1
|
Natesan K, Isloor S, Vinayagamurthy B, Ramakrishnaiah S, Doddamane R, Fooks AR. Developments in Rabies Vaccines: The Path Traversed from Pasteur to the Modern Era of Immunization. Vaccines (Basel) 2023; 11:vaccines11040756. [PMID: 37112668 PMCID: PMC10147034 DOI: 10.3390/vaccines11040756] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Rabies is a disease of antiquity and has a history spanning millennia ever since the first interactions between humans and dogs. The alarming fatalities caused by this disease have triggered rabies prevention strategies since the first century BC. There have been numerous attempts over the past 100 years to develop rabies vaccineswith the goal of preventing rabies in both humans and animals. Thepre-Pasteurian vaccinologists, paved the way for the actual history of rabies vaccines with the development of first generation vaccines. Further improvements for less reactive and more immunogenic vaccines have led to the expansion of embryo vaccines, tissue culture vaccines, cell culture vaccines, modified live vaccines, inactivated vaccines, and adjuvanted vaccines. The adventof recombinant technology and reverse genetics have given insight into the rabies viral genome and facilitated genome manipulations, which in turn led to the emergence of next-generation rabies vaccines, such as recombinant vaccines, viral vector vaccines, genetically modified vaccines, and nucleic acid vaccines. These vaccines were very helpful in overcoming the drawbacks of conventional rabies vaccines with increased immunogenicity and clinical efficacies. The path traversed in the development of rabies vaccines from Pasteur to the modern era vaccines, though, faced numerous challenges;these pioneering works have formed the cornerstone for the generation of thecurrent successful vaccines to prevent rabies. In the future, advancements in the scientific technologies and research focus will definitely lay the path for much more sophisticated vaccine candidates for rabies elimination.
Collapse
Affiliation(s)
- Krithiga Natesan
- KVAFSU-CVA Rabies Diagnostic Laboratory, WOAH Reference Laboratory for Rabies, Department of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bengaluru 560024, Karnataka, India
| | - Shrikrishna Isloor
- KVAFSU-CVA Rabies Diagnostic Laboratory, WOAH Reference Laboratory for Rabies, Department of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bengaluru 560024, Karnataka, India
- Correspondence: ; Tel.: +91-9449992287
| | | | - Sharada Ramakrishnaiah
- KVAFSU-CVA Rabies Diagnostic Laboratory, WOAH Reference Laboratory for Rabies, Department of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bengaluru 560024, Karnataka, India
| | - Rathnamma Doddamane
- KVAFSU-CVA Rabies Diagnostic Laboratory, WOAH Reference Laboratory for Rabies, Department of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bengaluru 560024, Karnataka, India
| | - Anthony R. Fooks
- APHA Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
2
|
Mattathil JG, Volz A, Onabajo OO, Maynard S, Bixler SL, Shen XX, Vargas-Inchaustegui D, Robert-Guroff M, Lebranche C, Tomaras G, Montefiori D, Sutter G, Mattapallil JJ. Direct intranodal tonsil vaccination with modified vaccinia Ankara vaccine protects macaques from highly pathogenic SIVmac251. Nat Commun 2023; 14:1264. [PMID: 36882405 PMCID: PMC9990026 DOI: 10.1038/s41467-023-36907-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Human immunodeficiency virus (HIV) is a mucosally transmitted virus that causes immunodeficiency and AIDS. Developing efficacious vaccines to prevent infection is essential to control the epidemic. Protecting the vaginal and rectal mucosa, the primary routes of HIV entry has been a challenge given the significant compartmentalization between the mucosal and peripheral immune systems. We hypothesized that direct intranodal vaccination of mucosa associated lymphoid tissue (MALT) such as the readily accessible palatine tonsils could overcome this compartmentalization. Here we show that rhesus macaques primed with plasmid DNA encoding SIVmac251-env and gag genes followed by an intranodal tonsil MALT boost with MVA encoding the same genes protects from a repeated low dose intrarectal challenge with highly pathogenic SIVmac251; 43% (3/7) of vaccinated macaques remained uninfected after 9 challenges as compared to the unvaccinated control (0/6) animals. One vaccinated animal remained free of infection even after 22 challenges. Vaccination was associated with a ~2 log decrease in acute viremia that inversely correlated with anamnestic immune responses. Our results suggest that a combination of systemic and intranodal tonsil MALT vaccination could induce robust adaptive and innate immune responses leading to protection from mucosal infection with highly pathogenic HIV and rapidly control viral breakthroughs.
Collapse
Affiliation(s)
- Jeffy G Mattathil
- Henry M. Jackson Foundation for Military Medicine, Bethesda, MD, USA
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
| | | | - Sean Maynard
- Henry M. Jackson Foundation for Military Medicine, Bethesda, MD, USA
| | - Sandra L Bixler
- Henry M. Jackson Foundation for Military Medicine, Bethesda, MD, USA
| | | | | | | | | | | | | | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU, Munich, Germany
| | - Joseph J Mattapallil
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
3
|
Abstract
The first proof-of-concept studies about the feasibility of genetic vaccines were published over three decades ago, opening the way for future development. The idea of nonviral antigen delivery had multiple advantages over the traditional live or inactivated pathogen-based vaccines, but a great deal of effort had to be invested to turn the idea of genetic vaccination into reality. Although early proof-of-concept studies were groundbreaking, they also showed that numerous aspects of genetic vaccines needed to be improved. Until the early 2000s, the vast majority of effort was invested into the development of DNA vaccines due to the potential issues of instability and low in vivo translatability of messenger RNA (mRNA). In recent years, numerous studies have demonstrated the outstanding abilities of mRNA to elicit potent immune responses against infectious pathogens and different types of cancer, making it a viable platform for vaccine development. Multiple mRNA vaccine platforms have been developed and evaluated in small and large animals and humans and the results seem to be promising. RNA-based vaccines have important advantages over other vaccine approaches including outstanding efficacy, safety, and the potential for rapid, inexpensive, and scalable production. There is a substantial investment by new mRNA companies into the development of mRNA therapeutics, particularly vaccines, increasing the number of basic and translational research publications and human clinical trials underway. This review gives a broad overview about genetic vaccines and mainly focuses on the past and present of mRNA vaccines along with the future directions to bring this potent vaccine platform closer to therapeutic use.
Collapse
|
4
|
Xu D, Tang B, Wang Y, Zhang L, Qu Z, Shi W, Wang X, Sun Q, Sun S, Liu M. The immune protection induced by a serine protease from the Trichinella spiralis adult administered as DNA and protein vaccine. Acta Trop 2020; 211:105622. [PMID: 32645301 DOI: 10.1016/j.actatropica.2020.105622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022]
Abstract
Trichinellosis is caused by Trichinella spiralis (T. spiralis), which is an important public health problem. In this study, a gene encoding a serine protease from adult worms of T. spiralis (Ts-Adsp) was screened from a cDNA library of adult worms and was cloned and expressed in a prokaryotic expression system. The gene Ts-Adsp was subcloned into the eukaryotic expression vector pcDNA3.1(+), which was named pcDNA3.1(+)-Adsp. Previous studies have found that recombinant Ts-Adsp protein (rTs-Adsp) can elicit partial protection against T. spiralis infection in mice. Our aim was to explore the protective effect of combining a DNA vaccine with the rTs-Adsp protein against T. spiralis. One week after the last vaccination, the serum and spleen were obtained. The levels of IgG, IgG1 and IgG2a and cytokine production in serum and spleen cells were analyzed. The results showed that the levels of humoral and cell-mediated immune responses increased in the pcDNA3.1(+)-Adsp/rTs-Adsp group mice and demonstrated that a Th1/Th2 mixed immune response was induced by pcDNA3.1(+)-Adsp/rTs-Adsp after vaccination. Moreover, mice vaccinated with pcDNA3.1(+)-Adsp/rTs-Adsp displayed a 69.50% reduction in muscle larvae burden. This study suggested that mixed immunity could improve the muscle larvae reduction rate.
Collapse
|
5
|
New Rabies Vaccines for Use in Humans. Vaccines (Basel) 2019; 7:vaccines7020054. [PMID: 31226750 PMCID: PMC6631309 DOI: 10.3390/vaccines7020054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022] Open
Abstract
Although vaccines are available, rabies still claims more than 55,000 human lives each year. In most cases, rabies vaccines are given to humans after their exposure to a rabid animal; pre-exposure vaccination is largely reserved for humans at high risk for contacts with the virus. Most cases of human rabies are transmitted by dogs. Dog rabies control by mass canine vaccination campaigns combined with intensive surveillance programs has led to a decline of human rabies in many countries but has been unsuccessful in others. Animal vaccination programs are also not suited to control human rabies caused by bat transmission, which is common in some Central American countries. Alternatively, or in addition, more widespread pre-exposure vaccination, especially in highly endemic remote areas, could be implemented. With the multiple dose regimens of current vaccines, pre-exposure vaccination is not cost effective for most countries and this warrants the development of new rabies vaccines, which are as safe as current vaccines, but achieve protective immunity after a single dose, and most importantly, are less costly. This chapter discusses novel rabies vaccines that are in late stage pre-clinical testing or have undergone clinical testing and their potential for replacing current vaccines.
Collapse
|
6
|
A. Gómez L, A. Oñate A. Plasmid-Based DNA Vaccines. Plasmid 2019. [DOI: 10.5772/intechopen.76754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Colluru VT, McNeel DG. B lymphocytes as direct antigen-presenting cells for anti-tumor DNA vaccines. Oncotarget 2018; 7:67901-67918. [PMID: 27661128 PMCID: PMC5356528 DOI: 10.18632/oncotarget.12178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/16/2016] [Indexed: 01/21/2023] Open
Abstract
In spite of remarkable preclinical efficacy, DNA vaccination has demonstrated low immunogenicity in humans. While efforts have focused on increasing cross-presentation of DNA-encoded antigens, efforts to increase DNA vaccine immunogenicity by targeting direct presentation have remained mostly unexplored. In these studies, we compared the ability of different APCs to present antigen to T cells after simple co-culture with plasmid DNA. We found that human primary peripheral B lymphocytes, and not monocytes or in vitro derived dendritic cells (DCs), were able to efficiently encode antigen mRNA and expand cognate tumor antigen-specific CD8 T cells ex vivo. Similarly, murine B lymphocytes co-cultured with plasmid DNA, and not DCs, were able to prime antigen-specific T cells in vivo. Moreover, B lymphocyte-mediated presentation of plasmid antigen led to greater Th1-biased immunity and was sufficient to elicit an anti-tumor effect in vivo. Surprisingly, increasing plasmid presentation by B cells, and not cross presentation of peptides by DCs, further augmented traditional plasmid vaccination. Together, these data suggest that targeting plasmid DNA to B lymphocytes, for example through transfer of ex vivo plasmidloaded B cells, may be novel means to achieve greater T cell immunity from DNA vaccines.
Collapse
Affiliation(s)
- Viswa Teja Colluru
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Galvez-Romero G, Salas-Rojas M, Pompa-Mera EN, Chávez-Rueda K, Aguilar-Setién Á. Addition of C3d-P28 adjuvant to a rabies DNA vaccine encoding the G5 linear epitope enhances the humoral immune response and confers protection. Vaccine 2017; 36:292-298. [PMID: 29191739 DOI: 10.1016/j.vaccine.2017.11.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/08/2017] [Accepted: 11/12/2017] [Indexed: 01/18/2023]
Abstract
Rabies DNA vaccines based on full-length glycoprotein (G) induce virus neutralizing antibody (VNA) responses and protect against the virus challenge. Although conformational epitopes of G are the main target of VNAs, some studies have shown that a polypeptide linear epitope G5 is also able to induce VNAs. However, a G5 DNA vaccine has not been explored. While multiple doses of DNA vaccines are required in order to confer a protective immune response, this could be overcome by the inclusion of C3d-P28, a molecular adjuvant is know to improve the antibody response in several anti-viral vaccine models. To induce and enhance the immune response against rabies in mice, we evaluated two DNA vaccines based on the linear epitope G5 of Rabies Virus (RABV) glycoprotein (pVaxG5 vaccine) and another vaccine consisting of G5 fused to the molecular adjuvant C3d-P28 (pVaxF1 vaccine). VNA responses were measured in mice immunized with both vaccines. The VNA levels from the group immunized with pVaxG5 decreased gradually, while those from the group vaccinated with pVaxF1 remained high throughout the experimental study. After challenge with 22 LD50 of the Challenge Virus Strain (CVS), the survival rate of mice immunized with pVaxG5 and pVaxF1 was increased by 27% and 50% respectively, in comparison to the PBS group. Furthermore, the in vitro proliferation of anti-rabies specific spleen CD4+ and CD8+ T cells from mice immunized with pVaxF1 was observed. Collectively, these results suggest that the linear G5 epitope is a potential candidate vaccine. Furthermore, the addition of a C3d-P28 adjuvant contributed to enhanced protection, the sustained production of VNAs, and a specific T-cell proliferative response.
Collapse
Affiliation(s)
- Guillermo Galvez-Romero
- Unidad de de Investigación Médica en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de México, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mónica Salas-Rojas
- Unidad de de Investigación Médica en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Ericka N Pompa-Mera
- Unidad de Investigación en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Karina Chávez-Rueda
- Unidad de de Investigación Médica en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Álvaro Aguilar-Setién
- Unidad de de Investigación Médica en Inmunología, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Chea LS, Amara RR. Immunogenicity and efficacy of DNA/MVA HIV vaccines in rhesus macaque models. Expert Rev Vaccines 2017; 16:973-985. [PMID: 28838267 DOI: 10.1080/14760584.2017.1371594] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Despite 30 years of research on HIV, a vaccine to prevent infection and limit disease progression remains elusive. The RV144 trial showed moderate, but significant protection in humans and highlighted the contribution of antibody responses directed against HIV envelope as an important immune correlate for protection. Efforts to further build upon the progress include the use of a heterologous prime-boost regimen using DNA as the priming agent and the attenuated vaccinia virus, Modified Vaccinia Ankara (MVA), as a boosting vector for generating protective HIV-specific immunity. Areas covered: In this review, we summarize the immunogenicity of DNA/MVA vaccines in non-human primate models and describe the efficacy seen in SIV infection models. We discuss immunological correlates of protection determined by these studies and potential approaches for improving the protective immunity. Additionally, we describe the current progress of DNA/MVA vaccines in human trials. Expert commentary: Efforts over the past decade have provided the opportunity to better understand the dynamics of vaccine-induced immune responses and immune correlates of protection against HIV. Based on what we have learned, we outline multiple areas where the field will likely focus on in the next five years.
Collapse
Affiliation(s)
- Lynette Siv Chea
- a Emory Vaccine Center, Department of Microbiology and Immunology , Yerkes National Primate Research Center, Emory University , Atlanta , GA , USA
| | - Rama Rao Amara
- a Emory Vaccine Center, Department of Microbiology and Immunology , Yerkes National Primate Research Center, Emory University , Atlanta , GA , USA
| |
Collapse
|
10
|
Abstract
DNA vaccines offer many advantages over other anti-tumor vaccine approaches due to their simplicity, ease of manufacturing, and safety. Results from several clinical trials in patients with cancer have demonstrated that DNA vaccines are safe and can elicit immune responses. However, to date few DNA vaccines have progressed beyond phase I clinical trial evaluation. Studies into the mechanism of action of DNA vaccines in terms of antigen-presenting cell types able to directly present or cross-present DNA-encoded antigens, and the activation of innate immune responses due to DNA itself, have suggested opportunities to increase the immunogenicity of these vaccines. In addition, studies into the mechanisms of tumor resistance to anti-tumor vaccination have suggested combination approaches that can increase the anti-tumor effect of DNA vaccines. This review focuses on these mechanisms of action and mechanisms of resistance using DNA vaccines, and how this information is being used to improve the anti-tumor effect of DNA vaccines. These approaches are then specifically discussed in the context of human prostate cancer, a disease for which DNA vaccines have been and continue to be explored as treatments.
Collapse
Affiliation(s)
- Christopher D Zahm
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Viswa Teja Colluru
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Douglas G McNeel
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
11
|
Immune responses in mice vaccinated with a DNA vaccine expressing serine protease-like protein from the new-born larval stage of Trichinella spiralis. Parasitology 2017; 144:712-719. [PMID: 28069101 PMCID: PMC5426336 DOI: 10.1017/s0031182016002493] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Trichinella spiralis is a parasitic helminth that can infect almost all mammals, including humans. Trichinella spiralis infection elicits a typical type 2 immune responses, while suppresses type 1 immune responses, which is in favour of their parasitism. DNA vaccines have been shown to be capable of eliciting balanced CD4+ and CD8+ T cell responses as well as humoral immune responses in small-animal models, which will be advantage to induce protective immune response against helminth infection. In this study, serine protease (Ts-NBLsp) was encoded by a cDNA fragment of new-born T. spiralis larvae, and was inserted after CMV promoter to construct a DNA vaccine [pcDNA3·1(+)-Ts-NBLsp]. Ts-NBLsp expression was demonstrated by immunofluorescence. Sera samples were obtained from vaccinated mice, and they showed strong anti-Ts-NBLsp-specific IgG response. Mice immunized with the pcDNA3·1(+)-Ts-NBLsp DNA vaccine showed a 77·93% reduction in muscle larvae (ML) following challenge with T. spiralis ML. Our results demonstrate that the vaccination with pcDNA3·1(+)-Ts-NBLsp plasmid promoted the balance of type 1 and 2 immune responses and produced a significant protection against T. spiralis infection in mice.
Collapse
|
12
|
Zhu S, Guo C. Rabies Control and Treatment: From Prophylaxis to Strategies with Curative Potential. Viruses 2016; 8:v8110279. [PMID: 27801824 PMCID: PMC5127009 DOI: 10.3390/v8110279] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 12/25/2022] Open
Abstract
Rabies is an acute, fatal, neurological disease that affects almost all kinds of mammals. Vaccination (using an inactivated rabies vaccine), combined with administration of rabies immune globulin, is the only approved, effective method for post-exposure prophylaxis against rabies in humans. In the search for novel rabies control and treatment strategies, live-attenuated viruses have recently emerged as a practical and promising approach for immunizing and controlling rabies. Unlike the conventional, inactivated rabies vaccine, live-attenuated viruses are genetically modified viruses that are able to replicate in an inoculated recipient without causing adverse effects, while still eliciting robust and effective immune responses against rabies virus infection. A number of viruses with an intrinsic capacity that could be used as putative candidates for live-attenuated rabies vaccine have been intensively evaluated for therapeutic purposes. Additional novel strategies, such as a monoclonal antibody-based approach, nucleic acid-based vaccines, or small interfering RNAs (siRNAs) interfering with virus replication, could further add to the arena of strategies to combat rabies. In this review, we highlight current advances in rabies therapy and discuss the role that they might have in the future of rabies treatment. Given the pronounced and complex impact of rabies on a patient, a combination of these novel modalities has the potential to achieve maximal anti-rabies efficacy, or may even have promising curative effects in the future. However, several hurdles regarding clinical safety considerations and public awareness should be overcome before these approaches can ultimately become clinically relevant therapies.
Collapse
Affiliation(s)
- Shimao Zhu
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen 518107, China.
| | - Caiping Guo
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen 518107, China.
| |
Collapse
|
13
|
Li Z, Wang J, Yuan D, Wang S, Sun J, Yi B, Hou Q, Mao Y, Liu W. A recombinant canine distemper virus expressing a modified rabies virus glycoprotein induces immune responses in mice. Virus Genes 2015; 50:434-41. [PMID: 25764477 DOI: 10.1007/s11262-015-1169-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 01/08/2015] [Indexed: 10/23/2022]
Abstract
Canine distemper virus (CDV) and rabies virus (RV) are two important pathogens of the dog. CDV, a member of the morbillivirus genus, has shown promise as an expression vector. The glycoprotein from RV is a main contributor to protective immunity and capable of eliciting the production of virus-neutralizing antibodies. In this study, we recovered an attenuated strain of canine distemper virus and constructed a recombinant virus, rCDV-RV-G, expressing a modified (R333Q) rabies virus glycoprotein (RV-G) of RV Flury strain LEP. RV-G expression by the recombinant viruses was confirmed. Furthermore, G was proved to be incorporated into the surface of CDV particles. While replication of the recombinant virus was slightly reduced compared with the parental CDV, it stably expressed the RV-G over ten serial passages. Inoculation of mice induced specific neutralizing antibodies against both RV-G and CDV. Therefore, the rCDV-RV-G has the potential as a vaccine that may be used to control rabies virus infection in dogs and other animals.
Collapse
Affiliation(s)
- Zhili Li
- State Key Laboratory of Agrobiotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nezam FS, Hosseini SM, Kheiri MT, Abdoli A, Memarnejadian A, Shenagari M, Gholami S, Sohani H, Rahmatollahi H, Jamali A. Suppressive Effects of Chronic Stress on Influenza Virus Protection after Vaccination with Plasmid DNA-Encoded Nucleoprotein. Neuroimmunomodulation 2015; 22:322-7. [PMID: 25765110 DOI: 10.1159/000371354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Influenza is a highly infectious and acute respiratory disease caused by an infection of the host respiratory tract mucosa by the influenza virus. The use of DNA vaccines that express conserved genes such as nucleoprotein (NP) represents a new method of vaccination against influenza. In this study, the effect of chronic stress on the efficiency of this type of vaccine has been evaluated in a mouse model. METHODS The NP DNA vaccine was administered intradermally 3 times on days 0, 3 and 6 to stressed and nonstressed male BALB/c mice. Two weeks after the last immunization, half of these mice were challenged with A/Puerto Rico/8/34 (PR8) influenza virus and were weighed for 12 days, and their mortality rate was assessed during this period. The cellular immune response of the other half of the mice was evaluated by cytotoxicity assay. RESULTS The results indicate a significant reduction in the cytotoxic T-lymphocyte response of stressed mice in comparison with unstressed mice. Also, the percentage of weight loss and mortality after the challenge in stressed mice was significantly increased compared to the other group. CONCLUSION These results indicate that the NP DNA vaccine is not able to induce any effective cytotoxic T-lymphocyte response against influenza virus in stressed mice and cannot induce protective immunity against influenza infection in this group of mice.
Collapse
Affiliation(s)
- Fatemeh Sadat Nezam
- Department of Microbiology, Faculty of Biological Sciences, Shahid-Beheshti University, Tehran, Iran
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kaur M, Garg R, Singh S, Bhatnagar R. Rabies vaccines: where do we stand, where are we heading? Expert Rev Vaccines 2014; 14:369-81. [PMID: 25348036 DOI: 10.1586/14760584.2015.973403] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rabies being the most lethal zoonotic, vaccine-preventable viral disease with worldwide distribution of reservoir wild animals presents unique challenges for its diagnosis, management and control. Although vaccines available are highly effective, which had played the key role in controlling rabies in North America, western Europe and in a number of Asian and Latin American countries, the requirement of multiple doses along with boosters, associated cost to reduce the incidence in wild animals and prophylactic human vaccination has remained a major impediment towards achieving the same goals in poorer parts of the world such as sub-Saharan Africa and southeast Asia. Current efforts to contain rabies worldwide are directed towards the development of more safe, cheaper and efficacious vaccines along with anti-rabies antibodies for post-exposure prophylaxis. The work presented here provides an overview of the advances made towards controlling the human rabies, particularly in last 10 years, and future perspective.
Collapse
Affiliation(s)
- Manpreet Kaur
- BSL3 Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi - 110067, Delhi, India
| | | | | | | |
Collapse
|
16
|
Kaur G, STS C, Nimker C, Singh M, Saraswat D, Saxena S, Bansal A. Co-expression of S. Typhi GroEL and IL-22 gene augments immune responses against Salmonella infection. Immunol Cell Biol 2013; 91:642-51. [PMID: 24145856 DOI: 10.1038/icb.2013.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 01/09/2023]
Abstract
Recombinant DNA vaccines represent a novel method for generating in situ expression of vaccine antigens. Intramuscular injections of naked DNA are able to elicit potent humoral and cellular immune responses but still numerous factors limit the immunogenicity of DNA vaccines. Co-expression of cytokines with antigen encoding genes in DNA vectors can improve the immune responses and modify Th1/Th2 balance. In this study, the immunomodulatory effect of Interleukin 22 (IL-22) as an adjuvant was studied by DNA vaccination with S. Typhi Heat shock protein 60 (HSP60/GroEL) in mice. Further, DNA construct of IL-22 gene fused with GroEL was developed and immunization studies were carried out in mice. DNA vaccination with GroEL alone stimulated humoral and cell-mediated immune responses. Co-immunization (IL-22+GroEL) further resulted in increase in T-cell proliferative responses, antibody titres (IgG, IgG1, IgG2a) and secretion of IFNγ (Th1), IL-1β and Th2 (IL-4, IL-6) cytokines. Co-expression (IL-22-GroEL DNA) also promoted antibody titres and cytokine levels were significantly higher as compared to co-immunized group. A reduction in bacterial load in spleen, liver and intestine was seen in all the immunized groups as compared to control, with least organ burden in fusion DNA construct group (co-expression). Improved protective efficacy (90%) against lethal challenge by Salmonella was observed with IL-22-GroEL co-expressing DNA vector as compared with plasmid encoding GroEL only (50-60%) or co-immunization group (75-80%). This study thus shows that co-expression of IL-22 and GroEL genes enhances the immune responses and protective efficacy, circumventing the need of any adjuvant.
Collapse
MESH Headings
- Animals
- Antibody Formation/immunology
- Bacterial Load/immunology
- Cell Proliferation
- Chaperonin 60/genetics
- Cytokines/metabolism
- DNA, Recombinant/genetics
- DNA, Recombinant/therapeutic use
- Female
- Gene Expression
- Genetic Vectors/metabolism
- Immunity/genetics
- Immunoglobulin G/immunology
- Interleukins/genetics
- Mice
- Mice, Inbred BALB C
- Nitric Oxide/biosynthesis
- Protein Biosynthesis
- Salmonella Infections, Animal/drug therapy
- Salmonella Infections, Animal/genetics
- Salmonella Infections, Animal/immunology
- Salmonella Infections, Animal/prevention & control
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Transcription, Genetic
- Treatment Outcome
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
- Interleukin-22
Collapse
Affiliation(s)
- Gurpreet Kaur
- Division of Experimental Biology, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Timarpur, Delhi, India
| | | | | | | | | | | | | |
Collapse
|
17
|
Schutsky K, Curtis D, Bongiorno EK, Barkhouse DA, Kean RB, Dietzschold B, Hooper DC, Faber M. Intramuscular inoculation of mice with the live-attenuated recombinant rabies virus TriGAS results in a transient infection of the draining lymph nodes and a robust, long-lasting protective immune response against rabies. J Virol 2013; 87:1834-41. [PMID: 23192867 PMCID: PMC3554143 DOI: 10.1128/jvi.02589-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/19/2012] [Indexed: 12/25/2022] Open
Abstract
A single intramuscular application of the live but not UV-inactivated recombinant rabies virus (RABV) variant TriGAS in mice induces the robust and sustained production of RABV-neutralizing antibodies that correlate with long-term protection against challenge with an otherwise lethal dose of the wild-type RABV. To obtain insight into the mechanism by which live TriGAS induces long-lasting protective immunity, quantitative PCR (qPCR) analysis of muscle tissue, draining lymph nodes, spleen, spinal cord, and brain at different times after TriGAS inoculation revealed the presence of significant copy numbers of RABV-specific RNA in muscle, lymph node, and to a lesser extent, spleen for several days postinfection. Notably, no significant amounts of RABV RNA were detected in brain or spinal cord at any time after TriGAS inoculation. Differential qPCR analysis revealed that the RABV-specific RNA detected in muscle is predominantly genomic RNA, whereas RABV RNA detected in draining lymph nodes is predominantly mRNA. Comparison of genomic RNA and mRNA obtained from isolated lymph node cells showed the highest mRNA-to-genomic-RNA ratios in B cells and dendritic cells (DCs), suggesting that these cells represent the major cell population that is infected in the lymph node. Since RABV RNA declined to undetectable levels by 14 days postinoculation of TriGAS, we speculate that a transient infection of DCs with TriGAS may be highly immunostimulatory through mechanisms that enhance antigen presentation. Our results support the superior efficacy and safety of TriGAS and advocate for its utility as a vaccine.
Collapse
Affiliation(s)
| | | | - Emily K. Bongiorno
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Darryll A. Barkhouse
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Rhonda B. Kean
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - D. Craig Hooper
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
18
|
|
19
|
Fowler VL, Barnett PV. Progress in the development of DNA vaccines against foot-and-mouth disease. Expert Rev Vaccines 2012; 11:481-93. [PMID: 22551033 DOI: 10.1586/erv.11.198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA vaccines are, in principle, the simplest yet most versatile methods of inducing protective humoral and cellular immune responses. Research involving this type of vaccine against veterinary diseases began in the early 1990s and has since seen the evaluation of more than 30 important viral pathogens, including the economically important foot-and-mouth disease. With the demonstration that DNA vaccines protect against foot-and-mouth disease in sheep and pigs, and the advantages these DNA vaccines have over the conventional formulations, this approach may provide a better solution to the control of this disease. In this review, we provide a comprehensive overview of DNA vaccination strategies for foot-and-mouth disease reported in the literature, in which we highlight the studies that have reported protection in the key target species.
Collapse
Affiliation(s)
- Veronica L Fowler
- Institute for Animal Health, Pirbright Laboratory, Surrey GU24 0NF, UK.
| | | |
Collapse
|
20
|
Postexposure treatment with the live-attenuated rabies virus (RV) vaccine TriGAS triggers the clearance of wild-type RV from the Central Nervous System (CNS) through the rapid induction of genes relevant to adaptive immunity in CNS tissues. J Virol 2012; 86:3200-10. [PMID: 22238315 DOI: 10.1128/jvi.06699-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Postexposure treatment (PET) of wild-type rabies virus (RV)-infected mice with a live-attenuated triple-glycoprotein RV variant (TriGAS) promotes survival but does not prevent the pathogenic RV from invading and replicating in the brain. Successful PET is associated with the induction of a robust virus-neutralizing antibody response and clearance of the wild-type RV from brain tissues. Comparison of the transcriptomes of normal mouse brain with those of wild-type-RV-infected mice that had received either mock or TriGAS PET treatment revealed that many of the host genes activated in the mock-treated mice represent type I interferon (IFN) response genes. This indicates that RV infection induces an early type I IFN response that is unable to control the infection. In contrast, most of the activated genes in the brain of the RV-infected, TriGAS-treated mouse play a role in adaptive immunity, including the regulation of T cell activation, T cell differentiation, and the regulation of lymphocyte and mononuclear cell proliferation. These findings were confirmed by quantitative PCR (qPCR) array studies, which showed that 3 genes in particular, encoding chemokine ligand 3 (Ccl3), natural killer cell activator 2 (interleukin 12B [IL-12B]), and granzyme A (GzmA), were activated earlier and to a greater extent in the brains of RV-infected mice treated with TriGAS than in the brains of mock-treated mice. The activation of these genes, known to play key roles in the regulation of lymphocyte and mononuclear cell proliferation, is likely an important part of the mechanism by which TriGAS mediates its PET activity.
Collapse
|
21
|
Ullas PT, Desai A, Madhusudana SN. Rabies DNA Vaccines: Current Status and Future. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/wjv.2012.21005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Bagherpour G, Fooladi A, Mehrabadi J, Nourani M, Einollahi B. Evaluation of mammalian codon usage of fimH in DNA vaccine design. Acta Microbiol Immunol Hung 2011; 58:259-71. [PMID: 22207284 DOI: 10.1556/amicr.58.2011.4.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) bacteria are the principal cause of urinary tract infections (UTI). Because these bacteria propagate intracellularly, the cellular immune response is an important factor in UTIs. Therefore, we designed a genetic construct to induce a cellular immune response. In order to develop a genetic construct that induces strong cellular immunity against this pathogen, we used the fimH synthetic gene according to mammalian codon usage, and the gene expression was compared with wild type codon usage. Initially, we designed two constructs, pVAX/fimH mam and pVAX/fimH wt, which contain mammalian and wild type codon usage, respectively. The Cos-7 cell line was transfected separately with a complex of pVAX/fimH mam-ExGene 500 poly cationic polymer and pVAX/fimH wt-ExGene 500 poly cationic polymer. Expression of the fimH gene in both constructs in COS7 cells was confirmed by RT-PCR, SDS-PAGE, and Western blotting. Both of the pVAX/fimH cassettes expressed inserted fimH genes (mam and wt) in Cos-7 cells. Our results suggest that codon optimization successfully expressed the fimH gene because the fimH gene with mammalian codon usage is compatible with the eukaryotic expression system. Therefore, mammalian codon usage could be appropriate in a pVAX/fimH construct as a DNA vaccine.
Collapse
Affiliation(s)
- Ghasem Bagherpour
- 1 Baqiyatallah University of Medical Sciences Molecular Biology, Research Center Tehran Iran
| | - Abbas Fooladi
- 2 Baqiyatallah University of Medical Sciences Applied Microbiology Research Center Tehran Iran
| | - Jalil Mehrabadi
- 3 Malekashtar University of Technology Department of Genetic Engineering, Faculty of Biosciences and Biotechnology Tehran Iran
| | - Mohammad Nourani
- 4 Baqiyatallah University of Medical Sciences Chemical Injury Research Center (CIRC) Tehran Iran
| | - Behzad Einollahi
- 5 Baqiyatallah University of Medical Sciences Nephrology and Urology Research Center Tehran Iran
| |
Collapse
|
23
|
Expression and solubilization of insect cell-based rabies virus glycoprotein and assessment of its immunogenicity and protective efficacy in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1673-9. [PMID: 21813661 DOI: 10.1128/cvi.05258-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rabies is a fatal zoonotic disease of serious public health and economic significance worldwide. The rabies virus glycoprotein (RVG) has been the major target for subunit vaccine development, since it harbors domains responsible for induction of virus-neutralizing antibodies, infectivity, and neurovirulence. The glycoprotein (G) was cloned using the baculovirus expression vector system (BEVS) and expressed in Spodoptera frugiperda (Sf-9) cells. In order to obtain a soluble form of G suitable for experimentation in mice, 18 different combinations of buffers and detergents were evaluated for their ability to solubilize the insect cell membrane-associated G. The combination that involved 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) detergent in lysis buffer 1, formulated with Tris, NaCl, 10% dimethyl sulfoxide (DMSO), and EDTA, gave the highest yield of soluble G, as evidenced by the experimental data. Subsequently, several other parameters, such as the concentration of CHAPS and the duration and temperature of the treatment for the effective solubilization of G, were optimized. The CHAPS detergent, buffered at a concentration of 0.4% to 0.7% (wt/vol) at room temperature (23 to 25°C) for 30 min to 1 h using buffer 1, containing 10% DMSO, resulted in consistently high yields. The G solubilized using CHAPS detergent was found to be immunogenic when tested in mice, as evidenced by high virus-neutralizing antibody titers in sera and 100% protection upon virulent intracerebral challenge with the challenge virus standard (CVS) strain of rabies virus. The results of the mice study indicated that G solubilized with CHAPS detergent retained the immunologically relevant domains in the native conformation, thereby paving the way for producing a cell-free and efficacious subunit vaccine.
Collapse
|
24
|
Abstract
This review provides a detailed look at the attributes and immunologic mechanisms of plasmid DNA vaccines and their utility as laboratory tools as well as potential human vaccines. The immunogenicity and efficacy of DNA vaccines in a variety of preclinical models is used to illustrate how they differ from traditional vaccines in novel ways due to the in situ antigen production and the ease with which they are constructed. The ability to make new DNA vaccines without needing to handle a virulent pathogen or to adapt the pathogen for manufacturing purposes demonstrates the potential value of this vaccine technology for use against emerging and epidemic pathogens. Similarly, personalized anti-tumor DNA vaccines can also readily be made from a biopsy. Because DNA vaccines bias the T-helper (Th) cell response to a Th1 phenotype, DNA vaccines are also under development for vaccines against allergy and autoimmune diseases. The licensure of four animal health products, including two prophylactic vaccines against infectious diseases, one immunotherapy for cancer, and one gene therapy delivery of a hormone for a food animal, provides evidence of the efficacy of DNA vaccines in multiple species including horses and pigs. The size of these target animals provides evidence that the somewhat disappointing immunogenicity of DNA vaccines in a number of human clinical trials is not due simply to the larger mass of humans compared with most laboratory animals. The insights gained from the mechanisms of protection in the animal vaccines, the advances in the delivery and expression technologies for increasing the potency of DNA vaccines, and encouragingly potent human immune responses in certain clinical trials, provide insights for future efforts to develop DNA vaccines into a broadly useful vaccine and immunotherapy platform with applications for human and animal health.
Collapse
|
25
|
Affiliation(s)
- M Joseph Colston
- Division of Mycobacterial Research, National Institute for Medical Research, London, NW7 1AA, UK
| |
Collapse
|
26
|
Faber M, Dietzschold B, Li J. Immunogenicity and safety of recombinant rabies viruses used for oral vaccination of stray dogs and wildlife. Zoonoses Public Health 2011; 56:262-9. [PMID: 19486317 DOI: 10.1111/j.1863-2378.2008.01215.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rabies is a zoonotic disease and stray dogs, wild carnivores and bats are the natural reservoirs of rabies. Oral immunization with live vaccines is the only practical approach to eradicate rabies in free ranging terrestrial animals. We have developed the double glycoprotein (G) rabies virus (RV) variant SPBNGAS-GAS that has great promise to be used as a live-attenuated vaccine. Oral immunization of rodents and several target animal species with this double G RV variant resulted in the induction of protective immunity, superior to that induced by a single RV G variant (SPBNGAS). The high oral efficacy of SPBNGAS-GAS is likely because of its increased ability to infect monocytes or immature dendritic cells (DCs), thereby inducing their conversion into mature DCs. Furthermore, infection of DCs with the double G variant resulted in a strong up-regulation of the expression of genes related to the NFjB signalling pathway including IFN-α and IFN-β, which might underlie the protection conferred by this live RV vaccine. A potential problem associated with the use of live RVs for oral vaccination could rest in the possibility of reversion to the pathogenic phenotype because of the high mutation rate characteristic for all RNA viruses. In this respect, the presence of a second non-pathogenic G gene decreases considerably the risk of reversion to the pathogenic phenotype because a nonpathogenic G is dominant over a pathogenic G in determining the pathogenicity of the double G RV variant. Because of its excellent efficacy and safety, the SPBNGAS-GAS vaccine may provide a distinct advantage over other live RV vaccine in its ability to vaccinate a broad range of mammalian species.
Collapse
Affiliation(s)
- M Faber
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | |
Collapse
|
27
|
Chen H, Xiang ZQ, Li Y, Kurupati RK, Jia B, Bian A, Zhou DM, Hutnick N, Yuan S, Gray C, Serwanga J, Auma B, Kaleebu P, Zhou X, Betts MR, Ertl HCJ. Adenovirus-based vaccines: comparison of vectors from three species of adenoviridae. J Virol 2010; 84:10522-32. [PMID: 20686035 PMCID: PMC2950567 DOI: 10.1128/jvi.00450-10] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 07/27/2010] [Indexed: 11/20/2022] Open
Abstract
In order to better understand the broad applicability of adenovirus (Ad) as a vector for human vaccine studies, we compared four adenovirus (Ad) vectors from families C (Ad human serotype 5 [HAdV-5; here referred to as AdHu5]), D (HAdV-26; here referred to as AdHu26), and E (simian serotypes SAdV-23 and SAdV-24; here referred to as chimpanzee serotypes 6 and 7 [AdC6 and AdC7, respectively]) of the Adenoviridae. Seroprevalence rates and titers of neutralizing antibodies to the two human-origin Ads were found to be higher than those reported previously, especially in countries of sub-Saharan Africa. Conversely, prevalence rates and titers to AdC6 and AdC7 were markedly lower. Healthy human adults from the United States had readily detectable circulating T cells recognizing Ad viruses, the levels of which in some individuals were unexpectedly high in response to AdHu26. The magnitude of T-cell responses to AdHu5 correlated with those to AdHu26, suggesting T-cell recognition of conserved epitopes. In mice, all of the different Ad vectors induced CD8(+) T-cell responses that were comparable in their magnitudes and cytokine production profiles. Prime-boost regimens comparing different combinations of Ad vectors failed to indicate that the sequential use of Ad vectors from distinct families resulted in higher immune responses than the use of serologically distinct Ad vectors from the same family. Moreover, the transgene product-specific antibody responses induced by the AdHu26 and AdC vectors were markedly lower than those induced by the AdHu5 vector. AdHu26 vectors and, to a lesser extent, AdC vectors induced more potent Ad-neutralizing antibody responses. These results suggest that the potential of AdHu26 as a vaccine vector may suffer from limitations similar to those found for vectors based on other prevalent human Ads.
Collapse
MESH Headings
- Adenoviridae/classification
- Adenoviridae/genetics
- Adenoviridae/immunology
- Adenoviruses, Human/classification
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Adenoviruses, Simian/classification
- Adenoviruses, Simian/genetics
- Adenoviruses, Simian/immunology
- Adult
- Africa South of the Sahara
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- CD8-Positive T-Lymphocytes/immunology
- CHO Cells
- Capsid/immunology
- Cell Line
- Cricetinae
- Cricetulus
- Female
- Genetic Vectors
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Mice
- Mice, Inbred BALB C
- Rabies virus/immunology
- Receptors, Virus/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Seroepidemiologic Studies
- Serotyping
- Species Specificity
- Viral Vaccines/genetics
Collapse
Affiliation(s)
- H. Chen
- The Wistar Institute, Philadelphia, Pennsylvania, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, AIDS Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda, Department of Immunology, Tong Ji University, Shanghai, China, Department of Infectious Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Z. Q. Xiang
- The Wistar Institute, Philadelphia, Pennsylvania, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, AIDS Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda, Department of Immunology, Tong Ji University, Shanghai, China, Department of Infectious Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Y. Li
- The Wistar Institute, Philadelphia, Pennsylvania, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, AIDS Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda, Department of Immunology, Tong Ji University, Shanghai, China, Department of Infectious Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - R. K. Kurupati
- The Wistar Institute, Philadelphia, Pennsylvania, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, AIDS Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda, Department of Immunology, Tong Ji University, Shanghai, China, Department of Infectious Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - B. Jia
- The Wistar Institute, Philadelphia, Pennsylvania, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, AIDS Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda, Department of Immunology, Tong Ji University, Shanghai, China, Department of Infectious Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - A. Bian
- The Wistar Institute, Philadelphia, Pennsylvania, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, AIDS Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda, Department of Immunology, Tong Ji University, Shanghai, China, Department of Infectious Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - D. M. Zhou
- The Wistar Institute, Philadelphia, Pennsylvania, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, AIDS Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda, Department of Immunology, Tong Ji University, Shanghai, China, Department of Infectious Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - N. Hutnick
- The Wistar Institute, Philadelphia, Pennsylvania, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, AIDS Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda, Department of Immunology, Tong Ji University, Shanghai, China, Department of Infectious Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - S. Yuan
- The Wistar Institute, Philadelphia, Pennsylvania, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, AIDS Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda, Department of Immunology, Tong Ji University, Shanghai, China, Department of Infectious Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - C. Gray
- The Wistar Institute, Philadelphia, Pennsylvania, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, AIDS Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda, Department of Immunology, Tong Ji University, Shanghai, China, Department of Infectious Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - J. Serwanga
- The Wistar Institute, Philadelphia, Pennsylvania, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, AIDS Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda, Department of Immunology, Tong Ji University, Shanghai, China, Department of Infectious Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - B. Auma
- The Wistar Institute, Philadelphia, Pennsylvania, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, AIDS Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda, Department of Immunology, Tong Ji University, Shanghai, China, Department of Infectious Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - P. Kaleebu
- The Wistar Institute, Philadelphia, Pennsylvania, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, AIDS Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda, Department of Immunology, Tong Ji University, Shanghai, China, Department of Infectious Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - X. Zhou
- The Wistar Institute, Philadelphia, Pennsylvania, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, AIDS Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda, Department of Immunology, Tong Ji University, Shanghai, China, Department of Infectious Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - M. R. Betts
- The Wistar Institute, Philadelphia, Pennsylvania, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, AIDS Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda, Department of Immunology, Tong Ji University, Shanghai, China, Department of Infectious Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - H. C. J. Ertl
- The Wistar Institute, Philadelphia, Pennsylvania, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, AIDS Research Unit, National Institute for Communicable Diseases, Johannesburg, South Africa, MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda, Department of Immunology, Tong Ji University, Shanghai, China, Department of Infectious Diseases, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Ingolotti M, Kawalekar O, Shedlock DJ, Muthumani K, Weiner DB. DNA vaccines for targeting bacterial infections. Expert Rev Vaccines 2010; 9:747-63. [PMID: 20624048 DOI: 10.1586/erv.10.57] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA vaccination has been of great interest since its discovery in the 1990s due to its ability to elicit both humoral and cellular immune responses. DNA vaccines consist of a DNA plasmid containing a transgene that encodes the sequence of a target protein from a pathogen under the control of a eukaryotic promoter. This revolutionary technology has proven to be effective in animal models and four DNA vaccine products have recently been approved for veterinary use. Although few DNA vaccines against bacterial infections have been tested, the results are encouraging. Because of their versatility, safety and simplicity a wider range of organisms can be targeted by these vaccines, which shows their potential advantages to public health. This article describes the mechanism of action of DNA vaccines and their potential use for targeting bacterial infections. In addition, it provides an updated summary of the methods used to enhance immunogenicity from codon optimization and adjuvants to delivery techniques including electroporation and use of nanoparticles.
Collapse
Affiliation(s)
- Mariana Ingolotti
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Cited are literary data related to the development of DNA vaccines against rabies virus. Research results regarding gene vaccination of different models of laboratory animals and different ways of vaccine introduction are presented. Possibility to potentiate immunogenicity of DNA vaccines using adjuvants and cytokines is considered. Ways of improving of polynucleotide vaccines are discussed.
Collapse
|
30
|
Enhancing comparative rabies DNA vaccine effectiveness through glycoprotein gene modifications. Vaccine 2009; 27:7214-8. [DOI: 10.1016/j.vaccine.2009.09.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/03/2009] [Indexed: 11/21/2022]
|
31
|
Abstract
Rabies, the most fatal of all infectious diseases, remains a major public health problem in developing countries, claiming the lives of an estimated 55,000 people each year. Most fatal rabies cases, with more than half of them in children, result from dog bites and occur among low-income families in Southeast Asia and Africa. Safe and efficacious vaccines are available to prevent rabies. However, they have to be given repeatedly, three times for pre-exposure vaccination and four to five times for post-exposure prophylaxis (PEP). In cases of severe exposure, a regimen of vaccine combined with a rabies immunoglobulin (RIG) preparation is required. The high incidence of fatal rabies is linked to a lack of knowledge on the appropriate treatment of bite wounds, lack of access to costly PEP, and failure to follow up with repeat immunizations. New, more immunogenic but less costly rabies virus vaccines are needed to reduce the toll of rabies on human lives. A preventative vaccine used for the immunization of children, especially those in high incidence countries, would be expected to lower fatality rates. Such a vaccine would have to be inexpensive, safe, and provide sustained protection, preferably after a single dose. Novel regimens are also needed for PEP to reduce the need for the already scarce and costly RIG and to reduce the number of vaccine doses to one or two. In this review, the pipeline of new rabies vaccines that are in pre-clinical testing is provided and an opinion on those that might be best suited as potential replacements for the currently used vaccines is offered.
Collapse
Affiliation(s)
- Hildegund C. J. Ertl
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
32
|
Kerr D, Furth P, Powell A, Wall R. Expression of gene‐gun injected plasmid DNA in the ovine mammary gland and in lymph nodes draining the injection site. Anim Biotechnol 2009. [DOI: 10.1080/10495399609525846] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Kaur M, Saxena A, Rai A, Bhatnagar R. Rabies DNA vaccine encoding lysosome‐targeted glycoprotein supplemented with Emulsigen‐D confers complete protection in preexposure and postexposure studies in BALB/c mice. FASEB J 2009; 24:173-83. [DOI: 10.1096/fj.09-138644] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Manpreet Kaur
- Laboratory of Molecular Biology and Genetic EngineeringSchool of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia
| | - Ankur Saxena
- National Biotechnology CenterIndian Veterinary Research InstituteIzatnagarIndia
| | - Anant Rai
- National Biotechnology CenterIndian Veterinary Research InstituteIzatnagarIndia
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic EngineeringSchool of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia
| |
Collapse
|
34
|
Transdermal immunization with low-pressure-gene-gun mediated chitosan-based DNA vaccines against Japanese encephalitis virus. Biomaterials 2009; 30:6017-25. [PMID: 19656560 DOI: 10.1016/j.biomaterials.2009.07.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/13/2009] [Indexed: 11/23/2022]
Abstract
DNA vaccine is a milestone in contemporary vaccine development. It has considerably offset many shortcomings in conventional vaccines. Although DNA vaccines applied through 'traditional' high-pressure gene guns generally elicit high titers of protective immunity, such a practice however requires enormous investment in daunting instruments that often discourage vaccines due to an inevitable pain-eliciting effect. In this study, we exploited a less expensive yet low-pressure-gene-gun that can alleviate such phobia of pain. DNA vaccines were prepared by using the associative feature of cationic chitosan and anionic DNAs. The optimized N/P ratio is 3. The formulized complex sizes to nano-scale. The vaccine complexes were tested in C3H/HeN mice. The expression of GFP reporter gene was observable and traceable in epidermis and spleen over 3 days. The expressions of GFP and the activation of dendritic cells (DCs) were evident and co-localized in hair follicles and epidermis. C3H/HeN mice immunized with the developed chitosan-JEV DNA vaccines can elicit desired JEV specific antibodies, whereby the mice maintained high survival rates against 50xLD(50) JEV challenge. The low-pressure-gene-gun mediated chitosan-based JEV DNA vaccines have proven to be convenient and efficacious, thereby with high capacity in deployment for future prophylaxis against JEV outbreaks.
Collapse
|
35
|
Poh WP, Narasaraju T, Pereira NA, Zhong F, Phoon MC, Macary PA, Wong SH, Lu J, Koh DR, Chow VTK. Characterization of cytotoxic T-lymphocyte epitopes and immune responses to SARS coronavirus spike DNA vaccine expressing the RGD-integrin-binding motif. J Med Virol 2009; 81:1131-9. [PMID: 19475608 PMCID: PMC7166745 DOI: 10.1002/jmv.21571] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Integrins are critical for initiating T‐cell activation events. The integrin‐binding motif Arg‐Gly‐Asp (RGD) was incorporated into the pcDNA 3.1 mammalian expression vector expressing the codon‐optimized extracellular domain of SARS coronavirus (SARS‐CoV) spike protein, and tested by immunizing C57BL/6 mice. Significant cell‐mediated immune responses were characterized by cytotoxic T‐lymphocyte 51Cr release assay and interferon‐gamma secretion ELISPOT assay against RMA‐S target cells presenting predicted MHC class I H2‐Kb epitopes, including those spanning residues 884–891 and 1116–1123 within the S2 subunit of SARS‐CoV spike protein. DNA vaccines incorporating the Spike‐RGD/His motif or the Spike‐His construct generated robust cell‐mediated immune responses. Moreover, the Spike‐His DNA vaccine construct generated a significant antibody response. Immunization with these DNA vaccine constructs elicited significant cellular and humoral immune responses. Additional T‐cell epitopes within the SARS‐CoV spike protein that may contribute to cell‐mediated immunity in vivo were also identified. J. Med. Virol. 81:1131–1139, 2009. © 2009 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- W P Poh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Induction of immune responses and protection in mice against rabies using a self-replicating RNA vaccine encoding rabies virus glycoprotein. Vet Microbiol 2009; 136:36-44. [DOI: 10.1016/j.vetmic.2008.10.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 10/19/2008] [Accepted: 10/28/2008] [Indexed: 11/23/2022]
|
37
|
Chico V, Ortega-Villaizan M, Falco A, Tafalla C, Perez L, Coll J, Estepa A. The immunogenicity of viral haemorragic septicaemia rhabdovirus (VHSV) DNA vaccines can depend on plasmid regulatory sequences. Vaccine 2009; 27:1938-48. [DOI: 10.1016/j.vaccine.2009.01.103] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/14/2009] [Accepted: 01/22/2009] [Indexed: 11/25/2022]
|
38
|
Liu Y, Zhang S, Ma G, Zhang F, Hu R. Efficacy and safety of a live canine adenovirus-vectored rabies virus vaccine in swine. Vaccine 2008; 26:5368-72. [PMID: 18721839 DOI: 10.1016/j.vaccine.2008.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Revised: 08/01/2008] [Accepted: 08/01/2008] [Indexed: 10/21/2022]
Abstract
Rabies infections in swine have been reported occasionally in recent years in certain geographic locations. Although a protective vaccine consisting of inactivated rabies virus is available for use in swine, searching for a more economically viable formulation for use in developing countries is always a priority. This work describes the testing of a canine adenovirus that expresses a rabies viral epitope (CAV-2-E3Delta-RGP) in a porcine rabies model. The data presented here show that the recombinant viral vaccine was effective in protecting swine against rabies if administered intramuscularly, but not orally or intranasally, and that protection was probably related to the development of a humoral response that lasted at least 28 weeks. Following vaccination, no behavioral abnormalities were observed in vaccinated swine and virus particles were not detected in either tissues or body fluids, indicating that this formulation was safe. The recombinant virus stimulated an effective level of antibody response in the immunized swine after a single intramuscular inoculation.
Collapse
Affiliation(s)
- Ye Liu
- Laboratory of Epidemiology, Veterinary Institute, Academy of Military Medical Science, 1068 Qinglong Road, Changchun, PR China
| | | | | | | | | |
Collapse
|
39
|
Abstract
This unit details some of the key methods for setting up and testing DNA vaccines in animal models. The basic procedures are discussed, as well as alternative methods that have been developed over the past several years. The Basic Protocol gives step-by-step instructions for administering the DNA vaccine via intramuscular injection of the quadriceps muscle, while an alternate procedure details injection of the anterior tibialis.
Collapse
|
40
|
DNA vaccines and their applications in veterinary practice: current perspectives. Vet Res Commun 2008; 32:341-56. [PMID: 18425596 PMCID: PMC7089108 DOI: 10.1007/s11259-008-9040-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 03/04/2008] [Indexed: 01/30/2023]
Abstract
Inoculation of plasmid DNA, encoding an immunogenic protein gene of an infectious agent, stands out as a novel approach for developing new generation vaccines for prevention of infectious diseases of animals. The potential of DNA vaccines to act in presence of maternal antibodies, its stability and cost effectiveness and the non-requirement of cold chain have heightened the prospects. Even though great strides have been made in nucleic acid vaccination, still there are many areas that need further research for its wholesome practical implementation. Major areas of concern are vaccine delivery, designing of suitable vectors and cytotoxic T cell responses. Also, the induction of immune responses by DNA vaccines is inconclusive due to the lack of knowledge regarding the concentration of the protein expressed in vivo. Alternative delivery systems having higher transfection efficiency and the use of cytokines, as immunomodulators, needs to be further explored. Recently, efforts are being made to modulate and prolong the active life of dendritic cells, in order to make antigen presentation a more efficacious one. For combating diseases like acquired immunodeficiency syndrome (AIDS), influenza, malaria and tuberculosis in humans; and foot and mouth disease, Aujesky’s disease, swine fever, rabies, canine distemper and brucellosis in animals, DNA vaccine clinical trials are underway. This review highlights the salient features of DNA vaccines, and measures to enhance their efficacy so as to devise an effective and novel vaccination strategy against animal diseases.
Collapse
|
41
|
Sacco RE. DNA vaccines against infectious agents: recent strategies for enhancing immune responses. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.4.365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Donnelly JJ, Ulmer JB, Liu MA. Overview: Biologicals & Immunologicals: Recombinant vaccines: technology and applications. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.5.3.211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Tesoro-Cruz E, Calderón-Rodríguez R, Hernández-González R, Blanco-Favéla F, Aguilar-Setién A. Intradermal DNA vaccination in ear pinnae is an efficient route to protect cats against rabies virus. Vet Res 2008; 39:16. [PMID: 18215393 DOI: 10.1051/vetres:2007054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 10/11/2007] [Indexed: 11/14/2022] Open
Abstract
A DNA vaccine against rabies (pGQH) was administrated to cats in order to examine different administration routes. Four groups of three cats each were inoculated with pGQH as follows: group A, intramuscularly (IM), 100 microg; group B, intranasally (IN), 100 microg; group C, intradermally into ear pinnae (ID-EP), 100 microg, and group D, IM, 200 microL of phosphate buffer solution (PBS) alone (control group). Blood was drawn on days 0, 30, 60, 90, 120, 150, and 180. Groups A, B, and C received a booster on day 30. At day 200 all animals were challenged. A passive transfer of cat sera, as well as a viral challenge, was performed in mice. The results displayed that neutralizing antibody titers were higher in cats of group C (ID-EP) showing high early titers (> 2 IU) and the highest titer was on day 120 (> 14 IU). In group B (IN), two out of three cats seroconverted on day 30 (> 0.5 IU), the third cat seroconverted until day 60 (> 0.5 IU). In contrast, the lowest levels of neutralizing antibodies were detected in group A (IM). The control group showed no anti-rabies antibodies. Groups A (IM) and D (control) succumbed after lethal challenge. All animals from the ID-EP group (C) survived, only one individual from the IN (B) group died. Mice that received cat sera from ID-EP, IM, and IN groups survived and were protected (30/30 survivors). Mice groups that received pre-immunization sera from cats were not protected (0/30 survivors). This study demonstrates that pGQH immunization was successful when it was administrated ID-EP, and acceptable through the IN route. The IM route, however, was not effective in cats. For vaccination, the IN route seems attractive due to its accessibility for application, but it seems to activate seroconversion slowly. The best route to promote anti-rabies antibody titers was the ID-EP route. This practical and efficient route should be further studied.
Collapse
Affiliation(s)
- Emiliano Tesoro-Cruz
- Unidad de Investigación Médica de Alta Especialidad en Inmunología, IMSS, México DF.
| | | | | | | | | |
Collapse
|
44
|
Rabies vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
45
|
Abstract
Various technological developments have revitalized the approaches employed to study the disease of rabies. In particular, reverse genetics has facilitated the generation of novel viruses used to improve our understanding of the fundamental aspects of rabies virus (RABV) biology and pathogenicity and yielded novel constructs potentially useful as vaccines against rabies and other diseases. Other techniques such as high throughput methods to examine the impact of rabies virus infection on host cell gene expression and two hybrid systems to explore detailed protein-protein interactions also contribute substantially to our understanding of virus-host interactions. This review summarizes much of the increased knowledge about rabies that has resulted from such studies but acknowledges that this is still insufficient to allow rational attempts at curing those who present with clinical disease.
Collapse
Affiliation(s)
- Susan A Nadin-Davis
- Centre of Expertise for Rabies, Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | | |
Collapse
|
46
|
Nagarajan T, Rupprecht CE, Dessain SK, Rangarajan PN, Thiagarajan D, Srinivasan VA. Human monoclonal antibody and vaccine approaches to prevent human rabies. Curr Top Microbiol Immunol 2007; 317:67-101. [PMID: 17990790 DOI: 10.1007/978-3-540-72146-8_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Rabies, being a major zoonotic disease, significantly impacts global public health. It is invariably fatal once clinical signs are apparent. The majority of human rabies deaths occur in developing countries. India alone reports more than 50% of the global rabies deaths. Although it is a vaccine-preventable disease, effective rabies prevention in humans with category III bites requires the combined administration of rabies immunoglobulin (RIG) and vaccine. Cell culture rabies vaccines have become widely available in developing countries, virtually replacing the inferior and unsafe nerve tissue vaccines. Limitations inherent to the conventional RIG of either equine or human origin have prompted scientists to look for monoclonal antibody-based human RIG as an alternative. Fully human monoclonal antibodies have been found to be safer and equally efficacious than conventional RIG when tested in mice and hamsters. In this chapter, rabies epidemiology, reservoir control measures, post-exposure prophylaxis of human rabies, and combination therapy for rabies are discussed. Novel human monoclonal antibodies, their production, and the significance of plants as expression platforms are emphasized.
Collapse
Affiliation(s)
- T Nagarajan
- Indian Immunologicals Limited Gachibowli Post, Hyderabad, India.
| | | | | | | | | | | |
Collapse
|
47
|
Hu RL, Liu Y, Zhang SF, Zhang F, Fooks AR. Experimental immunization of cats with a recombinant rabies-canine adenovirus vaccine elicits a long-lasting neutralizing antibody response against rabies. Vaccine 2007; 25:5301-7. [PMID: 17576027 DOI: 10.1016/j.vaccine.2007.05.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/04/2007] [Accepted: 05/12/2007] [Indexed: 11/24/2022]
Abstract
During the past decade, human rabies caused by cats has ranked the second highest in China. Several recombinant rabies vaccines have been developed for dogs. However, seldom have these vaccines been assessed or used in cats. In this trial, we report the experimental immunization of a recombinant canine adenovirus-rabies vaccine, CAV-2-E3Delta-RGP, in cats. Thirty cats were inoculated with the recombinant vaccine intramuscularly, orally and intranasally, respectively. Safety and efficacy studies were undertaken using the fluorescent antibody virus neutralization (FAVN) test and evaluated. Results showed that this recombinant vaccine is safe for cats as demonstrated by the three different routes of administration. The vaccine stimulated an efficient humoral response in the vaccinated cats when 10(8.5)PFU/ml of the recombinant vaccine was injected intramuscularly in a single dose. The neutralizing antibody level increased above 0.5IU/ml at 4 weeks after the vaccination. The mean antibody level ranged from 0.96+/-0.26 to 4.47+/-1.57IU/ml among individuals, and the antibody levels were elicited for at least 12 months. After this period, the immunized cats survived the challenge of CVS-24 and an obvious anemnestic and protective immune response was stimulated after the challenge. The immune response occurred later than the inactivated vaccine and the overall antibody level in the vaccinated cats was lower, but it was sufficient to confer protection of cats against infection. This demonstrated that a single, intramuscular dose of CAV-2-E3Delta-RGP stimulated a long-lasting protective immune response in cats and suggested that CAV-2-E3Delta-RGP could be considered as a potential rabies vaccine candidate for cats.
Collapse
Affiliation(s)
- R L Hu
- Laboratory of Epidemiology, Veterinary Institute, Academy of Military Medical Sciences, 1068 Qinglong Road, Changchun 130062, PR China.
| | | | | | | | | |
Collapse
|
48
|
Wintermeyer P, Wands JR. Vaccines to prevent chronic hepatitis C virus infection: current experimental and preclinical developments. J Gastroenterol 2007; 42:424-32. [PMID: 17671756 DOI: 10.1007/s00535-007-2057-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 03/07/2007] [Indexed: 02/04/2023]
Affiliation(s)
- Philip Wintermeyer
- The Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | |
Collapse
|
49
|
Wang J, Gujar SA, Cova L, Michalak TI. Bicistronic woodchuck hepatitis virus core and gamma interferon DNA vaccine can protect from hepatitis but does not elicit sterilizing antiviral immunity. J Virol 2006; 81:903-16. [PMID: 17079319 PMCID: PMC1797430 DOI: 10.1128/jvi.01537-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The immunity elicited against nucleocapsid of hepatitis B virus (HBV) and closely related woodchuck hepatitis virus (WHV) has been shown to be important in resolution of hepatitis and protection from infection. Further, activity of gamma interferon (IFN-gamma), which may directly inhibit hepadnavirus replication, promotes antiviral defense and favors T helper cell type 1 (Th1) response, which is seemingly a prerequisite of HBV clearance. In this study, to enhance induction of protective immunity against hepadnavirus, healthy woodchucks were immunized with a bicistronic DNA vaccine carrying WHV core (WHc) and woodchuck IFN-gamma (wIFN-gamma) gene sequences. Three groups, each group containing three animals, were injected once or twice with 0.5 mg, 0.9 mg, or 1.5 mg per dose of this vaccine. In addition, four animals received two injections of 0.6 mg or 1 mg WHc DNA alone. All animals were challenged with WHV. The results showed that four of nine animals injected with the bicistronic vaccine and one of four immunized with WHc DNA became protected from serologically evident infection and hepatitis. This protection was not linked to induction of WHc antigen-specific antibodies or T-cell proliferative response and was not associated with enhanced transcription of Th1 cytokines or 2',5'-oligoadenylate synthetase. Strikingly, all animals protected from hepatitis became reactive for WHV DNA and carried low levels of replicating virus in hepatic and lymphoid tissues after challenge with WHV. This study shows that the bicistronic DNA vaccine encoding both hepadnavirus core antigen and IFN-gamma was more effective in preventing hepatitis than that encoding virus core alone, but neither of them could mount sterile immunity against the virus or prevent establishment of occult infection.
Collapse
Affiliation(s)
- Jinguo Wang
- Molecular Virology and Hepatology Research, Division of Basic Medical Science, Faculty of Medicine, Health Sciences Centre, Memorial University, St. John's, Newfoundland, Canada
| | | | | | | |
Collapse
|
50
|
Liang R, van den Hurk JV, Babiuk LA, van Drunen Littel-van den Hurk S. Priming with DNA encoding E2 and boosting with E2 protein formulated with CpG oligodeoxynucleotides induces strong immune responses and protection from Bovine viral diarrhea virus in cattle. J Gen Virol 2006; 87:2971-2982. [PMID: 16963756 DOI: 10.1099/vir.0.81737-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to develop an optimal vaccination strategy for Bovine viral diarrhea virus (BVDV). The E2 protein of BVDV plays a major protective role against BVDV infection. In order to be able to compare DNA, protein and DNA prime-protein boost regimens, a plasmid was constructed encoding a secreted form of the NADL strain E2 protein (pMASIA-tPAsDeltaE2). Furthermore, a pure secreted recombinant DeltaE2 (rDeltaE2) protein was produced. The rDeltaE2 protein was formulated with a combination of Emulsigen and CpG oligodeoxynucleotide. Groups of calves were immunized with pMASIA-tPAsDeltaE2 or with rDeltaE2, or first with pMASIA-tPAsDeltaE2 and then with rDeltaE2. To evaluate the protection against BVDV, calves were challenged with BVDV strain NY-1 after the last immunization. Although all immunized calves developed humoral and cellular immune responses, the antibody responses in the DNA prime-protein boost group were stronger than those elicited by either the DNA vaccine or the protein vaccine. In particular, E2-specific antibody titres were enhanced significantly after boosting the DeltaE2 DNA-primed calves with rDeltaE2 protein. Moreover, protection against BVDV challenge was obtained in the calves treated with the DNA prime-protein boost vaccination regimen, as shown by a significant reduction in weight loss, viral excretion and lymphopenia, compared with the unvaccinated calves and the animals immunized with the DNA or protein only. These results demonstrate the advantage of a DNA prime-protein boost vaccination approach in an outbred species.
Collapse
Affiliation(s)
- Rong Liang
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, SK S7N 5E3, Canada
| | - Jan V van den Hurk
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, SK S7N 5E3, Canada
| | - Lorne A Babiuk
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, SK S7N 5E3, Canada
| | | |
Collapse
|