1
|
Schroeder T, Piantadosi CA, Natoli MJ, Autmizguine J, Cohen-Wolkowieczs M, Hamilton KL, Bell C, Klawitter J, Christians U, Irwin DC, Noveck RJ. Safety and Ergogenic Properties of Combined Aminophylline and Ambrisentan in Hypoxia. Clin Pharmacol Ther 2017; 103:888-898. [PMID: 28857147 PMCID: PMC5947522 DOI: 10.1002/cpt.860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 01/24/2023]
Abstract
We hypothesized that concomitant pharmacological inhibition of the endothelin and adenosine pathway is safe and improves exercise performance in hypoxic humans, via a mechanism that does not involve augmentation of blood oxygenation. To test this hypothesis, we established safety and drug interactions for aminophylline (500 mg) plus ambrisentan (5 mg) in normoxic volunteers. Subsequently, a placebo-controlled study was employed to test the combination in healthy resting and exercising volunteers at simulated altitude (4,267 m). No serious adverse events occurred. Drug interaction was minimal or absent. Aminophylline alleviated hypoxia-induced headaches. Aminophylline, ambrisentan, and their combination all significantly (P < 0.05 vs. placebo) improved submaximal hypoxic exercise performance (19.5, 20.6, and 19.1% >placebo). Single-dose ambrisentan increased blood oxygenation in resting, hypoxic subjects. We conclude that combined aminophylline and ambrisentan offer promise to safely increase exercise capacity in hypoxemic humans without relying on increasing blood oxygen availability.
Collapse
Affiliation(s)
| | - Claude A Piantadosi
- Hyperbaric Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael J Natoli
- Hyperbaric Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Julie Autmizguine
- Department of Pharmacology, University of Montreal, Montreal, Quebec, Canada
| | - Michael Cohen-Wolkowieczs
- Duke Early Phase Clinical Research Unit, Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Christopher Bell
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Jelena Klawitter
- iC42 Integrated Solutions in Clinical Research and Development, University of Colorado, Bioscience East, Aurora, Colorado, USA
| | - Uwe Christians
- iC42 Integrated Solutions in Clinical Research and Development, University of Colorado, Bioscience East, Aurora, Colorado, USA
| | - David C Irwin
- Department of Medicine, University of Colorado Denver Anschutz Campus, Aurora, Colorado, USA
| | - Robert J Noveck
- Hyperbaric Center, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
2
|
Freeman BD, Martins YC, Akide-Ndunge OB, Bruno FP, Wang H, Tanowitz HB, Spray DC, Desruisseaux MS. Endothelin-1 Mediates Brain Microvascular Dysfunction Leading to Long-Term Cognitive Impairment in a Model of Experimental Cerebral Malaria. PLoS Pathog 2016; 12:e1005477. [PMID: 27031954 PMCID: PMC4816336 DOI: 10.1371/journal.ppat.1005477] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 02/08/2016] [Indexed: 01/29/2023] Open
Abstract
Plasmodium falciparum infection causes a wide spectrum of diseases, including cerebral malaria, a potentially life-threatening encephalopathy. Vasculopathy is thought to contribute to cerebral malaria pathogenesis. The vasoactive compound endothelin-1, a key participant in many inflammatory processes, likely mediates vascular and cognitive dysfunctions in cerebral malaria. We previously demonstrated that C57BL6 mice infected with P. berghei ANKA, our fatal experimental cerebral malaria model, sustained memory loss. Herein, we demonstrate that an endothelin type A receptor (ETA) antagonist prevented experimental cerebral malaria-induced neurocognitive impairments and improved survival. ETA antagonism prevented blood-brain barrier disruption and cerebral vasoconstriction during experimental cerebral malaria, and reduced brain endothelial activation, diminishing brain microvascular congestion. Furthermore, exogenous endothelin-1 administration to P. berghei NK65-infected mice, a model generally regarded as a non-cerebral malaria negative control for P. berghei ANKA infection, led to experimental cerebral malaria-like memory deficits. Our data indicate that endothelin-1 is critical in the development of cerebrovascular and cognitive impairments with experimental cerebral malaria. This vasoactive peptide may thus serve as a potential target for adjunctive therapy in the management of cerebral malaria. The parasite Plasmodium falciparum is the primary cause of cerebral malaria, a neurological manifestation of severe malaria. Cerebral malaria results in disturbances to the blood vessels of the brain, eventually leading to damage to the blood-brain barrier. This damage can lead to adverse, debilitating neurological complications, particularly in children and individuals with compromised immune systems. Yet there is still a considerable gap in understanding the causes of the detrimental neurological effects of P. falciparum infection. We employed a multidisciplinary approach to delineate the mechanisms by which Plasmodium infection causes these abnormalities. The vasoactive peptide endothelin-1 is implicated in a variety of neurological and inflammatory diseases. Using mouse experimental models of cerebral malaria, we demonstrated that targeting this protein resulted in stabilization of the blood vessels in the brain, decreased the influx of inflammatory cells to the brain vessels, and preserved the integrity of the blood-brain barrier, eventually leading to improved cognitive function and improved survival rates in mice with infection. It is our hope that our work will help extend understanding of the causes of cerebral malaria in humans, and may eventually lead to therapies for preservation or salvaging of neurological function in the management of this disease.
Collapse
Affiliation(s)
- Brandi D. Freeman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yuri C. Martins
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Oscar B. Akide-Ndunge
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Fernando P. Bruno
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Hua Wang
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Herbert B. Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David C. Spray
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Mahalia S. Desruisseaux
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
3
|
Radiloff D, Zhao Y, Boico A, Blueschke G, Palmer G, Fontanella A, Dewhirst M, Piantadosi CA, Noveck R, Irwin D, Hamilton K, Klitzman B, Schroeder T. Anti-hypotensive treatment and endothelin blockade synergistically antagonize exercise fatigue in rats under simulated high altitude. PLoS One 2014; 9:e99309. [PMID: 24960187 PMCID: PMC4068990 DOI: 10.1371/journal.pone.0099309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 05/12/2014] [Indexed: 02/04/2023] Open
Abstract
Rapid ascent to high altitude causes illness and fatigue, and there is a demand for effective acute treatments to alleviate such effects. We hypothesized that increased oxygen delivery to the tissue using a combination of a hypertensive agent and an endothelin receptor A antagonist drugs would limit exercise-induced fatigue at simulated high altitude. Our data showed that the combination of 0.1 mg/kg ambrisentan with either 20 mg/kg ephedrine or 10 mg/kg methylphenidate significantly improved exercise duration in rats at simulated altitude of 4,267 m, whereas the individual compounds did not. In normoxic, anesthetized rats, ephedrine alone and in combination with ambrisentan increased heart rate, peripheral blood flow, carotid and pulmonary arterial pressures, breathing rate, and vastus lateralis muscle oxygenation, but under inspired hypoxia, only the combination treatment significantly enhanced muscle oxygenation. Our results suggest that sympathomimetic agents combined with endothelin-A receptor blockers offset altitude-induced fatigue in rats by synergistically increasing the delivery rate of oxygen to hypoxic muscle by concomitantly augmenting perfusion pressure and improving capillary conductance in the skeletal muscle. Our findings might therefore serve as a basis to develop an effective treatment to prevent high-altitude illness and fatigue in humans.
Collapse
Affiliation(s)
- Daniel Radiloff
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yulin Zhao
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Alina Boico
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Gert Blueschke
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Gregory Palmer
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Andrew Fontanella
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Mark Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Claude A. Piantadosi
- Department of Medicine-Pulmonary, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Robert Noveck
- Department of Medicine-Clinical Pharmacology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David Irwin
- Department of Cardiology, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Karyn Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States of America
| | - Bruce Klitzman
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Thies Schroeder
- Department of Physical Chemistry, University of Mainz, Mainz, Germany
| |
Collapse
|
4
|
Karam CN, Nuwayri-Salti N, Usta JA, Zwainy DS, Abrahamian RE, Al Jaroudi WA, Baasisri MJ, Abdallah SM, Bitar KM, Bikhazi AB. Effect of Systemic Insulin and Angiotensin II Receptor Subtype-1 Antagonist on Endothelin-1 Receptor Subtype(s) Regulation and Binding in Diabetic Rat Heart. ACTA ACUST UNITED AC 2009; 12:225-31. [PMID: 16410221 DOI: 10.1080/10623320500476450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study reports on the regulation and remodeling role of endothelin-1 (ET-1) and its receptor subtypes, ET(A)-Rs/ET(B)-Rs, at the coronary endothelium (CE) and cardiomyocyte (CM) sites. It is carried out in normal and normotensive rats with streptozotocin-induced diabetes mellitus receiving different treatment modalities. Normal rats were divided into two groups, namely a placebo (N) and a losartan-treated (NL), and diabetic rats into four groups receiving placebo (D), insulin-treated (DI), losartan-treated (DL), and insulin/losartan-treated (DIL) respectively. Binding kinetics of ET-1 to ET(A)-Rs/ET(B)-Rs on CE and CMs were assessed in the above groups to try to explain the effect of therapeutic doses of an angiotensin II receptor subtype-1 blocker on the dynamics of this ligand and its receptor in insulin supplemented diabetic animals. Each group was divided into two subgroups: CHAPS-untreated and CHAPS-treated rat hearts perfused with [125I]ET-1 to respectively estimate ET-1 binding affinity (tau = 1/k-n) to its receptor subtype(s) on CE and CMs using mathematical modeling describing a 1:1 reversible binding stoichiometry. Heart perfusion results revealed that insulin treatment significantly decreased tau on CE but not on CMs in diabetic rats. In diabetics treated with losartan, an increase in tau value on CE but not on CMs was noted. Cotreatment of diabetic rats with insulin and losartan normalized tau on CE but decreased it on CMs. Western blot, using snap-frozen heart tissues, revealed increase in ET(A)-R density in all diabetic groups. However, significant decrease in ET(B)-R density was observed in all groups compared to the normal, and was reconfirmed by immunohistochemical analysis. In conclusion, coadministration of insulin and losartan in nonhypertensive animals suffering from diabetes type 1 may offer new cardiac protection benefits by improving coronary blood flow and cardiomyocyte contractility through modulating ET-1 receptor subtypes density and affinity at CE and CM sites.
Collapse
Affiliation(s)
- Chehade N Karam
- Department of Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Donato AJ, Gano LB, Eskurza I, Silver AE, Gates PE, Jablonski K, Seals DR. Vascular endothelial dysfunction with aging: endothelin-1 and endothelial nitric oxide synthase. Am J Physiol Heart Circ Physiol 2009; 297:H425-32. [PMID: 19465546 DOI: 10.1152/ajpheart.00689.2008] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To determine whether impaired endothelium-dependent dilation (EDD) in older adults is associated with changes in the expression of major vasoconstrictor or vasodilator proteins in the vascular endothelium, endothelial cells (EC) were obtained from the brachial artery and peripheral veins of 56 healthy men, aged 18-78 yr. Brachial artery EC endothelin-1 (ET-1) [0.99 +/- 0.10 vs. 0.57 +/- 0.10 ET-1/human umbilical vein EC (HUVEC) intensity, P = 0.01] and serine 1177 phosphorylated endothelial nitric oxide synthase (PeNOS) (0.77 +/- 0.09 vs. 0.44 +/- 0.07 PeNOS/HUVEC intensity, P < 0.05) (quantitative immunofluorescence) were greater, and EDD (peak forearm blood flow to intrabrachial acetylcholine) was lower (10.2 +/- 0.9 vs. 14.7 +/- 1.7 ml.100 ml(-1).min(-1), P < 0.05) in older (n = 18, 62 +/- 1 yr) vs. young (n = 15, 21 +/- 1 yr) healthy men. EDD was inversely related to expression of ET-1 (r = -0.39, P < 0.05). Brachial artery EC eNOS expression did not differ significantly with age, but tended to be greater in the older men (young: 0.23 +/- 0.03 vs. older: 0.33 +/- 0.07 eNOS/HUVEC intensity, P = 0.08). In the sample with venous EC collections, EDD (brachial artery flow-mediated dilation) was lower (3.50 +/- 0.44 vs. 7.68 +/- 0.43%, P < 0.001), EC ET-1 and PeNOS were greater (P < 0.05), and EC eNOS was not different in older (n = 23, 62 +/- 1 yr) vs. young (n = 27, 22 +/- 1 yr) men. EDD was inversely related to venous EC ET-1 (r = -0.37, P < 0.05). ET-1 receptor A inhibition with BQ-123 restored 60% of the age-related impairment in carotid artery dilation to acetylcholine in B6D2F1 mice (5-7 mo, n = 8; 30 mo, n = 11; P < 0.05). ET-1 expression is increased in vascular EC of healthy older men and is related to reduced EDD, whereas ET-1 receptor A signaling tonically suppresses EDD in old mice. Neither eNOS nor PeNOS is reduced with aging. Changes in ET-1 expression and bioactivity, but not eNOS, contribute to vascular endothelial dysfunction with aging.
Collapse
Affiliation(s)
- Anthony J Donato
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Pradhan L, Mondal D, Chandra S, Ali M, Agrawal KC. Molecular analysis of cocaine-induced endothelial dysfunction: role of endothelin-1 and nitric oxide. Cardiovasc Toxicol 2008; 8:161-71. [PMID: 18813882 DOI: 10.1007/s12012-008-9025-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 09/10/2008] [Indexed: 12/01/2022]
Abstract
Cocaine remains the most frequently used illicit substance. Although cocaine-induced atherosclerosis is well documented, its mechanism of action on human vascular endothelial cells has not been determined. Nitric oxide (NO) and endothelin-1 (ET-1) are involved in endothelial cell activation and leukocyte recruitment. The present study monitored the effects of cocaine on NO and ET-1 production in human aortic endothelial cells (HAECs) and the effects of sodium nitroprusside (SNP) and BQ-123 on leukocyte adhesion to HAECs. Acute exposure to cocaine (1 and 3 muM) significantly increased ET-1 production (2-fold) and ET-1 receptor type-A (ET(A)R) protein expression, within 6-12 h. Cocaine exposure for a longer duration (24-72 h) showed a temporal decrease in both NO production and endothelial NO-synthase (eNOS) expression. The cocaine-mediated suppression of NO was ameliorated by co-treatment of cells with the ET(A)R blocker, BQ-123 (5 muM). Furthermore, both short-term (24 h) and long-term (72 h) exposure to cocaine increased endothelial adhesion of monocytes (U937 cells) by 20% and 40%, respectively, which were also suppressed by BQ-123 and SNP co-treatment. These data suggest that a concomitant increase in both ET-1 and ET(A)R expression in cocaine exposed HAECs may enhance signaling via the ET(A)R which decreases eNOS expression and NO production, and ultimately results in endothelial activation and leukocyte adhesion. Our findings implicate a molecular mechanism of action of cocaine and a therapeutic effect of ET(A)R-specific inhibitor in suppressing the cocaine-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Leena Pradhan
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue SL-83, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
7
|
Nuwayri-Salti N, Karam CN, Al Jaroudi WA, Usta JA, Maharsy WM, Bitar KM, Bikhazi AB. Effect of type-1 diabetes mellitus on the regulation of insulin and endothelin-1 receptors in rat hearts. Can J Physiol Pharmacol 2007; 85:215-24. [PMID: 17487263 DOI: 10.1139/y07-012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This project assesses the treatment role with insulin and (or) angiotensin II receptor subtype-1 (AT1-R) blocker (ARB) on insulin receptor and endothelin-1 receptor subtype (ETA-R and ETB-R) regulation in rat hearts suffering from insulin-dependent diabetes mellitus (IDDM). Animals were divided into 6 groups: groups 1, 3, and 5 were controls consisting of normal, diabetic (streptozotocin-treated, once at 0 time), and diabetic supplemented daily with insulin, respectively, whereas groups 2, 4, and 6 were the controls treated daily with losartan. One month after enrollment, rats were sacrificed and samples of cardiac tissue were snapped frozen for immunostaining and Western blotting. Insulin receptor density was observed to be upregulated in the cardiomyocytes of diabetic animals, but downregulated with insulin supplementation alone. Cotreatment with insulin and an ARB resulted in drastic increase in insulin-receptor density in the diabetic rats. In addition, expression of ETA-R in cardiomyocytes was upregulated and was consistently maintained within the various treatment modalities. However, ETB-R expression was significantly reduced in the diabetic group treated with both insulin and an ARB. The changes in the expression of the insulin, the ETA-Rs, and the ETB-Rs at the various sites of the myocardium and the effect of both insulin treatment and blockade of the AT1-R explain the new benefits related to the halting of myocardial remodeling in IDDM rats.
Collapse
Affiliation(s)
- Nuha Nuwayri-Salti
- Department of Human Morphology, American University of Beirut, Beirut, Lebanon
| | | | | | | | | | | | | |
Collapse
|
8
|
Ross RM, Kolka CM, Rattigan S, Clark MG. Acute blockade by endothelin-1 of haemodynamic insulin action in rats. Diabetologia 2007; 50:443-51. [PMID: 17187249 DOI: 10.1007/s00125-006-0525-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 10/10/2006] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS Plasma levels of endothelin-1 are frequently elevated in patients with hypertension, obesity and type 2 diabetes. We hypothesise that this vasoconstrictor may prevent full perfusion of muscle, thereby limiting delivery of insulin and glucose and contributing to insulin resistance. MATERIALS AND METHODS The acute effects of endothelin-1 on insulin-mediated haemodynamic and metabolic effects were examined in rats in vivo. Endothelin-1 (50 pmol min(-1) kg(-1) for 2.5 h) was infused alone, or 30 min prior to a hyperinsulinaemic-euglycaemic insulin clamp (10 mU min(-1) kg(-1) for 2 h). Insulin clamps (10 or 15 mU min(-1) kg(-1)) were performed after 30 min of saline infusion. RESULTS Endothelin-1 infusion alone increased plasma endothelin-1 11-fold (p < 0.05) and blood pressure by 20% (p < 0.05). Endothelin-1 alone had no effect on femoral blood flow, capillary recruitment or glucose uptake, but endothelin-1 with 10 mU min(-1) kg(-1) insulin caused a decrease in insulin clearance from 0.35 +/- 0.6 to 0.19 +/- 0.02 ml/min (p = 0.02), resulting in significantly higher plasma insulin levels (10 mU min(-1) kg(-1) insulin: 2,120 +/- 190 pmol/l; endothelin-1 + 10 mU min(-1)kg(-1) insulin: 4,740 +/- 910 pmol/l), equivalent to 15 mU min(-1) kg(-1) insulin alone (4,920 +/- 190 pmol/l). The stimulatory effects of equivalent doses of insulin on femoral blood flow, capillary recruitment and glucose uptake were blocked by endothelin-1. CONCLUSIONS/INTERPRETATION Endothelin-1 blocks insulin's haemodynamic effects, particularly capillary recruitment, and is associated with decreased muscle glucose uptake and glucose infusion rate. These findings suggest that elevated endothelin-1 levels may contribute to insulin resistance of muscle by increasing vascular resistance and limiting insulin and glucose delivery.
Collapse
Affiliation(s)
- R M Ross
- Biochemistry, School of Medicine, University of Tasmania, Private Bag 58, Hobart, 7001, Australia
| | | | | | | |
Collapse
|
9
|
Wendel M, Petzold A, Koslowski R, Kasper M, Augstein A, Knels L, Bleyl JU, Koch T. Localization of endothelin receptors in bleomycin-induced pulmonary fibrosis in the rat. Histochem Cell Biol 2004; 122:507-17. [PMID: 15480737 DOI: 10.1007/s00418-004-0708-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2004] [Indexed: 10/26/2022]
Abstract
Pulmonary fibrosis is characterized by excessive extracellular matrix deposition with concomitant loss of gas exchange units, and endothelin-1 (ET-1) has been implicated in its pathogenesis. Increased levels of ET-1 from tissues and bronchoalveolar lavage have been reported in patients with pulmonary fibrosis and in animal models after intratracheal bleomycin. We characterized the cellular distribution of alveolar ET receptors by immunohistochemistry in bleomycin-induced pulmonary fibrosis in the rat and determined the regulation by bleomycin of ET receptor mRNA expression in isolated alveolar macrophages and rat lung fibroblasts. We found significant increases in the numbers of fibroblasts and macrophages at day 7 compared to day 28 and control animals. ET(B) receptor immunoreactivity was observed on fibroblasts and invading monocytes. Isolated fibroblasts expressed both ET(A) and ET(B) receptor mRNA, and ET(A) receptor mRNA was upregulated by bleomycin. Isolated resident alveolar macrophages expressed neither ET(A) nor ET(B) receptor mRNA which were also not induced by bleomycin. We conclude that, while ET(B) receptor stimulation of fibroblasts and monocytes recruited during bleomycin-induced lung injury exerts antagonistic effects on fibroblast collagen synthesis, the observed increase in the number of fibroblasts in vivo and upregulation of fibroblast ET(A) receptor mRNA by bleomycin in vitro point to a predominance of the profibrotic effects of ET receptor engagement.
Collapse
Affiliation(s)
- Martina Wendel
- Department of Anesthesiology, University Hospital Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|