1
|
Fendler NL, Ly J, Welp L, Lu D, Schulte F, Urlaub H, Vos SM. Identification and characterization of a human MORC2 DNA binding region that is required for gene silencing. Nucleic Acids Res 2025; 53:gkae1273. [PMID: 39739841 PMCID: PMC11879086 DOI: 10.1093/nar/gkae1273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 11/06/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
The eukaryotic microrchidia (MORC) protein family are DNA gyrase, Hsp90, histidine kinase, MutL (GHKL)-type ATPases involved in gene expression regulation and chromatin compaction. The molecular mechanisms underlying these activities are incompletely understood. Here, we studied the full-length human MORC2 protein biochemically. We identified a DNA binding site in the C-terminus of the protein, and we observe that this region can be phosphorylated in cells. DNA binding by MORC2 reduces its ATPase activity and MORC2 can entrap multiple DNA substrates between its N-terminal GHKL and C-terminal coiled coil 3 dimerization domains. Finally, we observe that the MORC2 C-terminal DNA binding region is required for gene silencing in cells. Together, our data provide a model to understand how MORC2 engages with DNA substrates to mediate gene silencing.
Collapse
Affiliation(s)
- Nikole L Fendler
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, USA
| | - Jimmy Ly
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, USA
- Whitehead Institute for Biomedical Research, 455 Main St, Cambridge, MA 02139, USA
| | - Luisa Welp
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Department of Clinical Chemistry, Bioanalytics Group, University Medical Center Göttingen, Robert-Koch-Straße 40 37075 Göttingen, Germany
| | - Dan Lu
- Department of Systems Biology, Harvard Medical School, 210 Longwood Avenue, Boston, MA 02115, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Quantitative Proteomics Core, 455 Main St, Cambridge, MA 02139, USA
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Department of Clinical Chemistry, Bioanalytics Group, University Medical Center Göttingen, Robert-Koch-Straße 40 37075 Göttingen, Germany
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
| |
Collapse
|
2
|
Mayer-Harnisch CE, Figueroa Paniagua D, Maltseva N, Kim Y, Le VTB, Joachimiak A, Kuhn ML. N-terminal domain swapping: A new paradigm for spermidine/spermine N-acetyltransferase (SSAT) protein structures? Biochem Biophys Res Commun 2025; 748:151302. [PMID: 39823891 PMCID: PMC11808394 DOI: 10.1016/j.bbrc.2025.151302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/24/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Enterococcus faecalis is a multi-drug-resistant human pathogen that is found in a variety of environments and is challenging to treat. Under stress conditions, some bacteria regulate intracellular polyamine concentrations via polyamine acetyltransferases to reduce their toxicity. The E. faecalis genome encodes two polyamine acetyltransferases: PmvE and BltD. Both of these proteins belong to the Gcn5-related N-acetyltransferase (GNAT) superfamily. It is unclear why there are two enzymes with similar substrate specificities in this organism. To better understand the structure/function relationship of the E. faecalis BltD enzyme, we determined its crystal structure and performed additional assays to explore its oligomeric state and enzymatic activity. The goal was to determine whether there were structural or catalytic differences between this enzyme and other polyamine acetyltransferases that could explain this redundancy and be exploited for future development of targeted inhibitors for this important human pathogen. We found the BltD enzyme was structurally unique due to its N-terminal domain swapped dimer. However, this enzyme adopts a catalytically active monomer rather than dimer in solution. This indicates the crystal structure we obtained may represent a state that forms at high protein and salt concentrations and at low pH used during crystallization. The BltD dimer found in the crystal may represent a unique view of how an inhibitory peptide or molecule could be designed to occupy its active site. Additionally, this structure shows the extensive flexibility of the N-terminal portion of the E. faecalis BltD enzyme.
Collapse
Affiliation(s)
- Claudia E Mayer-Harnisch
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, CA, 94132, USA
| | - Daniel Figueroa Paniagua
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, CA, 94132, USA
| | - Natalia Maltseva
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA; Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Youngchang Kim
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA; Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Van Thi Bich Le
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, CA, 94132, USA
| | - Andrzej Joachimiak
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA; Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Misty L Kuhn
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, CA, 94132, USA.
| |
Collapse
|
3
|
Goh H, Choi S, Kim J. Synthetic translational coupling element for multiplexed signal processing and cellular control. Nucleic Acids Res 2024; 52:13469-13483. [PMID: 39526390 PMCID: PMC11602170 DOI: 10.1093/nar/gkae980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Repurposing natural systems to develop customized functions in biological systems is one of the main thrusts of synthetic biology. Translational coupling is a common phenomenon in diverse polycistronic operons for efficient allocation of limited genetic space and cellular resources. These beneficial features of translation coupling can provide exciting opportunities for creating novel synthetic biological devices. Here, we introduce a modular synthetic translational coupling element (synTCE) and integrate this design with de novo designed riboregulators, toehold switches. A systematic exploration of sequence domain variants for synTCEs led to the identification of critical design considerations for improving the system performance. Next, this design approach was seamlessly integrated into logic computations and applied to construct multi-output transcripts with well-defined stoichiometric control. This module was further applied to signaling cascades for combined signal transduction and multi-input/multi-output synthetic devices. Further, the synTCEs can precisely manipulate the N-terminal ends of output proteins, facilitating effective protein localization and cellular population control. Therefore, the synTCEs could enhance computational capability and applicability of riboregulators for reprogramming biological systems, leading to future applications in synthetic biology, metabolic engineering and biotechnology.
Collapse
Affiliation(s)
- Hyunseop Goh
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Gyeongbuk, Korea
| | - Seungdo Choi
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Gyeongbuk, Korea
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang 37673, Gyeongbuk, Korea
| |
Collapse
|
4
|
Beaumont LP, Mehalko J, Johnson A, Wall VE, Esposito D. Unexpected tobacco etch virus (TEV) protease cleavage of recombinant human proteins. Protein Expr Purif 2024; 220:106488. [PMID: 38679188 PMCID: PMC11129917 DOI: 10.1016/j.pep.2024.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
The tobacco etch virus (TEV) protease is a commonly used reagent for removal of solubility and purification tags from recombinant proteins and is cited as being highly specific for its canonical cleavage site. Flexibility in some amino acids within this recognition sequence has been described in the literature but researchers generally assume few native human proteins will carry off-target sequences for TEV cleavage. We report here the aberrant cleavage of three human proteins with non-canonical TEV protease cleavage sites and identify broader sequence specificity rules that can be used to predict unwanted cleavage of recombinant proteins. Using these rules, 456 human proteins were identified that could be substrates for unwanted TEV protease cleavage.
Collapse
Affiliation(s)
- Lauren P Beaumont
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jennifer Mehalko
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Adam Johnson
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Vanessa E Wall
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Dominic Esposito
- Protein Expression Laboratory, NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
5
|
Fendler NL, Ly J, Welp L, Urlaub H, Vos SM. Identification and characterization of a human MORC2 DNA binding region that is required for gene silencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597643. [PMID: 38895295 PMCID: PMC11185635 DOI: 10.1101/2024.06.05.597643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The eukaryotic microrchidia (MORC) protein family are DNA gyrase, Hsp90, histidine kinase, MutL (GHKL)-type ATPases involved in gene expression regulation and chromatin compaction. The molecular mechanisms underlying these activities are incompletely understood. Here we studied the full-length human MORC2 protein biochemically. We identified a DNA binding site in the C-terminus of the protein, and we observe that this region is heavily phosphorylated in cells. Phosphorylation of MORC2 reduces its affinity for DNA and appears to exclude the protein from the nucleus. We observe that DNA binding by MORC2 reduces its ATPase activity and that MORC2 can topologically entrap multiple DNA substrates between its N-terminal GHKL and C-terminal coiled coil 3 dimerization domains. Finally, we observe that the MORC2 C-terminal DNA binding region is required for gene silencing in cells. Together, our data provide a model to understand how MORC2 engages with DNA substrates to mediate gene silencing.
Collapse
Affiliation(s)
- Nikole L. Fendler
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139
| | - Jimmy Ly
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139
| | - Luisa Welp
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, University Medical Center Göttingen, Department of Clinical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, University Medical Center Göttingen, Department of Clinical Chemistry, Göttingen, Germany
| | - Seychelle M. Vos
- Department of Biology, Massachusetts Institute of Technology, Building 68, 31 Ames St., Cambridge, MA 02139
- Howard Hughes Medical Institute
| |
Collapse
|
6
|
Vieira MFM, Hernandez G, Zhong Q, Arbesú M, Veloso T, Gomes T, Martins ML, Monteiro H, Frazão C, Frankel G, Zanzoni A, Cordeiro TN. The pathogen-encoded signalling receptor Tir exploits host-like intrinsic disorder for infection. Commun Biol 2024; 7:179. [PMID: 38351154 PMCID: PMC10864410 DOI: 10.1038/s42003-024-05856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
The translocated intimin receptor (Tir) is an essential type III secretion system (T3SS) effector of attaching and effacing pathogens contributing to the global foodborne disease burden. Tir acts as a cell-surface receptor in host cells, rewiring intracellular processes by targeting multiple host proteins. We investigated the molecular basis for Tir's binding diversity in signalling, finding that Tir is a disordered protein with host-like binding motifs. Unexpectedly, also are several other T3SS effectors. By an integrative approach, we reveal that Tir dimerises via an antiparallel OB-fold within a highly disordered N-terminal cytosolic domain. Also, it has a long disordered C-terminal cytosolic domain partially structured at host-like motifs that bind lipids. Membrane affinity depends on lipid composition and phosphorylation, highlighting a previously unrecognised host interaction impacting Tir-induced actin polymerisation and cell death. Furthermore, multi-site tyrosine phosphorylation enables Tir to engage host SH2 domains in a multivalent fuzzy complex, consistent with Tir's scaffolding role and binding promiscuity. Our findings provide insights into the intracellular Tir domains, highlighting the ability of T3SS effectors to exploit host-like protein disorder as a strategy for host evasion.
Collapse
Affiliation(s)
- Marta F M Vieira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Qiyun Zhong
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Miguel Arbesú
- Department of NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- InstaDeep Ltd, 5 Merchant Square, London, UK
| | - Tiago Veloso
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Tiago Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Maria L Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Hugo Monteiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Gad Frankel
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Andreas Zanzoni
- Aix-Marseille Université, Inserm, TAGC, UMR_S1090, Marseille, France
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal.
| |
Collapse
|
7
|
McCullough TM, Dhar A, Akey DL, Konwerski JR, Sherman DH, Smith JL. Structure of a modular polyketide synthase reducing region. Structure 2023; 31:1109-1120.e3. [PMID: 37348494 PMCID: PMC10527585 DOI: 10.1016/j.str.2023.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
The chemical scaffolds of numerous therapeutics are polyketide natural products, many formed by bacterial modular polyketide synthases (PKS). The large and flexible dimeric PKS modules have distinct extension and reducing regions. Structures are known for all individual enzyme domains and several extension regions. Here, we report the structure of the full reducing region from a modular PKS, the ketoreductase (KR), dehydratase (DH), and enoylreductase (ER) domains of module 5 of the juvenimicin PKS. The modular PKS-reducing region has a different architecture than the homologous fatty acid synthase (FAS) and iterative PKS systems in its arrangement of domains and dimer interface. The structure reveals a critical role for linker peptides in the domain interfaces, leading to discovery of key differences in KR domains dependent on module composition. Finally, our studies provide insight into the mechanism underlying modular PKS intermediate shuttling by carrier protein (ACP) domains.
Collapse
Affiliation(s)
- Tyler M McCullough
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anya Dhar
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA
| | - David L Akey
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie R Konwerski
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Belenkaya SV, Merkuleva IA, Yarovaya OI, Chirkova VY, Sharlaeva EA, Shanshin DV, Volosnikova EA, Vatsadze SZ, Khvostov MV, Salakhutdinov NF, Shcherbakov DN. The main protease 3CLpro of the SARS-CoV-2 virus: how to turn an enemy into a helper. Front Bioeng Biotechnol 2023; 11:1187761. [PMID: 37456729 PMCID: PMC10345205 DOI: 10.3389/fbioe.2023.1187761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Despite the long history of use and the knowledge of the genetics and biochemistry of E. coli, problems are still possible in obtaining a soluble form of recombinant proteins in this system. Although, soluble protein can be obtained both in the cytoplasm and in the periplasm of the bacterial cell. The latter is a priority strategy for obtaining soluble proteins. The fusion protein technology followed by detachment of the fusion protein with proteases is used to transfer the target protein into the periplasmic space of E. coli. We have continued for the first time to use the main viral protease 3CL of the SARS-CoV-2 virus for this purpose. We obtained a recombinant 3CL protease and studied its complex catalytic properties. The authenticity of the resulting recombinant enzyme, were confirmed by specific activity analysis and activity suppression by the known low-molecular-weight inhibitors. The catalytic efficiency of 3CL (0.17 ± 0.02 µM-1-s-1) was shown to be one order of magnitude higher than that of the widely used tobacco etch virus protease (0.013 ± 0.003 µM-1-s-1). The application of the 3CL gene in genetically engineered constructs provided efficient specific proteolysis of fusion proteins, which we demonstrated using the receptor-binding domain of SARS-CoV-2 spike protein and GST fusion protein. The solubility and immunochemical properties of RBD were preserved. It is very important that in work we have shown that 3CL protease works effectively directly in E. coli cells when co-expressed with the target fusion protein, as well as when expressed as part of a chimeric protein containing the target protein, fusion partner, and 3CL itself. The results obtained in the work allow expanding the repertoire of specific proteases for researchers and biotechnologists.
Collapse
Affiliation(s)
- Svetlana V. Belenkaya
- Laboratory of Bionanotechnology, Microbiology and Virology, Novosibirsk State University, Novosibirsk, Russia
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Russia
- Department of Medicinal Chemistry, N.N Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, Russia
| | - Iuliia A. Merkuleva
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Russia
| | - Olga I. Yarovaya
- Laboratory of Bionanotechnology, Microbiology and Virology, Novosibirsk State University, Novosibirsk, Russia
- Department of Medicinal Chemistry, N.N Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, Russia
| | - Varvara Yu. Chirkova
- Department of Physical-Chemistry Biology and Biotechnology, Altay State University, Barnaul, Russia
| | - Elena A. Sharlaeva
- Department of Physical-Chemistry Biology and Biotechnology, Altay State University, Barnaul, Russia
| | - Daniil V. Shanshin
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Russia
| | | | - Sergey Z. Vatsadze
- N.D Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail V. Khvostov
- Department of Medicinal Chemistry, N.N Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, Russia
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, Russia
| | - Dmitriy N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Russia
- Department of Medicinal Chemistry, N.N Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, Russia
- Department of Physical-Chemistry Biology and Biotechnology, Altay State University, Barnaul, Russia
| |
Collapse
|
9
|
Calil Brondani J, Afful D, Nune H, Hart J, Cook S, Momany C. Overproduction, purification, and transcriptional activity of recombinant Acinetobacter baylyi ADP1 RNA polymerase holoenzyme. Protein Expr Purif 2023; 206:106254. [PMID: 36804950 DOI: 10.1016/j.pep.2023.106254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Acinetobacter baylyi is an interesting model organism to investigate bacterial metabolism due to its vast repertoire of metabolic enzymes and ease of genetic manipulation. However, the study of gene expression in vitro is dependent on the availability of its RNA polymerase (RNAp), an essential enzyme in transcription. In this work, we developed a convenient method of producing the recombinant A. baylyi ADP1 RNA polymerase holoenzyme (RNApholo) in E. coli that yields 22 mg of a >96% purity protein from a 1-liter shake flask culture. We further characterized the A. baylyi ADP1 RNApholo kinetic profile using T7 Phage DNA as template and demonstrated that it is a highly transcriptionally active enzyme with an elongation rate of 24 nt/s and a termination efficiency of 94%. Moreover, the A. baylyi ADP1 RNApholo has a substantial sequence identity (∼95%) with the RNApholo from the human pathogen Acinetobacter baumannii. This protein can serve as a source of material for structural and biological studies towards advancing our understanding of genome expression and regulation in Acinetobacter species.
Collapse
Affiliation(s)
- Juliana Calil Brondani
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Derrick Afful
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Hanna Nune
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Jesse Hart
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Shelby Cook
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Cory Momany
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
10
|
Winckler LI, Dissmeyer N. TEV protease cleavage in generation of artificial substrate proteins bearing neo-N-termini. Methods Enzymol 2023. [PMID: 37532397 DOI: 10.1016/bs.mie.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
The tobacco etch virus (TEV) protease is widely used in in vitro and in vivo approaches for the removal of affinity tags from fusion proteins or the generation of proteins with a desired N-terminal amino acid. Processing of fusion proteins by the TEV protease can either be achieved by encoding the TEV protease and its recognition site on one construct (self-cleavage) or on two different constructs (co-expression). Here, we compare the efficiency of the self-splitting approach to the co-expression approach.
Collapse
|
11
|
Paththamperuma C, Page RC. Fluorescence dequenching assay for the activity of TEV protease. Anal Biochem 2022; 659:114954. [PMID: 36265691 PMCID: PMC9662696 DOI: 10.1016/j.ab.2022.114954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
Tobacco etch virus (TEV) protease is a widely used protease for fusion tag cleavage. Despite its widespread usage, an assay to quickly and easily quantify its activity in laboratory settings is still lacking. Thus, researchers may encounter inefficient cleavage of the desired fusion proteins due to poor activity of a given TEV protease preparation. Here, we describe the development and implementation of a fluorescence dequenching-based assay to quantify TEV protease activity and assess kinetic parameters. The peptide substrate used in this assay consists of a C-terminal TAMRA fluorophore, an N-terminal fluorescein fluorophore, and the canonical TEV protease recognition sequence. The assay is based on a reduction of fluorescence quenching of fluorescein upon cleavage by TEV protease. The substrate peptide was studied spectroscopically to assess feasibility and to propose a plausible mechanism of the assay. The assay was optimized and applied to obtain rapid assessments of TEV protease activity in purified samples and crude lysate extracts. The kinetic data obtained from improved TEV protease variants were compared with a traditional SDS-PAGE assay. Finally, the assay was applied to determine the optimum pH for TEV protease. Further, the study found that the assay is a rapid and simple approach to quantify TEV protease activity. The findings of the assay on crude lysate extracts, activity assay of TEV protease variants, and assessment of optimum pH for TEV protease reactions demonstrate the robust utility of the assay.
Collapse
Affiliation(s)
- Chathura Paththamperuma
- Department of Chemistry and Biochemistry, 651 East High Street, Miami University, Oxford, OH, 45056, United States
| | - Richard C Page
- Department of Chemistry and Biochemistry, 651 East High Street, Miami University, Oxford, OH, 45056, United States.
| |
Collapse
|
12
|
Mullowney MW, Maltseva NI, Endres M, Kim Y, Joachimiak A, Crofts TS. Functional and Structural Characterization of Diverse NfsB Chloramphenicol Reductase Enzymes from Human Pathogens. Microbiol Spectr 2022; 10:e0013922. [PMID: 35195438 PMCID: PMC8941942 DOI: 10.1128/spectrum.00139-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 11/20/2022] Open
Abstract
Phylogenetically diverse bacteria can carry out chloramphenicol reduction, but only a single enzyme has been described that efficiently catalyzes this reaction, the NfsB nitroreductase from Haemophilus influenzae strain KW20. Here, we tested the hypothesis that some NfsB homologs function as housekeeping enzymes with the potential to become chloramphenicol resistance enzymes. We found that expression of H. influenzae and Neisseria spp. nfsB genes, but not Pasteurella multocida nfsB, allows Escherichia coli to resist chloramphenicol by nitroreduction. Mass spectrometric analysis confirmed that purified H. influenzae and N. meningitides NfsB enzymes reduce chloramphenicol to amino-chloramphenicol, while kinetics analyses supported the hypothesis that chloramphenicol reduction is a secondary activity. We combined these findings with atomic resolution structures of multiple chloramphenicol-reducing NfsB enzymes to identify potential key substrate-binding pocket residues. Our work expands the chloramphenicol reductase family and provides mechanistic insights into how a housekeeping enzyme might confer antibiotic resistance. IMPORTANCE The question of how new enzyme activities evolve is of great biological interest and, in the context of antibiotic resistance, of great medical importance. Here, we have tested the hypothesis that new antibiotic resistance mechanisms may evolve from promiscuous housekeeping enzymes that have antibiotic modification side activities. Previous work identified a Haemophilus influenzae nitroreductase housekeeping enzyme that has the ability to give Escherichia coli resistance to the antibiotic chloramphenicol by nitroreduction. Herein, we extend this work to enzymes from other Haemophilus and Neisseria strains to discover that expression of chloramphenicol reductases is sufficient to confer chloramphenicol resistance to Es. coli, confirming that chloramphenicol reductase activity is widespread across this nitroreductase family. By solving the high-resolution crystal structures of active chloramphenicol reductases, we identified residues important for this activity. Our work supports the hypothesis that housekeeping proteins possessing multiple activities can evolve into antibiotic resistance enzymes.
Collapse
Affiliation(s)
| | - Natalia I. Maltseva
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA
- Structure Biology Center, Argonne National Laboratory, Argonne, Illinois, USA
| | - Michael Endres
- Structure Biology Center, Argonne National Laboratory, Argonne, Illinois, USA
| | - Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA
- Structure Biology Center, Argonne National Laboratory, Argonne, Illinois, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois, USA
- Structure Biology Center, Argonne National Laboratory, Argonne, Illinois, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Terence S. Crofts
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
13
|
Bayar E, Ren Y, Chen Y, Hu Y, Zhang S, Yu X, Fan J. Construction, Investigation and Application of TEV Protease Variants with Improved Oxidative Stability. J Microbiol Biotechnol 2021; 31:1732-1740. [PMID: 34528919 PMCID: PMC9705859 DOI: 10.4014/jmb.2106.06075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
Tobacco etch virus protease (TEVp) is a useful tool for removing fusion tags, but wild-type TEVp is less stable under oxidized redox state. In this work, we introduced and combined C19S, C110S and C130S into TEVp variants containing T17S, L56V, N68D, I77V and S135G to improve protein solubility, and S219V to inhibit self-proteolysis. The solubility and cleavage activity of the constructed variants in Escherichia coli strains including BL21(DE3), BL21(DE3)pLys, Rossetta(DE3) and Origami(DE3) under the same induction conditions were analyzed and compared. The desirable soluble amounts, activity, and oxidative stability were identified to be reluctantly favored in the TEVp. Unlike C19S, C110S and C130S hardly impacted on decreasing protein solubility in the BL21(DE3), but they contributed to improved tolerance to the oxidative redox state in vivo and in vitro. After two fusion proteins were cleaved by purified TEVp protein containing double mutations under the oxidized redox state, the refolded disulfide-rich bovine enterokinase catalytic domain or maize peroxidase with enhanced yields were released from the regenerated amorphous cellulose via affinity absorption of the cellulose-binding module as the affinity tag.
Collapse
Affiliation(s)
- Enkhtuya Bayar
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yuanyuan Ren
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yinghua Chen
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Yafang Hu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Shuncheng Zhang
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Xuelian Yu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China
| | - Jun Fan
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, P.R. China,Corresponding author Phone : +86-551-65786464 Fax : +86-551-65786021 E-mail:
| |
Collapse
|
14
|
Kuiper BP, Prins RC, Billerbeck S. Oligo Pools as an Affordable Source of Synthetic DNA for Cost-Effective Library Construction in Protein- and Metabolic Pathway Engineering. Chembiochem 2021; 23:e202100507. [PMID: 34817110 PMCID: PMC9300125 DOI: 10.1002/cbic.202100507] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/23/2021] [Indexed: 11/11/2022]
Abstract
The construction of custom libraries is critical for rational protein engineering and directed evolution. Array‐synthesized oligo pools of thousands of user‐defined sequences (up to ∼350 bases in length) have emerged as a low‐cost commercially available source of DNA. These pools cost ≤10 % (depending on error rate and length) of other commercial sources of custom DNA, and this significant cost difference can determine whether an enzyme engineering project can be realized on a given research budget. However, while being cheap, oligo pools do suffer from a low concentration of individual oligos and relatively high error rates. Several powerful techniques that specifically make use of oligo pools have been developed and proven valuable or even essential for next‐generation protein and pathway engineering strategies, such as sequence‐function mapping, enzyme minimization, or de‐novo design. Here we consolidate the knowledge on these techniques and their applications to facilitate the use of oligo pools within the protein engineering community.
Collapse
Affiliation(s)
- Bastiaan P Kuiper
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Rianne C Prins
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Dilip D, Louis V, Savithri HS, Namitha PM. Restriction-free cloning for molecular manipulation and augmented expression of banana bunchy top viral coat protein. 3 Biotech 2021; 11:471. [PMID: 34745822 PMCID: PMC8536813 DOI: 10.1007/s13205-021-03017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022] Open
Abstract
Banana bunchy top virus (BBTV) causing bunchy top disease, is one of the most devastating diseases of banana and plantain. All the six genomic components of isolates from different parts of the world have been well characterised, with most of the studies focusing on replicase gene and coat protein gene. Overexpression of coat protein (CP) in Escherichia coli system can contribute significantly in structural as well as immunological studies. In the present investigation, the full length BBTV CP was cloned to pGEX-4T-2 expression vector and overexpressed in various Escherichia coli strains to obtain high quality and quantity of the CP. An augmented overexpression and stability of recombinant coat protein was achieved by molecular manipulation of the clone by restriction-free (RF) cloning platform. The RF cloning was employed to replace the thrombin cleavage site in the vector backbone, which was also present in the protein of interest, and to incorporate TEV protease site to cleave fusion protein at this specific site, and separate the affinity tag. The RF method allows direct transformation of the PCR product to undergo ligation in vivo and obtain the transformants thereby avoiding the restriction digestion and ligation of the product to the linearized plasmid. From a litre culture, 1.084 mg/ml of fusion protein with GST tag was obtained after GSH sepharose affinity column chromatography. The fluorescence spectra indicated partial disordered tertiary structure of the fusion protein. Cleavage of tag was attempted using TEV protease overexpressed and purified in the laboratory. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03017-x.
Collapse
Affiliation(s)
- Darsana Dilip
- Department of Plant Pathology, College of Agriculture, Kerala Agricultural University, Thrissur, Kerala 680656 India
| | - Vimi Louis
- Division of Plant Pathology, Banana Research Station, Kannara, Kerala Agricultural University, Thrissur, Kerala 680652 India
| | - H. S. Savithri
- Department of Biochemistry, Indian Institute of Science, New Biological Sciences Building, Bangalore, 560012 India
| | - P. M. Namitha
- Division of Plant Pathology, Banana Research Station, Kannara, Kerala Agricultural University, Thrissur, Kerala 680652 India
| |
Collapse
|
16
|
Structures of heat shock factor trimers bound to DNA. iScience 2021; 24:102951. [PMID: 34458700 PMCID: PMC8379338 DOI: 10.1016/j.isci.2021.102951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/15/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022] Open
Abstract
Heat shock factor 1 (HSF1) and 2 (HSF2) play distinct but overlapping regulatory roles in maintaining cellular proteostasis or mediating cell differentiation and development. Upon activation, both HSFs trimerize and bind to heat shock elements (HSEs) present in the promoter region of target genes. Despite structural insights gained from recent studies, structures reflecting the physiological architecture of this transcriptional machinery remains to be determined. Here, we present co-crystal structures of human HSF1 and HSF2 trimers bound to DNA, which reveal a triangular arrangement of the three DNA-binding domains (DBDs) with protein-protein interactions largely mediated by the wing domain. Two structural properties, different flexibility of the wing domain and local DNA conformational changes induced by HSF binding, seem likely to contribute to the subtle differential specificity between HSF1 and HSF2. Besides, two more structures showing DBDs bound to "two-site" head-to-head HSEs were determined as additions to the published tail-to-tail dimer-binding structures.
Collapse
|
17
|
Silva FSR, Santos SPO, Meyer R, Silva ES, Pinheiro CS, Alcantara-Neves NM, Pacheco LGC. In vivo cleavage of solubility tags as a tool to enhance the levels of soluble recombinant proteins in Escherichia coli. Biotechnol Bioeng 2021; 118:4159-4167. [PMID: 34370304 DOI: 10.1002/bit.27912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/02/2021] [Accepted: 08/06/2021] [Indexed: 11/09/2022]
Abstract
Recombinant proteins are generally fused with solubility enhancer tags to improve the folding and solubility of the target protein of interest. However, the fusion protein strategy usually requires expensive proteases to perform in vitro proteolysis and additional chromatographic steps to obtain tag-free recombinant proteins. Expression systems based on intracellular processing of solubility tags in Escherichia coli, through co-expression of a site-specific protease, simplify the recombinant protein purification process, and promote the screening of molecules that fail to remain soluble after tag removal. High yields of soluble target proteins have already been achieved using these protease co-expression systems. Herein, we review approaches for controlled intracellular processing systems tailored to produce soluble untagged proteins in E. coli. We discuss the different genetic systems available for intracellular processing of recombinant proteins regarding system design features, advantages, and limitations of the various strategies.
Collapse
Affiliation(s)
- Filipe S R Silva
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Sara P O Santos
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Roberto Meyer
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil.,Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Eduardo S Silva
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil.,Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Carina S Pinheiro
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil.,Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Neuza M Alcantara-Neves
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil.,Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Luis G C Pacheco
- Post-Graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil.,Department of Biotechnology, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
18
|
Norris JL, Patel T, Dasari AK, Cope TA, Lim KH, Hughes RM. Covalent and non-covalent strategies for the immobilization of Tobacco Etch Virus protease (TEVp) on superparamagnetic nanoparticles. J Biotechnol 2020; 322:1-9. [DOI: 10.1016/j.jbiotec.2020.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/04/2020] [Accepted: 06/28/2020] [Indexed: 12/19/2022]
|
19
|
Muthunayake NS, Islam R, Inutan ED, Colangelo W, Trimpin S, Cunningham PR, Chow CS. Expression and In Vivo Characterization of the Antimicrobial Peptide Oncocin and Variants Binding to Ribosomes. Biochemistry 2020; 59:3380-3391. [PMID: 32840100 DOI: 10.1021/acs.biochem.0c00600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peptides have important biomedical applications, but poor correlation between in vitro and in vivo activities can limit their development for clinical use. The ability to generate peptides and monitor their expression with new mass spectrometric methods and biological activities in vivo would be an advantage for the discovery and improvement of peptide-based drugs. In this study, a plasmid-based system was used to express the ribosome-targeting peptide oncocin (19 amino acids, VDKPPYLPRPRPPRRIYNR) and to determine its direct antibacterial effects on Escherichia coli. Previous biochemical and structure studies showed that oncocin targets the bacterial ribosome. The oncocin peptide generated in vivo strongly inhibits bacterial growth. In vivo dimethyl sulfate footprinting of oncocin on the rRNA gives results that are consistent with those of in vitro studies but reveals additional binding interactions with E. coli ribosomes. Furthermore, expression of truncated or mutated peptides reveals which amino acids are important for antimicrobial activity. Overall, the in vivo peptide expression system can be used to investigate biological activities and interactions of peptides with their targets within the cellular environment and to separate contributions of the sequence to cellular transport. This strategy has future applications for improving the effectiveness of existing peptides and developing new peptide-based drugs.
Collapse
Affiliation(s)
- Nisansala S Muthunayake
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States.,Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Rabiul Islam
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Ellen D Inutan
- Department of Chemistry, Mindanao State University-Iligan Institute of Technology, Iligan 9200, Philippines
| | - Wesley Colangelo
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Philip R Cunningham
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
20
|
Markina NM, Kotlobay AA, Tsarkova AS. Heterologous Metabolic Pathways: Strategies for Optimal Expression in Eukaryotic Hosts. Acta Naturae 2020; 12:28-39. [PMID: 32742725 PMCID: PMC7385092 DOI: 10.32607/actanaturae.10966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 11/20/2022] Open
Abstract
Heterologous pathways are linked series of biochemical reactions occurring in a host organism after the introduction of foreign genes. Incorporation of metabolic pathways into host organisms is a major strategy used to increase the production of valuable secondary metabolites. Unfortunately, simple introduction of the pathway genes into the heterologous host in most cases does not result in successful heterologous expression. Extensive modification of heterologous genes and the corresponding enzymes on many different levels is required to achieve high target metabolite production rates. This review summarizes the essential techniques used to create heterologous biochemical pathways, with a focus on the key challenges arising in the process and the major strategies for overcoming them.
Collapse
Affiliation(s)
- N. M. Markina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Planta LLC, Moscow, 121205 Russia
| | - A. A. Kotlobay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. S. Tsarkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| |
Collapse
|
21
|
Vokalova L, Balogh A, Toth E, Van Breda SV, Schäfer G, Hoesli I, Lapaire O, Hahn S, Than NG, Rossi SW. Placental Protein 13 (Galectin-13) Polarizes Neutrophils Toward an Immune Regulatory Phenotype. Front Immunol 2020; 11:145. [PMID: 32117288 PMCID: PMC7028707 DOI: 10.3389/fimmu.2020.00145] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
Termed as galectin-13, placental protein 13 (PP13) is exclusively expressed in the placenta of anthropoid primates. Research on PP13 in normal and pathologic pregnancies show alteration of PP13 concentrations in pregnancy affected by preeclampsia or gestational diabetes. Galectins are also described as potent immunomodulators, and PP13 regulates T cell function in the placenta. Therefore, this study aims to investigate the effects of PP13 on neutrophils; a cell type often ignored in pregnancy, but present in the uterus and placenta from the early stages of pregnancy. Since neutrophil function is dysregulated during pathologic pregnancies, a link between PP13 and neutrophil activity is possible. We determined that PP13 reduces the apoptosis rate in neutrophils. Also, PP13 increases the expression of PD-L1 and production of HGF, TNF-α, reactive oxygen species (ROS), and MMP-9 in these cells. This phenotype resembles one observed in permissive tumor neutrophils; able to sustain tissue and vessel growth, and inhibit T cell activation. At the same time, PP13 does not alter all neutrophil functions, i.e., extrusion of neutrophil extracellular traps, degranulation, phagocytosis, and ROS production following bacterial exposure. PP13 seems to play an essential role in regulating the activity of neutrophils in the placenta by polarizing them toward a placental-growth-permissive phenotype.
Collapse
Affiliation(s)
- Lenka Vokalova
- Prenatal Medicine, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Eszter Toth
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Shane V Van Breda
- Prenatal Medicine, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Günther Schäfer
- Prenatal Medicine, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Irene Hoesli
- Department of Antenatal Care, University Women's Hospital Basel, Basel, Switzerland
| | - Olav Lapaire
- Department of Antenatal Care, University Women's Hospital Basel, Basel, Switzerland
| | - Sinuhe Hahn
- Prenatal Medicine, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Simona W Rossi
- Prenatal Medicine, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
22
|
Alcala A, Ramirez G, Solis A, Kim Y, Tan K, Luna O, Nguyen K, Vazquez D, Ward M, Zhou M, Mulligan R, Maltseva N, Kuhn ML. Structural and functional characterization of three Type B and C chloramphenicol acetyltransferases from Vibrio species. Protein Sci 2019; 29:695-710. [PMID: 31762145 DOI: 10.1002/pro.3793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022]
Abstract
Chloramphenicol acetyltransferases (CATs) were among the first antibiotic resistance enzymes identified and have long been studied as model enzymes for examining plasmid-mediated antibiotic resistance. These enzymes acetylate the antibiotic chloramphenicol, which renders it incapable of inhibiting bacterial protein synthesis. CATs can be classified into different types: Type A CATs are known to be important for antibiotic resistance to chloramphenicol and fusidic acid. Type B CATs are often called xenobiotic acetyltransferases and adopt a similar structural fold to streptogramin acetyltransferases, which are known to be critical for streptogramin antibiotic resistance. Type C CATs have recently been identified and can also acetylate chloramphenicol, but their roles in antibiotic resistance are largely unknown. Here, we structurally and kinetically characterized three Vibrio CAT proteins from a nonpathogenic species (Aliivibrio fisheri) and two important human pathogens (Vibrio cholerae and Vibrio vulnificus). We found all three proteins, including one in a superintegron (V. cholerae), acetylated chloramphenicol, but did not acetylate aminoglycosides or dalfopristin. We also determined the 3D crystal structures of these CATs alone and in complex with crystal violet and taurocholate. These compounds are known inhibitors of Type A CATs, but have not been explored in Type B and Type C CATs. Based on sequence, structure, and kinetic analysis, we concluded that the V. cholerae and V. vulnificus CATs belong to the Type B class and the A. fisheri CAT belongs to the Type C class. Ultimately, our results provide a framework for studying the evolution of antibiotic resistance gene acquisition and chloramphenicol acetylation in Vibrio and other species.
Collapse
Affiliation(s)
- Ashley Alcala
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, California
| | - Guadalupe Ramirez
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, California
| | - Allan Solis
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, California
| | - Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois.,Structural Biology Center X-ray Science Division Argonne National Laboratory, Argonne, Illinois
| | - Kemin Tan
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois.,Structural Biology Center X-ray Science Division Argonne National Laboratory, Argonne, Illinois
| | - Oscar Luna
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, California
| | - Karen Nguyen
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, California
| | - Daniel Vazquez
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, California
| | - Michael Ward
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, California
| | - Min Zhou
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois.,Structural Biology Center X-ray Science Division Argonne National Laboratory, Argonne, Illinois
| | - Rory Mulligan
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois.,Structural Biology Center X-ray Science Division Argonne National Laboratory, Argonne, Illinois
| | - Natalia Maltseva
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois.,Structural Biology Center X-ray Science Division Argonne National Laboratory, Argonne, Illinois
| | - Misty L Kuhn
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, California
| |
Collapse
|
23
|
Huber MC, Schreiber A, Schiller SM. Minimalist Protocell Design: A Molecular System Based Solely on Proteins that Form Dynamic Vesicular Membranes Embedding Enzymatic Functions. Chembiochem 2019; 20:2618-2632. [PMID: 31183952 DOI: 10.1002/cbic.201900283] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Indexed: 12/24/2022]
Abstract
Life in its molecular context is characterized by the challenge of orchestrating structure, energy and information processes through compartmentalization and chemical transformations amenable to mimicry of protocell models. Here we present an alternative protocell model incorporating dynamic membranes based on amphiphilic elastin-like proteins (ELPs) rather than phospholipids. For the first time we demonstrate the feasibility of combining vesicular membrane formation and biocatalytic activity with molecular entities of a single class: proteins. The presented self-assembled protein-membrane-based compartments (PMBCs) accommodate either an anabolic reaction, based on free DNA ligase as an example of information transformation processes, or a catabolic process. We present a catabolic process based on a single molecular entity combining an amphiphilic protein with tobacco etch virus (TEV) protease as part of the enclosure of a reaction space and facilitating selective catalytic transformations. Combining compartmentalization and biocatalytic activity by utilizing an amphiphilic molecular building block with and without enzyme functionalization enables new strategies in bottom-up synthetic biology, regenerative medicine, pharmaceutical science and biotechnology.
Collapse
Affiliation(s)
- Matthias C Huber
- Zentrum für Biosystemanalyse (ZBSA), Albert-Ludwigs-Universität Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79085, Freiburg, Germany
| | - Andreas Schreiber
- Zentrum für Biosystemanalyse (ZBSA), Albert-Ludwigs-Universität Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79085, Freiburg, Germany
| | - Stefan M Schiller
- Zentrum für Biosystemanalyse (ZBSA), Albert-Ludwigs-Universität Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79085, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| |
Collapse
|
24
|
Silva FSR, Santos SPO, Meyer R, Alcantara-Neves NM, Pinheiro CS, Pacheco LGC. Single-Input Regulatory Cascade for in vivo Removal of the Solubility Tag in Fusion Recombinant Proteins Produced by Escherichia coli. Front Bioeng Biotechnol 2019; 7:200. [PMID: 31482090 PMCID: PMC6710347 DOI: 10.3389/fbioe.2019.00200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
Solubility tags are commonly fused to target recombinant proteins to enhance their solubility and stability. In general, these protein tags must be removed to avoid misfolding of the partner protein and to allow for downstream applications. Nevertheless, in vitro tag removal increases process complexity and costs. Herein, we describe a synthetic biology-based strategy to permit in vivo removal of a solubility tag (EDA, KDPG aldolase), through co-expression of the fusion recombinant protein (EDA-EGFP) and the tag-cleaving protease (TEVp), in a controlled manner. Basically, the system uses three repressor proteins (LacI, cI434, and TetR) to regulate the expressions of EDA-EGFP and TEVp, in a regulatory cascade that culminates with the release of free soluble target protein (EGFP), following a single chemical induction by IPTG. The system worked consistently when all biological parts were cloned in a single plasmid, pSolubility(SOL)A (7.08 Kb, AmpR), and transformed in Escherichia coli Rosetta (DE3) or BL21(DE3) strains. Total soluble recombinant protein yield (EDA-EGFP + free EGFP) was ca. 272.0 ± 60.1 μg/mL of culture, following IMAC purification; free EGFP composed great part (average = 46.5%; maximum = 67.3%) of the total purified protein fraction and was easily separated from remaining fusion EDA-EGFP (53 KDa) through filtration using a 50 KDa cut-off centrifugal filter.
Collapse
Affiliation(s)
- Filipe S R Silva
- Post-graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Sara P O Santos
- Post-graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Roberto Meyer
- Post-graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Neuza M Alcantara-Neves
- Post-graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Carina S Pinheiro
- Post-graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Luis G C Pacheco
- Post-graduate Program in Biotechnology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
25
|
Ahan RE, Kırpat BM, Saltepe B, Şeker UÖŞ. A Self-Actuated Cellular Protein Delivery Machine. ACS Synth Biol 2019; 8:686-696. [PMID: 30811932 DOI: 10.1021/acssynbio.9b00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Engineered bacterial cells have great promise to solve global problems, yet they are hampered by a lack of convenient strategy for controlled protein release. A well-controlled protein translocation through cellular membranes is essential for cell-based protein delivery. Here we have developed a controlled protein release system by programming a bacterial autotransporter system named Ag43. Ag43 protein is engineered by adding a protease digestion site between its translocation and cargo domains. Once it is displayed on the cell surface, we managed to release the cargo proteins in defined conditions by processing environmental signals. The protein release in terms of time and quantity can be controlled through changing the inducer conditions. We thought that the release system can be adopted for complex genetic circuitries due to its simplicity. We implemented the protein release system to develop a cellular device that is able to release proteins in a sequence response to ordered chemical signals. We envision that development of genetically controlled protein release systems will improve the applications of synthetic organisms in cell based therapies, especially for cases with a need for controlled protein release using the cues from the biological environment.
Collapse
Affiliation(s)
- Recep Erdem Ahan
- UNAM−National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Büşra Merve Kırpat
- UNAM−National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Behide Saltepe
- UNAM−National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM−National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
- Neuroscience Graduate Program, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
26
|
Italia JS, Addy PS, Erickson SB, Peeler JC, Weerapana E, Chatterjee A. Mutually Orthogonal Nonsense-Suppression Systems and Conjugation Chemistries for Precise Protein Labeling at up to Three Distinct Sites. J Am Chem Soc 2019; 141:6204-6212. [PMID: 30909694 DOI: 10.1021/jacs.8b12954] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Site-specific incorporation of multiple distinct noncanonical amino acids (ncAAs) into a protein is an emerging technology with tremendous potential. It relies on mutually orthogonal engineered aminoacyl-tRNA synthetase/tRNA pairs that suppress different nonsense/frameshift codons. So far, up to two distinct ncAAs have been incorporated into proteins expressed in E. coli, using archaea-derived tyrosyl and pyrrolysyl pairs. Here we report that the E. coli derived tryptophanyl pair can be combined with the archaeal tyrosyl or the pyrrolysyl pair in ATMW1 E. coli to incorporate two different ncAAs into one protein with high fidelity and efficiency. By combining all three orthogonal pairs, we further demonstrate simultaneous site-specific incorporation of three different ncAAs into one protein. To use this technology for chemoselectively labeling proteins with multiple distinct entities at predefined sites, we also sought to identify different bioconjugation handles that can be coincorporated into proteins as ncAA-side chains and subsequently functionalized through mutually compatible labeling chemistries. To this end, we show that the recently developed chemoselective rapid azo-coupling reaction (CRACR) directed to 5-hydroxytryptophan (5HTP) is compatible with strain-promoted azide-alkyne cycloaddition (SPAAC) targeted to p-azidophenylalanine (pAzF) and strain-promoted inverse electron-demand Diels-Alder cycloaddition (SPIEDAC) targeted to cyclopropene-lysine (CpK) for rapid, catalyst-free protein labeling at multiple sites. Combining these mutually orthogonal nonsense suppression systems and the mutually compatible bioconjugation handles they incorporate, we demonstrate site-specific labeling of recombinantly expressed proteins at up to three distinct sites.
Collapse
Affiliation(s)
- James S Italia
- Department of Chemistry , Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center , Chestnut Hill , Massachusetts 02467 , United States
| | - Partha Sarathi Addy
- Department of Chemistry , Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center , Chestnut Hill , Massachusetts 02467 , United States
| | - Sarah B Erickson
- Department of Chemistry , Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center , Chestnut Hill , Massachusetts 02467 , United States
| | - Jennifer C Peeler
- Department of Chemistry , Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center , Chestnut Hill , Massachusetts 02467 , United States
| | - Eranthie Weerapana
- Department of Chemistry , Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center , Chestnut Hill , Massachusetts 02467 , United States
| | - Abhishek Chatterjee
- Department of Chemistry , Boston College , 2609 Beacon Street, 246B Merkert Chemistry Center , Chestnut Hill , Massachusetts 02467 , United States
| |
Collapse
|
27
|
Mann KS, Sanfaçon H. Expanding Repertoire of Plant Positive-Strand RNA Virus Proteases. Viruses 2019; 11:v11010066. [PMID: 30650571 PMCID: PMC6357015 DOI: 10.3390/v11010066] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/13/2022] Open
Abstract
Many plant viruses express their proteins through a polyprotein strategy, requiring the acquisition of protease domains to regulate the release of functional mature proteins and/or intermediate polyproteins. Positive-strand RNA viruses constitute the vast majority of plant viruses and they are diverse in their genomic organization and protein expression strategies. Until recently, proteases encoded by positive-strand RNA viruses were described as belonging to two categories: (1) chymotrypsin-like cysteine and serine proteases and (2) papain-like cysteine protease. However, the functional characterization of plant virus cysteine and serine proteases has highlighted their diversity in terms of biological activities, cleavage site specificities, regulatory mechanisms, and three-dimensional structures. The recent discovery of a plant picorna-like virus glutamic protease with possible structural similarities with fungal and bacterial glutamic proteases also revealed new unexpected sources of protease domains. We discuss the variety of plant positive-strand RNA virus protease domains. We also highlight possible evolution scenarios of these viral proteases, including evidence for the exchange of protease domains amongst unrelated viruses.
Collapse
Affiliation(s)
- Krin S Mann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| |
Collapse
|
28
|
Birnboim-Perach R, Grinberg Y, Vaks L, Nahary L, Benhar I. Production of Stabilized Antibody Fragments in the E. coli Bacterial Cytoplasm and in Transiently Transfected Mammalian Cells. Methods Mol Biol 2019; 1904:455-480. [PMID: 30539486 DOI: 10.1007/978-1-4939-8958-4_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Monoclonal antibodies (mAbs) are currently the fastest growing class of therapeutic proteins. Parallel to full-length IgG format the development of recombinant technologies provided the production of smaller recombinant antibody variants. The single-chain variable fragment (scFv) antibody is a minimal form of functional antibody comprised of the variable domains of immunoglobulin light and heavy chains connected by a flexible linker. In most cases, scFvs are expressed in the periplasm bacterium E. coli. The production of soluble scFvs is more effective in quantity, however, under the reducing conditions of the E. coli bacterial cytoplasm it is inefficient because of the inability of the disulfide bonds to form. Hence, scFvs are either secreted to the periplasm as soluble proteins or expressed in the cytoplasm as insoluble inclusion bodies and recovered by refolding. The cytoplasmic expression of scFvs as a C-terminal fusion to maltose-binding protein (MBP) provided the high-level production of stable, soluble, and functional fusion protein. The below protocol provides the detailed description of MBP-scFv production in E. coli utilizing two expression systems: pMALc-TNN and pMALc-NHNN. Although the MBP tag does not disrupt the most of antibody activities, the MBP-TNN-scFv product can be cleaved by Tobacco Etch Virus (TEV) protease in order to obtain untagged scFv.The second protocol is for efficient production of Fab antibody fragments as MBP fusion proteins secreted by transiently transfected mammalian cells. While transient transfection is a fast and effective way of obtaining several mgs of antibody for initial screening and validation of antibodies, some antibody sequences express poorly or not at all. For such antibodies, fusion to MBP provides an effective approach for solving the expression problem.
Collapse
Affiliation(s)
- Racheli Birnboim-Perach
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
| | - Yehudit Grinberg
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
| | - Lilach Vaks
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
| | - Limor Nahary
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
| | - Itai Benhar
- School of Molecular Cell Biology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel.
| |
Collapse
|
29
|
Kim J, Kim J, Rhee K. PCNT is critical for the association and conversion of centrioles to centrosomes during mitosis. J Cell Sci 2019; 132:jcs.225789. [DOI: 10.1242/jcs.225789] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 02/14/2019] [Indexed: 01/28/2023] Open
Abstract
A centrosome consists of a pair of centrioles and pericentriolar material (PCM). We manipulated expression of PCNT, a key PCM protein, and investigated roles of PCM in centriole behavior during mitosis. Deletion of PCNT had little effect on the interphase centrosomes. However, centrioles in PCNT-deleted mitotic cells prematurely separated and frequently amplified, revealing that centrioles are limited within the spindle poles by PCNT during mitosis. It is known that specific cleavage of PCNT is necessary for centriole separation during mitotic exit. Delayed centriole separation was observed in G0 phase when a noncleavable PCNT was removed or when PCNT was artificially cleaved by TEV protease. Furthermore, a daughter centriole converts to a mother centriole only after experiencing both mitotic exit and specific PCNT cleavage. Based on the results, we propose that a centriole pair disengages upon entering mitosis but remains associated with the surrounding PCM proteins throughout mitosis. During mitotic exit, specific cleavage of PCNT induces PCM disintegration. As a result, a daughter centriole separates from the mother centriole and converts to a young mother centriole.
Collapse
Affiliation(s)
- Jaeyoun Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeongjin Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kunsoo Rhee
- Department of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
30
|
Cambray G, Guimaraes JC, Arkin AP. Evaluation of 244,000 synthetic sequences reveals design principles to optimize translation in Escherichia coli. Nat Biotechnol 2018; 36:1005-1015. [DOI: 10.1038/nbt.4238] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 08/02/2018] [Indexed: 01/01/2023]
|
31
|
Embaby AM, Schoffelen S, Kofoed C, Meldal M, Diness F. Rational Tuning of Fluorobenzene Probes for Cysteine‐Selective Protein Modification. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ahmed M. Embaby
- Center for Evolutionary Chemical BiologyDepartment of ChemistryUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Sanne Schoffelen
- Center for Evolutionary Chemical BiologyDepartment of ChemistryUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Christian Kofoed
- Center for Evolutionary Chemical BiologyDepartment of ChemistryUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Morten Meldal
- Center for Evolutionary Chemical BiologyDepartment of ChemistryUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Frederik Diness
- Center for Evolutionary Chemical BiologyDepartment of ChemistryUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| |
Collapse
|
32
|
Embaby AM, Schoffelen S, Kofoed C, Meldal M, Diness F. Rational Tuning of Fluorobenzene Probes for Cysteine‐Selective Protein Modification. Angew Chem Int Ed Engl 2018; 57:8022-8026. [DOI: 10.1002/anie.201712589] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Ahmed M. Embaby
- Center for Evolutionary Chemical BiologyDepartment of ChemistryUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Sanne Schoffelen
- Center for Evolutionary Chemical BiologyDepartment of ChemistryUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Christian Kofoed
- Center for Evolutionary Chemical BiologyDepartment of ChemistryUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Morten Meldal
- Center for Evolutionary Chemical BiologyDepartment of ChemistryUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Frederik Diness
- Center for Evolutionary Chemical BiologyDepartment of ChemistryUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| |
Collapse
|
33
|
Billerbeck S. Small Functional Peptides and Their Application in Superfunctionalizing Proteins. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sonja Billerbeck
- Columbia University; Department of Chemistry; 550 West 120th Street New York NY 10027 USA
| |
Collapse
|
34
|
Zhang M, Wang Z, Chi L, Sun J, Shen Y. Enhanced production of soluble tumor necrosis factor-related apoptosis-inducing ligand in Escherichia coli using a novel self-cleavable tag system Fh8-ΔI-CM. Protein Expr Purif 2018; 148:16-23. [PMID: 29555311 DOI: 10.1016/j.pep.2018.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 11/29/2022]
Abstract
Escherichia coli is an essential host for large-scale expression of heterologous polypeptides. However, further applications are limited by the formation of potential protein aggregates. In this work, we developed a novel on-column tag removal and purification system based on Fh8 hydrophobic interaction chromatography purification and ΔI-CM self-cleavage to obtain soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We evaluated several methods to improve TRAIL solubility and finally demonstrated that the Fh8 tag was a powerful solubility enhancer. Finally, we replaced the tobacco etch virus (TEV) protease site with a ΔI-CM self-cleavage intein to simplify the purification process. The released soluble TRAIL purity and yield reached 98.4% and 82.1 mg/L in shake flasks, respectively. Thus, the Fh8-ΔI-CM system enhanced target protein solubility by Fh8, enabled on-column tag removal and purification based on Fh8 calcium-binding properties and ΔI-CM self-cleavage properties, and promoted the release of highly active protein with high yield and purity. Overall, our findings suggest that this Fh8-ΔI-CM system could be used as a novel solubility-inducing and purification fusion tag for protein production in E. coli.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Zhanqing Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Lili Chi
- Department of Gastroenterolog, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, People's Republic of China
| | - Jing Sun
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, People's Republic of China; Shanghai Gebaide Biotechnical Co., Ltd., Shanghai, People's Republic of China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, People's Republic of China.
| |
Collapse
|
35
|
Oki S, Nonaka T, Shiraki K. Specific solubilization of impurities in culture media: Arg solution improves purification of pH-responsive tag CspB50 with Teriparatide. Protein Expr Purif 2018; 146:85-90. [PMID: 29425938 DOI: 10.1016/j.pep.2018.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/30/2022]
Abstract
Protein purification using non-chromatographic methods is a simple technique that avoids costly resin. Recently, a cell surface protein B (CspB) tag has been developed for a pH-responsive tag for protein purification by solid-liquid separation. Proteins fused with the CspB tag show reversible insolubilization at acidic pH that can be used in solid-liquid separation for protein purification. However, brown-color impurities from co-precipitation hamper further analysis of the target proteins. In this study, we investigated the effect of additives on the co-precipitation of CspB-tagged Teriparatide (CspB50TEV-Teriparatide) expressed in Corynebacterium glutamicum and associated impurities. Arginine (Arg) at 1.0 M was found to be the most effective additive for removing impurities, particularly carotenoids and nucleic acids. Furthermore, all impurities detected in the fluorescence and absorbance spectra were successfully removed by the repetition of precipitation-redissolution in the Arg solution. The precipitation yield of the CspB50TEV-Teriparatide did not change with the addition of Arg and the repetition of the precipitation-redissolution process. Collectively, our findings indicate that the specific desorption of π-electron rich compounds by Arg may be useful in conjunction with the pH-responsive CspB tag for solid-liquid protein purification.
Collapse
Affiliation(s)
- Shogo Oki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Takahiro Nonaka
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan; Research Institute for Bioscience Product & Fine Chemicals, Ajinomoto Co., Inc, 1-1, Suzuki-Cho, Kawasaki 210-8681, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
36
|
Martínez V, Lauritsen I, Hobel T, Li S, Nielsen AT, Nørholm M. CRISPR/Cas9-based genome editing for simultaneous interference with gene expression and protein stability. Nucleic Acids Res 2017; 45:e171. [PMID: 28981713 PMCID: PMC5714205 DOI: 10.1093/nar/gkx797] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/06/2017] [Accepted: 08/30/2017] [Indexed: 11/12/2022] Open
Abstract
Interference with genes is the foundation of reverse genetics and is key to manipulation of living cells for biomedical and biotechnological applications. However, classical genetic knockout and transcriptional knockdown technologies have different drawbacks and offer no control over existing protein levels. Here, we describe an efficient genome editing approach that affects specific protein abundances by changing the rates of both RNA synthesis and protein degradation, based on the two cross-kingdom control mechanisms CRISPRi and the N-end rule for protein stability. In addition, our approach demonstrates that CRISPRi efficiency is dependent on endogenous gene expression levels. The method has broad applications in e.g. study of essential genes and antibiotics discovery.
Collapse
Affiliation(s)
- Virginia Martínez
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Ida Lauritsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Tonja Hobel
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Songyuan Li
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Alex Toftgaard Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| | - Morten H. H. Nørholm
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
37
|
Engstrom MD, Pfleger BF. Transcription control engineering and applications in synthetic biology. Synth Syst Biotechnol 2017; 2:176-191. [PMID: 29318198 PMCID: PMC5655343 DOI: 10.1016/j.synbio.2017.09.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022] Open
Abstract
In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein), a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity) levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators (cis-factors) were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators (trans-factors), giving examples of how cis- and trans-acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli, we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.
Collapse
Affiliation(s)
- Michael D. Engstrom
- Genetics-Biotechnology Center, University of Wisconsin-Madison School of Medicine and Public Health, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison College of Engineering, USA
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison College of Engineering, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, USA
| |
Collapse
|
38
|
Targeting protein function: the expanding toolkit for conditional disruption. Biochem J 2017; 473:2573-89. [PMID: 27574023 PMCID: PMC5003692 DOI: 10.1042/bcj20160240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/20/2016] [Indexed: 01/06/2023]
Abstract
A major objective in biological research is to understand spatial and temporal requirements for any given gene, especially in dynamic processes acting over short periods, such as catalytically driven reactions, subcellular transport, cell division, cell rearrangement and cell migration. The interrogation of such processes requires the use of rapid and flexible methods of interfering with gene function. However, many of the most widely used interventional approaches, such as RNAi or CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated 9), operate at the level of the gene or its transcripts, meaning that the effects of gene perturbation are exhibited over longer time frames than the process under investigation. There has been much activity over the last few years to address this fundamental problem. In the present review, we describe recent advances in disruption technologies acting at the level of the expressed protein, involving inducible methods of protein cleavage, (in)activation, protein sequestration or degradation. Drawing on examples from model organisms we illustrate the utility of fast-acting techniques and discuss how different components of the molecular toolkit can be employed to dissect previously intractable biochemical processes and cellular behaviours.
Collapse
|
39
|
Woodall NB, Hadley S, Yin Y, Bowie JU. Complete topology inversion can be part of normal membrane protein biogenesis. Protein Sci 2017; 26:824-833. [PMID: 28168866 DOI: 10.1002/pro.3131] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/14/2023]
Abstract
The topology of helical membrane proteins is generally defined during insertion of the transmembrane helices, yet it is now clear that it is possible for topology to change under unusual circumstances. It remains unclear, however, if topology reorientation is part of normal biogenesis. For dual topology dimer proteins such as the multidrug transporter EmrE, there may be evolutionary pressure to allow topology flipping so that the populations of both orientations can be equalized. We previously demonstrated that when EmrE is forced to insert in a distorted topology, topology flipping of the first transmembrane helix can occur during translation. Here, we show that topological malleability also extends to the C-terminal helix and that even complete topology inversion of the entire EmrE protein can occur after the full protein is translated and inserted. Thus, topology rearrangements are possible during normal biogenesis. Wholesale topology flipping is remarkable given the physical constraints of the membrane and expands the range of possible membrane protein folding pathways, both productive and detrimental.
Collapse
Affiliation(s)
- Nicholas B Woodall
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, California
| | - Sarah Hadley
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, California
| | - Ying Yin
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, California
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, California
| |
Collapse
|
40
|
Abstract
Maltose-Binding Protein (MBP) is one of the most popular fusion partners being used for producing recombinant proteins in bacterial cells. MBP allows the use of a simple capture affinity step on Amylose-Agarose or Dextrin-Sepharose columns, resulting in a protein that is often 70-90 % pure in a single step. In addition to protein isolation applications, MBP provides a high degree of translation, and facilitates the proper folding and solubility of the target protein. This paper describes efficient procedures for isolating highly purified MBP target proteins. Special attention is given to considerations for downstream applications such as structural determination studies, protein activity assays, and assessing the chemical characteristics of the target protein.
Collapse
Affiliation(s)
- Mario Lebendiker
- Protein Expression and Purification Facilities, The Wolfson Centre for Applied Structural Biology, The Edmond J.Safra Campus, Jerusalem, 91904, Israel.
| | - Tsafi Danieli
- Protein Expression and Purification Facilities, The Wolfson Centre for Applied Structural Biology, The Edmond J.Safra Campus, Jerusalem, 91904, Israel
| |
Collapse
|
41
|
Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK. Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol 2016; 94:507-527. [PMID: 27010607 PMCID: PMC5752365 DOI: 10.1139/bcb-2015-0143] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).
Collapse
Affiliation(s)
- Aditya Pandey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Robin E. Patterson
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xiang-Qin Liu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
42
|
Gong Z, Walls MT, Karley AN, Karlsson AJ. Effect of a Flexible Linker on Recombinant Expression of Cell-Penetrating Peptide Fusion Proteins and Their Translocation into Fungal Cells. Mol Biotechnol 2016; 58:838-849. [DOI: 10.1007/s12033-016-9983-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Raran-Kurussi S, Waugh DS. A dual protease approach for expression and affinity purification of recombinant proteins. Anal Biochem 2016; 504:30-7. [PMID: 27105777 PMCID: PMC4877217 DOI: 10.1016/j.ab.2016.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/01/2016] [Accepted: 04/07/2016] [Indexed: 11/29/2022]
Abstract
We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to "stick" to its fusion partners during affinity purification.
Collapse
Affiliation(s)
- Sreejith Raran-Kurussi
- Protein Engineering Section, Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - David S Waugh
- Protein Engineering Section, Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
44
|
Cesaratto F, Burrone OR, Petris G. Tobacco Etch Virus protease: A shortcut across biotechnologies. J Biotechnol 2016; 231:239-249. [PMID: 27312702 DOI: 10.1016/j.jbiotec.2016.06.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/31/2016] [Accepted: 06/10/2016] [Indexed: 11/29/2022]
Abstract
About thirty years ago, studies on the RNA genome of Tobacco Etch Virus revealed the presence of an efficient and specific protease, called Tobacco Etch Virus protease (TEVp), that was part of the Nuclear Inclusion a (NIa) enzyme. TEVp is an efficient and specific protease of 27kDa that has become a valuable biotechnological tool. Nowadays TEVp is a unique endopeptidase largely exploited in biotechnology from industrial applications to in vitro and in vivo cellular studies. A number of TEVp mutants with different rate of cleavage, stability and specificity have been reported. Similarly, a panel of different target cleavage sites, derived from the canonical ENLYFQ-G/S site, has been established. In this review we describe these aspects of TEVp and some of its multiple applications. A particular focus is on the use and molecular biology of TEVp in living cells and organisms.
Collapse
Affiliation(s)
- Francesca Cesaratto
- International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Oscar R Burrone
- International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy.
| | | |
Collapse
|
45
|
Khan MR, Li L, Pérez-Sánchez C, Saraf A, Florens L, Slaughter BD, Unruh JR, Si K. Amyloidogenic Oligomerization Transforms Drosophila Orb2 from a Translation Repressor to an Activator. Cell 2016; 163:1468-83. [PMID: 26638074 DOI: 10.1016/j.cell.2015.11.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/02/2015] [Accepted: 11/10/2015] [Indexed: 12/21/2022]
Abstract
Memories are thought to be formed in response to transient experiences, in part through changes in local protein synthesis at synapses. In Drosophila, the amyloidogenic (prion-like) state of the RNA binding protein Orb2 has been implicated in long-term memory, but how conformational conversion of Orb2 promotes memory formation is unclear. Combining in vitro and in vivo studies, we find that the monomeric form of Orb2 represses translation and removes mRNA poly(A) tails, while the oligomeric form enhances translation and elongates the poly(A) tails and imparts its translational state to the monomer. The CG13928 protein, which binds only to monomeric Orb2, promotes deadenylation, whereas the putative poly(A) binding protein CG4612 promotes oligomeric Orb2-dependent translation. Our data support a model in which monomeric Orb2 keeps target mRNA in a translationally dormant state and experience-dependent conversion to the amyloidogenic state activates translation, resulting in persistent alteration of synaptic activity and stabilization of memory.
Collapse
Affiliation(s)
- Mohammed Repon Khan
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Liying Li
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Consuelo Pérez-Sánchez
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Anita Saraf
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Brian D Slaughter
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
| | - Kausik Si
- Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
46
|
Expression, purification and characterization of a vascular endothelial growth factor fusion protein. Biotechnol Lett 2016; 38:1115-20. [DOI: 10.1007/s10529-016-2081-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/07/2016] [Indexed: 01/03/2023]
|
47
|
Didovyk A, Borek B, Hasty J, Tsimring L. Orthogonal Modular Gene Repression in Escherichia coli Using Engineered CRISPR/Cas9. ACS Synth Biol 2016; 5:81-8. [PMID: 26390083 DOI: 10.1021/acssynbio.5b00147] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The progress in development of synthetic gene circuits has been hindered by the limited repertoire of available transcription factors. Recently, it has been greatly expanded using the CRISPR/Cas9 system. However, this system is limited by its imperfect DNA sequence specificity, leading to potential crosstalk with host genome or circuit components. Furthermore, CRISPR/Cas9-mediated gene regulation is context dependent, affecting the modularity of Cas9-based transcription factors. In this paper we address the problems of specificity and modularity by developing a computational approach for selecting Cas9/gRNA transcription factor/promoter pairs that are maximally orthogonal to each other as well as to the host genome and synthetic circuit components. We validate the method by designing and experimentally testing four orthogonal promoter/repressor pairs in the context of a strong promoter PL from phage lambda. We demonstrate that these promoters can be interfaced by constructing double and triple inverter circuits. To address the problem of modularity we propose and experimentally validate a scheme to predictably incorporate orthogonal CRISPR/Cas9 regulation into a large class of natural promoters.
Collapse
Affiliation(s)
- Andriy Didovyk
- BioCircuits Institute, ‡San Diego Center for Systems Biology, ¶Department of Bioengineering, and §Molecular Biology
Section, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Bartłomiej Borek
- BioCircuits Institute, ‡San Diego Center for Systems Biology, ¶Department of Bioengineering, and §Molecular Biology
Section, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Jeff Hasty
- BioCircuits Institute, ‡San Diego Center for Systems Biology, ¶Department of Bioengineering, and §Molecular Biology
Section, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Lev Tsimring
- BioCircuits Institute, ‡San Diego Center for Systems Biology, ¶Department of Bioengineering, and §Molecular Biology
Section, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
48
|
Biedendieck R. A Bacillus megaterium System for the Production of Recombinant Proteins and Protein Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:97-113. [PMID: 27165321 DOI: 10.1007/978-3-319-27216-0_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
For many years the Gram-positive bacterium Bacillus megaterium has been used for the production and secretion of recombinant proteins. For this purpose it was systematically optimized. Plasmids with different inducible promoter systems, with different compatible origins, with small tags for protein purification and with various specific signals for protein secretion were combined with genetically improved host strains. Finally, the development of appropriate cultivation conditions for the production strains established this organism as a bacterial cell factory even for large proteins. Along with the overproduction of individual proteins the organism is now also used for the simultaneous coproduction of up to 14 recombinant proteins, multiple subsequently interacting or forming protein complexes. Some of these recombinant strains are successfully used for bioconversion or the biosynthesis of valuable components including vitamins. The titers in the g per liter scale for the intra- and extracellular recombinant protein production prove the high potential of B. megaterium for industrial applications. It is currently further enhanced for the production of recombinant proteins and multi-subunit protein complexes using directed genetic engineering approaches based on transcriptome, proteome, metabolome and fluxome data.
Collapse
Affiliation(s)
- Rebekka Biedendieck
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany. .,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
49
|
Hervás R, Li L, Majumdar A, Fernández-Ramírez MDC, Unruh JR, Slaughter BD, Galera-Prat A, Santana E, Suzuki M, Nagai Y, Bruix M, Casas-Tintó S, Menéndez M, Laurents DV, Si K, Carrión-Vázquez M. Molecular Basis of Orb2 Amyloidogenesis and Blockade of Memory Consolidation. PLoS Biol 2016; 14:e1002361. [PMID: 26812143 PMCID: PMC4727891 DOI: 10.1371/journal.pbio.1002361] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 12/16/2015] [Indexed: 12/03/2022] Open
Abstract
Amyloids are ordered protein aggregates that are typically associated with neurodegenerative diseases and cognitive impairment. By contrast, the amyloid-like state of the neuronal RNA binding protein Orb2 in Drosophila was recently implicated in memory consolidation, but it remains unclear what features of this functional amyloid-like protein give rise to such diametrically opposed behaviour. Here, using an array of biophysical, cell biological and behavioural assays we have characterized the structural features of Orb2 from the monomer to the amyloid state. Surprisingly, we find that Orb2 shares many structural traits with pathological amyloids, including the intermediate toxic oligomeric species, which can be sequestered in vivo in hetero-oligomers by pathological amyloids. However, unlike pathological amyloids, Orb2 rapidly forms amyloids and its toxic intermediates are extremely transient, indicating that kinetic parameters differentiate this functional amyloid from pathological amyloids. We also observed that a well-known anti-amyloidogenic peptide interferes with long-term memory in Drosophila. These results provide structural insights into how the amyloid-like state of the Orb2 protein can stabilize memory and be nontoxic. They also provide insight into how amyloid-based diseases may affect memory processes.
Collapse
Affiliation(s)
- Rubén Hervás
- Instituto Cajal, IC-CSIC, Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Madrid, Spain
| | - Liying Li
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Amitabha Majumdar
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- National Brain Research Centre, Manesar, Guragon, Haryana, India
| | | | - Jay R. Unruh
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Brian D. Slaughter
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Albert Galera-Prat
- Instituto Cajal, IC-CSIC, Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Madrid, Spain
| | | | - Mari Suzuki
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama, Japan
| | - Marta Bruix
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Madrid, Spain
| | | | - Margarita Menéndez
- Instituto de Química-Física Rocasolano, IQFR-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Respiratorias, Madrid, Spain
| | | | - Kausik Si
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Mariano Carrión-Vázquez
- Instituto Cajal, IC-CSIC, Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Madrid, Spain
| |
Collapse
|
50
|
Wang HZ, Chu ZZ, Chen CC, Cao AC, Tong X, Ouyang CB, Yuan QH, Wang MN, Wu ZK, Wang HH, Wang SB. Recombinant Passenger Proteins Can Be Conveniently Purified by One-Step Affinity Chromatography. PLoS One 2015; 10:e0143598. [PMID: 26641240 PMCID: PMC4671538 DOI: 10.1371/journal.pone.0143598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 11/06/2015] [Indexed: 11/19/2022] Open
Abstract
Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases.
Collapse
Affiliation(s)
- Hua-zhen Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 541642, P. R. China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, 541642, P. R. China
| | - Zhi-zhan Chu
- College of Life Sciences, South China Agricultural University, Guangzhou, 541642, P. R. China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, 541642, P. R. China
| | - Chang-chao Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, 541642, P. R. China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, 541642, P. R. China
| | - Ao-cheng Cao
- Department of Pesticides, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, 100193, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China
| | - Xin Tong
- College of Life Sciences, South China Agricultural University, Guangzhou, 541642, P. R. China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, 541642, P. R. China
| | - Can-bin Ouyang
- Department of Pesticides, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, 100193, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China
| | - Qi-hang Yuan
- College of Life Sciences, South China Agricultural University, Guangzhou, 541642, P. R. China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, 541642, P. R. China
| | - Mi-nan Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 541642, P. R. China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, 541642, P. R. China
| | - Zhong-kun Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, 541642, P. R. China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, 541642, P. R. China
| | - Hai-hong Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 541642, P. R. China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, 541642, P. R. China
| | - Sheng-bin Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 541642, P. R. China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, 541642, P. R. China
- * E-mail:
| |
Collapse
|