1
|
Zhao X, Zhang Y, Trejo-Cerro O, Kaplan E, Li Z, Albertsboer F, El Hammiri N, Mariz FC, Banks L, Ottonello S, Müller M. A safe and potentiated multi-type HPV L2-E7 nanoparticle vaccine with combined prophylactic and therapeutic activity. NPJ Vaccines 2024; 9:119. [PMID: 38926425 PMCID: PMC11208501 DOI: 10.1038/s41541-024-00914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Persistent infection with high-risk human papillomavirus (HPV) is widely recognized as the primary cause of cervical and other malignant cancers. There are six licensed prophylactic vaccines available against HPV, but none of them shows any significant therapeutic effect on pre-existing infections or lesions. Thus, a prophylactic vaccine also endowed with therapeutic activity would afford protection regardless of the vaccine recipients HPV-infection status. Here, we describe the refinement and further potentiation of a dual-purpose HPV nanoparticle vaccine (hereafter referred to as cPANHPVAX) relying on eight different HPV L2 peptide epitopes and on the E7 oncoantigens from HPV16 and 18. cPANHPVAX not only induces anti-HPV16 E7 cytotoxic T-cell responses in C57BL/6 mice, but also anti-HPV18 E7 T-cell responses in transgenic mice with the A2.DR1 haplotype. These cytotoxic responses add up to a potent, broad-coverage humoral (HPV-neutralizing) response. cPANHPVAX safety was further improved by deletion of the pRb-binding domains of E7. Our dual-purpose vaccine holds great potential for clinical translation as an immune-treatment capable of targeting active infections as well as established HPV-related malignancies, thus benefiting both uninfected and infected individuals.
Collapse
Affiliation(s)
- Xueer Zhao
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany.
| | - Yueru Zhang
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Oscar Trejo-Cerro
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Ecem Kaplan
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Zhe Li
- B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Femke Albertsboer
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Neyla El Hammiri
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Filipe Colaço Mariz
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Simone Ottonello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martin Müller
- Tumorvirus-specific Vaccination Strategies, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
2
|
Ma M, Xia B, Wang Z, Hao Y, Zhang T, Xu X. A novel C-terminal modification method enhanced the yield of human papillomavirus L1 or chimeric L1-L2 virus-like particles in the baculovirus system. Front Bioeng Biotechnol 2023; 10:1073892. [PMID: 36686228 PMCID: PMC9849392 DOI: 10.3389/fbioe.2022.1073892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Human papillomavirus (HPV) major capsid protein L1 virus-like particles (VLPs) produced in the baculovirus system showed excellent safety and immunogenicity, but the relatively high production cost stands as a substantial barrier to extensive commercialization, especially in producing multivalent vaccines. Here, a novel method, C-terminal basic amino acid (aa) substitution, was developed for increasing VLP and chimeric VLP (cVLP) production in this system. A series of mutants of five HPV types, including three L1 VLPs (6L1, 11L1, and 52L1) and two L1-L2 cVLPs (16L1-33L2, 58L1-16L2), were constructed. We found that most mutants exhibited higher protein expression in Sf9 cells, among which the yields of the superior mutants, 6L1CS4, 11L1CS3, 52L1m4∆N13CS1, 16L1-33L2 CS1, and 58L1-16L2 CS3, were up to 40, 35, 20, 35, and 60 mg/L, which respectively increased by 4.2-, 7.3-, 5-, 2.5-, and 3.4-fold, and they also showed robust immunogenicity and great stabilities. Additionally, we found that the increased level of steady-state mRNA may play a crucial role in promoting L1 protein expression. Our results demonstrated that this novel method was cost-effective and can be used to reduce the production costs of L1 VLPs and L1-L2 cVLPs to develop broadly protective and affordable multivalent HPV vaccines.
Collapse
Affiliation(s)
| | | | | | | | - Ting Zhang
- *Correspondence: Ting Zhang, ; Xuemei Xu,
| | - Xuemei Xu
- *Correspondence: Ting Zhang, ; Xuemei Xu,
| |
Collapse
|
3
|
Zhang J, Fan J, Skwarczynski M, Stephenson RJ, Toth I, Hussein WM. Peptide-Based Nanovaccines in the Treatment of Cervical Cancer: A Review of Recent Advances. Int J Nanomedicine 2022; 17:869-900. [PMID: 35241913 PMCID: PMC8887913 DOI: 10.2147/ijn.s269986] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HPVs), such as HPV-16 and HPV-18, can induce cervical cancer in humans. The disease carries high morbidity and mortality among females worldwide. Inoculation with prophylactic HPV vaccines, such as Gardasil® or Cervarix®, is the predominant method of preventing cervical cancer in females 6 to 26 years of age. However, despite the availability of commercial prophylactic HPV vaccines, no therapeutic HPV vaccines to eliminate existing HPV infections have been approved. Peptide-based vaccines, which form one of the most potent vaccine platforms, have been broadly investigated to overcome this shortcoming. Peptide-based vaccines are especially effective in inducing cellular immune responses and eradicating tumor cells when combined with nanoscale adjuvant particles and delivery systems. This review summarizes progress in the development of peptide-based nanovaccines against HPV infection.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Correspondence: Waleed M Hussein, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia, Tel +61 7 3365 2782, Email
| |
Collapse
|
4
|
Wang Z, Zhang T, Xu X. Combined truncations at both N- and C-terminus of human papillomavirus type 58 L1 enhanced the yield of virus-like particles produced in a baculovirus system. J Virol Methods 2021; 301:114403. [PMID: 34890711 DOI: 10.1016/j.jviromet.2021.114403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 11/26/2022]
Abstract
Human papillomavirus (HPV) major capsid protein L1 virus-like particles (VLPs) produced in baculovirus system are highly immunogenic, but the relatively high production cost limits its application in the development of broad-spectrum vaccines. Here we report a novel method for enhancing VLP production in this system. We incorporated respectively 4, 8 or 13 residues truncation mutations in the N-terminus of L1ΔC, a C-terminal 25-residue-deleted L1 of HPV58, to construct three mutants. After expression in Sf9 cells, L1ΔN4C exhibited 2.3-fold higher protein production, 2.0-fold mRNA expression and lower rate of mRNA decay, compared to L1ΔC. More importantly, L1ΔN4C protein was easily purified by two-step chromatography with a VLP yield of up to 60 mg/L (purity > 99 %), 5-fold that of L1ΔC, whereas L1ΔN8C and L1ΔN13C behaved similarly to L1ΔC either in protein or mRNA expression. Moreover, L1ΔN4C VLPs showed similar binding activities with six HPV58 neutralizing monoclonal antibodies and induced comparable level of neutralizing antibody in mice to that of L1ΔC VLPs. Our results demonstrate that certain N- and C-terminal truncations of HPV58 L1 can enhance VLP yield. This method may be used to reduce production costs of other L1VLPs or chimeric VLPs to developing pan-HPV vaccines using baculovirus system.
Collapse
Affiliation(s)
- Zhirong Wang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ting Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xuemei Xu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Venkataraman S, Hefferon K, Makhzoum A, Abouhaidar M. Combating Human Viral Diseases: Will Plant-Based Vaccines Be the Answer? Vaccines (Basel) 2021; 9:vaccines9070761. [PMID: 34358177 PMCID: PMC8310141 DOI: 10.3390/vaccines9070761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/28/2022] Open
Abstract
Molecular pharming or the technology of application of plants and plant cell culture to manufacture high-value recombinant proteins has progressed a long way over the last three decades. Whether generated in transgenic plants by stable expression or in plant virus-based transient expression systems, biopharmaceuticals have been produced to combat several human viral diseases that have impacted the world in pandemic proportions. Plants have been variously employed in expressing a host of viral antigens as well as monoclonal antibodies. Many of these biopharmaceuticals have shown great promise in animal models and several of them have performed successfully in clinical trials. The current review elaborates the strategies and successes achieved in generating plant-derived vaccines to target several virus-induced health concerns including highly communicable infectious viral diseases. Importantly, plant-made biopharmaceuticals against hepatitis B virus (HBV), hepatitis C virus (HCV), the cancer-causing virus human papillomavirus (HPV), human immunodeficiency virus (HIV), influenza virus, zika virus, and the emerging respiratory virus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have been discussed. The use of plant virus-derived nanoparticles (VNPs) and virus-like particles (VLPs) in generating plant-based vaccines are extensively addressed. The review closes with a critical look at the caveats of plant-based molecular pharming and future prospects towards further advancements in this technology. The use of biopharmed viral vaccines in human medicine and as part of emergency response vaccines and therapeutics in humans looks promising for the near future.
Collapse
Affiliation(s)
- Srividhya Venkataraman
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
- Correspondence:
| | - Kathleen Hefferon
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana;
| | - Mounir Abouhaidar
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
| |
Collapse
|
6
|
Mesher D, Thomas SL, Linley E, Edmundson C, Checchi M, Waterboer T, Bender N, Müller M, Beddows S, Borrow R, Soldan K. Post-vaccination HPV seroprevalence among female sexual health clinic attenders in England. Vaccine 2021; 39:4210-4218. [PMID: 34127297 DOI: 10.1016/j.vaccine.2021.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/26/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The National HPV Immunisation Programme was introduced in England in September 2008 using the HPV16/18 bivalent vaccine. We conducted serological surveillance to explore vaccination coverage levels. We also conducted a case-control study to investigate a hypothesised cross-protective effect of the HPV16/18 vaccine against genital warts. METHODS Residual serum specimens from 16 to 20 year-old women attending six specialist sexual health services (SSHS) between 2011 and 2015 in England were tested for antibodies against HPV16 and HPV18 using a virus-like particle (VLP)-based multiplex serology assay. Patients were classified as having vaccine-induced seropositivity if they were seropositive for both HPV types and either had high antibody levels for at least one HPV type, or moderately high levels for both HPV types. Differences in vaccine-induced seropositivity by patient characteristics were investigated using logistic regression. Vaccine-induced seropositivity was then compared for patients with genital warts (cases) and matched patients without (controls). RESULTS Of 3,973 serum specimens collected, 3,870 (97.4%) had a valid result. The proportion of women with vaccine-induced seropositivity decreased with age (from 78.1% in 16-year-olds to 52.6% in 20-year-olds). Vaccine-induced seropositivity was lower among women born outside the UK, from more deprived areas and with a history of chlamydia diagnosis. A difference in uptake by ethnic group was also seen but this was largely confounded by differences in deprivation and country of birth. Among 537 cases and 1,515 controls, there was little evidence of a protective effect of the bivalent HPV vaccine against genital warts (adjusted odds ratio 0.93; 95% CI: 0.74-1.18). DISCUSSION Vaccine-induced seropositivity in this high-risk population was in line with vaccination coverage in the general population although was lower in some at-risk sub-groups. This study does not provide evidence to support a cross-protective effect of the HPV16/18 vaccine against genital warts.
Collapse
Affiliation(s)
- David Mesher
- Blood Safety, Hepatitis, Sexually Transmitted Infections (STI) and HIV Service, Public Health England, London, UK; Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Sara L Thomas
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Ezra Linley
- Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - Claire Edmundson
- Blood Safety, Hepatitis, Sexually Transmitted Infections (STI) and HIV Service, Public Health England, London, UK
| | - Marta Checchi
- Blood Safety, Hepatitis, Sexually Transmitted Infections (STI) and HIV Service, Public Health England, London, UK
| | - Tim Waterboer
- Program Infection, Inflammation & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Noemi Bender
- Program Infection, Inflammation & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Müller
- Program Infection, Inflammation & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Beddows
- Blood Safety, Hepatitis, Sexually Transmitted Infections (STI) and HIV Service, Public Health England, London, UK; Virus Reference Department, Public Health England, London, UK
| | - Ray Borrow
- Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - Kate Soldan
- Blood Safety, Hepatitis, Sexually Transmitted Infections (STI) and HIV Service, Public Health England, London, UK
| |
Collapse
|
7
|
Pedroza-Saavedra A, Rodriguez-Ocampo AN, Salazar-Piña A, Perez-Morales AC, Chihu-Amparan L, Maldonado-Gama M, Cruz-Valdez A, Esquivel-Guadarrama F, Gutierrez-Xicotencatl L. Differential Antibody Response against Conformational and Linear Epitopes of the L1 Proteins from Human Papillomavirus Types 16/18 Is Observed in Vaccinated Women or with Uterine Cervical Lesions. Vaccines (Basel) 2021; 9:vaccines9050442. [PMID: 34063178 PMCID: PMC8147477 DOI: 10.3390/vaccines9050442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
Antibodies against the Human Papillomavirus (HPV) L1 protein are associated with past infections and related to the evolution of the disease, whereas antibodies against L1 Virus-Like Particles (VLPs) are used to follow the neutralizing antibody response in vaccinated women. In this study, serum antibodies against conformational (VLPs) and linear epitopes of HPV16/18 L1 protein were assessed to distinguish HPV-vaccinated women from those naturally infected or those with uterine cervical lesions. The VLPs-16/18 were generated in baculovirus, and L1 proteins were obtained from denatured VLPs. Serum antibodies against VLPs and L1 proteins were evaluated by ELISA. The ELISA-VLPs and ELISA-L1 16/18 assays were validated with a vaccinated women group by ROC analysis and the regression analysis to distinguish the different populations of female patients. The anti-VLPs-16/18 and anti-L1-16/18 antibodies effectively detect vaccinated women (AUC = 1.0/0.79, and 0.94/0.84, respectively). The regression analysis showed that anti-VLPs-16/18 and anti-L1-16/18 antibodies were associated with the vaccinated group (OR = 2.11 × 108/16.50 and 536.0/49.2, respectively). However, only the anti-L1-16 antibodies were associated with the high-grade lesions and cervical cancer (CIN3/CC) group (OR = 12.18). In conclusion, our results suggest that anti-VLPs-16/18 antibodies are effective and type-specific to detect HPV-vaccinated women, but anti-L1-16 antibodies better differentiate the CIN3/CC group. However, a larger population study is needed to validate these results.
Collapse
Affiliation(s)
- Adolfo Pedroza-Saavedra
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Mexico; (A.P.-S.); (A.C.P.-M.); (L.C.-A.); (M.M.-G.)
| | | | - Azucena Salazar-Piña
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, 62100 Cuernavaca, Mexico;
| | - Aislinn Citlali Perez-Morales
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Mexico; (A.P.-S.); (A.C.P.-M.); (L.C.-A.); (M.M.-G.)
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, 62100 Cuernavaca, Mexico;
| | - Lilia Chihu-Amparan
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Mexico; (A.P.-S.); (A.C.P.-M.); (L.C.-A.); (M.M.-G.)
| | - Minerva Maldonado-Gama
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Mexico; (A.P.-S.); (A.C.P.-M.); (L.C.-A.); (M.M.-G.)
| | - Aurelio Cruz-Valdez
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Mexico;
| | | | - Lourdes Gutierrez-Xicotencatl
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Mexico; (A.P.-S.); (A.C.P.-M.); (L.C.-A.); (M.M.-G.)
- Correspondence: ; Tel.: +52-77-7329-3086
| |
Collapse
|
8
|
Saylor K, Waldman A, Gillam F, Zhang C. Multi-epitope insert modulates solubility-based and chromatographic purification of human papilloma virus 16 L1-based vaccine without inhibiting virus-like particle assembly. J Chromatogr A 2020; 1631:461567. [PMID: 32980800 DOI: 10.1016/j.chroma.2020.461567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/18/2022]
Abstract
The separation of heterogeneous protein mixtures has always been characterized by a trade-off between purity and yield. One way this issue has been addressed in the past is by recombinantly modifying protein to improve separations. Such modifications are mostly employed in the form of tags used specifically for affinity chromatography, though it is also possible to make changes to a protein that will have a sizeable impact on its hydrophobicity and charge/charge distribution. As such, it should also be possible to use protein tags to modulate phase separations and protein-resin binding kinetics when performing ion exchange chromatography. Here, we employed a three-step purification scheme on E. coli expressed, His-tagged, human papilloma virus 16 L1-based recombinant proteins (rHPV 16 L1) that consisted of an inclusion body (IB) wash step, a diethylaminoethyl (DEAE) anion exchange chromatography (AEX) step, and an immobilized metal affinity chromatography (IMAC) polishing step. Purification of the wild type rHPV 16 L1 protein (WT) was characterized by substantial losses during the IB wash but relatively high yield over the DEAE column. In contrast, purification of modified rHPV 16 L1, a chimeric version of the WT protein that had the last 34 amino acids replaced with an MHC class II multi-epitope insert derived from tetanus toxin and diphtheria toxin (WTΔC34-2TEp), was characterized by little to no losses in the IB wash but had a relatively low yield over the DEAE column. Since the fate of these proteins was to be used in vaccine formulations, it is important to note that the modifications made to the WTΔC34-2TEp protein had little to no effect on its ability to assemble into virus-like particles (VLPs). These results demonstrate that modifications of the WT protein via the recombinant insertion of immunofunctional polypeptides can modulate both phase-based separation and charge-based chromatographic processes. Additionally, incorporation of the specific, multi-epitope tag used in this study may prove to be beneficial in recombinant HPV vaccine development due to its potential to improve phase separation yield and vaccine immunogenicity without inhibiting VLP formation.
Collapse
Affiliation(s)
- Kyle Saylor
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States.
| | - Alison Waldman
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States; Chemical and Biomolecular Engineering, NC State, Raleigh, NC, United States.
| | - Frank Gillam
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States; Locus Biosciences, Morrisville, NC, United States.
| | - Chenming Zhang
- Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
9
|
Zhao X, Yang F, Mariz F, Osen W, Bolchi A, Ottonello S, Müller M. Combined prophylactic and therapeutic immune responses against human papillomaviruses induced by a thioredoxin-based L2-E7 nanoparticle vaccine. PLoS Pathog 2020; 16:e1008827. [PMID: 32886721 PMCID: PMC7498061 DOI: 10.1371/journal.ppat.1008827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/17/2020] [Accepted: 07/21/2020] [Indexed: 01/08/2023] Open
Abstract
Global burden of cervical cancer, the most common cause of mortality caused by human papillomavirus (HPV), is expected to increase during the next decade, mainly because current alternatives for HPV vaccination and cervical cancer screening programs are costly to be established in low-and-middle income countries. Recently, we described the development of the broadly protective, thermostable vaccine antigen Trx-8mer-OVX313 based on the insertion of eight different minor capsid protein L2 neutralization epitopes into a thioredoxin scaffold from the hyperthermophilic archaeon Pyrococcus furiosus and conversion of the resulting antigen into a nanoparticle format (median radius ~9 nm) upon fusion with the heptamerizing OVX313 module. Here we evaluated whether the engineered thioredoxin scaffold, in addition to humoral immune responses, can induce CD8+ T-cell responses upon incorporation of MHC-I-restricted epitopes. By systematically examining the contribution of individual antigen modules, we demonstrated that B-cell and T-cell epitopes can be combined into a single antigen construct without compromising either immunogenicity. While CD8+ T-cell epitopes had no influence on B-cell responses, the L2 polytope (8mer) and OVX313-mediated heptamerization of the final antigen significantly increased CD8+ T-cell responses. In a proof-of-concept experiment, we found that vaccinated mice remained tumor-free even after two consecutive tumor challenges, while unvaccinated mice developed tumors. A cost-effective, broadly protective vaccine with both prophylactic and therapeutic properties represents a promising option to overcome the challenges associated with prevention and treatment of HPV-caused diseases. Currently, there are three licensed prophylactic vaccines available against HPV, but none of them shows a therapeutic effect on pre-existing infections. Thus, a prophylactic vaccine also endowed with a therapeutic activity presents application potentials to individuals regardless of their HPV-infection status. Such a dual-purpose vaccine would be particularly valuable for post-exposure prophylaxis and shields population from recurrent HPV infections. Here, we constructed a combined vaccine relying on L2- and E7-specific epitopes grafted onto the surface of a hyper-stable thioredoxin scaffold. The resulting antigen was converted into a nanoparticle format with the use of a heptamerization domain. Our data document that the modular design of the antigen allows combination of B-cell and T-cell epitopes in one antigen without compromising either’s immunogenicity. The antigen retains its ability to provide broad protection against different HPV types but also presents strong therapeutic effects in a mouse tumor model. Therefore, the vaccine is potentially capable of resolving productive infection as well as HPV-related malignancies, and thus benefitting both uninfected and already infected individuals. Moreover, our vaccine utilizes E. coli as protein producer and distribution does not require cold-chain, which reduces costs making it applicable to less-affluent countries.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/pharmacology
- Antigens, Viral/chemistry
- Antigens, Viral/pharmacology
- Archaeal Proteins/chemistry
- Archaeal Proteins/pharmacology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Cancer Vaccines/chemistry
- Cancer Vaccines/pharmacology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/pharmacology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/pharmacology
- Female
- Humans
- Immunity, Cellular/drug effects
- Mice
- Mice, Inbred BALB C
- Nanoparticles/chemistry
- Nanoparticles/therapeutic use
- Papillomaviridae/chemistry
- Papillomaviridae/immunology
- Papillomavirus Vaccines/chemistry
- Papillomavirus Vaccines/pharmacology
- Pyrococcus furiosus/chemistry
- Thioredoxins/chemistry
- Thioredoxins/pharmacology
- Uterine Cervical Neoplasms/immunology
- Uterine Cervical Neoplasms/virology
Collapse
Affiliation(s)
- Xueer Zhao
- German Cancer Research Center, Heidelberg, Germany
| | - Fan Yang
- German Cancer Research Center, Heidelberg, Germany
| | - Filipe Mariz
- German Cancer Research Center, Heidelberg, Germany
| | - Wolfram Osen
- German Cancer Research Center, Heidelberg, Germany
| | - Angelo Bolchi
- Department of Chemical Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Simone Ottonello
- Department of Chemical Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martin Müller
- German Cancer Research Center, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
10
|
Saylor K, Gillam F, Lohneis T, Zhang C. Designs of Antigen Structure and Composition for Improved Protein-Based Vaccine Efficacy. Front Immunol 2020; 11:283. [PMID: 32153587 PMCID: PMC7050619 DOI: 10.3389/fimmu.2020.00283] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Today, vaccinologists have come to understand that the hallmark of any protective immune response is the antigen. However, it is not the whole antigen that dictates the immune response, but rather the various parts comprising the whole that are capable of influencing immunogenicity. Protein-based antigens hold particular importance within this structural approach to understanding immunity because, though different molecules can serve as antigens, only proteins are capable of inducing both cellular and humoral immunity. This fact, coupled with the versatility and customizability of proteins when considering vaccine design applications, makes protein-based vaccines (PBVs) one of today's most promising technologies for artificially inducing immunity. In this review, we follow the development of PBV technologies through time and discuss the antigen-specific receptors that are most critical to any immune response: pattern recognition receptors, B cell receptors, and T cell receptors. Knowledge of these receptors and their ligands has become exceptionally valuable in the field of vaccinology, where today it is possible to make drastic modifications to PBV structure, from primary to quaternary, in order to promote recognition of target epitopes, potentiate vaccine immunogenicity, and prevent antigen-associated complications. Additionally, these modifications have made it possible to control immune responses by modulating stability and targeting PBV to key immune cells. Consequently, careful consideration should be given to protein structure when designing PBVs in the future in order to potentiate PBV efficacy.
Collapse
Affiliation(s)
- Kyle Saylor
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Frank Gillam
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- Locus Biosciences, Morrisville, NC, United States
| | - Taylor Lohneis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- BioPharmaceutical Technology Department, GlaxoSmithKline, Rockville, MD, United States
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
11
|
Chabeda A, Yanez RJR, Lamprecht R, Meyers AE, Rybicki EP, Hitzeroth II. Therapeutic vaccines for high-risk HPV-associated diseases. PAPILLOMAVIRUS RESEARCH (AMSTERDAM, NETHERLANDS) 2018; 5:46-58. [PMID: 29277575 PMCID: PMC5887015 DOI: 10.1016/j.pvr.2017.12.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/13/2017] [Accepted: 12/17/2017] [Indexed: 12/16/2022]
Abstract
Cancer is the second leading cause of death worldwide, and it is estimated that Human papillomavirus (HPV) related cancers account for 5% of all human cancers. Current HPV vaccines are extremely effective at preventing infection and neoplastic disease; however, they are prophylactic and do not clear established infections. Therapeutic vaccines which trigger cell-mediated immune responses for the treatment of established infections and malignancies are therefore required. The E6 and E7 early genes are ideal targets for vaccine therapy due to their role in disruption of the cell cycle and their constitutive expression in premalignant and malignant tissues. Several strategies have been investigated for the development of therapeutic vaccines, including live-vector, nucleic acid, peptide, protein-based and cell-based vaccines as well as combinatorial approaches, with several vaccine candidates progressing to clinical trials. With the current understanding of the HPV life cycle, molecular mechanisms of infection, carcinogenesis, tumour biology, the tumour microenvironment and immune response mechanisms, an approved HPV therapeutic vaccine seems to be a goal not far from being achieved. In this article, the status of therapeutic HPV vaccines in clinical trials are reviewed, and the potential for plant-based vaccine production platforms described.
Collapse
Affiliation(s)
- Aleyo Chabeda
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Romana J R Yanez
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Renate Lamprecht
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Ann E Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Inga I Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
12
|
Pouyanfard S, Müller M. Human papillomavirus first and second generation vaccines-current status and future directions. Biol Chem 2017; 398:871-889. [PMID: 28328521 DOI: 10.1515/hsz-2017-0105] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/16/2017] [Indexed: 02/06/2023]
Abstract
It has been more than 10 years that the first prophylactic papillomavirus vaccine became available, although distribution has been mainly limited to the more affluent countries. The first two vaccines have been a great success, hundreds of millions of women and a much smaller number of men have been vaccinated ever since. In a few countries with high vaccination coverage, in particular Australia but also parts of Great Britain and others, clinical impact of vaccination programs is already visible and there are indications for herd immunity as well. Vaccine efficacy is higher than originally estimated and the vaccines have an excellent safety profile. Gardasil9 is a second generation HPV virus-like particle vaccine that was licensed in 2015 and there are more to come in the near future. Currently, burning questions in respect to HPV vaccination are the duration of protection - especially in regard to cross-protection - reduction of the three-dose regimen and its impact on cross-protection; and duration of response, as well as protection against oropharyngeal HPV infections. Furthermore, researchers are seeking to overcome limitations of the VLP vaccines, namely low thermal stability, cost, invasive administration, limited coverage of non-vaccine HPV types, and lack of therapeutic efficacy. In this review we summarize the current status of licensed VLP vaccines and address questions related to second and third generation HPV vaccines.
Collapse
|
13
|
Jin S, Zheng DD, Sun B, Yu X, Zha X, Liu Y, Wu S, Wu Y. Controlled Hybrid-Assembly of HPV16/18 L1 Bi VLPs in Vitro. ACS APPLIED MATERIALS & INTERFACES 2016; 8:34244-34251. [PMID: 27998118 DOI: 10.1021/acsami.6b12456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Based on the helix4-exchanged HPV16 L1 and HPV18 L1, HPV16 L1 Bi and HPV18 L1 Bi, we have successfully realized the controlled hybrid-assembly of HPV16/18 L1 Bi VLPs (bihybrid-VLPs) in vitro. The bihybrid-VLPs were further confirmed by fluorescence resonance energy transfer (FRET) and complex-immunoprecipitation (Co-IP) assays. The ratio of 16 L1 Bi and 18 L1 Bi in bihybrid-VLPs was verified to be 3:5 based on a modified magnetic Co-IP procedure, when mixing 1 equiv pentamer in assembly buffer solution, but it changed with conditions. In addition, the bihybrid-VLPs showed identical thermal stability as that of normal VLPs, suggesting high potential in practical applications. The present study is significant because it modified one of the vital steps of virus life cycle at the stage of virus assembly, supplying a new approach not only to deepen structural insights but also a possibility to prepare stable, low-cost, bivalent antivirus vaccine. Furthermore, the controlled hybrid-assembly of bihybrid-VLPs in vitro provides suggestions for the design of effective multivalent hybrid-VLPs, being a potential to develop broad-spectrum vaccines for the prevention of infection with multiple types of HPV.
Collapse
Affiliation(s)
| | | | | | | | - Xiao Zha
- Sichuan Tumor Hospital & Institute , Chengdu 610041, China
| | | | - Shuming Wu
- Beijing Health Guard Inc., Beijing 100176, China
| | | |
Collapse
|
14
|
Lee KL, Twyman RM, Fiering S, Steinmetz N. Virus-based nanoparticles as platform technologies for modern vaccines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:554-78. [PMID: 26782096 PMCID: PMC5638654 DOI: 10.1002/wnan.1383] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/11/2015] [Indexed: 12/25/2022]
Abstract
Nanoscale engineering is revolutionizing the development of vaccines and immunotherapies. Viruses have played a key role in this field because they can function as prefabricated nanoscaffolds with unique properties that are easy to modify. Viruses are immunogenic via multiple pathways, and antigens displayed naturally or by engineering on the surface can be used to create vaccines against the cognate virus, other pathogens, specific molecules or cellular targets such as tumors. This review focuses on the development of virus-based nanoparticle systems as vaccines indicated for the prevention or treatment of infectious diseases, chronic diseases, cancer, and addiction. WIREs Nanomed Nanobiotechnol 2016, 8:554-578. doi: 10.1002/wnan.1383 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Karin L. Lee
- Department of Biomedical Engineering, Case Western Reserve University Schools of Engineering and Medicine, Cleveland, OH 44106
| | | | - Steven Fiering
- Department of Microbiology and Immunology and Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Nicole Steinmetz
- Departments of Biomedical Engineering, Radiology, Materials Science and Engineering, and Macromolecular Science and Engineering, Case Western Reserve University and Medicine, Cleveland, OH 44106;
| |
Collapse
|
15
|
López-Toledo G, Schädlich L, Alonso-Castro ÁJ, Monroy-García A, García-Rocha R, Guido MC, Gissmann L, García-Carrancá A. Immunization with Human Papillomavirus 16 L1+E2 Chimeric Capsomers Elicits Cellular Immune Response and Antitumor Activity in a Mouse Model. Viral Immunol 2016; 29:276-87. [PMID: 27058179 DOI: 10.1089/vim.2015.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Development of cervical cancer is associated with persistent infections by high-risk human papillomavirus (HPV). Although current HPV L1-based prophylactic vaccines prevent infection, they do not help to eliminate prevalent infections or lesions. Our aims were (i) to generate a vaccine combining prophylactic and therapeutic properties by producing chimeric capsomers after fusion of the L1 protein to different fragments of E2 from HPV 16, and (ii) to evaluate their capacity to generate an antitumoral cellular response, while conserving L1 neutralizing epitopes. Chimeric proteins were produced in Escherichia coli and purified by glutathione S-transferase (GST)-affinity chromatography. Their structure was characterized using size exclusion chromatography, sucrose gradient centrifugation, electron microscopy, and anti-L1 enzyme-linked immunosorbent assay. All chimeric proteins form capsomers and heterogeneous aggregates. One, containing part of the carboxy-terminal domain of E2 and its hinge region (L1Δ+E2H/NC, aa 206-307), conserved the neutralizing epitope H16.V5. We then evaluated the capacity of this chimeric protein to induce a cytotoxic T-cell response against HPV 16 E2. In (51)Cr release cytotoxicity assays, splenocytes from C57BL/6 immunized mice recognized and lysed TC-1/E2 cells, which express and present endogenously processed E2 peptides. Moreover, this E2-specific cytotoxic response inhibited the growth of tumors of TC-1/E2 cells in mice. Finally, we identified an epitope (aa 292-301) of E2 involved in this cytotoxic response. We conclude that the L1Δ+E2H/NC chimeric protein produced in bacteria can be an effective and economically interesting candidate for a combined prophylactic and therapeutic vaccine that could help eliminating HPV16-positive low-grade cervical lesions and persistent viral infections, thus preventing the development of lesions and, at the same time, the establishment of new infections.
Collapse
Affiliation(s)
- Gabriela López-Toledo
- 1 Department of Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico .,2 Laboratory of Virus and Cancer, Division of Basic Research, Instituto Nacional de Cancerología-SS , Mexico City, Mexico
| | - Lysann Schädlich
- 3 Division of Genome Modifications and Carcinogenesis, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Ángel Josabad Alonso-Castro
- 2 Laboratory of Virus and Cancer, Division of Basic Research, Instituto Nacional de Cancerología-SS , Mexico City, Mexico
| | - Alberto Monroy-García
- 4 Laboratory of Immunobiology, Facultad de Estudios Superiores Zaragoza , Unidad de Investigación en Diferenciación Celular y Cáncer, UMIEZ, UNAM, Mexico City, Mexico .,5 Laboratory of Immunology and Cancer, Unidad de Investigación Médica en Enfermedades Oncológicas , CMN SXXI, IMSS, Mexico City, Mexico
| | - Rosario García-Rocha
- 5 Laboratory of Immunology and Cancer, Unidad de Investigación Médica en Enfermedades Oncológicas , CMN SXXI, IMSS, Mexico City, Mexico .,6 Department of Immunology, Escuela Nacional de Ciencias Biológicas , IPN, Mexico City, Mexico
| | - Miriam C Guido
- 1 Department of Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico .,2 Laboratory of Virus and Cancer, Division of Basic Research, Instituto Nacional de Cancerología-SS , Mexico City, Mexico
| | - Lutz Gissmann
- 3 Division of Genome Modifications and Carcinogenesis, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Alejandro García-Carrancá
- 1 Department of Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico .,2 Laboratory of Virus and Cancer, Division of Basic Research, Instituto Nacional de Cancerología-SS , Mexico City, Mexico
| |
Collapse
|
16
|
Salazar-Piña DA, Pedroza-Saavedra A, Cruz-Valdez A, Ortiz-Panozo E, Maldonado-Gama M, Chihu-Amparan L, Rodriguez-Ocampo AN, Orozco-Fararoni E, Esquivel-Guadarrama F, Gutierrez-Xicotencatl L. Validation of Serological Antibody Profiles Against Human Papillomavirus Type 16 Antigens as Markers for Early Detection of Cervical Cancer. Medicine (Baltimore) 2016; 95:e2769. [PMID: 26871830 PMCID: PMC4753926 DOI: 10.1097/md.0000000000002769] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cervical cancer (CC) is the second most frequent neoplasia among women worldwide. Cancer prevention programs around the world have used the Papanicolaou (Pap) smear as the primary diagnostic test to reduce the burden of CC. Nevertheless, such programs have not been effective in developing countries, thus leading to research on alternative tests for CC screening. During the virus life cycle and in the process toward malignancy, different human papillomavirus (HPV) proteins are expressed, and they induce a host humoral immune response that can be used as a potential marker for different stages of the disease. We present a new Slot blot assay to detect serum antibodies against HPV16 E4, E7, and VLPs-L1 antigens. The system was validated with sera from a female population (n = 485) aged 18 to 64 years referred to the dysplasia clinic at the General Hospital in Cuautla, Morelos, Mexico. To evaluate the clinical performance of the serological markers, the sensitivity, specificity, positive, and negative predictive values and receiver-operating characteristic curves (for antibodies alone or in combination) were calculated in groups of lesions of increasing severity. The results showed high prevalence of anti-E4 (73%) and anti-E7 (80%) antibodies in the CC group. Seropositivity to 1, 2, or 3 antigens showed associations of increasing magnitude with CC (odds ratio [OR] = 12.6, 19.9, and 58.5, respectively). The highest association with CC was observed when the analysis was restricted to only anti-E4+E7 antibodies (OR = 187.7). The best clinical performance to discriminate CC from cervical intraepithelial neoplasia 2 to 3 was the one for the combination of anti-E4 and/or anti-E7 antibodies, which displayed high sensitivity (93.3%) and moderate specificity (64.1%), followed by anti-E4 and anti-E7 antibodies (73.3% and 80%; 89.6% and 66%, respectively). In addition, the sensitivity of anti-E4 and/or anti-E7 antibodies is high at any time of sexual activity (TSA), which suggests they can be biomarkers for the early detection of CC. The sensitivity of anti-E4 antibodies was low (<10%) when the TSA was <10 years, and it increased up to 100% in relation to the TSA, suggesting that anti-E4 antibodies can be useful as HPV exposure markers at early stages of the disease.
Collapse
Affiliation(s)
- Dolores Azucena Salazar-Piña
- From the Center for Research on Infectious Diseases (DAS-P, AP-S, MM-G, LC-A, LG-X), National Institute of Public Health, Cuernavaca, Morelos; Center for Research in Population Health (AC-V, EO-P), National Institute of Public Health, Cuernavaca, Morelos; Academic Unit of Chemical Biology and Pharmaceutical Sciences (ANR-O), Autonomous University of Nayarit, Tepic Nayarit; Dysplasia Clinic "Dr. Mauro Belauzaran Tapia" General Hospital in Cuautla (EO-F), Cuautla Morelos; and Faculty of Medicine (FE-G), Autonomous University of Morelos State (UAEM), Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Seitz H, Ribeiro-Müller L, Canali E, Bolchi A, Tommasino M, Ottonello S, Müller M. Robust In Vitro and In Vivo Neutralization against Multiple High-Risk HPV Types Induced by a Thermostable Thioredoxin-L2 Vaccine. Cancer Prev Res (Phila) 2015; 8:932-41. [PMID: 26170394 DOI: 10.1158/1940-6207.capr-15-0164] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 07/06/2015] [Indexed: 11/16/2022]
Abstract
Current prophylactic virus-like particle (VLP) human papillomavirus (HPV) vaccines are based on the L1 major capsid protein and provide robust but virus type-restricted protection. Moreover, VLP vaccines have a high production cost, require cold-chain storage, and are thus not readily implementable in developing countries, which endure 85% of the cervical cancer-related death burden worldwide. In contrast with L1, immunization with minor capsid protein L2 elicits broad cross-neutralization, and we previously showed that insertion of a peptide spanning amino acids 20-38 of L2 into bacterial thioredoxin (Trx) greatly enhances its immunogenicity. Building on this finding, we use, here, four different neutralization assays to demonstrate that low doses of a trivalent Trx-L2 vaccine, incorporating L2(20-38) epitopes from HPV16, HPV31 and HPV51, and formulated in a human-compatible adjuvant, induce broadly protective responses. Specifically, we show that this vaccine, which uses a far-divergent archaebacterial thioredoxin as scaffold and is amenable to an easy one-step thermal purification, induces robust cross-neutralization against 12 of the 13 known oncogenic HPV types. Immune performance measured with two different in vitro neutralization assays was corroborated by the results of mouse cervico-vaginal challenge and passive transfer experiments indicating robust cross-protection also in vivo. Altogether, our results attest to the potential of Trx-L2 as a thermostable second-generation HPV vaccine particularly well suited for low-resource countries.
Collapse
Affiliation(s)
- Hanna Seitz
- German Cancer Research Center, Heidelberg, Germany
| | | | - Elena Canali
- Department of Life Sciences, Biochemistry and Molecular Biology Unit, University of Parma, Parma, Italy
| | - Angelo Bolchi
- Department of Life Sciences, Biochemistry and Molecular Biology Unit, University of Parma, Parma, Italy
| | | | - Simone Ottonello
- Department of Life Sciences, Biochemistry and Molecular Biology Unit, University of Parma, Parma, Italy.
| | | |
Collapse
|
18
|
Abstract
The two licensed bivalent and quadrivalent human papillomavirus (HPV) L1 (the major papillomavirus virion protein) virus-like particle (VLP) vaccines are regarded as safe, effective, and well established prophylactic vaccines. However, they have some inherent limitations, including a fairly high production and delivery cost, virus-type restricted protection, and no reported therapeutic activity, which might be addressed with the development of alternative dosing schedules and vaccine products. A change from a three-dose to a two-dose protocol for the licensed HPV vaccines, especially in younger adolescents (aged 9-13 years), is underway in several countries and is likely to become the future norm. Preliminary evidence suggests that recipients of HPV vaccines might derive prophylactic benefits from one dose of the bivalent vaccine. Substantial interest exists in both the academic and industrial sectors in the development of second-generation L1 VLP vaccines in terms of cost reduction-eg, by production in Escherichia coli or alternative types of yeast. However, Merck's nonavalent vaccine, produced via the Saccharomyces cerevisiae production system that is also used for their quadrivalent vaccine, is the first second-generation HPV VLP vaccine to be available on the market. By contrast, other pharmaceutical companies are developing microbial vectors that deliver L1 genes. These two approaches would add an HPV component to existing live attenuated vaccines for measles and typhoid fever. Prophylactic vaccines that are based on induction of broadly cross-neutralising antibodies to L2, the minor HPV capsid protein, are also being developed both as simple monomeric fusion proteins and as virus-like display vaccines. The strong interest in developing the next generation of vaccines, particularly by manufacturers in middle-to-high income countries, increases the likelihood that vaccine production will become decentralised with the hope that effective HPV vaccines will be made increasingly available in low-resource settings where they are most needed.
Collapse
|
19
|
Hassan SW, Waheed MT, Müller M, Clarke JL, Shinwari ZK, Lössl AG. Expression of HPV-16 L1 capsomeres with glutathione-S-transferase as a fusion protein in tobacco plastids: an approach for a capsomere-based HPV vaccine. Hum Vaccin Immunother 2014; 10:2975-82. [PMID: 25483463 PMCID: PMC5443053 DOI: 10.4161/21645515.2014.970973] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/11/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022] Open
Abstract
Human Papillomavirus (HPV) is the main cause of cervical cancer, which is the second most severe cancer of women worldwide, particularly in developing countries. Although vaccines against HPV infection are commercially available, they are neither affordable nor accessible to women in low income countries e.g. Africa. Thus, alternative cost-effective vaccine production approaches need to be developed. This study uses tobacco plants to express pentameric capsomeres of HPV that have been reported to generate elevated immune responses against HPV. A modified HPV-16 L1 (L1_2xCysM) protein has been expressed as a fusion protein with glutathione-S-transferase (GST) in tobacco chloroplasts following biolistic transformation. In total 7 transplastomic lines with healthy phenotypes were generated. Site specific integration of the GST-L1_2xCysM and aadA genes was confirmed by PCR. Southern blot analysis verified homogenous transformation of all transplastomic lines. Antigen capture ELISA with the conformation-specific antibody Ritti01, showed protein expression as well as the retention of immunogenic epitopes of L1 protein. In their morphology, GST-L1 expressing tobacco plants were identical to wild type plants and yielded fertile flowers. Taken together, these data enrich knowledge for future development of cost-effective plant-made vaccines against HPV.
Collapse
Affiliation(s)
- Syed Waqas Hassan
- Department of Biotechnology; Quaid-i-Azam University; Islamabad, Pakistan
| | | | - Martin Müller
- Deutsches Krebsforschungszentrum; Heidelberg, Germany
| | - Jihong Liu Clarke
- Bioforsk-Norwegian Institute for Agricultural and Environmental Research; Aas, Norway
| | | | - Andreas Günter Lössl
- Department of Crop Sciences; University of Natural Resources and Applied Life Sciences; Tulln an der Donau, Austria
| |
Collapse
|
20
|
Bolhassani A, Muller M, Roohvand F, Motevalli F, Agi E, Shokri M, Rad MM, Hosseinzadeh S. Whole recombinant Pichia pastoris expressing HPV16 L1 antigen is superior in inducing protection against tumor growth as compared to killed transgenic Leishmania. Hum Vaccin Immunother 2014; 10:3499-3508. [PMID: 25668661 PMCID: PMC4514133 DOI: 10.4161/21645515.2014.979606] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/08/2014] [Accepted: 08/24/2014] [Indexed: 11/19/2022] Open
Abstract
The development of an efficient vaccine against high-risk HPV types can reduce the incidence rates of cervical cancer by generating anti-tumor protective responses. Traditionally, the majority of prophylactic viral vaccines are composed of live, attenuated or inactivated viruses. Among them, the design of an effective and low-cost vaccine is critical. Inactivated vaccines especially heat-killed yeast cells have emerged as a promising approach for generating antigen-specific immunotherapy. Recent studies have indicated that yeast cell wall components possess adjuvant activities. Moreover, a non-pathogenic protozoan, Leishmania tarentolae (L.tar) has attracted a great attention as a live candidate vaccine. In current study, immunological and protective efficacy of whole recombinant killed Pichia pastoris and Leishmania tarentolae expressing HPV16 L1 capsid protein was evaluated in tumor mice model. We found that Pichia-L1, L.tar-L1 and Gardasil groups increase the IgG2a/IgG1 ratio, indicating a relative preference for the induction of Th1 immune responses. Furthermore, subcutaneous injection of killed Pichia-L1 generated the significant L1-specific IFN-γ immune response as well as the best protective effects in vaccinated mice as compared to killed L.tar-L1, killed Pichia pastoris, killed L.tar and PBS groups. Indeed, whole recombinant Leishmania tarentolae could not protect mice against C3 tumor mice model. These data suggest that Pichia-L1 may be a candidate for the control of HPV infections.
Collapse
Key Words
- 2-ME, mercaptoethanol
- AOX1, alcohol oxidase I gene
- ConA, concanavalin A
- DAB, 3,3′-diaminobenzidine
- FACS, fluorescence-activated cell sorting
- GFP, green fluorescent protein
- HPV, human papillomaviruses
- KBMA, killed but metabolicallyactive
- L.tar, Leishmania tarentolae
- L1 capsid protein
- Leishmania tarentolae expression system
- Pichia pastoris expression system
- SD, standard deviation
- Yeast-HBsAg, yeast expressing hepatitis B surface antigen
- cervical cancer
- human papillomavirus
- killed vaccine
- rL1, recombinant L1
Collapse
Affiliation(s)
- Azam Bolhassani
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran, Iran
| | - Martin Muller
- German Cancer Research Center (DKFZ); Heidelberg, Germany
| | - Farzin Roohvand
- Virology Department; Pasteur Institute of Iran; Tehran, Iran
| | - Fatemeh Motevalli
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran, Iran
| | - Elnaz Agi
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran, Iran
| | - Mehdi Shokri
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran, Iran
| | | | - Sahar Hosseinzadeh
- Department of Hepatitis and AIDs; Pasteur Institute of Iran; Tehran, Iran
| |
Collapse
|
21
|
Wang JW, Roden RBS. Virus-like particles for the prevention of human papillomavirus-associated malignancies. Expert Rev Vaccines 2013; 12:129-41. [PMID: 23414405 DOI: 10.1586/erv.12.151] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As compared with peptide- or protein-based vaccines, naked DNA vectors and even traditional attenuated or inactivated virus vaccines, virus-like particles (VLPs) are an attractive vaccine platform, as they offer a combination of safety, ease of production and both high-density B-cell epitope display and intracellular presentation of T-cell epitopes that induce potent humoral and cellular immune responses, respectively. Indeed, HPV vaccines based on VLP production by recombinant expression of major capsid antigen L1 in yeast (Gardasil(®), Merck & Co., NJ, USA) or insect cells (Cervarix(®), GlaxoSmithKline, London, UK) have been licensed for the prevention of cervical and anogenital infection and disease associated with the genotypes targeted by each vaccine. However, these HPV vaccines have not been demonstrated as effective to treat existing infections, and efforts to develop a therapeutic HPV vaccine continue. Furthermore, current HPV L1-VLP vaccines provide type-restricted protection, requiring highly multivalent formulations to broaden coverage to the dozen or more oncogenic HPV genotypes. This raises the complexity and cost of vaccine production. The lack of access to screening and high disease burden in developing countries has spurred efforts to develop second-generation HPV vaccines that are more affordable, induce wider protective coverage and offer therapeutic coverage against HPV-associated malignancies. Given the previous success with L1-VLP-based vaccines against HPV, VLPs have been also adopted as platforms for many second-generation HPV and non-HPV vaccine candidates with both prophylactic and therapeutic intent. In this article, the authors examine the progress and challenges of these efforts, with a focus on how they inform VLP vaccine design.
Collapse
Affiliation(s)
- Joshua W Wang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287-0014, USA
| | | |
Collapse
|
22
|
Sharma C, Dey B, Wahiduzzaman M, Singh N. Human papillomavirus 16 L1-E7 chimeric virus like particles show prophylactic and therapeutic efficacy in murine model of cervical cancer. Vaccine 2012; 30:5417-24. [PMID: 22717329 DOI: 10.1016/j.vaccine.2012.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 05/18/2012] [Accepted: 06/05/2012] [Indexed: 12/22/2022]
Abstract
Cervical cancer is found to be associated with human papillomavirus (HPV) infection, with HPV16 being the most prevalent. An effective vaccine against HPV can thus, be instrumental in controlling cervical cancer. An ideal HPV vaccine should aim to generate both humoral immune response to prevent new infection as well as cell-mediated immunity to eliminate established infection. In this study, we have generated a potential preventive and therapeutic candidate vaccine against HPV16. We expressed and purified recombinant HPV16 L1(ΔN26)-E7(ΔC38) protein in E. coli which was assembled into chimeric virus like particles (CVLPs) in vitro. These CVLPs were able to induce neutralizing antibodies and trigger cell-mediated immune response, in murine model of cervical cancer, exhibiting antitumor efficacy. Hence, this study has aimed to provide a vaccine candidate possessing both, prophylactic and therapeutic efficacy against HPV16 associated cervical cancer.
Collapse
Affiliation(s)
- Chandresh Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | | | |
Collapse
|
23
|
Nieto K, Stahl-Hennig C, Leuchs B, Müller M, Gissmann L, Kleinschmidt JA. Intranasal vaccination with AAV5 and 9 vectors against human papillomavirus type 16 in rhesus macaques. Hum Gene Ther 2012; 23:733-41. [PMID: 22401308 DOI: 10.1089/hum.2011.202] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer is the second most common cancer in women worldwide. Persistent high-risk human papillomavirus (HPV) infection has been identified as the causative event for the development of this type of cancer. Recombinant adeno-associated viruses (rAAVs) are currently being developed and evaluated as vaccine vector. In previous work, we demonstrated that rAAVs administered intranasally in mice induced high titers and long-lasting neutralizing antibodies against HPV type 16 (HPV16). To extend this approach to a more human-related species, we immunized rhesus macaques (Macaca mulatta) with AAVs expressing an HPV16 L1 protein using rAAV5 and 9 vectors in an intranasal prophylactic setting. An rAAV5-L1 vector followed by a boost with rAAV9-L1 induced higher titers of L1-specific serum antibodies than a single rAAV5-L1 immunization. L1-specific antibodies elicited by AAV9 vector neutralized HPV16 pseudovirions and persisted for at least 7 months post immunization. Interestingly, nasal application of rAAV9 was immunogenic even in the presence of high AAV9 antibody titers, allowing reimmunization with the same serotype without prevention of the transgene expression. Two of six animals did not respond to AAV-mediated intranasal vaccination, although they were not tolerant, as both developed antibodies after intramuscular vaccination with HPV16 virus-like particles. These data clearly show the efficacy of an intranasal immunization using rAAV9-L1 vectors without the need of an adjuvant. We conclude from our results that rAAV9 vector is a promising candidate for a noninvasive nasal vaccination strategy.
Collapse
Affiliation(s)
- Karen Nieto
- Research Program Infection and Cancer, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Frazer IH, Leggatt GR, Mattarollo SR. Prevention and treatment of papillomavirus-related cancers through immunization. Annu Rev Immunol 2011; 29:111-38. [PMID: 21166538 DOI: 10.1146/annurev-immunol-031210-101308] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cervical and other anogenital cancers are initiated by infection with one of a small group of human papillomaviruses (HPV). Virus-like particle-based vaccines have recently been developed to prevent infection with two cancer-associated HPV genotypes (HPV16, HPV18) and have been ∼95% effective at preventing HPV-associated disease caused by these genotypes in virus-naive subjects. Although immunization induces virus-neutralizing antibody sufficient to prevent infection, persistence of antibody as measured by current assays does not appear necessary to maintain protection over time. Investigators have not identified a reliable surrogate immunological marker of protection against disease following immunization. The prophylactic vaccines are not therapeutic for existing infection. Trials of HPV-specific immunotherapy have shown some efficacy for existing disease, although animal modeling suggests that a combination of immunization and local enhancement of innate immunity may be necessary for optimal therapeutic outcome. HPV prophylactic vaccines are the first vaccines designed to prevent a human cancer and are the practical outcome of a global collaborative effort between basic and applied scientists, clinicians, and industry.
Collapse
Affiliation(s)
- Ian H Frazer
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Brisbane, Australia.
| | | | | |
Collapse
|
25
|
Sun Z, Ren G, Cui X, Zhou W, Liu C, Ruan Q. Genetic diversity of HPV-16 E6, E7, and L1 genes in women with cervical lesions in Liaoning Province, China. Int J Gynecol Cancer 2011; 21:551-8. [PMID: 21436703 DOI: 10.1097/igc.0b013e3182112023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION High-risk human papillomaviruses (HPVs) play a cardinal role in the etiology of cervical cancer. The most prevalent type, HPV-16, shows intratypic sequence variants that are known to differ in oncogenic potential and geographic distribution. Intratype variations in oncogenic E6/E7 and capsid L1 proteins of HPV-16 are associated with risk of viral persistence and progression. METHODS This study was designed to analyze sequence variations in E6, E7, and L1 genes of HPV-16 in patients with cervical lesion to identify the most prevalent and novel HPV-16 variants in northern China. RESULTS Our results showed that HPV-16 variants with respect to E6 and E7 were high prevalence of the Asian lineage: 48.3% and 51.4%, respectively. Sequences of the E6 gene revealed 4 amino acid changes of variants D25E and L83V, with 48.3% (69/143) and 11.2% (16/143), respectively, and variants H78Y and E113D in this study. The results also showed the prevalence of 4 hot spots of E7 nucleotide variations leading to N29H, N29S, and 2 silent variations, nucleotide G666A and nucleotide T846C, with 4.2% (6/142), 43% (61/142), 32.4% (46/142), and 43% (61/142), respectively. The following L1 variations were found in this study: L103F, P104K, P104Y, P104S, D105G, P106S, N108P, F109V, C172S, H228D, and T292A. It was also found that 448S was inserted and 465D was deleted in the L1 amino acid sequences of all the samples. No significant relationship between HPV-16 variants and high-grade lesions was found. CONCLUSIONS The study provides some new data on the genetic diversity of HPV-16, which may help to understand the oncogenic potential of the virus and design the diagnosis reagents and vaccine of HPV in China. Furthermore, in-depth studies are needed to determine the clinical and biological effects of these variants.
Collapse
Affiliation(s)
- Zhengrong Sun
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | | | | | | | | | | |
Collapse
|
26
|
Baek JO, Seo JW, Kim IH, Kim CH. Production and purification of human papillomavirus type 33 L1 virus-like particles from Spodoptera frugiperda 9 cells using two-step column chromatography. Protein Expr Purif 2011; 75:211-7. [DOI: 10.1016/j.pep.2010.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 08/11/2010] [Accepted: 08/11/2010] [Indexed: 01/02/2023]
|
27
|
Zhu S, Xue X, Liu J, Lu L, Zhao P, Wang J, Li W, Zhang L. Expression of HPV6b L1/EBV LMP2 multiepitope and immunogenicity in mice. Acta Biochim Biophys Sin (Shanghai) 2010; 42:515-21. [PMID: 20705592 DOI: 10.1093/abbs/gmq054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human papillomavirus (HPV) major capsid protein L1 is an important vehicle for the delivery of epitopes. To investigate the expression and immunogenicity of hybridized HPV6b L1 containing multiepitope of Epstein-Barr virus (EBV) latency membrane protein 2 (LMP2), a recombinant plasmid pcDNA3.1(+) containing mammalian codon-optimization HPV6b L1 gene and EBV LMP2 multiepitope was constructed. The EBV LMP2 multiepitope containing T- and B-cell epitope-rich peptides was inserted into C-terminal of HPV6b L1-coding sequence. The constructed plasmid after verified by enzyme restriction assay and DNA sequencing was transfected into COS-7 cells. Expression of the chimeric gene in COS-7 cells was confirmed by RT-PCR, western blot analysis and immunofluorescence assay. Results revealed successful expression of the chimeric HPV6b L1/EBV LMP2 multiepitope gene both at the mRNA and protein levels in transfected COS-7 cells. Intramuscular administration in mice was able to elicit not only antibodies against HPV6b L1 virus-like particle and EBV LMP2, but also cytotoxic T lymphocyte activity against the EBV LMP2 epitopes. The present results confirmed that HPV L1 protein is potential to deliver multiepitope of EBV LMP2 as immunogen to the MHC class I and class II pathways, extending the use of HPV L1 as delivery vehicles.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Blotting, Western
- COS Cells
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Capsid Proteins/metabolism
- Cell Survival/immunology
- Chlorocebus aethiops
- Cytotoxicity, Immunologic/immunology
- Enzyme-Linked Immunosorbent Assay
- Epitopes/genetics
- Epitopes/immunology
- Epitopes/metabolism
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/metabolism
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Fluorescent Antibody Technique
- Gene Expression
- Human papillomavirus 6/genetics
- Human papillomavirus 6/metabolism
- Immunization/methods
- Injections, Intramuscular
- Mice
- Mice, Inbred BALB C
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/immunology
- Oncogene Proteins, Viral/metabolism
- Plasmids/administration & dosage
- Plasmids/genetics
- Plasmids/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes, Cytotoxic/immunology
- Transfection
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/immunology
- Viral Matrix Proteins/metabolism
Collapse
Affiliation(s)
- Shanli Zhu
- Department of Microbiology and Immunology, Wenzhou Medical College, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Generation of a tumor vaccine candidate based on conjugation of a MUC1 peptide to polyionic papillomavirus virus-like particles. Cancer Immunol Immunother 2010; 59:1685-96. [PMID: 20652244 DOI: 10.1007/s00262-010-0895-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 07/07/2010] [Indexed: 12/12/2022]
Abstract
Virus-like particles (VLPs) are promising vaccine technology due to their safety and ability to elicit strong immune responses. Chimeric VLPs can extend this technology to low immunogenicity foreign antigens. However, insertion of foreign epitopes into the sequence of self-assembling proteins can have unpredictable effects on the assembly process. We aimed to generate chimeric bovine papillomavirus (BPV) VLPs displaying a repetitive array of polyanionic docking sites on their surface. These VLPs can serve as platform for covalent coupling of polycationic fusion proteins. We generated baculoviruses expressing chimeric BPV L1 protein with insertion of a polyglutamic-cysteine residue in the BC, DE, HI loops and the H4 helix. Expression in insect cells yielded assembled VLPs only from insertion in HI loop. Insertion in DE loop and H4 helix resulted in partially formed VLPs and capsomeres, respectively. The polyanionic sites on the surface of VLPs and capsomeres were decorated with a polycationic MUC1 peptide containing a polyarginine-cysteine residue fused to 20 amino acids of the MUC1 tandem repeat through electrostatic interactions and redox-induced disulfide bond formation. MUC1-conjugated fully assembled VLPs induced robust activation of bone marrow-derived dendritic cells, which could then present MUC1 antigen to MUC1-specific T cell hybridomas and primary naïve MUC1-specific T cells obtained from a MUC1-specific TCR transgenic mice. Immunization of human MUC1 transgenic mice, where MUC1 is a self-antigen, with the VLP vaccine induced MUC1-specific CTL, delayed the growth of MUC1 transplanted tumors and elicited complete tumor rejection in some animals.
Collapse
|
29
|
Federico M. Virus-like particles show promise as candidates for new vaccine strategies. Future Virol 2010. [DOI: 10.2217/fvl.10.29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Maurizio Federico
- National AIDS Center, Division of Pathogenesis of Retroviruses, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
30
|
Abstract
Much progress has been made in the prevention and therapy of premalignant and malignant dysplasia caused by human papillomavirus by encouraging screening programs and recently by introducing preventive vaccines. To further reduce the worldwide burden of HPV-associated cancer supplementation of the established therapies with immunotherapeutic methods would have the potential for significant impact. Dysplastic epithelial lesions and cancer of the anogenital and the oropharyngeal region show strong association with HPV. Therefore cervical carcinoma and HPV-associated squamous cell carcinoma of the head and neck differ from most other malignancies in that they harbour HPV-derived antigens. Expression of the viral oncogenes is mandatory to maintain the cancerous phenotype. These antigens are unique to the tumour and attractive targets for "proof of concept" studies in the development of therapeutic vaccines showing the general applicability of tumour vaccination and prove the correlation of immune response and clinical response. To date numerous clinical trials have been performed with candidate vaccines predominantly testing the efficacy for cervical cancer and its precursors. Although a naturally induced anti-HPV T cell response in patients was shown, clinical success of therapeutic vaccines was sparse. This may be attributed to immunosuppression, immunoselection, and immunoediting by the tumour cells. Factors of the individual that led to the failure of autonomous clearance of the initial infection may also contribute. Overriding this failure, reversing immunosuppression and application of vaccines in early stages of the disease is the key task for the future. The aim of this article is to summarize recent developments of therapeutic vaccines and discuss obstacles that hinder their success.
Collapse
|
31
|
Fu J, Bian G, Zhao B, Dong Z, Sun X, Chen F, Ou L, Song H. Enhancing efficacy and mucosa-tropic distribution of an oral HIV-PsV DNA vaccine in animal models. J Drug Target 2010; 17:803-12. [PMID: 19863197 DOI: 10.3109/10611860903089768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A strategy combined the oral delivery route and bovine papillomavirus (BPV) pseudovirus (PsV)-based human immunodeficiency virus (HIV) DNA vaccine, which has been proven to enhance the mucosal immunization compared with the systemic immunization and in general does not induce effective mucosal immune responses. In this study, the immune responses against the BPV expressing HIV gp41 epitopes (ELDKWA, NWFDIT) after oral administration in Cynomolgus monkeys (Macaca fascicularis) were assessed, and the biodistribution of plasmid DNA encapsulated in the papillomavirus-like particles (VLPs) were evaluated in murine models. Results showed that oral immunization with the HIV-PsV DNA vaccine in monkey generated p24 and gp41 epitopes-specific serum IgG. Importantly, these induced antibodies had been shown to neutralize HIV-1 primary strain. In addition, the advantage of VLPs as vehicles delivering genes had been first revealed in biodistribution results. Therefore, orally administered HIV-PsV DNA vaccine was well-tolerated, enhanced the mucosa targeting property of the plasmid DNA, and reduced the nontargeting distribution, which indicate that it would reduce stress associated with systemic vaccination.
Collapse
Affiliation(s)
- Jie Fu
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Nieto K, Kern A, Leuchs B, Gissmann L, Müller M, Kleinschmidt JA. Combined prophylactic and therapeutic intranasal vaccination against human papillomavirus type-16 using different adeno-associated virus serotype vectors. Antivir Ther 2010; 14:1125-37. [PMID: 20032542 DOI: 10.3851/imp1469] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Cervical cancer is the second most frequent cancer among woman worldwide and is considered to be caused by infection with high-risk papilloma viruses. Genetic immunization using recombinant adeno-associated virus (rAAV) vectors has shown great promise for vaccination against human papillomavirus (HPV) infections. METHODS rAAV5, -8 and -9 vectors expressing an HPV16 L1/E7 fusion gene were generated and applied intranasally for combined prophylactic and therapeutic vaccination of mice. RESULTS The rAAV5 and the rAAV9 vectors showed efficient induction of both humoral and cellular immune responses, whereas rAAV8 failed to immunize mice by the intranasal route. The L1-specific immune response evoked by expression of the L1/E7 fusion gene, however, was lower than that evoked by expression of the L1 antigen alone. This deficiency could be compensated by application of Escherichia coli heat-labile enterotoxin or monophsphoryl lipid as adjuvant upon vaccination with rAAV5-L1/E7. Coimmunization of rAAV9-L1/E7 with rAAV5-L1 or boosting of rAAV9-L1/E7 with rAAV5-L1 strongly increased L1-specific neutralizing antibody titres to levels above those achieved by vaccination with vectors expressing L1 alone. Both vectors elicited a vibrant cytotoxic T-lymphocyte response against L1 or E7. Nasal immunization with rAAV5 or rAAV9 was superior to vaccination with HPV16-L1 virus-like particles (VLPs) or HPV16-L1/E7 CVLPs with respect to humoral and cellular immune responses. Vaccination with the rAAV vectors led to a significant protection of animals against a challenge with different HPV tumour cell lines. CONCLUSIONS Our results show that rAAV5 and rAAV9 vectors are promising candidates for a non-invasive nasal vaccination strategy.
Collapse
Affiliation(s)
- Karen Nieto
- Infection and Cancer Research Program, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Withdrawn: Enhancing efficacy and mucosa-tropic distribution of an oral HIV-PsV DNA vaccine in animal models. J Drug Target 2009; 18:78. [PMID: 20001573 DOI: 10.3109/10611860903509661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Senger T, Schädlich L, Textor S, Klein C, Michael KM, Buck CB, Gissmann L. Virus-like particles and capsomeres are potent vaccines against cutaneous alpha HPVs. Vaccine 2009; 28:1583-93. [PMID: 20003923 DOI: 10.1016/j.vaccine.2009.11.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/09/2009] [Accepted: 11/18/2009] [Indexed: 01/10/2023]
Abstract
The potential as prophylactic vaccines of L1-based particles from cutaneous genus alpha human papillomavirus (HPV) types has not been assessed so far. However, there is a high medical need for such vaccines since HPV-induced skin warts represent a major burden for children and for immunocompromised adults, such as organ transplant recipients. In this study, we have examined the immunogenicity of capsomeres and virus-like particles (VLPs) from HPV types 2, 27, and 57, the most frequent causative agents of skin warts. Immunization of mice induced immune responses resembling those observed upon vaccination with HPV 16 L1-based antigens. The antibody responses were cross-reactive but type-restricted in their neutralizing capacities. Application of adjuvant led to an enhanced potential to neutralize the respective immunogen type but did not improve cross-neutralization. Vaccination with capsomeres and VLPs from all four analyzed HPV types induced robust IFNgamma-associated T-cell activation. Immunization with mixed VLPs from HPV types 2, 27, and 57 triggered an antibody response similar to that after single-type immunization and capable of efficiently neutralizing all three types. Our results imply that vaccination with combinations of VLPs from cutaneous HPV types constitutes a promising strategy to prevent HPV-induced skin lesions.
Collapse
Affiliation(s)
- Tilo Senger
- Department of Genome Modifications and Carcinogenesis, German Cancer Research Center, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
35
|
Identification of B-cell epitopes on virus-like particles of cutaneous alpha-human papillomaviruses. J Virol 2009; 83:12692-701. [PMID: 19793806 DOI: 10.1128/jvi.01582-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human papillomavirus (PV) (HPV) types 2, 27, and 57 are closely related and, hence, represent a promising model system to study the correlation of phylogenetic relationship and immunological distinctiveness of PVs. These HPV types cause a large fraction of cutaneous warts occurring in immunocompromised patients. Therefore, they constitute a target for the development of virus-like particle (VLP)-based vaccines. However, the immunogenic structure of HPV type 2, 27, and 57 capsids has not been studied yet. Here we provide, for the first time, a characterization of the B-cell epitopes on VLPs of cutaneous alpha-HPVs using a panel of 94 monoclonal antibodies (MAbs) generated upon immunization with capsids from HPV types 2, 27, and 57. The MAbs generated were characterized regarding their reactivities with glutathione S-transferase-L1 fusion proteins from 18 different PV types, the nature of their recognized epitopes, their isotypes, and their ability to neutralize HPV type 2, 27, 57, or 16. In total, 33 of the 94 MAbs (35%) showed type-specific reactivity. All type-specific MAbs recognize linear epitopes, most of which map to the hypervariable surface loop regions of the L1 amino acid sequence. Four of the generated MAbs neutralized pseudovirions of the inoculated HPV type efficiently. All four MAbs recognized epitopes within the BC loop, which is required and sufficient for their neutralizing activity. Our data highlight the immunological distinctiveness of individual HPV types, even in comparison to their closest relatives, and they provide a basis for the development of VLP-based vaccines against cutaneous alpha-HPVs.
Collapse
|
36
|
Senger T, Schädlich L, Gissmann L, Müller M. Enhanced papillomavirus-like particle production in insect cells. Virology 2009; 388:344-53. [PMID: 19409593 DOI: 10.1016/j.virol.2009.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
|
37
|
Pillai MR, Hariharan R, Babu JM, Lakshmi S, Chiplunkar SV, Patkar M, Tongaonkar H, Dinshaw K, Jayshree RS, Reddy BKM, Siddiqui M, Roychoudury S, Saha B, Abraham P, Gnanamony M, Peedicayil A, Subhashini J, Ram TS, Dey B, Sharma C, Jain SK, Singh N. Molecular variants of HPV-16 associated with cervical cancer in Indian population. Int J Cancer 2009; 125:91-103. [PMID: 19358280 DOI: 10.1002/ijc.24322] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human papilloma virus is a causative factor in the etiology of cervical cancer with HPV16 being the most prevalent genotype associated with it. Intratype variations in oncogenic E6/E7 and capsid L1 proteins of HPV 16 besides being of phylogenetic importance, are associated with risk of viral persistence and progression. The objective of this multicentric study was to identify HPV-16 E6, E7 and L1 variants prevalent in India and their possible biological effects. Squamous cell cervical cancer biopsies were collected from 6 centres in India and examined for the presence of HPV 16. Variants of HPV-16 were characterized by full length sequence analysis of L1, E6 and E7 genes in 412 samples. Similar distribution of the variants was seen from the different centres/regions, with the European variant E350G being the most prevalent (58%), followed by American Asian variant (11.4%). Fifty six changes were seen in E6 region, 31 being nonsynonymous. The most frequent being L83V (72.3%), Q14H (13.1%) and H78Y (12.1%). Twenty-nine alterations were seen in E7 region, with 12 being nonsynonymous. The most frequent being F57V (9%). L1 region showed 204 changes, of which 67 were nonsynonymous. The most frequent being 448insS (100%), and 465delD (100%), H228D (94%), T292A (85%). The identified variants some new and some already reported can disrupt pentamer formation, transcriptional regulation of the virus, L1 protein interface interaction, B and T cell epitopes, p53 degradation, and thus their distribution is important for development of HPV diagnostics, vaccine, and for therapeutic purpose.
Collapse
Affiliation(s)
- M R Pillai
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Analysis of modified human papillomavirus type 16 L1 capsomeres: the ability to assemble into larger particles correlates with higher immunogenicity. J Virol 2009; 83:7690-705. [PMID: 19457985 DOI: 10.1128/jvi.02588-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
L1 capsomeres purified from Escherichia coli represent an economic alternative to the recently launched virus-like particle (VLP)-based prophylactic vaccines against infection with human papillomavirus types 16 and 18 (HPV-16 and HPV-18), which are causative agents of cervical cancer. It was recently reported that capsomeres are much less immunogenic than VLPs. Numerous modifications of the L1 protein leading to the formation of capsomeres but preventing capsid assembly have been described, such as the replacement of the cysteine residues that form capsid-stabilizing disulfide bonds or the deletion of helix 4. So far, the influence of these modifications on immunogenicity has not been thoroughly investigated. Here, we describe the purification of eight different HPV-16 L1 proteins as capsomeres from Escherichia coli. We compared them for yield, structure, and immunogenicity in mice. All L1 proteins formed almost identical pentameric structures yet differed strongly in their immunogenicity, especially regarding the humoral immune responses. Immunization of TLR4(-/-) mice and DNA immunization by the same constructs confirmed that immunogenicity was independent of different degrees of contamination with copurifying immune-stimulatory molecules from E. coli. We hypothesize that immunogenicity correlates with the intrinsic ability of the capsomeres to assemble into larger particles, as only assembly-competent L1 proteins induced high antibody responses. One of the proteins (L1DeltaN10) proved to be the most immunogenic, inducing antibody titers equivalent to those generated in response to VLPs. However, preassembly prior to injection did not increase immunogenicity. Our data suggest that certain L1 constructs can be used to produce highly immunogenic capsomeres in bacteria as economic alternatives to VLP-based formulations.
Collapse
|
39
|
Stahl-Hennig C, Eisenblätter M, Jasny E, Rzehak T, Tenner-Racz K, Trumpfheller C, Salazar AM, Überla K, Nieto K, Kleinschmidt J, Schulte R, Gissmann L, Müller M, Sacher A, Racz P, Steinman RM, Uguccioni M, Ignatius R. Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques. PLoS Pathog 2009; 5:e1000373. [PMID: 19360120 PMCID: PMC2660151 DOI: 10.1371/journal.ppat.1000373] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 03/10/2009] [Indexed: 01/12/2023] Open
Abstract
Toll-like receptor (TLR) ligands are being considered as adjuvants for the induction of antigen-specific immune responses, as in the design of vaccines. Polyriboinosinic-polyribocytoidylic acid (poly I:C), a synthetic double-stranded RNA (dsRNA), is recognized by TLR3 and other intracellular receptors. Poly ICLC is a poly I:C analogue, which has been stabilized against the serum nucleases that are present in the plasma of primates. Poly I:C12U, another analogue, is less toxic but also less stable in vivo than poly I:C, and TLR3 is essential for its recognition. To study the effects of these compounds on the induction of protein-specific immune responses in an animal model relevant to humans, rhesus macaques were immunized subcutaneously (s.c.) with keyhole limpet hemocyanin (KLH) or human papillomavirus (HPV)16 capsomeres with or without dsRNA or a control adjuvant, the TLR9 ligand CpG-C. All dsRNA compounds served as adjuvants for KLH-specific cellular immune responses, with the highest proliferative responses being observed with 2 mg/animal poly ICLC (p = 0.002) or 6 mg/animal poly I:C12U (p = 0.001) when compared with immunization with KLH alone. Notably, poly ICLC—but not CpG-C given at the same dose—also helped to induce HPV16-specific Th1 immune responses while both adjuvants supported the induction of strong anti-HPV16 L1 antibody responses as determined by ELISA and neutralization assay. In contrast, control animals injected with HPV16 capsomeres alone did not develop substantial HPV16-specific immune responses. Injection of dsRNA led to increased numbers of cells producing the T cell–activating chemokines CXCL9 and CXCL10 as detected by in situ hybridization in draining lymph nodes 18 hours after injections, and to increased serum levels of CXCL10 (p = 0.01). This was paralleled by the reduced production of the homeostatic T cell–attracting chemokine CCL21. Thus, synthetic dsRNAs induce an innate chemokine response and act as adjuvants for virus-specific Th1 and humoral immune responses in nonhuman primates. Novel adjuvants that facilitate the induction of strong cellular immunity could be of help in the design of vaccine strategies to combat infections such as HIV or tuberculosis. Our immune cells possess archaic receptors recognizing structures of infectious pathogens, and the interaction of these receptors with their ligands results in an activation of the immune system. Here we exploited synthetic forms of one of these ligands, i.e., dsRNA, to define an adjuvant for the induction of cellular immune responses in primates. We injected model and viral proteins together with three different forms of dsRNA subcutaneously (s.c.) in rhesus macaques, and all compounds served as adjuvants for the induction of cellular immunity without the incidence of major side effects. These adjuvant effects depended on the adjuvant dose and coincided with profound alterations in the chemokine production in the draining lymph nodes. dsRNA also helped to induce cellular and humoral immune responses against capsomeres of low immunogenicity derived from the human papillomavirus 16, the causative agent in about 50% of all cases of cervical cancer worldwide. Therefore, formulations involving synthetic dsRNA are promising candidates for development of novel vaccines.
Collapse
Affiliation(s)
| | - Martin Eisenblätter
- Institute of Microbiology and Hygiene, Department of Infection Immunology, Charité–University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm, Berlin, Germany
| | - Edith Jasny
- Institute of Microbiology and Hygiene, Department of Infection Immunology, Charité–University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm, Berlin, Germany
| | - Tamara Rzehak
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | | | - Christine Trumpfheller
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York, United States of America
| | | | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Karen Nieto
- Infection and Cancer Research Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Kleinschmidt
- Infection and Cancer Research Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Reiner Schulte
- Laboratory of Infection Models, German Primate Center, Göttingen, Germany
| | - Lutz Gissmann
- Infection and Cancer Research Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Martin Müller
- Infection and Cancer Research Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Sacher
- Infection and Cancer Research Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Racz
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ralph M. Steinman
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York, United States of America
| | | | - Ralf Ignatius
- Institute of Microbiology and Hygiene, Department of Infection Immunology, Charité–University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm, Berlin, Germany
- * E-mail:
| |
Collapse
|
40
|
Li W, Liu H, Yang X, Zheng J, Wang Y, Si L. Development of prophylactic recombinant HPV58-attenuated Shigella live vector vaccine and evaluation of its protective efficacy and immunogenicity in the guinea pig keratoconjunctivitis model. Acta Biochim Biophys Sin (Shanghai) 2009; 41:137-45. [PMID: 19204831 DOI: 10.1093/abbs/gmn016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To develop a prophylactic recombinant HPV58L1-attenuated Shigella live vector vaccine and evaluate its protective efficacy and immunogenicity in the guinea pig keratoconjunctivitis model, the HPV58L1 gene was cloned into vector pUCmt, and then subcloned into the suicide vector pCVD442. The recombinant plasmid pCVD442-HPV58L1 was introduced into attenuated Shigella (sf301:deltavirG) with the helper plasmid PRK2013 by filter mating. The positive colonies were harvested and confirmed by polymerase chain reaction. The expression of the HPV58L1 protein with a molecular weight of 60 kDa was confirmed by western blot. The ability of the interested protein to self-assemble into virus-like particles was identified by transmission electron microscope, and murine erythrocyte hemagglutination assay. The guinea pig keratoconjunctivitis model was used to evaluate the protective efficacy and immunogenicity of the vaccine. Animal experiments showed that there was no keratoconjunctivitis occurred in the immunized group (HPV58-attenuated Shigella), and the serum levels of anti-HPV58L1-IgG and -IgA were obviously increased (P < 0.05), but the anti-sf301 LPS-IgG just slightly increased (P > 0.05). Enzymelinked immunosorbent spot assay showed that HPV58L1-specific IgA-antibody-secreting cells (ASC) and IgG-ASC of spleen and lymph nodes were also obviously increased (P < 0.01). In this study, a recombinant HPV58L1-attenuated Shigella live vector vaccine was successfully constructed, and it could induce strong humoral immune responses in the immunized animals, and induce protective antibody production.
Collapse
MESH Headings
- Animals
- Antibody-Producing Cells/immunology
- Base Sequence
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- DNA Primers/genetics
- Disease Models, Animal
- Enterobacteriaceae Infections/immunology
- Enterobacteriaceae Infections/prevention & control
- Genetic Vectors
- Guinea Pigs
- HeLa Cells
- Humans
- In Vitro Techniques
- Keratoconjunctivitis, Infectious/immunology
- Keratoconjunctivitis, Infectious/prevention & control
- Mice
- Mice, Inbred C57BL
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/immunology
- Papillomaviridae/genetics
- Papillomaviridae/immunology
- Shigella/immunology
- Shigella/pathogenicity
- Shigella Vaccines/genetics
- Shigella Vaccines/immunology
- Shigella Vaccines/isolation & purification
- Shigella Vaccines/pharmacology
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Attenuated/pharmacology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
- Vaccines, Synthetic/pharmacology
Collapse
Affiliation(s)
- Wensheng Li
- Shaanxi Provincial People's Hospital, The Third Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
41
|
Lepique AP, Rabachini T, Villa LL. HPV vaccination: the beginning of the end of cervical cancer? - A Review. Mem Inst Oswaldo Cruz 2009; 104:1-10. [DOI: 10.1590/s0074-02762009000100001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 02/13/2009] [Indexed: 12/25/2022] Open
|
42
|
Paz De la Rosa G, Monroy-García A, Mora-García MDL, Peña CGR, Hernández-Montes J, Weiss-Steider B, Gómez-Lim MA. An HPV 16 L1-based chimeric human papilloma virus-like particles containing a string of epitopes produced in plants is able to elicit humoral and cytotoxic T-cell activity in mice. Virol J 2009; 6:2. [PMID: 19126233 PMCID: PMC2639544 DOI: 10.1186/1743-422x-6-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 01/06/2009] [Indexed: 11/30/2022] Open
Abstract
Background Even though two prophylactic vaccines against HPV are currently licensed, infections by the virus continue to be a major health problem mainly in developing countries. The cost of the vaccines limits wide-scale application in poor countries. A promising strategy for producing affordable and efficient vaccines involves the expression of recombinant immunogens in plants. Several HPV genes have been expressed in plants, including L1, which can self-assemble into virus-like particles. A plant-based, dual prophylactic/therapeutic vaccine remains an attractive possibility. Results We sought to express in tomato plants chimeric HPV 16 VLPs containing L1 fused to a string of epitopes from HPV 16 E6 and E7 proteins. The L1 employed had been modified to eliminate a strong inhibitory region at the 5' end of the molecule to increase expression levels. Several tomato lines were obtained expressing either L1 alone or L1-E6/E7 from 0.05% to 0.1% of total soluble protein. Stable integration of the transgenes was verified by Southern blot. Northern and western blot revealed successful expression of the transgenes at the mRNA and protein level. The chimeric VLPs were able to assemble adequately in tomato cells. Intraperitoneal administration in mice was able to elicit both neutralizing antibodies against the viral particle and cytotoxic T-lymphocytes activity against the epitopes. Conclusion In this work, we report for the first time the expression in plants of a chimeric particle containing the HPV 16 L1 sequence and a string of T-cell epitopes from HPV 16 E6 and E7 fused to the C-terminus. The particles were able to induce a significant antibody and cytotoxic T-lymphocytes response. Experiments in vivo are in progress to determine whether the chimeric particles are able to induce regression of disease and resolution of viral infection in mice. Chimeric particles of the type described in this work may potentially be the basis for developing prophylactic/therapeutic vaccines. The fact that they are produced in plants, may lower production costs considerably.
Collapse
Affiliation(s)
- Georgina Paz De la Rosa
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Unidad Irapuato, Km, 9,6 Libramiento Norte, 36500 Carretera Irapuato-León, Irapuato, Guanajuato, Mexico.
| | | | | | | | | | | | | |
Collapse
|
43
|
Stanley M, Gissmann L, Nardelli-Haefliger D. Immunobiology of human papillomavirus infection and vaccination - implications for second generation vaccines. Vaccine 2008; 26 Suppl 10:K62-7. [PMID: 18847558 DOI: 10.1016/j.vaccine.2008.05.066] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prophylactic human papillomavirus (HPV) L1 virus like particle (VLP) vaccines have been shown, in large clinical trials, to be very immunogenic, well-tolerated and highly efficacious against genital disease caused by the vaccine HPV types. However these vaccines, at the present, protect against only two of the 15 oncogenic genital HPV types, they are expensive, delivered by intramuscular injection and require a cold chain. The challenges are to develop cheap, thermo-stable vaccines that can be delivered by non-injectable methods that provide long term (decades) protection at mucosal surfaces to most, if not all, oncogenic HPV types that is as good as the current VLP vaccines. Current approaches include L1 capsomers, L2 protein and peptides, delivery via recombinant L1 bacterial and viral vectors and large-scale VLP production in plants. Rational design and successful development of such vaccines will be based on an understanding of the immune response, and particularly the 'cross talk' between the innate and adaptive responses. This will be central in the development of adjuvants and vaccine formulations that induce the response to provide effective protection.
Collapse
Affiliation(s)
- Margaret Stanley
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
| | | | | |
Collapse
|
44
|
Lenzi P, Scotti N, Alagna F, Tornesello ML, Pompa A, Vitale A, De Stradis A, Monti L, Grillo S, Buonaguro FM, Maliga P, Cardi T. Translational fusion of chloroplast-expressed human papillomavirus type 16 L1 capsid protein enhances antigen accumulation in transplastomic tobacco. Transgenic Res 2008; 17:1091-1102. [PMID: 18491213 DOI: 10.1007/s11248-008-9186-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 04/29/2008] [Indexed: 01/12/2023]
Abstract
Human Papillomavirus (HPV) is the causal agent of cervical cancer, one of the most common causes of death for women. The major capsid L1 protein self-assembles in Virus Like Particles (VLPs), which are highly immunogenic and suitable for vaccine production. In this study, a plastid transformation approach was assessed in order to produce a plant-based HPV-16 L1 vaccine. Transplastomic plants were obtained after transformation with vectors carrying a chimeric gene encoding the L1 protein either as the native viral (L1(v) gene) or a synthetic sequence optimized for expression in plant plastids (L1(pt) gene) under control of plastid expression signals. The L1 mRNA was detected in plastids and the L1 antigen accumulated up to 1.5% total leaf proteins only when vectors included the 5'-UTR and a short N-terminal coding segment (Downstream Box) of a plastid gene. The half-life of the engineered L1 protein, determined by pulse-chase experiments, is at least 8 h. Formation of immunogenic VLPs in chloroplasts was confirmed by capture ELISA assay using antibodies recognizing conformational epitopes and by electron microscopy.
Collapse
Affiliation(s)
- Paolo Lenzi
- CNR-IGV, Institute of Plant Genetics-Research Division Portici, via Università 133, 80055 Portici, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Expression of human papilloma virus type 16 antigens, specific targeting as well as formation of virus-like particles by HSV-1 amplicon vectors. Virus Genes 2008; 37:131-43. [DOI: 10.1007/s11262-008-0247-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 05/26/2008] [Indexed: 11/25/2022]
|
46
|
Human papillomavirus type 16 L1E7 chimeric capsomeres have prophylactic and therapeutic efficacy against papillomavirus in mice. Mol Cancer Ther 2008; 7:1329-35. [DOI: 10.1158/1535-7163.mct-07-2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
A direct comparison of human papillomavirus type 16 L1 particles reveals a lower immunogenicity of capsomeres than viruslike particles with respect to the induced antibody response. J Virol 2008; 82:5472-85. [PMID: 18385253 DOI: 10.1128/jvi.02482-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Capsomeres are considered to be an alternative to viruslike particle (VLP)-based vaccines as they can be produced in prokaryotic expression systems. So far, no detailed side-by-side comparison of VLPs and capsomeres has been performed. In the present study, we immunized mice with insect cell-derived human papillomavirus type 16 VLPs and capsomeres. VLPs induced consistently higher antibody titers than capsomeres but the two forms induced similar CD8 T-cell responses after subcutaneous, intranasal, and oral immunization, and at least 20 to 40 times more L1 in the form of capsomeres than in the form of VLPs was needed to achieve comparable antibody responses. These results were confirmed by DNA immunization. The lower immunogenicity of capsomeres was independent of the isotype switch, as it was also observed for the early immunoglobulin M responses. Although there were differences in the display of surface epitopes between the L1 particles, these did not contribute significantly to the differences in the immune responses. capsomeres were less immunogenic than VLPs in Toll-like receptor 4 (TLR4)-deficient mice, suggesting that the lower immunogenicity is not due to a failure of capsomeres to trigger TLR4. We observed better correlation between antibody results from enzyme-linked immunosorbent assays and neutralization assays for sera from VLP-immunized mice than for sera from capsomere-immunized mice, suggesting qualitative differences between VLPs and capsomeres. We also showed that the lower immunogenicity of capsomeres could be compensated by the use of an adjuvant system containing MPL. Taken together, these results suggest that, presumably because of the lower degree of complexity of the antigen organization, capsomeres are significantly less immunogenic than VLPs with respect to the humoral immune response and that this characteristic should be considered in the design of putative capsomere-based prophylactic vaccines.
Collapse
|
48
|
Rizk RZ, Christensen ND, Michael KM, Müller M, Sehr P, Waterboer T, Pawlita M. Reactivity pattern of 92 monoclonal antibodies with 15 human papillomavirus types. J Gen Virol 2008; 89:117-129. [PMID: 18089735 DOI: 10.1099/vir.0.83145-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most anti-human papillomavirus (HPV) capsid antibody assays are based on virus-like particles (VLP). We evaluated glutathione S-transferase (GST)-L1 fusion proteins as ELISA antigens for determining type specificity and cross-reactivity of 92 VLP-specific monoclonal antibodies (mAb) generated against nine mucosal alpha papillomavirus types of species 7, 9 and 10. The antibody panel included 25 new mAb, and 24 previously published mAb are further characterized. We determined the cross-reactivity patterns with 15 different HPV types representing 6 species (alpha1, 2, 4, 7, 9 and 10) and neutralization and cross-neutralization properties with HPV types 6, 11, 16, 18 and 45. Eighty-nine (97 %) of the antibodies including 34, 71 and 14 recognizing neutralizing, conformational and linear epitopes, respectively, reacted with the GST-L1 protein of the HPV type used as immunogen, with log titres ranging from 2.0 to 7.3. Of these 89 antibodies, 52 % were monotypic, 20 % showed intra-species and 28 % inter-species cross-reactivity. Log neutralization titres to the immunogen HPV ranged from 1.7 to 5.6. A single cross-neutralizing mAb (H6.L12) was found. ELISA titres were always higher than neutralization titres. All neutralizing epitopes were conformational and mostly type-specific. Our data show that bacterially expressed, affinity-purified GST-L1 fusion proteins display a broad variety of epitopes and thus are well suited for detection of HPV antibodies. Cross-reactivity is associated with linear as well as conformational epitopes. Distantly related mucosal and skin alpha papillomaviruses share some conformational epitopes and the phylogenetic L1-based species definition may not define a serological unit since no species-specific epitope was found.
Collapse
Affiliation(s)
- Raeda Z Rizk
- Department of Genome Modifications and Cancer, Infection and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Neil D Christensen
- Departments of Pathology and Microbiology and Immunology, The Jake Gittlen Cancer Research Foundation, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Kristina M Michael
- Department of Genome Modifications and Cancer, Infection and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Martin Müller
- Department of Genome Modifications and Cancer, Infection and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Peter Sehr
- Department of Genome Modifications and Cancer, Infection and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Tim Waterboer
- Department of Genome Modifications and Cancer, Infection and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Michael Pawlita
- Department of Genome Modifications and Cancer, Infection and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| |
Collapse
|
49
|
Mattil-Fritz S, Scharner D, Piuko K, Thönes N, Gissmann L, Müller H, Müller M. Immunotherapy of equine sarcoid: dose-escalation trial for the use of chimeric papillomavirus-like particles. J Gen Virol 2008; 89:138-147. [PMID: 18089737 DOI: 10.1099/vir.0.83266-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Equine sarcoids are fibrosarcoma-like skin tumours with a prevalence of approximately 1-2 %. Strong evidence exists for a causative role of bovine papillomavirus (BPV) type 1 or type 2 in the development of sarcoids. No effective treatment of equine sarcoid is available and after surgical excision relapse of the tumours is very frequent. We developed chimeric virus-like particles (CVLPs) of BPV 1 L1-E7 for the immunotherapy of equine sarcoid. In a phase I clinical trial 12 horses suffering from equine sarcoid with an average number of more than 22 tumours per animal were vaccinated in a dose-escalation setting. The animals were followed-up for 63 days, eight of the twelve horses were followed-up for more than a year and side-effects, humoral immune responses and tumour appearance were recorded. BPV DNA was detected in tumours of 11 cases. CVLPs were well tolerated in all dose groups, a robust anti-L1 antibody response was induced in all but one of the horses. Anti-E7 antibodies were detected in five of the 12 animals at low titres. Two animals showed a clear improvement of the clinical status after treatment, i.e. the number of the tumours per horse was reduced. In another horse regression of five sarcoids was observed; three of them relapsed during the study. Two animals showed tumour regression as well as growth of new sarcoids. In two horses the clinical status remained unchanged, in another two horses growth of existing tumours or growth of additional tumours was observed. The remaining three animals showed simultaneously regression and growth of existing tumours. Neither the humoral immune responses nor the observed effects on the tumours was correlated with the dose group.
Collapse
Affiliation(s)
- Stephanie Mattil-Fritz
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Doreen Scharner
- Universität Leipzig, Veterinärmedizinische Fakultät, Chirurgische Tierklinik, Leipzig, Germany
| | - Konrad Piuko
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Nadja Thönes
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Lutz Gissmann
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Hermann Müller
- Universität Leipzig, Veterinärmedizinische Fakultät, Institut für Virologie Leipzig, Germany
| | - Martin Müller
- Deutsches Krebsforschungszentrum, Forschungsschwerpunkt Angewandte Tumorvirologie, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| |
Collapse
|
50
|
Windram OP, Weber B, Jaffer MA, Rybicki EP, Shepherd DN, Varsani A. An investigation into the use of human papillomavirus type 16 virus-like particles as a delivery vector system for foreign proteins: N- and C-terminal fusion of GFP to the L1 and L2 capsid proteins. Arch Virol 2008; 153:585-9. [PMID: 18175039 DOI: 10.1007/s00705-007-0025-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
Development of vaccine strategies against human papillomavirus (HPV), which causes cervical cancer, is a priority. We investigated the use of virus-like particles (VLPs) of the most prevalent type, HPV-16, as carriers of foreign proteins. Green fluorescent protein (GFP) was fused to the N or C terminus of both L1 and L2, with L2 chimeras being co-expressed with native L1. Purified chimaeric VLPs were comparable in size ( approximately 55 nm) to native HPV VLPs. Conformation-specific monoclonal antibodies (Mabs) bound to the VLPs, thereby indicating that they possibly retain their antigenicity. In addition, all of the VLPs encapsidated DNA in the range of 6-8 kb.
Collapse
Affiliation(s)
- Oliver P Windram
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
| | | | | | | | | | | |
Collapse
|