterans with Posttraumatic Stress Disorder. Front Behav Neurosci 2015; 9:333. [PMID: 26696852 PMCID: PMC4667092 DOI: 10.3389/fnbeh.2015.00333] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/19/2015] [Indexed: 01/06/2023] Open
Abstract
Recent findings suggest the formation of myelin in the central nervous system by oligodendrocytes is a continuous process that can be modified with experience. For example, a recent study showed that immobilization stress increased oligodendrogensis in the dentate gyrus of adult rat hippocampus. Because changes in myelination represents an adaptive form of brain plasticity that has a greater reach in the adult brain than other forms of plasticity (e.g., neurogenesis), the objective of this “proof of concept” study was to examine whether there are differences in myelination in the hippocampi of humans with and without post-traumatic stress disorder (PTSD). We used the ratio of T1-weighted/T2-weighted magnetic resonance image (MRI) intensity to estimate the degree of hippocampal myelination in 19 male veterans with PTSD and 19 matched trauma-exposed male veterans without PTSD (mean age: 43 ± 12 years). We found that veterans with PTSD had significantly more hippocampal myelin than trauma-exposed controls. There was also found a positive correlation between estimates of hippocampal myelination and PTSD and depressive symptom severity. To our knowledge, this is the first study to examine hippocampal myelination in humans with PTSD. These results provide preliminary evidence for stress-induced hippocampal myelin formation as a potential mechanism underlying the brain abnormalities associated with vulnerability to stress.
Collapse
Affiliation(s)
- Linda L Chao
- Center for Imaging of Neurodegenerative Diseases, Veterans Affairs Medical Center San Francisco, CA, USA ; Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, USA ; Department of Psychiatry, University of California San Francisco, CA, USA
| | - Duygu Tosun
- Center for Imaging of Neurodegenerative Diseases, Veterans Affairs Medical Center San Francisco, CA, USA ; Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, USA
| | - Steven H Woodward
- Dissemination and Training Division, National Center for PTSD, VA Palo Alto Health Care System CA, USA
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California Berkeley, CA, USA ; Department of Integrative Biology, University of California Berkeley, CA, USA ; Canadian Institute for Advanced Research (CIFAR) Toronto, ON, Canada
| | - Thomas C Neylan
- Department of Psychiatry, University of California San Francisco, CA, USA ; Mental Health Services, Veterans Affairs Medical Center San Francisco, CA, USA
| |
Collapse
|
12
|
Li N, Leung GKK. Oligodendrocyte Precursor Cells in Spinal Cord Injury: A Review and Update. BIOMED RESEARCH INTERNATIONAL 2015; 2015:235195. [PMID: 26491661 PMCID: PMC4600489 DOI: 10.1155/2015/235195] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition to individuals, families, and society. Oligodendrocyte loss and demyelination contribute as major pathological processes of secondary damages after injury. Oligodendrocyte precursor cells (OPCs), a subpopulation that accounts for 5 to 8% of cells within the central nervous system, are potential sources of oligodendrocyte replacement after SCI. OPCs react rapidly to injuries, proliferate at a high rate, and can differentiate into myelinating oligodendrocytes. However, posttraumatic endogenous remyelination is rarely complete, and a better understanding of OPCs' characteristics and their manipulations is critical to the development of novel therapies. In this review, we summarize known characteristics of OPCs and relevant regulative factors in both health and demyelinating disorders including SCI. More importantly, we highlight current evidence on post-SCI OPCs transplantation as a potential treatment option as well as the impediments against regeneration. Our aim is to shed lights on important knowledge gaps and to provoke thoughts for further researches and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Ning Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Gilberto K. K. Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| |
Collapse
|
13
|
Axonal regeneration through the fibrous scar in lesioned goldfish spinal cord. Neuroscience 2015; 284:134-152. [DOI: 10.1016/j.neuroscience.2014.09.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 12/23/2022]
|
14
|
Stress and glucocorticoids promote oligodendrogenesis in the adult hippocampus. Mol Psychiatry 2014; 19:1275-1283. [PMID: 24514565 PMCID: PMC4128957 DOI: 10.1038/mp.2013.190] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 11/25/2013] [Accepted: 12/03/2013] [Indexed: 01/07/2023]
Abstract
Stress can exert long-lasting changes on the brain that contribute to vulnerability to mental illness, yet mechanisms underlying this long-term vulnerability are not well understood. We hypothesized that stress may alter the production of oligodendrocytes in the adult brain, providing a cellular and structural basis for stress-related disorders. We found that immobilization stress decreased neurogenesis and increased oligodendrogenesis in the dentate gyrus (DG) of the adult rat hippocampus and that injections of the rat glucocorticoid stress hormone corticosterone (cort) were sufficient to replicate this effect. The DG contains a unique population of multipotent neural stem cells (NSCs) that give rise to adult newborn neurons, but oligodendrogenic potential has not been demonstrated in vivo. We used a nestin-CreER/YFP transgenic mouse line for lineage tracing and found that cort induces oligodendrogenesis from nestin-expressing NSCs in vivo. Using hippocampal NSCs cultured in vitro, we further showed that exposure to cort induced a pro-oligodendrogenic transcriptional program and resulted in an increase in oligodendrogenesis and decrease in neurogenesis, which was prevented by genetic blockade of glucocorticoid receptor (GR). Together, these results suggest a novel model in which stress may alter hippocampal function by promoting oligodendrogenesis, thereby altering the cellular composition and white matter structure.
Collapse
|
15
|
Ohtake Y, Li S. Molecular mechanisms of scar-sourced axon growth inhibitors. Brain Res 2014; 1619:22-35. [PMID: 25192646 DOI: 10.1016/j.brainres.2014.08.064] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/21/2014] [Indexed: 12/29/2022]
Abstract
Astrogliosis is a defense response of the CNS to minimize primary damage and to repair injured tissues, but it ultimately generates harmful effects by upregulating inhibitory molecules to suppress neuronal elongation and forming potent barriers to axon regeneration. Chondroitin sulfate proteoglycans (CSPGs) are highly expressed by reactive scars and are potent contributors to the non-permissive environment in mature CNS. Surmounting strong inhibition by CSPG-rich scar is an important therapeutic goal for achieving functional recovery after CNS injuries. Currently, enzymatic digestion of CSPGs with locally applied chondroitinase ABC is the main in vivo approach to overcome scar inhibition, but several disadvantages may prevent using this bacterial enzyme as a therapeutic option for patients. A better understanding of molecular mechanisms underlying CSPG function may facilitate development of new effective therapies to overcome scar-mediated inhibition. Previous studies support that CSPGs act by non-specifically hindering the binding of matrix molecules to their cell surface receptors through steric interactions, but two members of the leukocyte common antigen related (LAR) phosphatase subfamily, protein tyrosine phosphatase σ and LAR, are functional receptors that bind CSPGs with high affinity and mediate CSPG inhibition. CSPGs may also act by binding two receptors for myelin-associated growth inhibitors, Nogo receptors 1 and 3. Thus, CSPGs inhibit axon growth through multiple mechanisms, making them especially potent and difficult therapeutic targets. Identification of CSPG receptors is not only important for understanding the scar-mediated growth suppression, but also for developing novel and selective therapies to promote axon sprouting and/or regeneration after CNS injuries. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Yosuke Ohtake
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, 3500N. Broad Street, Philadelphia 19140, PA, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center and Department of Anatomy and Cell Biology, Temple University School of Medicine, 3500N. Broad Street, Philadelphia 19140, PA, USA.
| |
Collapse
|
16
|
Quillinan N, Deng G, Grewal H, Herson PS. Androgens and stroke: good, bad or indifferent? Exp Neurol 2014; 259:10-5. [PMID: 24512750 DOI: 10.1016/j.expneurol.2014.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/28/2014] [Accepted: 02/02/2014] [Indexed: 12/16/2022]
Abstract
Cerebral ischemia caused by loss of blood supply to the brain during cardiac arrest or stroke are major causes of death and disability. Biological sex is an important factor in predicting vulnerability of the brain to an ischemic insult, with males being at higher risk for cardio-cerebrovascular events than females of the same age. However, relative incidence of stroke between the genders appears to normalize at advanced ages. Therefore, many scientists have focused on the mechanisms of sex differences in outcome following brain ischemic injury, with a particular emphasis on the role of sex steroids. The majority of studies indicate that female sex steroids, such as estrogen and progesterone, play important roles in the relative neuroprotection following cerebral ischemia observed in females. However, less is known about male sex steroids and brain damage. This review describes the state of our knowledge of androgen-related contributions to neurological injury and recovery following cerebral ischemia that occurs following stroke. Experimental studies examining the effects of castration, androgenic agonists and antagonists and aging provide valuable insights into the role of androgens in clinical outcome following cerebrovascular events.
Collapse
Affiliation(s)
- Nidia Quillinan
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, USA
| | - Guiying Deng
- Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, USA
| | - Himmat Grewal
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, USA
| | - Paco S Herson
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, 12800 E. 19th Ave., Aurora, CO 80045, USA.
| |
Collapse
|
17
|
Harlow DE, Macklin WB. Inhibitors of myelination: ECM changes, CSPGs and PTPs. Exp Neurol 2013; 251:39-46. [PMID: 24200549 DOI: 10.1016/j.expneurol.2013.10.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/22/2013] [Accepted: 10/26/2013] [Indexed: 01/06/2023]
Abstract
After inflammation-induced demyelination, such as in the disease multiple sclerosis, endogenous remyelination often fails. However, in animal models of demyelination induced with toxins, remyelination can be quite robust. A significant difference between inflammation-induced and toxin-induced demyelination is the response of local cells within the lesion, including astrocytes, oligodendrocytes, microglia/macrophages, and NG2+ cells, which respond to inflammatory stimuli with increased extracellular matrix (ECM) protein and chondroitin sulfate proteoglycan (CSPG) production and deposition. Here, we summarize current knowledge of ECM changes in demyelinating lesions, as well as oligodendrocyte responses to aberrant ECM proteins and CSPGs after various types of demyelinating insults. The discovery that CSPGs act through the receptor protein tyrosine phosphatase sigma (PTPσ) and the Rho-ROCK pathway to inhibit oligodendrocyte process extension and myelination, but not oligodendrocyte differentiation (Pendleton et al., Experimental Neurology (2013) vol. 247, pp. 113-121), highlights the need to better understand the ECM changes that accompany demyelination and their influence on oligodendrocytes and effective remyelination.
Collapse
Affiliation(s)
- Danielle E Harlow
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 12801 East 17th Avenue, Research Complex 1 South, Mail Stop 8108, Aurora, CO 80045, USA; Center for NeuroScience, University of Colorado School of Medicine, 12801 East 17th Avenue, Research Complex 1 South, Mail Stop 8108, Aurora, CO 80045, USA.
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 12801 East 17th Avenue, Research Complex 1 South, Mail Stop 8108, Aurora, CO 80045, USA; Center for NeuroScience, University of Colorado School of Medicine, 12801 East 17th Avenue, Research Complex 1 South, Mail Stop 8108, Aurora, CO 80045, USA.
| |
Collapse
|
18
|
Moore AC, Mark TE, Hogan AK, Topczewski J, LeClair EE. Peripheral axons of the adult zebrafish maxillary barbel extensively remyelinate during sensory appendage regeneration. J Comp Neurol 2013; 520:4184-203. [PMID: 22592645 DOI: 10.1002/cne.23147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Myelination is a cellular adaptation allowing rapid conduction along axons. We have investigated peripheral axons of the zebrafish maxillary barbel (ZMB), an optically clear sensory appendage. Each barbel carries taste buds, solitary chemosensory cells, and epithelial nerve endings, all of which regenerate after amputation (LeClair and Topczewski [2010] PLoS One 5:e8737). The ZMB contains axons from the facial nerve; however, myelination within the barbel itself has not been established. Transcripts of myelin basic protein (mbp) are expressed in normal and regenerating adult barbels, indicating activity in both maintenance and repair. Myelin was confirmed in situ by using toluidine blue, an anti-MBP antibody, and transmission electron microscopy (TEM). The adult ZMB contains ∼180 small-diameter axons (<2 μm), approximately 60% of which are myelinated. Developmental myelination was observed via whole-mount immunohistochemistry 4-6 weeks postfertilization, showing myelin sheaths lagging behind growing axons. Early-regenerating axons (10 days postsurgery), having no or few myelin layers, were disorganized within a fibroblast-rich collagenous scar. Twenty-eight days postsurgery, barbel axons had grown out several millimeters and were organized with compact myelin sheaths. Fiber types and axon areas were similar between normal and regenerated tissue; within 4 weeks, regenerating axons restored ∼85% of normal myelin thickness. Regenerating barbels express multiple promyelinating transcription factors (sox10, oct6 = pou3f1; krox20a/b = egr2a/b) typical of Schwann cells. These observations extend our understanding of the zebrafish peripheral nervous system within a little-studied sensory appendage. The accessible ZMB provides a novel context for studying axon regeneration, Schwann cell migration, and remyelination in a model vertebrate.
Collapse
Affiliation(s)
- Alex C Moore
- Department of Biological Sciences, DePaul University, Chicago, Illinois 60614, USA
| | | | | | | | | |
Collapse
|
19
|
Atypical protein kinase C and Par3 are required for proteoglycan-induced axon growth inhibition. J Neurosci 2013; 33:2541-54. [PMID: 23392682 DOI: 10.1523/jneurosci.3154-12.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
When the CNS is injured, damaged axons do not regenerate. This failure is due in part to the growth-inhibitory environment that forms at the injury site. Myelin-associated molecules, repulsive axon guidance molecules, and extracellular matrix molecules including chondroitin sulfate proteoglycans (CSPGs) found within the glial scar inhibit axon regeneration but the intracellular signaling mechanisms triggered by these diverse molecules remain largely unknown. Here we provide biochemical and functional evidence that atypical protein kinase C (PKCζ) and polarity (Par) complex proteins mediate axon growth inhibition. Treatment of postnatal rat neurons in vitro with the NG2 CSPG, a major component of the glial scar, activates PKCζ, and this activation is both necessary and sufficient to inhibit axonal growth. NG2 treatment also activates Cdc42, increases the association of Par6 with PKCζ, and leads to a Par3-dependent activation of Rac1. Transfection of neurons with kinase-dead forms of PKCζ, dominant-negative forms of Cdc42, or mutant forms of Par6 that do not bind to Cdc42 prevent NG2-induced growth inhibition. Similarly, transfection with either a phosphomutant Par3 (S824A) or dominant-negative Rac1 prevent inhibition, whereas expression of constitutively active Rac1 inhibits axon growth on control surfaces. These results suggest a model in which NG2 binding to neurons activates PKCζ and modifies Par complex function. They also identify the Par complex as a novel therapeutic target for promoting axon regeneration after CNS injury.
Collapse
|
20
|
Tan HB, Zhong YS, Cheng Y, Shen X. Rho/ROCK pathway and neural regeneration: a potential therapeutic target for central nervous system and optic nerve damage. Int J Ophthalmol 2011; 4:652-7. [PMID: 22553739 DOI: 10.3980/j.issn.2222-3959.2011.06.16] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/29/2011] [Indexed: 01/12/2023] Open
Abstract
Rho-associated kinase (ROCK) is a serine/threonine kinase and one of the major downstream effectors of the small GTPase RhoA. The Rho/ROCK pathway is closely related to the pathogenesis of several central nervous system (CNS) disorders, and involved in many aspects of neuronal functions including neurite outgrowth and retraction. In the adult CNS, the damaged neuron regeneration is very difficult due to the presence of myelin-associated axon growth inhibitors such as Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte-myelin glycoprotein (Omgp), etc. The effects of these axon growth inhibitors are reversed by blocking the Rho/ROCK pathway in vitro, and the inhibition of Rho/ROCK pathway can promote axon regeneration and functional recovery in the injured CNS in vivo. In addition, the therapeutic effects of the Rho/ROCK inhibitors have also been demonstrated in some animal models and the Rho/ROCK pathway becomes an attractive target for the development of drugs for treating CNS disorders. In this review, we summarized on the effect of the Rho and the downstream factor ROCK in neural regeneration, and the potential therapeutic effect of Rho/ROCK inhibitors in the survival and axonal regeneration of retinal ganglion cells was also discussed.
Collapse
Affiliation(s)
- Hai-Bo Tan
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | | | | | | |
Collapse
|
21
|
Andrews EM, Richards RJ, Yin FQ, Viapiano MS, Jakeman LB. Alterations in chondroitin sulfate proteoglycan expression occur both at and far from the site of spinal contusion injury. Exp Neurol 2011; 235:174-87. [PMID: 21952042 DOI: 10.1016/j.expneurol.2011.09.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/29/2011] [Accepted: 09/09/2011] [Indexed: 12/24/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) present an inhibitory barrier to axonal growth and plasticity after trauma to the central nervous system. These extracellular and membrane bound molecules are altered after spinal cord injuries, but the magnitude, time course, and patterns of expression following contusion injury have not been fully described. Western blots and immunohistochemistry were combined to assess the expression of four classically inhibitory CSPGs, aggrecan, neurocan, brevican and NG2, at the lesion site and in distal segments of cervical and thoracic spinal cord at 3, 7, 14 and 28 days following a severe mid-thoracic spinal contusion. Total neurocan and the full-length (250 kDa) isoform were strongly upregulated both at the lesion epicenter and in cervical and lumbar segments. In contrast, aggrecan and brevican were sharply reduced at the injury site and were unchanged in distal segments. Total NG2 protein was unchanged across the injury site, while NG2+ profiles were distributed throughout the lesion site by 14 days post-injury (dpi). Far from the lesion, NG2 expression was increased at lumbar, but not cervical spinal cord levels. To determine if the robust increase in neurocan at the distal spinal cord levels corresponded to regions of increased astrogliosis, neurocan and GFAP immunoreactivity were measured in gray and white matter regions of the spinal enlargements. GFAP antibodies revealed a transient increase in reactive astrocyte staining in cervical and lumbar cord, peaking at 14 dpi. In contrast, neurocan immunoreactivity was specifically elevated in the cervical dorsal columns and in the lumbar ventral horn and remained high through 28 dpi. The long lasting increase of neurocan in gray matter regions at distal levels of the spinal cord may contribute to the restriction of plasticity in the chronic phase after SCI. Thus, therapies targeted at altering this CSPG both at and far from the lesion site may represent a reasonable addition to combined strategies to improve recovery after SCI.
Collapse
Affiliation(s)
- Ellen M Andrews
- Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
22
|
Moransard M, Dann A, Staszewski O, Fontana A, Prinz M, Suter T. NG2 expressed by macrophages and oligodendrocyte precursor cells is dispensable in experimental autoimmune encephalomyelitis. ACTA ACUST UNITED AC 2011; 134:1315-30. [PMID: 21596769 DOI: 10.1093/brain/awr070] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Increased expression of the chondroitin proteoglycan NG2 is a prominent feature in central nervous system injury with unknown cellular source and biological relevance. Here, we describe the first detailed analysis of experimental autoimmune encephalomyelitis in NG2 knockout mice and NG2 knockout bone marrow chimeras. We show that both macrophages and oligodendrocyte progenitor cells express and secrete NG2 in response to transforming growth factor-β. A subpopulation of macrophages expresses NG2 within leucocyte infiltrates in the central nervous system, but only oligodendrocyte progenitor cells contribute to NG2 accumulation. Notably, NG2 plays no role in experimental autoimmune encephalomyelitis initiation, progression or recuperation. In concurrence, the immune response is unaltered in NG2-deficient mice as are the extent of central nervous system damage and degree of remyelination.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antigens/genetics
- Antigens/metabolism
- Antigens, CD/metabolism
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Flow Cytometry
- Glial Fibrillary Acidic Protein/metabolism
- Macrophages/metabolism
- Macrophages/ultrastructure
- Mice
- Mice, Inbred C57BL
- Microscopy, Electron, Transmission
- Neurons/metabolism
- Neurons/pathology
- Oligodendroglia/metabolism
- Oligodendroglia/ultrastructure
- Proteoglycans/genetics
- Proteoglycans/metabolism
- RNA, Messenger/metabolism
- Spinal Cord/pathology
- Stem Cells/metabolism
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta/pharmacology
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Martijn Moransard
- Clinical Immunology, University Hospital Zurich, Häldeliweg 4, CH-8044 Zürich, Switzerland.
| | | | | | | | | | | |
Collapse
|
23
|
Carter CJ. Schizophrenia: a pathogenetic autoimmune disease caused by viruses and pathogens and dependent on genes. J Pathog 2011; 2011:128318. [PMID: 22567321 PMCID: PMC3335463 DOI: 10.4061/2011/128318] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/25/2011] [Indexed: 12/20/2022] Open
Abstract
Many genes have been implicated in schizophrenia as have viral prenatal or adult infections and toxoplasmosis or Lyme disease. Several autoantigens also target key pathology-related proteins. These factors are interrelated. Susceptibility genes encode for proteins homologous to those of the pathogens while the autoantigens are homologous to pathogens' proteins, suggesting that the risk-promoting effects of genes and risk factors are conditional upon each other, and dependent upon protein matching between pathogen and susceptibility gene products. Pathogens' proteins may act as dummy ligands, decoy receptors, or via interactome interference. Many such proteins are immunogenic suggesting that antibody mediated knockdown of multiple schizophrenia gene products could contribute to the disease, explaining the immune activation in the brain and lymphocytes in schizophrenia, and the preponderance of immune-related gene variants in the schizophrenia genome. Schizophrenia may thus be a “pathogenetic” autoimmune disorder, caused by pathogens, genes, and the immune system acting together, and perhaps preventable by pathogen elimination, or curable by the removal of culpable antibodies and antigens.
Collapse
Affiliation(s)
- C J Carter
- Polygenic Pathways, 20 Upper Maze Hill, St Leonards-on-Sea, East Sussex, TN38 OLG, UK
| |
Collapse
|
24
|
Simon C, Götz M, Dimou L. Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia 2011; 59:869-81. [PMID: 21446038 DOI: 10.1002/glia.21156] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/19/2011] [Indexed: 02/06/2023]
Abstract
The adult brain parenchyma contains a widespread population of progenitors generating different cells of the oligodendrocyte lineage such as NG2+ cells and some mature oligodendrocytes. However, it is still largely unknown how proliferation and lineage decisions of these progenitors are regulated. Here, we first characterized the cell cycle length, proliferative fraction, and progeny of dividing cells in the adult cerebral cortex and then compared these proliferation characteristics after two distinct stimuli, invasive acute brain injury and increased physiological activity by voluntary physical exercise. Our data show that adult parenchymal progenitors have a very long cell cycle due to an extended G1 phase, many of them can divide at least twice and only a limited proportion of the progeny differentiates into mature oligodendrocytes. After stab wound injury, however, many of these progenitors re-enter the cell cycle very fast, suggesting that the normally long G1 phase is subject to regulation and can be abruptly shortened. In striking contrast, voluntary physical exercise shows the opposite effect with increased exit of the cell cycle followed by an enhanced and fast differentiation into mature oligodendrocytes. Taken together, our data demonstrate that the endogenous population of adult brain parenchymal progenitors is subject to profound modulation by environmental stimuli in both directions, either faster proliferation or faster differentiation.
Collapse
Affiliation(s)
- Christiane Simon
- Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich, Germany
| | | | | |
Collapse
|
25
|
Hill RA, Natsume R, Sakimura K, Nishiyama A. NG2 cells are uniformly distributed and NG2 is not required for barrel formation in the somatosensory cortex. Mol Cell Neurosci 2011; 46:689-98. [PMID: 21292011 DOI: 10.1016/j.mcn.2011.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/14/2011] [Accepted: 01/24/2011] [Indexed: 11/20/2022] Open
Abstract
The somatosensory barrel cortex in the rodent forms during the first postnatal week setting up a periphery related map with each whisker represented as a bundle of thalamocortical axons (TCAs) in layer IV. The centers of each barrel (hollows) contain the densely packed TCAs, while the areas between each barrel (septa) form a boundary between each barrel. NG2 chondroitin sulfate proteoglycan (CSPG) expressing cells (NG2 cells, polydendrocytes) make up a unique population of glial cells that receive synaptic like input and form close contacts with growing axons. In the present study we investigated the developmental distribution of NG2 cells in the barrel cortex to determine if they display preferential septa distribution similar to other extracellular and cell surface CSPGs. Immunohistochemistry for NG2 and platelet-derived growth factor receptor alpha (PDGFRα) in NG2DsRedBAC transgenic mice showed uniform distribution of NG2 cells and processes in barrel hollows and septa at postnatal (P) days 5, 6, 7, 8, 14, and 30. Changes in the barrel pattern formation caused by cauterization of one row of whiskers at P1 resulted in corresponding changes in extracellular and cell surface CSPG distribution at P7 but no detectable changes in NG2 cell bodies and processes. Furthermore, no abnormalities in barrel formation or reorganization were detected in NG2 knockout mice. These observations suggest that NG2 cells are unlikely to play an inhibitory boundary role on TCA growth and that NG2 expression is not necessary for normal barrel formation.
Collapse
Affiliation(s)
- Robert A Hill
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | |
Collapse
|
26
|
Adult NG2+ cells are permissive to neurite outgrowth and stabilize sensory axons during macrophage-induced axonal dieback after spinal cord injury. J Neurosci 2010; 30:255-65. [PMID: 20053907 DOI: 10.1523/jneurosci.3705-09.2010] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We previously demonstrated that activated ED1+ macrophages induce extensive axonal dieback of dystrophic sensory axons in vivo and in vitro. Interestingly, after spinal cord injury, the regenerating front of axons is typically found in areas rich in ED1+ cells, but devoid of reactive astrocyte processes. These observations suggested that another cell type must be present in these areas to counteract deleterious effects of macrophages. Cells expressing the purportedly inhibitory chondroitin sulfate proteoglycan NG2 proliferate in the lesion and intermingle with macrophages, but their influence on regeneration is highly controversial. Our in vivo analysis of dorsal column crush lesions confirms the close association between NG2+ cells and injured axons. We hypothesized that NG2+ cells were growth promoting and thereby served to increase axonal stability following spinal cord injury. We observed that the interactions between dystrophic adult sensory neurons and primary NG2+ cells derived from the adult spinal cord can indeed stabilize the dystrophic growth cone during macrophage attack. NG2+ cells expressed high levels of laminin and fibronectin, which promote neurite outgrowth on the surface of these cells. Our data also demonstrate that NG2+ cells, but not astrocytes, use matrix metalloproteases to extend across a region of inhibitory proteoglycan, and provide a permissive bridge for adult sensory axons. These data support the hypothesis that NG2+ cells are not inhibitory to regenerating sensory axons and, in fact, they may provide a favorable substrate that can stabilize the regenerating front of dystrophic axons in the inhibitory environment of the glial scar.
Collapse
|
27
|
Hooshmand MJ, Sontag CJ, Uchida N, Tamaki S, Anderson AJ, Cummings BJ. Analysis of host-mediated repair mechanisms after human CNS-stem cell transplantation for spinal cord injury: correlation of engraftment with recovery. PLoS One 2009; 4:e5871. [PMID: 19517014 PMCID: PMC2690693 DOI: 10.1371/journal.pone.0005871] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 04/22/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Human central nervous system-stem cells grown as neurospheres (hCNS-SCns) self-renew, are multipotent, and have potential therapeutic applications following trauma to the spinal cord. We have previously shown locomotor recovery in immunodeficient mice that received a moderate contusion spinal cord injury (SCI) and hCNS-SCns transplantation 9 days post-injury (dpi). Engrafted hCNS-SCns exhibited terminal differentiation to myelinating oligodendrocytes and synapse-forming neurons. Further, selective ablation of human cells using Diphtheria toxin (DT) abolished locomotor recovery in this paradigm, suggesting integration of human cells within the mouse host as a possible mechanism for the locomotor improvement. However, the hypothesis that hCNS-SCns could alter the host microenvironment as an additional or alternative mechanism of recovery remained unexplored; we tested that hypothesis in the present study. METHODS AND FINDINGS Stereological quantification of human cells using a human-specific cytoplasmic marker demonstrated successful cell engraftment, survival, migration and limited proliferation in all hCNS-SCns transplanted animals. DT administration at 16 weeks post-transplant ablated 80.5% of hCNS-SCns. Stereological quantification for lesion volume, tissue sparing, descending serotonergic host fiber sprouting, chondroitin sulfate proteoglycan deposition, glial scarring, and angiogenesis demonstrated no evidence of host modification within the mouse spinal cord as a result of hCNS-SCns transplantation. Biochemical analyses supplemented stereological data supporting the absence of neural stem-cell mediated host repair. However, linear regression analysis of the number of engrafted hCNS-SCns vs. the number of errors on a horizontal ladder beam task revealed a strong correlation between these variables (r = -0.78, p<0.05), suggesting that survival and engraftment were directly related to a quantitative measure of recovery. CONCLUSIONS Altogether, the data suggest that the locomotor improvements associated with hCNS-SCns transplantation were not due to modifications within the host microenvironment, supporting the hypothesis that human cell integration within the host circuitry mediates functional recovery following a 9 day delayed transplant.
Collapse
Affiliation(s)
- Mitra J. Hooshmand
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
| | - Christopher J. Sontag
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California, United States of America
| | - Nobuko Uchida
- StemCells, Inc., Palo Alto, California, United States of America
| | - Stan Tamaki
- StemCells, Inc., Palo Alto, California, United States of America
| | - Aileen J. Anderson
- Department of Physical Medicine and Rehabilitation, Reeve-Irvine Research Center, University of California Irvine, Irvine, California, United States of America
| | - Brian J. Cummings
- Department of Physical Medicine and Rehabilitation, Reeve-Irvine Research Center, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Nishiyama A, Komitova M, Suzuki R, Zhu X. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci 2009; 10:9-22. [DOI: 10.1038/nrn2495] [Citation(s) in RCA: 647] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Alexander JJ, Anderson AJ, Barnum SR, Stevens B, Tenner AJ. The complement cascade: Yin-Yang in neuroinflammation--neuro-protection and -degeneration. J Neurochem 2008; 107:1169-87. [PMID: 18786171 DOI: 10.1111/j.1471-4159.2008.05668.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complement cascade has long been recognized to play a key role in inflammatory and degenerative diseases. It is a 'double edged' sword as it is necessary to maintain health, yet can have adverse effects when unregulated, often exacerbating disease. The contrasting effects of complement, depending on whether in a setting of health or disease, is the price paid to achieve flexibility in scope and degree of a protective response for the host from infection and injury. Loss or even decreased efficiency of critical regulatory control mechanisms can result in aggravated inflammation and destruction of self-tissue. The role of the complement cascade is poorly understood in the nervous system and neurological disorders. Novel studies have demonstrated that the expression of complement proteins in brain varies in different cell types and the effects of complement activation in various disease settings appear to differ. Understanding the functioning of this cascade is essential, as it has therapeutic implications. In this review, we will attempt to provide insight into how this complex cascade functions and to identify potential strategic targets for therapeutic intervention in chronic diseases as well as acute injury in the CNS.
Collapse
|
30
|
Abstract
It has long been thought that astrocytes, like other glial cells, simply provide a support mechanism for neuronal function in the healthy and inflamed central nervous system (CNS). However, recent evidence suggests that astrocytes play an active and dual role in CNS inflammatory diseases such as multiple sclerosis (MS). Astrocytes not only have the ability to enhance immune responses and inhibit myelin repair, but they can also be protective and limit CNS inflammation while supporting oligodendrocyte and axonal regeneration. The particular impact of these cells on the pathogenesis and repair of an inflammatory demyelinating process is dependent upon a number of factors, including the stage of the disease, the type and microenvironment of the lesion, and the interactions with other cell types and factors that influence their activation. In this review, we summarize recent data supporting the idea that astrocytes play a complex role in the regulation of CNS autoimmunity.
Collapse
Affiliation(s)
- A. Nair
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Fienberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611 USA
| | - T. J. Frederick
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Fienberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611 USA
| | - S. D. Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Fienberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611 USA
| |
Collapse
|
31
|
Little L, Healy KE, Schaffer D. Engineering biomaterials for synthetic neural stem cell microenvironments. Chem Rev 2008; 108:1787-96. [PMID: 18476674 DOI: 10.1021/cr078228t] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lauren Little
- Department of Chemical Engineering, University of California, Berkeley, California 94720-1760, USA
| | | | | |
Collapse
|
32
|
Abstract
In this review, we describe the current therapeutic strategies to find a cure for paralysis. We use the example of DHEA, a neurosteroid normally produced in the developing neural tube, to raise the hypothesis that such a class of molecules, capable of modulating proliferation of committed neural precursors, could serve as an environmental cue in the adult injured spinal cord to promote re-population of CNS lesion with endogenous dormant precursor cells. Such mechanism may be a part of the natural response to heal the injured CNS and promote recovery of function, suggesting that neurosteroid-treatment could be a promising and novel therapeutic avenue for SCI. We will review pertinent biological activities of DHEA supporting this hypothesis, demonstrate that such activities, dependent on an intact sonic-hedgehog pathway, are responsible for the motor and bladder functional recovery observed after DHEA-treatment in the adult injured spinal cord. We will also raise the current limitations to further development of DHEA- or other neurosteroid-treatments as drug candidates, including the urgent need to further document DHEA long-term safety in CNS indications.
Collapse
Affiliation(s)
- Nathalie A Compagnone
- University of California San Francisco, Laboratory for Spinal Cord Development and Regeneration, Department of Neurological Surgery, CA, USA.
| |
Collapse
|
33
|
Jin Y, Ziemba KS, Smith GM. Axon growth across a lesion site along a preformed guidance pathway in the brain. Exp Neurol 2007; 210:521-30. [PMID: 18261727 DOI: 10.1016/j.expneurol.2007.11.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/30/2007] [Accepted: 11/30/2007] [Indexed: 11/16/2022]
Abstract
Our previous studies showed that axonal outgrowth from dorsal root ganglia (DRG) transplants in the adult rat brain could be directed toward a specific target location using a preformed growth-supportive pathway. This pathway induced axon growth within the corpus callosum across the midline to the opposite hemisphere. In this study, we examined whether such pathways would also support axon growth either through or around a lesion of the corpus callosum. Pathways expressing GFP, NGF, or FGF2/NGF were set up by multiple injections of adenovirus along the corpus callosum. Each pathway included the transplantation site in the left corpus callosum, 2.8 mm away from the midline, and a target site in the right corpus callosum, 2.5 mm from the midline. At the same time, a 1 mm lesion was made through the corpus callosum at the midline in an anteroposterior direction. A group of control animals received lesions and Ad-NGF injections only at the transplant and target sites, without a bridging pathway. DRG cell suspensions from postnatal day 1 or 2 rats were injected at the transplantation site three to four days later. Two weeks after transplantation, brain sections were stained using an anti-CGRP antibody. The CGRP+ axons were counted at 0.5 mm and 1.5 mm from the lesion site in both hemispheres. Few axons grew past the lesion in animals with control pathways, but there was robust axon growth across the lesion site in the FGF2/NGF and NGF-expressing pathways. This study indicated that preformed NGF and combination guidance pathways support more axon growth past a lesion in the adult mammalian brain.
Collapse
Affiliation(s)
- Ying Jin
- Department of Physiology, Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA.
| | | | | |
Collapse
|
34
|
Iaci JF, Vecchione AM, Zimber MP, Caggiano AO. Chondroitin Sulfate Proteoglycans in Spinal Cord Contusion Injury and the Effects of Chondroitinase Treatment. J Neurotrauma 2007; 24:1743-59. [DOI: 10.1089/neu.2007.0366] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
35
|
Hossain-Ibrahim MK, Rezajooi K, Stallcup WB, Lieberman AR, Anderson PN. Analysis of axonal regeneration in the central and peripheral nervous systems of the NG2-deficient mouse. BMC Neurosci 2007; 8:80. [PMID: 17900358 PMCID: PMC2100060 DOI: 10.1186/1471-2202-8-80] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 09/27/2007] [Indexed: 11/19/2022] Open
Abstract
Background The chondroitin sulphate proteoglycan NG2 blocks neurite outgrowth in vitro and has been proposed as a major inhibitor of axonal regeneration in the CNS. Although a substantial body of evidence underpins this hypothesis, it is challenged by recent findings including strong expression of NG2 in regenerating peripheral nerve. Results We studied axonal regeneration in the PNS and CNS of genetically engineered mice that do not express NG2, and in sex and age matched wild-type controls. In the CNS, we used anterograde tracing with BDA to study corticospinal tract (CST) axons after spinal cord injury and transganglionic labelling with CT-HRP to trace ascending sensory dorsal column (DC) axons after DC lesions and a conditioning lesion of the sciatic nerve. Injury to these fibre tracts resulted in no difference between knockout and wild-type mice in the ability of CST axons or DC axons to enter or cross the lesion site. Similarly, after dorsal root injury (with conditioning lesion), most regenerating dorsal root axons failed to grow across the dorsal root entry zone in both transgenic and wild-type mice. Following sciatic nerve injuries, functional recovery was assessed by analysis of the toe-spreading reflex and cutaneous sensitivity to Von Frey hairs. Anatomical correlates of regeneration were assessed by: retrograde labelling of regenerating dorsal root ganglion (DRG) cells with DiAsp; immunostaining with PGP 9.5 to visualise sensory reinnervation of plantar hindpaws; electron microscopic analysis of regenerating axons in tibial and digital nerves; and by silver-cholinesterase histochemical study of motor end plate reinnervation. We also examined functional and anatomical correlates of regeneration after injury of the facial nerve by assessing the time taken for whisker movements and corneal reflexes to recover and by retrograde labelling of regenerated axons with Fluorogold and DiAsp. None of the anatomical or functional analyses revealed significant differences between wild-type and knockout mice. Conclusion These findings show that NG2 is unlikely to be a major inhibitor of axonal regeneration after injury to the CNS, and, further, that NG2 is unlikely to be necessary for regeneration or functional recovery following peripheral nerve injury.
Collapse
Affiliation(s)
- Mohammed K Hossain-Ibrahim
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
- Department of Neurosurgery, Queen Elizabeth Hospital, Metchley Lane, Birmingham B15 2TH, UK
| | - Kia Rezajooi
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Alexander R Lieberman
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Patrick N Anderson
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
36
|
Carmen J, Magnus T, Cassiani-Ingoni R, Sherman L, Rao MS, Mattson MP. Revisiting the astrocyte–oligodendrocyte relationship in the adult CNS. Prog Neurobiol 2007; 82:151-62. [PMID: 17448587 DOI: 10.1016/j.pneurobio.2007.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 01/26/2007] [Accepted: 03/02/2007] [Indexed: 01/31/2023]
Abstract
The lineages of both astrocytes and oligodendrocytes have been popular areas of research in the last decade. The source of these cells in the mature CNS is relevant to the study of the cellular response to CNS injury. A significant amount of evidence exists to suggest that resident precursor cells proliferate and differentiate into mature glial cells that facilitate tissue repair and recovery. Additionally, the re-entry of mature astrocytes into the cell cycle can also contribute to the pool of new astrocytes that are observed following CNS injury. In order to better understand the glial response to injury in the adult CNS we must revisit the astrocyte-oligodendrocyte relationship. Specifically, we argue that there is a common glial precursor cell from which astrocytes and oligodendrocytes differentiate and that the microenvironment surrounding the injury determines the fate of the stimulated precursor cell. Ideally, better understanding the origin of new glial cells in the injured CNS will facilitate the development of therapeutics targeted to alter the glial response in a beneficial way.
Collapse
Affiliation(s)
- Jessica Carmen
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, NIH, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Tripathi R, McTigue DM. Prominent oligodendrocyte genesis along the border of spinal contusion lesions. Glia 2007; 55:698-711. [PMID: 17330874 DOI: 10.1002/glia.20491] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Oligodendrocyte (OL) loss and axon demyelination occur after spinal cord injury (SCI). OLs may be replaced, however, by proliferating NG2+ progenitor cells. Indeed, new OLs have been noted in ventral white matter after SCI. Since tissue adjacent to lesion cavities is exposed to different mediators compared with outlying spared tissue, the authors used a rat SCI model to compare NG2 cell proliferation and OL genesis adjacent to lesion cavities with that in spared tissue closer to meninges. NG2 cells proliferated throughout the first week postinjury and accumulated along lesion borders, especially within gray matter. By 3 days postinjury (dpi), new OLs were detected throughout the cross-sections; between 4 and 7 dpi, however, oligogenesis was restricted to lesion borders. New OLs derived from cells proliferating during 1-7 dpi increased dramatically by 14 dpi; most were located along lesion borders and in spared gray matter. Oligogenesis continued along lesion borders during the second week postinjury. Overall OL numbers were reduced at 3 dpi in spared tissue, but rebounded to normal levels by 14 dpi. Surprisingly, lesion borders maintained normal OL numbers at 3 dpi, which then rose to exceed preinjury levels at 7 and 14 dpi. These results indicate that oligogenesis is protracted after SCI and leads to increased OL numbers. Most new OLs are formed in regions of greatest NG2 cell proliferation. Thus, the adult spinal cord spontaneously develops a dynamic gliogenic zone along lesion borders.
Collapse
Affiliation(s)
- Richa Tripathi
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Ohio State University, 333 W. 10th Avenue, Columbus, OH 43210, USA
| | | |
Collapse
|
38
|
Abstract
NG2 cells, or polydendrocytes, are defined as glial cells that express the NG2 proteoglycan and represent a fourth major glial cell population in the mammalian central nervous system. They are morphologically, antigenically, and functionally distinct from mature astrocytes, oligodendrocytes, and microglia. Although they are most often equated with oligodendrocyte progenitor cells, they exhibit some properties that are not commonly associated with those of progenitor cells that generate myelinating cells. This review discusses recent observations and unanswered issues related to their lineage and their role in remyelination, neural signaling, and axonal growth.
Collapse
Affiliation(s)
- Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA.
| |
Collapse
|
39
|
Popa-Wagner A, Badan I, Walker L, Groppa S, Patrana N, Kessler C. Accelerated infarct development, cytogenesis and apoptosis following transient cerebral ischemia in aged rats. Acta Neuropathol 2007; 113:277-93. [PMID: 17131130 DOI: 10.1007/s00401-006-0164-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 10/23/2006] [Accepted: 10/23/2006] [Indexed: 01/04/2023]
Abstract
Old age is associated with a deficient recovery from stroke, but the cellular mechanisms underlying such phenomena are poorly understood. To address this issue, focal cerebral ischemia was produced by reversible occlusion of the right middle cerebral artery in 3- and 20-month-old male Sprague-Dawley rats. Aged rats showed a delayed and suboptimal functional recovery in the post-stroke period. Using BrdU-labeling, quantitative immunohistochemistry and 3-D reconstruction of confocal images, we found that aged rats are predisposed to rapidly develop an infarct within the first few days after ischemia. The emergence of the necrotic zone is associated with a high rate of cellular degeneration, premature accumulation of proliferating BrdU-positive cells that appear to emanate from capillaries in the infarcted area, and a large number of apoptotic cells. With double labeling techniques, we were able to identify, for the first time, over 60% of BrdU-positive cells either as reactive microglia (45%), oligodendrocyte progenitors (17%), astrocytes (23%), CD8+ lymphocytes (4%), or apoptotic cells (<1%). Paradoxically, despite a robust reactive phenotype of microglia and astrocytes in aged rats, at 1-week post-stroke, the number of proliferating microglia and astrocytes was lower in aged rats than in young rats. Our data indicate that aging is associated with rapid infarct development and a poor prognosis for full recovery from stroke that is correlated with premature cellular proliferation and increased cellular degeneration and apoptosis in the infarcted area.
Collapse
Affiliation(s)
- Aurel Popa-Wagner
- Department of Neurology, University of Greifswald, Ellernholzstr. 1-2, 17487, Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Akeda K, An HS, Pichika R, Patel K, Muehleman C, Nakagawa K, Uchida A, Masuda K. The expression of NG2 proteoglycan in the human intervertebral disc. Spine (Phila Pa 1976) 2007; 32:306-14. [PMID: 17268261 DOI: 10.1097/01.brs.0000254108.08507.04] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Immunohistochemical and biochemical analyses of NG2 proteoglycan in the human intervertebral disc. OBJECTIVE To determine if the human intervertebral disc expresses NG2 proteoglycan. SUMMARY OF BACKGROUND DATA In the nervous system, NG2 has been reported to play an important role as an interactive extracellular matrix component and membrane receptor for growth factors. NG2 is also found in non-neuronal tissues, such as cartilage and bone; however, the expression of NG2 within the human intervertebral disc is unknown. METHODS NG2 expression in the intervertebral disc was examined through Western blotting, reverse transcriptase polymerase chain reaction, and immunohistochemistry. Confocal microscopy was used to assess the spatial association of NG2 with type VI collagen. To reveal changes in the content of NG2 with disc degeneration, Western blot analysis was used to assess the relative content of NG2 in human intervertebral disc tissues with varying degrees of degeneration. RESULTS NG2 was clearly identified in cells from both the anulus fibrosus and nucleus pulposus, and colocalized with both type VI collagen and beta-integrin, located in the inner area of the cell-associated matrix. Throughout the anterior and posterior regions of the disc tissues, most cells were confirmed to be NG2 positive. Cells expressed NG2 messenger ribonucleic acid, and Western blot confirmed the presence of the core protein of the NG2 protein, 250 kDa. A study comparing the different grades of disc degeneration showed that the content of NG2 was elevated in disc tissues in an advanced stage of degeneration compared to tissues in an early stage of degeneration. CONCLUSIONS Although the biologic role of NG2 remains to be elucidated, the colocalization of NG2 with type VI collagen in the pericellular area suggests that NG2 may play an important role in cell-matrix interactions. The high level of NG2 expression in advanced degeneration also suggests an important role of NG2 in the loss of disc integrity.
Collapse
Affiliation(s)
- Koji Akeda
- Department of Orthopedic Surgery, Rush Medical College at Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu BP, Cafferty WB, Budel SO, Strittmatter SM. Extracellular regulators of axonal growth in the adult central nervous system. Philos Trans R Soc Lond B Biol Sci 2006; 361:1593-610. [PMID: 16939977 PMCID: PMC1664666 DOI: 10.1098/rstb.2006.1891] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Robust axonal growth is required during development to establish neuronal connectivity. However, stable fibre patterns are necessary to maintain adult mammalian central nervous system (CNS) function. After adult CNS injury, factors that maintain axonal stability limit the recovery of function. Extracellular molecules play an important role in preserving the stability of the adult CNS axons and in restricting recovery from pathological damage. Adult axonal growth inhibitors include a group of proteins on the oligodendrocyte, Nogo-A, myelin-associated glycoprotein, oligodendrocyte-myelin glycoprotein and ephrin-B3, which interact with axonal receptors, such as NgR1 and EphA4. Extracellular proteoglycans containing chondroitin sulphates also inhibit axonal sprouting in the adult CNS, particularly at the sites of astroglial scar formation. Therapeutic perturbations of these extracellular axonal growth inhibitors and their receptors or signalling mechanisms provide a degree of axonal sprouting and regeneration in the adult CNS. After CNS injury, such interventions support a partial return of neurological function.
Collapse
Affiliation(s)
| | | | | | - Stephen M Strittmatter
- Department of Neurology, Yale University School of MedicinePO Box 208018, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
42
|
Holmberg E, Nordstrom T, Gross M, Kluge B, Zhang SX, Doolen S. Simvastatin Promotes Neurite Outgrowth in the Presence of Inhibitory Molecules Found in Central Nervous System Injury. J Neurotrauma 2006; 23:1366-78. [PMID: 16958588 DOI: 10.1089/neu.2006.23.1366] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Statins (3-hydroxy-3-methylglutaryl-CoA [HMG-CoA] reductase inhibitors) inhibit the rate-limiting step in the mevalonate pathway, conversion of HMG-CoA to mevalonate, by competitive inhibition with the enzyme HMG-CoA reductase. Statins not only lower cholesterol levels, but are also thought to exert neuroprotective and neurogenic effects that may be beneficial in treating brain and spinal cord injuries. Data presented here illustrate that simvastatin enables neurite outgrowth in the presence of growth-inhibitory molecules commonly found at central nervous system (CNS) injury sites. To assess the effect of simvastatin on neurite outgrowth in the presence of inhibitory molecules present at CNS injury sites, rat embryonic cortex explants or postnatal spinal cord explants were grown on membrane filters prepared with alternating stripes of laminin and myelin/laminin. Immunostaining indicated that myelin stripes contain myelin-associated glycoprotein (MAG), oligodendrocyte myelin glycoprotein (OMgp), and Nogo, but do not contain chondroitin sulfate proteoglycan (CSPG). When control explants were grown in the presence of alternating stripes, neurite outgrowth preferentially extended in regions containing laminin only. In contrast, neurite outgrowth from explants grown in the presence of simvastatin was significantly less selective for laminin regions and was able to extend into regions containing myelin (p < 0.01). Simvastatin-induced effects were reversed by addition of mevalonate. Isoprenyl transferase inhibitors GGTI-286 and FTI-277, inhibitors of biochemical steps subsequent to HMG-CoA conversion to mevalonate, mimicked simvastatin- induced effects. These data suggest that simvastatin counteracts myelin-associated neurite outgrowth inhibition signals via mevalonate pathway inhibition, and may be beneficial in promoting axon regeneration in brain and spinal cord injury.
Collapse
Affiliation(s)
- Eric Holmberg
- Spinal Cord Society Research Center, Fort Collins, Colorado 80526-1826, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Inhibition by several inhibitory molecules on oligodendrocytes, and by chondroitin sulphate proteoglycans and semaphorins in the glial scar discourages regeneration of axons in the injured spinal cord. This inhibition is compounded by the poor regenerative ability of most central nervous system (CNS) axons. Treatments that block some of these inhibitory mechanisms promote regeneration in animal models of cord injury. Plasticity is also reduced by some of the inhibitory molecules, and some of the treatments that promote regeneration also promote plasticity. This is probably a more achievable therapeutic target than axon regeneration, and an effective treatment would be of assistance to the majority of patients with partial cord injuries.
Collapse
Affiliation(s)
- James W Fawcett
- Cambridge University Centre for Brain Repair, Cambridge, United Kingdom.
| |
Collapse
|
44
|
McTigue DM, Tripathi R, Wei P. NG2 colocalizes with axons and is expressed by a mixed cell population in spinal cord lesions. J Neuropathol Exp Neurol 2006; 65:406-20. [PMID: 16691121 DOI: 10.1097/01.jnen.0000218447.32320.52] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The NG2 proteoglycan is of general interest after spinal cord injury because it is expressed by oligodendrocyte progenitors (OPCs), which contribute to central nervous system remyelination; however, NG2 may inhibit axon regeneration. We and others have examined the spatiotemporal expression of NG2 after spinal cord injury (SCI). Here, we extend those observations and provide a comprehensive analysis of the distribution, phenotype, and colocalization of NG2 cells with axons in a clinically relevant model of spinal contusion. Because contusion models mimic the majority of human SCI, this information is important for understanding endogenous processes that promote and/or prevent repair. The data demonstrate that NG2 levels rise significantly between 3 and 7 days postinjury (dpi) and remain elevated chronically throughout the lesions. NG2 within the lesions could be derived from an array of infiltrating cells; thus, a panel of antibodies was used to investigate NG2 cell phenotypes. First, platelet-derived growth factor-alpha receptor (PDGFalphaR) colocalization was examined because OPCs normally express both markers. PDGFalphaR cells were present in lesions at all times examined. However, only 37% of NG2 cells coexpressed PDGFalphaR at 14 dpi, which dropped to <1% by 70 dpi. This contrasts with the nearly complete overlap in spared tissue surrounding the lesion. In contrast, 40% to 60% of NG2 cells expressed p75 and approximately 84% expressed Sox10, suggesting that many NG2 cells were nonmyelinating Schwann cells. Despite rising levels of NG2, we noted robust and sustained axon growth into the lesions, many of which were located along NG2 profiles. Thus, spinal contusion produces an NG2-rich environment into which axons grow and in which the source of NG2 appears considerably different from that in surrounding spared tissue.
Collapse
Affiliation(s)
- Dana M McTigue
- From the Department of Neuroscience and Spinal Trauma and Repair (STAR) Laboratories, Ohio State University, Columbus, Ohio
| | | | | |
Collapse
|
45
|
Abstract
NG2 is a high-molecular-weight chondroitin sulphate proteoglycan found on the surfaces of oligodendrocyte precursor cells (OPCs). Here we review the history and biology of OPCs with an emphasis on their functions after experimentally induced CNS injury. Injury to brain or spinal cord results in the rapid accumulation of NG2-expressing OPCs in the glial scar that forms at the injury site. The glial scar is considered a biochemical and physical barrier to successful axon regeneration and the functional properties of NG2 suggest that it, along with other macromolecules, participates in the creation of this growth-inhibitory environment. NG2 is an important target for therapies designed to promote successful axon regrowth.
Collapse
Affiliation(s)
- Andrew M Tan
- Department of Neurobiology and Behavior, State University of New York, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
46
|
Sim FJ, Lang JK, Waldau B, Roy NS, Schwartz TE, Pilcher WH, Chandross KJ, Natesan S, Merrill JE, Goldman SA, Goldmanm SA. Complementary patterns of gene expression by human oligodendrocyte progenitors and their environment predict determinants of progenitor maintenance and differentiation. Ann Neurol 2006; 59:763-79. [PMID: 16634042 DOI: 10.1002/ana.20812] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Glial progenitor cells are abundant in adult human white matter. This study was designed to identify signaling pathways regulating their self-renewal and fate. METHODS We compared the transcriptional profiles of freshly sorted adult human white matter progenitor cells (WMPCs), purified by A2B5-based immunomagnetic sorting, with those of the white matter from which they derived. RESULTS We identified 132 genes differentially expressed by WMPCs; these included principal components of five receptor-defined signaling pathways, represented by platelet derived growth factor receptor alpha (PDGFRA) and type 3 fibroblast growth factor receptor (FGFR3), receptor tyrosine phosphatase-beta/zeta (RTPZ), notch, and syndecan3. WMPCs also differentially expressed the bone morphogenetic protein 4 (BMP4) inhibitors neuralin and BAMBI (BMP and activin membrane-bound inhibitor), suggesting tonic defense against BMP signaling. Differential overexpression of RTPZ was accompanied by that of its modulators pleiotrophin, NrCAM, tenascin, and the chondroitin sulfate proteoglycans, suggesting the importance of RTPZ signaling to WMPCs. When exposed to the RTPZ inhibitor bpV(phen), or lentiviral-shRNAi against RTPZ, WMPCs differentiated as oligodendrocytes. Conversely, when neuralin and BAMBI were antagonized by BMP4, astrocytic differentiation was induced, which was reversible by noggin. INTERPRETATION The RTPZ and BMP pathways regulate the self-maintenance of adult human WMPCs, and can be modulated to induce their oligodendrocytic or astrocytic differentiation. As such, they provide targets by which to productively mobilize resident progenitor cells of the adult human brain.
Collapse
Affiliation(s)
- Fraser J Sim
- Department of Neurology, University of Rochester Medical Center, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yang Z, Suzuki R, Daniels SB, Brunquell CB, Sala CJ, Nishiyama A. NG2 glial cells provide a favorable substrate for growing axons. J Neurosci 2006; 26:3829-39. [PMID: 16597737 PMCID: PMC6674118 DOI: 10.1523/jneurosci.4247-05.2006] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NG2 cells (polydendrocytes) comprise an abundant glial population that is widely and uniformly distributed throughout the developing and mature CNS and are identified by the expression of the NG2 proteoglycan at the cell surface. Although recent electrophysiological studies suggest that they are capable of receiving signals from axon terminals, other studies, based on the finding that the NG2 molecule itself induces growth cone collapse, have led to a widely held speculation that NG2 cells themselves also repel and inhibit growing axons. In this study, we have examined the effects of rat NG2 cells on growing hippocampal and neocortical axons in vitro and in vivo. NG2 cells did not repel growing axons but promoted their growth in vitro, and axonal growth cones formed extensive contacts with NG2 cells both in vitro and in the developing corpus callosum. Punctate immunoreactivity for fibronectin and laminin was found to be colocalized with NG2 on the surface of NG2 cells. Altering the level of cell surface NG2 expression had no effect on the growth-promoting effects of NG2 cells on growing axons. Thus, our study indicates that NG2 cells are not inhibitory to growing axons but provide an adhesive substrate for axonal growth cones and promote their growth even in the presence of elevated levels of the NG2 proteoglycan. These findings suggest a novel role for NG2 cells in facilitating axonal growth during development and regeneration.
Collapse
|
48
|
Marklund N, Fulp CT, Shimizu S, Puri R, McMillan A, Strittmatter SM, McIntosh TK. Selective temporal and regional alterations of Nogo-A and small proline-rich repeat protein 1A (SPRR1A) but not Nogo-66 receptor (NgR) occur following traumatic brain injury in the rat. Exp Neurol 2006; 197:70-83. [PMID: 16321384 PMCID: PMC2849132 DOI: 10.1016/j.expneurol.2005.08.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 07/26/2005] [Accepted: 08/11/2005] [Indexed: 01/12/2023]
Abstract
Axons show a poor regenerative capacity following traumatic central nervous system (CNS) injury, partly due to the expression of inhibitors of axonal outgrowth, of which Nogo-A is considered the most important. We evaluated the acute expression of Nogo-A, the Nogo-66 receptor (NgR) and the novel small proline-rich repeat protein 1A (SPRR1A, previously undetected in brain), following experimental lateral fluid percussion (FP) brain injury in rats. Immunofluorescence with antibodies against Nogo-A, NgR and SPRR1A was combined with antibodies against the neuronal markers NeuN and microtubule-associated protein (MAP)-2 and the oligodendrocyte marker RIP, while Western blot analysis was performed for Nogo-A and NgR. Brain injury produced a significant increase in Nogo-A expression in injured cortex, ipsilateral external capsule and reticular thalamus from days 1-7 post-injury (P < 0.05) compared to controls. Increased expression of Nogo-A was observed in both RIP- and NeuN positive (+) cells in the ipsilateral cortex, in NeuN (+) cells in the CA3 region of the hippocampus and reticular thalamus and in RIP (+) cells in white matter tracts. Alterations in NgR expression were not observed following traumatic brain injury (TBI). Brain injury increased the extent of SPRR1A expression in the ipsilateral cortex and the CA3 at all post-injury time-points in NeuN (+) cells. The marked increases in Nogo-A and SPRR1A in several important brain regions suggest that although inhibitors of axonal growth may be upregulated, the injured brain is also capable of expressing proteins promoting axonal outgrowth following TBI.
Collapse
Affiliation(s)
- Niklas Marklund
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Rhodes KE, Raivich G, Fawcett JW. The injury response of oligodendrocyte precursor cells is induced by platelets, macrophages and inflammation-associated cytokines. Neuroscience 2006; 140:87-100. [PMID: 16631314 DOI: 10.1016/j.neuroscience.2006.01.055] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 12/21/2005] [Accepted: 01/04/2006] [Indexed: 11/17/2022]
Abstract
Oligodendrocyte precursor cells recognized with the NG2 antibody respond rapidly to CNS injuries with hypertrophy and upregulation of the NG2 chondroitin sulfate proteoglycan within 24 h. These cells participate in glial scar formation, remaining around the injury site for several weeks. After injury, reactive oligodendrocyte precursor cells increase their production of several chondroitin sulfate proteoglycans, including NG2: this cell type thus represents a component of the inhibitory environment that prevents regeneration of axons in the injured CNS. This study analyzes factors that activate oligodendrocyte precursor cells. Both microglia and astrocytes become reactive around motor neurons following peripheral nerve lesions. We show that oligodendrocyte precursor cells do not hypertrophy or increase NG2 levels after these lesions. Those lesions that cause an oligodendrocyte precursor cell reaction generally open the blood-brain barrier. We therefore opened the blood-brain barrier with microinjections of vascular endothelial growth factor or lipopolysaccharide to the rat and mouse brain, and examined oligodendrocyte precursor cell reactivity after 24 h. Both treatments led to increases in NG2 and hypertrophy of oligodendrocyte precursor cells. Of directly injected blood components serum and thrombin were without effect, while platelets and macrophages activated oligodendrocyte precursor cells. We tested the effects of a range of injury-related cytokines, of which tumor necrosis factor alpha; interleukin-1; transforming growth factor beta; interferon gamma had effects on oligodendrocyte precursor cells. Oligodendrocyte precursor cell chemokines, and mitogens did not increase NG2 levels.
Collapse
Affiliation(s)
- K E Rhodes
- Cambridge University Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 2PY, UK
| | | | | |
Collapse
|
50
|
Chan CCM, Khodarahmi K, Liu J, Sutherland D, Oschipok LW, Steeves JD, Tetzlaff W. Dose-dependent beneficial and detrimental effects of ROCK inhibitor Y27632 on axonal sprouting and functional recovery after rat spinal cord injury. Exp Neurol 2005; 196:352-64. [PMID: 16154567 DOI: 10.1016/j.expneurol.2005.08.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 08/17/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
Axonal regeneration within the injured central nervous system (CNS) is hampered by multiple inhibitory molecules in the glial scar and the surrounding disrupted myelin. Many of these inhibitors stimulate, either directly or indirectly, the Rho intracellular signaling pathway, providing a strong rationale to target it following spinal cord injuries. In this study, we infused either control (PBS) or a ROCK inhibitor, Y27632 (2 mM or 20 mM, 12 microl/day for 14 days) into the intrathecal space of adult rats starting immediately after a cervical 4/5 dorsal column transection. Histological analysis revealed that high dose-treated animals displayed significantly more axon sprouts in the grey matter distal to injury compared to low dose-treated rats. Only the high dose regimen stimulated sprouting of the dorsal ascending axons along the walls of the lesion cavity. Footprint analysis revealed that the increased base of support normalized significantly faster in control and high dose-treated animals compared to low dose animals. Forepaw rotation angle, and the number of footslips on a horizontal ladder improved significantly more by 6 weeks in high dose animals compared to the other two groups. In a food pellet reaching test, high dose animals performed significantly better than low dose animals, which failed to recover. There was no evidence of mechanical allodynia in any treatment group; however, the slightly shortened heat withdrawal times normalized only with the high dose treatment. Collectively, our data support beneficial effects of high dose Y27632 treatment but indicate that low doses might be detrimental.
Collapse
Affiliation(s)
- Carmen C M Chan
- ICORD (International Collaboration On Repair Discoveries), University of British Columbia, 2469-6270 University Blvd., Vancouver, British Columbia, Canada V6T 1Z4
| | | | | | | | | | | | | |
Collapse
|