1
|
Malausse N, van der Werf S, Naffakh N, Munier S. Influenza B Virus Infection Is Enhanced Upon Heterotypic Co-infection With Influenza A Virus. Front Microbiol 2021; 12:631346. [PMID: 33717023 PMCID: PMC7947630 DOI: 10.3389/fmicb.2021.631346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Homotypic co-infections with influenza viruses are described to increase genetic population diversity, to drive viral evolution and to allow genetic complementation. Less is known about heterotypic co-infections between influenza A (IAV) and influenza B (IBV) viruses. Previous publications showed that IAV replication was suppressed upon co-infection with IBV. However, the effect of heterotypic co-infections on IBV replication was not investigated. To do so, we produced by reverse genetics a pair of replication-competent recombinant IAV (A/WSN/33) and IBV (B/Brisbane/60/2008) expressing a GFP and mCherry fluorescent reporter, respectively. A549 cells were infected simultaneously or 1 h apart at a high MOI with IAV-GFP or IBV-mCherry and the fluorescence was measured at 6 h post-infection by flow cytometry. Unexpectedly, we observed that IBV-mCherry infection was enhanced upon co-infection with IAV-GFP, and more strongly so when IAV was added 1 h prior to IBV. The same effect was observed with wild-type viruses and with various strains of IAV. Using UV-inactivated IAV or type-specific antiviral compounds, we showed that the enhancing effect of IAV infection on IBV infection was dependent on transcription/replication of the IAV genome. Our results, taken with available data in the literature, support the hypothesis that the presence of IAV proteins can enhance IBV genome expression and/or complement IBV defective particles.
Collapse
Affiliation(s)
- Nicolas Malausse
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France.,Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Sylvie van der Werf
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
| | - Nadia Naffakh
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
| | - Sandie Munier
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
| |
Collapse
|
2
|
Carrique L, Fan H, Walker AP, Keown JR, Sharps J, Staller E, Barclay WS, Fodor E, Grimes JM. Host ANP32A mediates the assembly of the influenza virus replicase. Nature 2020; 587:638-643. [PMID: 33208942 PMCID: PMC7116770 DOI: 10.1038/s41586-020-2927-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022]
Abstract
Aquatic birds represent a vast reservoir from which new pandemic influenza A viruses can emerge1. Influenza viruses contain a negative-sense segmented RNA genome that is transcribed and replicated by the viral heterotrimeric RNA polymerase (FluPol) in the context of viral ribonucleoprotein complexes2,3. RNA polymerases of avian influenza A viruses (FluPolA) replicate viral RNA inefficiently in human cells because of species-specific differences in acidic nuclear phosphoprotein 32 (ANP32), a family of essential host proteins for FluPol activity4. Host-adaptive mutations, particularly a glutamic-acid-to-lysine mutation at amino acid residue 627 (E627K) in the 627 domain of the PB2 subunit, enable avian FluPolA to overcome this restriction and efficiently replicate viral RNA in the presence of human ANP32 proteins. However, the molecular mechanisms of genome replication and the interplay with ANP32 proteins remain largely unknown. Here we report cryo-electron microscopy structures of influenza C virus polymerase (FluPolC) in complex with human and chicken ANP32A. In both structures, two FluPolC molecules form an asymmetric dimer bridged by the N-terminal leucine-rich repeat domain of ANP32A. The C-terminal low-complexity acidic region of ANP32A inserts between the two juxtaposed PB2 627 domains of the asymmetric FluPolA dimer, suggesting a mechanism for how the adaptive PB2(E627K) mutation enables the replication of viral RNA in mammalian hosts. We propose that this complex represents a replication platform for the viral RNA genome, in which one of the FluPol molecules acts as a replicase while the other initiates the assembly of the nascent replication product into a viral ribonucleoprotein complex.
Collapse
Affiliation(s)
- Loïc Carrique
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Haitian Fan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Jeremy R Keown
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Jane Sharps
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ecco Staller
- Section of Molecular Virology, Imperial College London, London, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Wendy S Barclay
- Section of Molecular Virology, Imperial College London, London, UK
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Jonathan M Grimes
- Division of Structural Biology, University of Oxford, Oxford, UK.
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, UK.
| |
Collapse
|
3
|
Gao S, Zhang W, Lu C, Cao M, Cen S, Peng Y, Deng T. Identification of a Type-Specific Promoter Element That Differentiates between Influenza A and B Viruses. J Virol 2019; 93:e01164-19. [PMID: 31534045 PMCID: PMC6854497 DOI: 10.1128/jvi.01164-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/05/2019] [Indexed: 11/20/2022] Open
Abstract
Type A and type B influenza viruses (FluA and FluB viruses) are two major human pathogens that share common structural and functional features. FluA and FluB viruses can reassort within each type but never between the types. Here, we bioinformatically analyzed all promoter sequences of FluA and FluB viruses and confirmed the presence of the type-specific promoter elements. We then studied the promoter elements with cell-based in vivo assays and an in vitro replication initiation assay. Our results identified, for the first time, a type-specific promoter element-the nucleotide at position 5 in the 3' end of the viral RNA (vRNA)-that plays a key role(s) in modulating polymerase activity in a type-specific manner. Interestingly, swapping the promoter element between FluA and FluB recombinant viruses showed different tolerances: the replacement of FluA virus-specific U5 with FluB virus-specific C5 in influenza virus A/WSN/33 (H1N1) could be reverted to U5 after 2 to 3 passages, while the replacement of FluB virus-specific C5 with FluA virus-specific U5 in influenza virus B/Yamagata/88 could be maintained, but with significantly reduced replication efficiency. Therefore, our findings indicate that the nucleotide variation at position 5 in the 3' end of the vRNA promoter between FluA and FluB viruses contributes to their RNP incompatibility, which may shed new light on the mechanisms of intertypic exclusion of reassortment between FluA and FluB viruses.IMPORTANCE Genetic reassortment of influenza virus plays a key role in virus evolution and the emergence of pandemic strains. The reassortment occurs extensively within either FluA or FluB viruses but never between them. Here, we bioinformatically compared available promoter sequences of FluA and FluB viruses and confirmed the presence of the type-specific promoter elements. Our in vivo and in vitro mutagenesis studies showed that a type-specific promoter element-the nucleotide at position 5 in the 3' end of vRNA promoters-plays key roles in modulating polymerase activity. Interestingly, FluA and FluB viruses showed different tolerances upon key promoter element swapping in the context of virus infections. We concluded that the nucleotide at position 5 in the 3' end of the vRNA promoters of FluA and FluB viruses is a critical type-specific determinant. This work has implications for further elucidating the mechanisms of the intertypic exclusion of reassortment between FluA and FluB viruses.
Collapse
Affiliation(s)
- Shuman Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Wenyu Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Congyu Lu
- College of Biology, Hunan University, Changsha, People's Republic of China
| | - Mengmeng Cao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical School, Beijing, People's Republic of China
| | - Yousong Peng
- College of Biology, Hunan University, Changsha, People's Republic of China
| | - Tao Deng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
4
|
Chen KY, Santos Afonso ED, Enouf V, Isel C, Naffakh N. Influenza virus polymerase subunits co-evolve to ensure proper levels of dimerization of the heterotrimer. PLoS Pathog 2019; 15:e1008034. [PMID: 31581279 PMCID: PMC6776259 DOI: 10.1371/journal.ppat.1008034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/18/2019] [Indexed: 12/18/2022] Open
Abstract
The influenza A virus RNA-dependent RNA polymerase complex consists in three subunits, PB2, PB1 and PA, that perform transcription and replication of the viral genome through very distinct mechanisms. Biochemical and structural studies have revealed that the polymerase can adopt multiple conformations and form oligomers. However so far it remained unclear whether the available oligomeric crystal structures represent a functional state of the polymerase. Here we gained new insights into this question, by investigating the incompatibility between non-cognate subunits of influenza polymerase brought together through genetic reassortment. We observed that a 7:1 reassortant virus whose PB2 segment derives from the A/WSN/33 (WSN) virus in an otherwise A/PR/8/34 (PR8) backbone is attenuated, despite a 97% identity between the PR8-PB2 and WSN-PB2 proteins. Independent serial passages led to the selection of phenotypic revertants bearing distinct second-site mutations on PA, PB1 and/or PB2. The constellation of mutations present on one revertant virus was studied extensively using reverse genetics and cell-based reconstitution of the viral polymerase. The PA-E349K mutation appeared to play a major role in correcting the initial defect in replication (cRNA -> vRNA) of the PR8xWSN-PB2 reassortant. Strikingly the PA-E349K mutation, and also the PB2-G74R and PB1-K577G mutations present on other revertants, are located at a dimerization interface of the polymerase. All three restore wild-type-like polymerase activity in a minigenome assay while decreasing the level of polymerase dimerization. Overall, our data show that the polymerase subunits co-evolve to ensure not only optimal inter-subunit interactions within the heterotrimer, but also proper levels of dimerization of the heterotrimer which appears to be essential for efficient viral RNA replication. Our findings point to influenza polymerase dimerization as a feature that is controlled by a complex interplay of genetic determinants, can restrict genetic reassortment, and could become a target for antiviral drug development.
Collapse
Affiliation(s)
- Kuang-Yu Chen
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, UMR 3569 CNRS, Paris, France
- Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Vincent Enouf
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, UMR 3569 CNRS, Paris, France
- Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Unité de Génétique Moléculaire des Virus à ARN, Centre National de Référence des Virus des Infections Respiratoires, Institut Pasteur, Paris, France
- Pasteur International Bioresources network (PIBnet), Plateforme de Microbiologie Mutualisée (P2M), Institut Pasteur, Paris, France
| | - Catherine Isel
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, UMR 3569 CNRS, Paris, France
- Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nadia Naffakh
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, UMR 3569 CNRS, Paris, France
- Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
5
|
Martínez-Sobrido L, Peersen O, Nogales A. Temperature Sensitive Mutations in Influenza A Viral Ribonucleoprotein Complex Responsible for the Attenuation of the Live Attenuated Influenza Vaccine. Viruses 2018; 10:E560. [PMID: 30326610 PMCID: PMC6213772 DOI: 10.3390/v10100560] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 01/29/2023] Open
Abstract
Live attenuated influenza vaccines (LAIV) have prevented morbidity and mortality associated with influenza viral infections for many years and represent the best therapeutic option to protect against influenza viral infections in humans. However, the development of LAIV has traditionally relied on empirical methods, such as the adaptation of viruses to replicate at low temperatures. These approaches require an extensive investment of time and resources before identifying potential vaccine candidates that can be safely implemented as LAIV to protect humans. In addition, the mechanism of attenuation of these vaccines is poorly understood in some cases. Importantly, LAIV are more efficacious than inactivated vaccines because their ability to mount efficient innate and adaptive humoral and cellular immune responses. Therefore, the design of potential LAIV based on known properties of viral proteins appears to be a highly appropriate option for the treatment of influenza viral infections. For that, the viral RNA synthesis machinery has been a research focus to identify key amino acid substitutions that can lead to viral attenuation and their use in safe, immunogenic, and protective LAIV. In this review, we discuss the potential to manipulate the influenza viral RNA-dependent RNA polymerase (RdRp) complex to generate attenuated forms of the virus that can be used as LAIV for the treatment of influenza viral infections, one of the current and most effective prophylactic options for the control of influenza in humans.
Collapse
Affiliation(s)
- Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, NY 14642, USA.
| | - Olve Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, CO 80523, USA.
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, NY 14642, USA.
| |
Collapse
|
6
|
Serna Martin I, Hengrung N, Renner M, Sharps J, Martínez-Alonso M, Masiulis S, Grimes JM, Fodor E. A Mechanism for the Activation of the Influenza Virus Transcriptase. Mol Cell 2018; 70:1101-1110.e4. [PMID: 29910112 PMCID: PMC6024077 DOI: 10.1016/j.molcel.2018.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/17/2018] [Accepted: 05/08/2018] [Indexed: 12/28/2022]
Abstract
Influenza virus RNA polymerase (FluPol), a heterotrimer composed of PB1, PB2, and PA subunits (P3 in influenza C), performs both transcription and replication of the viral RNA genome. For transcription, FluPol interacts with the C-terminal domain (CTD) of RNA polymerase II (Pol II), which enables FluPol to snatch capped RNA primers from nascent host RNAs. Here, we describe the co-crystal structure of influenza C virus polymerase (FluPolC) bound to a Ser5-phosphorylated CTD (pS5-CTD) peptide. The position of the CTD-binding site at the interface of PB1, P3, and the flexible PB2 C-terminal domains suggests that CTD binding stabilizes the transcription-competent conformation of FluPol. In agreement, both cap snatching and capped primer-dependent transcription initiation by FluPolC are enhanced in the presence of pS5-CTD. Mutations of amino acids in the CTD-binding site reduce viral mRNA synthesis. We propose a model for the activation of the influenza virus transcriptase through its association with pS5-CTD of Pol II.
Collapse
Affiliation(s)
- Itziar Serna Martin
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Narin Hengrung
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Max Renner
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Jane Sharps
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Mónica Martínez-Alonso
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Simonas Masiulis
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Jonathan M Grimes
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford OX3 7BN, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
7
|
Crescenzo-Chaigne B, Barbezange CVS, Léandri S, Roquin C, Berthault C, van der Werf S. Incorporation of the influenza A virus NA segment into virions does not require cognate non-coding sequences. Sci Rep 2017; 7:43462. [PMID: 28240311 PMCID: PMC5327478 DOI: 10.1038/srep43462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
For each influenza virus genome segment, the coding sequence is flanked by non-coding (NC) regions comprising shared, conserved sequences and specific, non-conserved sequences. The latter and adjacent parts of the coding sequence are involved in genome packaging, but the precise role of the non-conserved NC sequences is still unclear. The aim of this study is to better understand the role of the non-conserved non-coding sequences in the incorporation of the viral segments into virions. The NA-segment NC sequences were systematically replaced by those of the seven other segments. Recombinant viruses harbouring two segments with identical NC sequences were successfully rescued. Virus growth kinetics and serial passages were performed, and incorporation of the viral segments was tested by real-time RT-PCR. An initial virus growth deficiency correlated to a specific defect in NA segment incorporation. Upon serial passages, growth properties were restored. Sequencing revealed that the replacing 5'NC sequence length drove the type of mutations obtained. With sequences longer than the original, point mutations in the coding region with or without substitutions in the 3'NC region were detected. With shorter sequences, insertions were observed in the 5'NC region. Restoration of viral fitness was linked to restoration of the NA segment incorporation.
Collapse
Affiliation(s)
- Bernadette Crescenzo-Chaigne
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Paris, France.,Unité Mixte de Recherche 3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris-Diderot Sorbonne-Paris-Cité, Paris, France
| | - Cyril V S Barbezange
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Paris, France.,Unité Mixte de Recherche 3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris-Diderot Sorbonne-Paris-Cité, Paris, France
| | - Stéphane Léandri
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Paris, France.,Unité Mixte de Recherche 3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris-Diderot Sorbonne-Paris-Cité, Paris, France
| | - Camille Roquin
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Paris, France.,Unité Mixte de Recherche 3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris-Diderot Sorbonne-Paris-Cité, Paris, France
| | - Camille Berthault
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Paris, France.,Unité Mixte de Recherche 3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris-Diderot Sorbonne-Paris-Cité, Paris, France
| | - Sylvie van der Werf
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Paris, France.,Unité Mixte de Recherche 3569, Centre National de la Recherche Scientifique, Paris, France.,Université Paris-Diderot Sorbonne-Paris-Cité, Paris, France
| |
Collapse
|
8
|
Breen M, Nogales A, Baker SF, Martínez-Sobrido L. Replication-Competent Influenza A Viruses Expressing Reporter Genes. Viruses 2016; 8:v8070179. [PMID: 27347991 PMCID: PMC4974514 DOI: 10.3390/v8070179] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 12/12/2022] Open
Abstract
Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo.
Collapse
Affiliation(s)
- Michael Breen
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Steven F Baker
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
9
|
Ting P, Seah SG, Lim EA, Liaw JC, Tan B. Genetic characterisation of influenza C viruses detected in Singapore in 2006. Influenza Other Respir Viruses 2016; 10:27-33. [PMID: 26456848 PMCID: PMC4687499 DOI: 10.1111/irv.12352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 12/31/2022] Open
Abstract
In an earlier study on respiratory infections in Singapore military recruits, four influenza C virus (FLUCV) infections were detected out of the 1354 samples collected. All four isolates were detected in 2006, and their whole genome was completely sequenced and analysed. Phylogenetic analysis of the hemagglutinin esterase fusion (HEF) gene revealed that all four Singapore isolates belonged to the C/Japan-Kanagawa/1/76-related lineage. However, the genes of the four FLUCV isolates had origins from several different lineages, and the genome composition resembles that of the C/Japan-Miyagi/9/96-like strains that had been circulating in Japan between 1996 and 2000.
Collapse
Affiliation(s)
- Pei‐jun Ting
- DMERIDSO National LaboratoriesSingaporeSingapore
| | | | | | | | | |
Collapse
|
10
|
Hengrung N, El Omari K, Serna Martin I, Vreede FT, Cusack S, Rambo RP, Vonrhein C, Bricogne G, Stuart DI, Grimes JM, Fodor E. Crystal structure of the RNA-dependent RNA polymerase from influenza C virus. Nature 2015; 527:114-7. [PMID: 26503046 PMCID: PMC4783868 DOI: 10.1038/nature15525] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 08/25/2015] [Indexed: 12/17/2022]
Abstract
Negative-sense RNA viruses, such as influenza, encode large, multidomain RNA-dependent RNA polymerases that can both transcribe and replicate the viral RNA genome. In influenza virus, the polymerase (FluPol) is composed of three polypeptides: PB1, PB2 and PA/P3. PB1 houses the polymerase active site, whereas PB2 and PA/P3 contain, respectively, cap-binding and endonuclease domains required for transcription initiation by cap-snatching. Replication occurs through de novo initiation and involves a complementary RNA intermediate. Currently available structures of the influenza A and B virus polymerases include promoter RNA (the 5' and 3' termini of viral genome segments), showing FluPol in transcription pre-initiation states. Here we report the structure of apo-FluPol from an influenza C virus, solved by X-ray crystallography to 3.9 Å, revealing a new 'closed' conformation. The apo-FluPol forms a compact particle with PB1 at its centre, capped on one face by PB2 and clamped between the two globular domains of P3. Notably, this structure is radically different from those of promoter-bound FluPols. The endonuclease domain of P3 and the domains within the carboxy-terminal two-thirds of PB2 are completely rearranged. The cap-binding site is occluded by PB2, resulting in a conformation that is incompatible with transcription initiation. Thus, our structure captures FluPol in a closed, transcription pre-activation state. This reveals the conformation of newly made apo-FluPol in an infected cell, but may also apply to FluPol in the context of a non-transcribing ribonucleoprotein complex. Comparison of the apo-FluPol structure with those of promoter-bound FluPols allows us to propose a mechanism for FluPol activation. Our study demonstrates the remarkable flexibility of influenza virus RNA polymerase, and aids our understanding of the mechanisms controlling transcription and genome replication.
Collapse
Affiliation(s)
- Narin Hengrung
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Kamel El Omari
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Itziar Serna Martin
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Frank T Vreede
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation and University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Robert P Rambo
- Diamond Light Source Ltd, Harwell Science &Innovation Campus, Didcot OX11 0DE, UK
| | - Clemens Vonrhein
- Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX, UK
| | - Gérard Bricogne
- Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX, UK
| | - David I Stuart
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford OX3 7BN, UK
- Diamond Light Source Ltd, Harwell Science &Innovation Campus, Didcot OX11 0DE, UK
| | - Jonathan M Grimes
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford OX3 7BN, UK
- Diamond Light Source Ltd, Harwell Science &Innovation Campus, Didcot OX11 0DE, UK
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
11
|
Crescenzo-Chaigne B, Barbezange C, Frigard V, Poulain D, van der Werf S. Chimeric NP non coding regions between type A and C influenza viruses reveal their role in translation regulation. PLoS One 2014; 9:e109046. [PMID: 25268971 PMCID: PMC4182659 DOI: 10.1371/journal.pone.0109046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/01/2014] [Indexed: 12/14/2022] Open
Abstract
Exchange of the non coding regions of the NP segment between type A and C influenza viruses was used to demonstrate the importance not only of the proximal panhandle, but also of the initial distal panhandle strength in type specificity. Both elements were found to be compulsory to rescue infectious virus by reverse genetics systems. Interestingly, in type A influenza virus infectious context, the length of the NP segment 5' NC region once transcribed into mRNA was found to impact its translation, and the level of produced NP protein consequently affected the level of viral genome replication.
Collapse
Affiliation(s)
- Bernadette Crescenzo-Chaigne
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Paris, France
- Unité Mixte de Recherche 3569, Centre National de la Recherche Scientifique, Paris, France
| | - Cyril Barbezange
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Paris, France
- Unité Mixte de Recherche 3569, Centre National de la Recherche Scientifique, Paris, France
| | - Vianney Frigard
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Paris, France
- Unité Mixte de Recherche 3569, Centre National de la Recherche Scientifique, Paris, France
| | - Damien Poulain
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Paris, France
- Unité Mixte de Recherche 3569, Centre National de la Recherche Scientifique, Paris, France
| | - Sylvie van der Werf
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Paris, France
- Unité Mixte de Recherche 3569, Centre National de la Recherche Scientifique, Paris, France
- Université Paris Diderot Sorbonne Paris Cité, Paris, France
| |
Collapse
|
12
|
Influenza A and B virus intertypic reassortment through compatible viral packaging signals. J Virol 2014; 88:10778-91. [PMID: 25008914 DOI: 10.1128/jvi.01440-14] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Influenza A and B viruses cocirculate in humans and together cause disease and seasonal epidemics. These two types of influenza viruses are evolutionarily divergent, and exchange of genetic segments inside coinfected cells occurs frequently within types but never between influenza A and B viruses. Possible mechanisms inhibiting the intertypic reassortment of genetic segments could be due to incompatible protein functions of segment homologs, a lack of processing of heterotypic segments by influenza virus RNA-dependent RNA polymerase, an inhibitory effect of viral proteins on heterotypic virus function, or an inability to specifically incorporate heterotypic segments into budding virions. Here, we demonstrate that the full-length hemagglutinin (HA) of prototype influenza B viruses can complement the function of multiple influenza A viruses. We show that viral noncoding regions were sufficient to drive gene expression for either type A or B influenza virus with its cognate or heterotypic polymerase. The native influenza B virus HA segment could not be incorporated into influenza A virus virions. However, by adding the influenza A virus packaging signals to full-length influenza B virus glycoproteins, we rescued influenza A viruses that possessed HA, NA, or both HA and NA of influenza B virus. Furthermore, we show that, similar to single-cycle infectious influenza A virus, influenza B virus cannot incorporate heterotypic transgenes due to packaging signal incompatibilities. Altogether, these results demonstrate that the lack of influenza A and B virus reassortants can be attributed at least in part to incompatibilities in the virus-specific packaging signals required for effective segment incorporation into nascent virions. IMPORTANCE Reassortment of influenza A or B viruses provides an evolutionary strategy leading to unique genotypes, which can spawn influenza A viruses with pandemic potential. However, the mechanism preventing intertypic reassortment or gene exchange between influenza A and B viruses is not well understood. Nucleotides comprising the coding termini of each influenza A virus gene segment are required for specific segment incorporation during budding. Whether influenza B virus shares a similar selective packaging strategy or if packaging signals prevent intertypic reassortment remains unknown. Here, we provide evidence suggesting a similar mechanism of influenza B virus genome packaging. Furthermore, by appending influenza A virus packaging signals onto influenza B virus segments, we rescued recombinant influenza A/B viruses that could reassort in vitro with another influenza A virus. These findings suggest that the divergent evolution of packaging signals aids with the speciation of influenza A and B viruses and is in part responsible for the lack of intertypic viral reassortment.
Collapse
|
13
|
Wanitchang A, Narkpuk J, Jaru-ampornpan P, Jengarn J, Jongkaewwattana A. Inhibition of influenza A virus replication by influenza B virus nucleoprotein: an insight into interference between influenza A and B viruses. Virology 2012; 432:194-203. [PMID: 22770925 DOI: 10.1016/j.virol.2012.06.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/13/2012] [Accepted: 06/18/2012] [Indexed: 11/28/2022]
Abstract
Given that co-infection of cells with equivalent titers of influenza A and B viruses (FluA and FluB) has been shown to result in suppression of FluA growth, it is possible that FluB-specific proteins might hinder FluA polymerase activity and replication. We addressed this possibility by individually determining the effect of each gene of FluB on the FluA polymerase assay and found that the nucleoprotein of FluB (NP(FluB)) inhibits polymerase activity of FluA in a dose-dependent manner. Mutational analyses of NP(FluB) suggest that functional NP(FluB) is necessary for this inhibition. Slower growth of FluA was also observed in MDCK cells stably expressing NP(FluB). Further analysis of NP(FluB) indicated that it does not affect nuclear import of NP(FluA). Taken together, these findings suggest a novel role of NP(FluB) in inhibiting replication of FluA, providing more insights into the mechanism of interference between FluA and FluB and the lack of reassortants between them.
Collapse
Affiliation(s)
- Asawin Wanitchang
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Pathumthani 12120, Thailand
| | | | | | | | | |
Collapse
|
14
|
HMGB1 protein binds to influenza virus nucleoprotein and promotes viral replication. J Virol 2012; 86:9122-33. [PMID: 22696656 DOI: 10.1128/jvi.00789-12] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Influenza virus has evolved replication strategies that hijack host cell pathways. To uncover interactions between viral macromolecules and host proteins, we applied a phage display strategy. A library of human cDNA expression products displayed on filamentous phages was submitted to affinity selection for influenza viral ribonucleoproteins (vRNPs). High-mobility-group box (HMGB) proteins were found to bind to the nucleoprotein (NP) component of vRNPs. HMGB1 and HMGB2 bind directly to the purified NP in the absence of viral RNA, and the HMG box A domain is sufficient to bind the NP. We show that HMGB1 associates with the viral NP in the nuclei of infected cells, promotes viral growth, and enhances the activity of the viral polymerase. The presence of a functional HMGB1 DNA-binding site is required to enhance influenza virus replication. Glycyrrhizin, which reduces HMGB1 binding to DNA, inhibits influenza virus polymerase activity. Our data show that the HMGB1 protein can play a significant role in intranuclear replication of influenza viruses, thus extending previous findings on the bornavirus and on a number of DNA viruses.
Collapse
|
15
|
HMGB1 protein binds to influenza virus nucleoprotein and promotes viral replication. J Virol 2012. [PMID: 22696656 DOI: 10.1128/jv1.00789.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Influenza virus has evolved replication strategies that hijack host cell pathways. To uncover interactions between viral macromolecules and host proteins, we applied a phage display strategy. A library of human cDNA expression products displayed on filamentous phages was submitted to affinity selection for influenza viral ribonucleoproteins (vRNPs). High-mobility-group box (HMGB) proteins were found to bind to the nucleoprotein (NP) component of vRNPs. HMGB1 and HMGB2 bind directly to the purified NP in the absence of viral RNA, and the HMG box A domain is sufficient to bind the NP. We show that HMGB1 associates with the viral NP in the nuclei of infected cells, promotes viral growth, and enhances the activity of the viral polymerase. The presence of a functional HMGB1 DNA-binding site is required to enhance influenza virus replication. Glycyrrhizin, which reduces HMGB1 binding to DNA, inhibits influenza virus polymerase activity. Our data show that the HMGB1 protein can play a significant role in intranuclear replication of influenza viruses, thus extending previous findings on the bornavirus and on a number of DNA viruses.
Collapse
|
16
|
Replication-competent influenza A virus that encodes a split-green fluorescent protein-tagged PB2 polymerase subunit allows live-cell imaging of the virus life cycle. J Virol 2011; 86:1433-48. [PMID: 22114331 DOI: 10.1128/jvi.05820-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Studies on the intracellular trafficking of influenza virus ribonucleoproteins are currently limited by the lack of a method enabling their visualization during infection in single cells. This is largely due to the difficulty of encoding fluorescent fusion proteins within the viral genome. To circumvent this limitation, we used the split-green fluorescent protein (split-GFP) system (S. Cabantous, T. C. Terwilliger, and G. S. Waldo, Nat. Biotechnol. 23:102-107, 2005) to produce a quasi-wild-type recombinant A/WSN/33/influenza virus which allows expression of individually fluorescent PB2 polymerase subunits in infected cells. The viral PB2 proteins were fused to the 16 C-terminal amino acids of the GFP, whereas the large transcomplementing GFP fragment was supplied by transient or stable expression in cultured cells that were permissive to infection. This system was used to characterize the intranuclear dynamics of PB2 by fluorescence correlation spectroscopy and to visualize the trafficking of viral ribonucleoproteins (vRNPs) by dynamic light microscopy in live infected cells. Following nuclear export, vRNPs showed a transient pericentriolar accumulation and intermittent rapid (∼1 μm/s), directional movements in the cytoplasm, dependent on both microtubules and actin filaments. Our data establish the potential of split-GFP-based recombinant viruses for the tracking of viral proteins during a quasi-wild-type infection. This new virus, or adaptations of it, will be of use in elucidating many aspects of influenza virus host cell interactions as well as in screening for new antiviral compounds. Furthermore, the existence of cell lines stably expressing the complementing GFP fragment will facilitate applications to many other viral and nonviral systems.
Collapse
|
17
|
Ge X, Rameix-Welti MA, Gault E, Chase G, dos Santos Afonso E, Picard D, Schwemmle M, Naffakh N. Influenza virus infection induces the nuclear relocalization of the Hsp90 co-chaperone p23 and inhibits the glucocorticoid receptor response. PLoS One 2011; 6:e23368. [PMID: 21853119 PMCID: PMC3154441 DOI: 10.1371/journal.pone.0023368] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 07/15/2011] [Indexed: 11/18/2022] Open
Abstract
The genomic RNAs of influenza A viruses are associated with the viral polymerase subunits (PB1, PB2, PA) and nucleoprotein (NP), forming ribonucleoprotein complexes (RNPs). Transcription/replication of the viral genome occurs in the nucleus of infected cells. A role for Hsp90 in nuclear import and assembly of newly synthetized RNA-polymerase subunits has been proposed. Here we report that the p23 cochaperone of Hsp90, which plays a major role in glucocorticoid receptor folding and function, associates with influenza virus polymerase. We show that p23 is not essential for viral multiplication in cultured cells but relocalizes to the nucleus in influenza virus-infected cells, which may alter some functions of p23 and Hsp90. Moreover, we show that influenza virus infection inhibits glucocorticoid receptor-mediated gene transactivation, and that this negative effect can occur through a p23-independent pathway. Viral-induced inhibition of the glucocorticoid receptor response might be of significant importance regarding the physiopathology of influenza infections in vivo.
Collapse
Affiliation(s)
- Xingyi Ge
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, Paris, France
- CNRS, URA3015, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
| | - Marie-Anne Rameix-Welti
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, Paris, France
- CNRS, URA3015, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
- Université Versailles Saint-Quentin-en-Yvelines, Guyancourt, France
| | - Elyanne Gault
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, Paris, France
- CNRS, URA3015, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
- Université Versailles Saint-Quentin-en-Yvelines, Guyancourt, France
| | - Geoffrey Chase
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Germany
| | - Emmanuel dos Santos Afonso
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, Paris, France
- CNRS, URA3015, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, Genève, Switzerland
| | - Martin Schwemmle
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Germany
| | - Nadia Naffakh
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, Paris, France
- CNRS, URA3015, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
- * E-mail:
| |
Collapse
|
18
|
Jackson D, Elderfield RA, Barclay WS. Molecular studies of influenza B virus in the reverse genetics era. J Gen Virol 2010; 92:1-17. [PMID: 20926635 DOI: 10.1099/vir.0.026187-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recovery of an infectious virus of defined genetic structure entirely from cDNA and the deduction of information about the virus resulting from phenotypic characterization of the mutant is the process of reverse genetics. This approach has been possible for a number of negative-strand RNA viruses since the recovery of rabies virus in 1994. However, the recovery of recombinant orthomyxoviruses posed a greater challenge due to the segmented nature of the genome. It was not until 1999 that such a system was reported for influenza A viruses, but since that time our knowledge of influenza A virus biology has grown dramatically. Annual influenza epidemics are caused not only by influenza A viruses but also by influenza B viruses. In 2002, two groups reported the successful recovery of influenza B virus entirely from cDNA. This has allowed greater depth of study into the biology of these viruses. This review will highlight the advances made in various areas of influenza B virus biology as a result of the development of reverse genetics techniques for these viruses, including (i) the importance of the non-coding regions of the influenza B virus genome; (ii) the generation of novel vaccine strains; (iii) studies into the mechanisms of drug resistance; (iv) the function(s) of viral proteins, both those analogous to influenza A virus proteins and those unique to influenza B viruses. The information generated by the application of influenza B virus reverse genetics systems will continue to contribute to our improved surveillance and control of human influenza.
Collapse
Affiliation(s)
- David Jackson
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, Fife KY16 9ST, UK
| | | | | |
Collapse
|
19
|
Neumann G, Green MA, Macken CA. Evolution of highly pathogenic avian H5N1 influenza viruses and the emergence of dominant variants. J Gen Virol 2010; 91:1984-1995. [PMID: 20392897 DOI: 10.1099/vir.0.020750-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Highly pathogenic avian H5N1 viruses have circulated in South-east Asia for more than a decade and have now spread to more than 60 countries. The evolution of these viruses is characterized by frequent reassortment of the so-called 'internal' genes, creating novel genotypes. Additionally, over time, the surface glycoprotein, haemagglutinin (HA), which is the primary target of the adaptive immune response, has evolved by point mutation into 20 genetically and potentially antigenically distinct clades. To investigate the evolution of avian H5N1 influenza viruses, we undertook a high-resolution analysis of the reassortment of internal genes and evolution of HA of 651 avian H5N1 viruses from 2000 to 2008. Our analysis suggested: (i) all current H5N1 genotypes were derived from a single, clearly defined sequence of initial reassortment events; (ii) reassortment of just three of the internal genes had the most importance in avian H5N1 virus evolution; (iii) HA and the constellation of internal genes may be jointly important in the emergence of dominant variants. Further, our analysis led to the identification of evolutionarily significant molecular changes in the internal genes that may be significant for the emergence of these dominant variants.
Collapse
Affiliation(s)
- Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53717, USA
| | - Margaret A Green
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Catherine A Macken
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
20
|
Wunderlich K, Juozapaitis M, Mänz B, Mayer D, Götz V, Zöhner A, Wolff T, Schwemmle M, Martin A. Limited compatibility of polymerase subunit interactions in influenza A and B viruses. J Biol Chem 2010; 285:16704-12. [PMID: 20363752 DOI: 10.1074/jbc.m110.102533] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Despite their close phylogenetic relationship, natural intertypic reassortants between influenza A (FluA) and B (FluB) viruses have not been described. Inefficient polymerase assembly of the three polymerase subunits may contribute to this incompatibility, especially because the known protein-protein interaction domains, including the PA-binding domain of PB1, are highly conserved for each virus type. Here we show that substitution of the FluA PA-binding domain (PB1-A(1-25)) with that of FluB (PB1-B(1-25)) is accompanied by reduced polymerase activity and viral growth of FluA. Consistent with these findings, surface plasmon resonance spectroscopy measurements revealed that PA of FluA exhibits impaired affinity to biotinylated PB1-B(1-25) peptides. PA of FluB showed no detectable affinity to biotinylated PB1-A(1-25) peptides. Consequently, FluB PB1 harboring the PA-binding domain of FluA (PB1-AB) failed to assemble with PA and PB2 into an active polymerase complex. To regain functionality, we used a single amino acid substitution (T6Y) known to confer binding to PA of both virus types, which restored polymerase complex formation but surprisingly not polymerase activity for FluB. Taken together, our results demonstrate that the conserved virus type-specific PA-binding domains differ in their affinity to PA and thus might contribute to intertypic exclusion of reassortants between FluA and FluB viruses.
Collapse
|
21
|
Wunderlich K, Mayer D, Ranadheera C, Holler AS, Mänz B, Martin A, Chase G, Tegge W, Frank R, Kessler U, Schwemmle M. Identification of a PA-binding peptide with inhibitory activity against influenza A and B virus replication. PLoS One 2009; 4:e7517. [PMID: 19841738 PMCID: PMC2759517 DOI: 10.1371/journal.pone.0007517] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 09/25/2009] [Indexed: 11/18/2022] Open
Abstract
There is an urgent need for new drugs against influenza type A and B viruses due to incomplete protection by vaccines and the emergence of resistance to current antivirals. The influenza virus polymerase complex, consisting of the PB1, PB2 and PA subunits, represents a promising target for the development of new drugs. We have previously demonstrated the feasibility of targeting the protein-protein interaction domain between the PB1 and PA subunits of the polymerase complex of influenza A virus using a small peptide derived from the PA-binding domain of PB1. However, this influenza A virus-derived peptide did not affect influenza B virus polymerase activity. Here we report that the PA-binding domain of the polymerase subunit PB1 of influenza A and B viruses is highly conserved and that mutual amino acid exchange shows that they cannot be functionally exchanged with each other. Based on phylogenetic analysis and a novel biochemical ELISA-based screening approach, we were able to identify an influenza A-derived peptide with a single influenza B-specific amino acid substitution which efficiently binds to PA of both virus types. This dual-binding peptide blocked the viral polymerase activity and growth of both virus types. Our findings provide proof of principle that protein-protein interaction inhibitors can be generated against influenza A and B viruses. Furthermore, this dual-binding peptide, combined with our novel screening method, is a promising platform to identify new antiviral lead compounds.
Collapse
Affiliation(s)
| | - Daniel Mayer
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Charlene Ranadheera
- PiKe Pharma GmbH, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | | | - Benjamin Mänz
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Arnold Martin
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Geoffrey Chase
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Werner Tegge
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ronald Frank
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Martin Schwemmle
- Department of Virology, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
22
|
Avian Influenza A virus polymerase association with nucleoprotein, but not polymerase assembly, is impaired in human cells during the course of infection. J Virol 2008; 83:1320-31. [PMID: 19019950 DOI: 10.1128/jvi.00977-08] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strong determinants of the host range of influenza A viruses have been identified on the polymerase complex formed by the PB1, PB2, and PA subunits and on the nucleoprotein (NP). In the present study, molecular mechanisms that may involve these four core proteins and contribute to the restriction of avian influenza virus multiplication in human cells have been investigated. The efficiencies with which the polymerase complexes of a human and an avian influenza virus isolate assemble and interact with the viral NP and cellular RNA polymerase II proteins were compared in mammalian and in avian infected cells. To this end, recombinant influenza viruses expressing either human or avian-derived core proteins with a PB2 protein fused to the One-Strep purification tag at the N or C terminus were generated. Copurification experiments performed on infected cell extracts indicate that the avian-derived polymerase is assembled and interacts physically with the cellular RNA polymerase II at least as efficiently as does the human-derived polymerase in human as well as in avian cells. Restricted growth of the avian isolate in human cells correlates with low levels of the core proteins in infected cell extracts and with poor association of the NP with the polymerase compared to what is observed for the human isolate. The NP-polymerase association is restored by a Glu-to-Lys substitution at residue 627 of PB2. Overall, our data point to viral and cellular factors regulating the NP-polymerase interaction as key determinants of influenza A virus host range. Recombinant viruses expressing a tagged polymerase should prove useful for further studies of the molecular interactions between viral polymerase and host factors during the infection cycle.
Collapse
|
23
|
Crescenzo-Chaigne B, Barbezange C, van der Werf S. Non coding extremities of the seven influenza virus type C vRNA segments: effect on transcription and replication by the type C and type A polymerase complexes. Virol J 2008; 5:132. [PMID: 18973655 PMCID: PMC2590603 DOI: 10.1186/1743-422x-5-132] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Accepted: 10/30/2008] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The transcription/replication of the influenza viruses implicate the terminal nucleotide sequences of viral RNA, which comprise sequences at the extremities conserved among the genomic segments as well as variable 3' and 5' non-coding (NC) regions. The plasmid-based system for the in vivo reconstitution of functional ribonucleoproteins, upon expression of viral-like RNAs together with the nucleoprotein and polymerase proteins has been widely used to analyze transcription/replication of influenza viruses. It was thus shown that the type A polymerase could transcribe and replicate type A, B, or C vRNA templates whereas neither type B nor type C polymerases were able to transcribe and replicate type A templates efficiently. Here we studied the importance of the NC regions from the seven segments of type C influenza virus for efficient transcription/replication by the type A and C polymerases. RESULTS The NC sequences of the seven genomic segments of the type C influenza virus C/Johannesburg/1/66 strain were found to be more variable in length than those of the type A and B viruses. The levels of transcription/replication of viral-like vRNAs harboring the NC sequences of the respective type C virus segments flanking the CAT reporter gene were comparable in the presence of either type C or type A polymerase complexes except for the NS and PB2-like vRNAs. For the NS-like vRNA, the transcription/replication level was higher after introduction of a U residue at position 6 in the 5' NC region as for all other segments. For the PB2-like vRNA the CAT expression level was particularly reduced with the type C polymerase. Analysis of mutants of the 5' NC sequence in the PB2-like vRNA, the shortest 5' NC sequence among the seven segments, showed that additional sequences within the PB2 ORF were essential for the efficiency of transcription but not replication by the type C polymerase complex. CONCLUSION In the context of a PB2-like reporter vRNA template, the sequence upstream the polyU stretch plays a role in the transcription/replication process by the type C polymerase complex.
Collapse
Affiliation(s)
- Bernadette Crescenzo-Chaigne
- Unité de Génétique Moléculaire des Virus Respiratoires, URA 3015 CNRS, EA 302 Université Paris Diderot, Institut Pasteur, F-75724 Paris, France
| | - Cyril Barbezange
- Unité de Génétique Moléculaire des Virus Respiratoires, URA 3015 CNRS, EA 302 Université Paris Diderot, Institut Pasteur, F-75724 Paris, France
- UMR 1161 Virologie Afssa Inra Enva, 23 avenue du Général de Gaulle, 94706 Maisons-Alfort cedex, France
| | - Sylvie van der Werf
- Unité de Génétique Moléculaire des Virus Respiratoires, URA 3015 CNRS, EA 302 Université Paris Diderot, Institut Pasteur, F-75724 Paris, France
| |
Collapse
|
24
|
Iwatsuki-Horimoto K, Hatta Y, Hatta M, Muramoto Y, Chen H, Kawaoka Y, Horimoto T. Limited compatibility between the RNA polymerase components of influenza virus type A and B. Virus Res 2008; 135:161-5. [PMID: 18455827 DOI: 10.1016/j.virusres.2008.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 11/19/2022]
Abstract
Reassortants between type A and B influenza viruses have not been detected in nature, although both viruses co-circulate in human populations. One explanation for this may be functional incompatibility of RNA transcription and replication between type A and B viruses. To test this possibility, we constructed type A/B mosaic polymerase machinery, containing PB2, PB1, PA and nucleoprotein from each of the two virus types, and assessed their polymerase activities with a type A promoter in a reporter assay. Type B polymerase machinery containing homologous components was functional with the type A promoter albeit to various extents depending on the segments from which the regions downstream of the promoter sequence were derived, indicating functional compatibility between the type A promoter and B polymerase machinery. However, all of the A/B mosaic polymerase machinery, except that containing PA from a type A and the others from a type B virus strain, did not function with the type A promoter, indicating limited compatibility among polymerase components of both types. Taken together, these data suggest that incompatibility among components of the polymerase machinery for RNA transcription and replication alone is not responsible for the lack of heterotypic reassortants.
Collapse
Affiliation(s)
- Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Immediate and broad-spectrum protection against heterologous and heterotypic lethal challenge in mice by live influenza vaccine. Vaccine 2007; 25:8067-76. [DOI: 10.1016/j.vaccine.2007.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 09/03/2007] [Accepted: 09/05/2007] [Indexed: 11/21/2022]
|
26
|
Crescenzo-Chaigne B, van der Werf S. Rescue of influenza C virus from recombinant DNA. J Virol 2007; 81:11282-9. [PMID: 17686850 PMCID: PMC2045542 DOI: 10.1128/jvi.00910-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Accepted: 07/30/2007] [Indexed: 01/08/2023] Open
Abstract
The rescue of influenza viruses by reverse genetics has been described only for the influenza A and B viruses. Based on a similar approach, we developed a reverse-genetics system that allows the production of influenza C viruses entirely from cloned cDNA. The complete sequences of the 3' and 5' noncoding regions of type C influenza virus C/Johannesburg/1/66 necessary for the cloning of the cDNA were determined for the seven genomic segments. Human embryonic kidney cells (293T) were transfected simultaneously with seven plasmids that direct the synthesis of each of the seven viral RNA segments of the C/JHB/1/66 virus under the control of the human RNA polymerase I promoter and with four plasmids encoding the viral nucleoprotein and the PB2, PB1, and P3 proteins of the viral polymerase complex. This strategy yielded between 10(3) and 10(4) PFU of virus per ml of supernatant at 8 to 10 days posttransfection. Additional viruses with substitutions introduced in the hemagglutinin-esterase-fusion protein were successfully produced by this method, and their growth phenotype was evaluated. This efficient system, which does not require helper virus infection, should be useful in viral mutagenesis studies and for generation of expression vectors from type C influenza virus.
Collapse
Affiliation(s)
- Bernadette Crescenzo-Chaigne
- Unité de Génétique Moléculaire des Virus Respiratoires, URA CNRS 1966, EA 302 Université Paris Diderot, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
27
|
Ghanem A, Mayer D, Chase G, Tegge W, Frank R, Kochs G, García-Sastre A, Schwemmle M. Peptide-mediated interference with influenza A virus polymerase. J Virol 2007; 81:7801-4. [PMID: 17494067 PMCID: PMC1933368 DOI: 10.1128/jvi.00724-07] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly of the polymerase complex of influenza A virus from the three viral polymerase subunits PB1, PB2, and PA is required for viral RNA synthesis. We show that peptides which specifically bind to the protein-protein interaction domains in the subunits responsible for complex formation interfere with polymerase complex assembly and inhibit viral replication. Specifically, we provide evidence that a 25-amino-acid peptide corresponding to the PA-binding domain of PB1 blocks the polymerase activity of influenza A virus and inhibits viral spread. Targeting polymerase subunit interactions therefore provides a novel strategy to develop antiviral compounds against influenza A virus or other viruses.
Collapse
Affiliation(s)
- Alexander Ghanem
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, Hermann-Herder-Strasse 11, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Labadie K, Dos Santos Afonso E, Rameix-Welti MA, van der Werf S, Naffakh N. Host-range determinants on the PB2 protein of influenza A viruses control the interaction between the viral polymerase and nucleoprotein in human cells. Virology 2007; 362:271-82. [PMID: 17270230 DOI: 10.1016/j.virol.2006.12.027] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 09/08/2006] [Accepted: 12/21/2006] [Indexed: 11/27/2022]
Abstract
The transcription/replication activity of ribonucleoproteins derived from influenza A primary isolates of human (A/Paris/908/97) or avian origin (A/Mallard/Marquenterre/MZ237/83, A/Hong Kong/156/97) was compared upon reconstitution in mammalian or avian cells, using viral-like reporter RNAs synthesized under the control of the human and chicken RNA polymerase I promoters, respectively. In avian cells, transcription/replication activities were in the same range with all ribonucleoproteins tested. In human cells, ribonucleoproteins derived from A/Mallard/Marquenterre/MZ237/83 showed reduced transcription/replication activity and reduced NP binding to the PB1-PB2-PA complex (P) or to the isolated PB2 subunit, as compared to the ribonucleoproteins derived from A/Paris/908/97. Both defects were restored when PB2 residue Glu-627 was changed to a Lys. Ribonucleoproteins derived from the human A/Hong Kong/156/97 H5N1 isolate showed efficient NP-P interaction in human cells, and high levels of activity which were determined mostly by the PB2 and PA proteins. Our data suggest that PB2 might play a pivotal role in molecular interactions involving both the viral nucleoprotein and cellular proteins.
Collapse
MESH Headings
- Animals
- COS Cells
- Cell Line
- Chickens
- Chloramphenicol O-Acetyltransferase/analysis
- Chloramphenicol O-Acetyltransferase/genetics
- Chlorocebus aethiops
- Genes, Reporter
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/physiology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/physiology
- Influenza A virus/genetics
- Influenza A virus/physiology
- Molecular Sequence Data
- Promoter Regions, Genetic
- Protein Interaction Mapping
- RNA Polymerase I
- RNA, Viral/biosynthesis
- Ribonucleoproteins/metabolism
- Sequence Analysis, DNA
- Transcription, Genetic
- Viral Plaque Assay
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Karine Labadie
- Unité de Génétique Moléculaire des Virus Respiratoires, URA 1966 CNRS, EA302 Université Paris 7, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
29
|
Abstract
Highly pathogenic H5N1 influenza viruses have become endemic in poultry populations throughout Southeast Asia and continue to infect humans with a greater than 50% case fatality rate. So far, human-to-human transmission of these viruses has been limited. Here, we discuss the molecular features of H5N1 influenza viruses that might affect their pathogenicity, and explain the current lack of efficient human-to-human transmission. Such knowledge is critical in evaluating the pandemic risk these viruses pose.
Collapse
Affiliation(s)
- Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kyoko Shinya
- The Avian Zoonosis Research Centre, Tottori University, Tottori, Japan
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Division of Virology, Department of Microbiology and Immunology and International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Massin P, Rodrigues P, Marasescu M, van der Werf S, Naffakh N. Cloning of the chicken RNA polymerase I promoter and use for reverse genetics of influenza A viruses in avian cells. J Virol 2005; 79:13811-6. [PMID: 16227302 PMCID: PMC1262576 DOI: 10.1128/jvi.79.21.13811-13816.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reverse genetics techniques to rescue influenza viruses have thus far been based on the use of a human polymerase I (PolI) promoter to direct the synthesis of the eight viral RNAs. They can only be used on cells from primate origin due to the species specificity of the PolI promoter. Here we report the cloning of the chicken PolI promoter sequence and the generation of recombinant influenza virus upon transfection of bidirectional PolI/PolII plasmids in avian cells. Potential contributions of this new reverse genetics system in the fields of influenza virus research and influenza vaccine production are discussed.
Collapse
Affiliation(s)
- Pascale Massin
- Unité de Génétique Moléculaire des Virus Respiratoires, URA CNRS 1966, Institut Pasteur, 25 rue du Dr. Roux, 75724 PARIS Cedex 15, France
| | | | | | | | | |
Collapse
|
31
|
Chen Z, Aspelund A, Kemble G, Jin H. Genetic mapping of the cold-adapted phenotype of B/Ann Arbor/1/66, the master donor virus for live attenuated influenza vaccines (FluMist). Virology 2005; 345:416-23. [PMID: 16289204 DOI: 10.1016/j.virol.2005.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 09/27/2005] [Accepted: 10/05/2005] [Indexed: 11/23/2022]
Abstract
Cold adapted (ca) B/Ann Arbor/1/66 is the master donor virus for the influenza B (MDV-B) vaccine component of the live attenuated influenza vaccine (FluMist). The six internal genes contributed by MDV-B confer the characteristic cold-adapted (ca), temperature-sensitive (ts) and attenuated (att) phenotypes to the vaccine strains. Previously, it has been determined that the PA and NP segments of MDV-B control the ts phenotype while the att phenotype requires the M segment in addition to PA and NP. Here, we show that the PA, NP and PB2 segments are responsible for the ca phenotype of MDV-B when examined in chicken cell lines. Five loci in three RNA segments, R630 in PB2, M431 in PA and A114, H410 and T509 in NP, are sufficient to allow efficient virus growth at 25 degrees C. Substitution of these five amino acids with wt (wild type) residues completely reverted the MDV-B ca phenotype. Conversely, introduction of these five ca amino acids into B/Yamanashi/166/98 imparted the ca phenotype to this heterologous wt virus. In addition, we also found that the MDV-B M1 gene affected virus replication in chicken cells at 33 and 37 degrees C. Recombinant viruses containing the two MDV-B M1 residues (Q159, V183) replicated less efficiently than those containing wt M1 residues (H159, M183) at 33 and 37 degrees C, implicating the role of the MDV-B M segment to the att phenotype. The complexity of the multigenic signatures controlling the ca, ts and att phenotypes of MDV-B provides the molecular basis for the observed genetic stability of the FluMist vaccines.
Collapse
Affiliation(s)
- Zhongying Chen
- MedImmune Vaccines, 297 North Bernardo Avenue, Mountain View, CA 94043, USA
| | | | | | | |
Collapse
|
32
|
Dos Santos Afonso E, Escriou N, Leclercq I, van der Werf S, Naffakh N. The generation of recombinant influenza A viruses expressing a PB2 fusion protein requires the conservation of a packaging signal overlapping the coding and noncoding regions at the 5' end of the PB2 segment. Virology 2005; 341:34-46. [PMID: 16084555 DOI: 10.1016/j.virol.2005.06.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 04/25/2005] [Accepted: 06/28/2005] [Indexed: 10/25/2022]
Abstract
We generated recombinant A/WSN/33 influenza A viruses expressing a PB2 protein fused to a Flag epitope at the N- (Flag-PB2) or C-terminus (PB2-Flag), which replicated efficiently and proved to be stable upon serial passage in vitro on MDCK cells. Rescue of PB2-Flag viruses required that the 5' end of the PB2 segment was kept identical to the wild-type beyond the 34 noncoding terminal nucleotides. This feature was achieved by a duplication of the 109 last nucleotides encoding PB2 between the Flag sequence and the 5'NCR. In PB2 mini-genomes rescue experiments, both the 5' and 3' coding ends of the PB2 segment were found to promote the incorporation of mini-genomes into virions. However, the presence of the Flag sequence at the junction between the 3'NCR and the coding sequence did not prevent the rescue of Flag-PB2 viruses. Our observations define requirements that may be useful for the purpose of engineering influenza RNAs.
Collapse
Affiliation(s)
- Emmanuel Dos Santos Afonso
- Unité de Génétique Moléculaire des Virus Respiratoires, URA CNRS 1966, Institut Pasteur, 25 rue du Dr. Roux, 75724 PARIS Cedex 15, France
| | | | | | | | | |
Collapse
|
33
|
Vieira Machado A, Naffakh N, Gerbaud S, van der Werf S, Escriou N. Recombinant influenza A viruses harboring optimized dicistronic NA segment with an extended native 5' terminal sequence: induction of heterospecific B and T cell responses in mice. Virology 2005; 345:73-87. [PMID: 16271378 DOI: 10.1016/j.virol.2005.09.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 06/23/2005] [Accepted: 09/23/2005] [Indexed: 11/27/2022]
Abstract
We generated novel recombinant influenza A viruses (vNA38) harboring dicistronic NA segments with an extended native 5' terminal sequence of 70 nucleotides comprised of the last 42 nucleotides of the NA ORF and the 5' noncoding region (5' NCR). vNA38 viruses replicated stably and more efficiently than vNA35 viruses with a dicistronic NA segment comprised of the native 5' NCR only, that we described previously (Vieira Machado, A., Naffakh, N., van der Werf, S., Escriou, N., 2003. Expression of a foreign gene by stable recombinant influenza viruses harboring a dicistronic genomic segment with an internal promoter. Virology 313, 235-249). In addition, vNA38 viruses drove the expression of higher levels of encoded heterologous proteins than corresponding vNA35 viruses, both in cell culture and in the pulmonary tissue of infected mice. These data demonstrate that a sequence overlapping 5' coding and noncoding regions of the NA segment determines efficient replication and/or propagation of the vRNA. Intranasal immunization of mice with live vNA38 viruses induced B and T cell responses specific for the heterologous protein expressed, establishing the usefulness of such recombinant influenza viruses with a dicistronic segment for the development of live bivalent vaccines.
Collapse
Affiliation(s)
- Alexandre Vieira Machado
- Unité de Génétique Moléculaire des Virus Respiratoires, URA 1966 CNRS, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | |
Collapse
|
34
|
Lutz A, Dyall J, Olivo PD, Pekosz A. Virus-inducible reporter genes as a tool for detecting and quantifying influenza A virus replication. J Virol Methods 2005; 126:13-20. [PMID: 15847914 PMCID: PMC1698269 DOI: 10.1016/j.jviromet.2005.01.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 01/08/2005] [Accepted: 01/20/2005] [Indexed: 11/23/2022]
Abstract
The use of influenza A virus-inducible reporter gene segments in detecting influenza A virus replication was investigated. The RNA polymerase I promoter/terminator cassette was used to express RNA transcripts encoding green fluorescence protein or firefly luciferase flanked by the untranslated regions of the influenza A/WSN/33 nucleoprotein (NP) segment. Reporter gene activity was detected after reconstitution of the influenza A virus polymerase complex from cDNA or after virus infection, and was influenza A virus-specific. Reporter gene activity could be detected as early as 6 h post-infection and was virus dose-dependent. Inhibitory effects of antibodies or amantadine could be detected and quantified rapidly, providing a means of not only identifying influenza A virus-specific replication, but also of determining the antigenic subtype as well as antiviral drug susceptibility. Induction of virus-specific reporter genes provides a rapid, sensitive method for detecting virus replication, quantifying virus titers and assessing antiviral sensitivity as well as antigenic subtype.
Collapse
Affiliation(s)
- Andrew Lutz
- Department of Molecular Microbiology and Pathology & Immunology, Washington University in St, Louis, St. Louis, MO 63110
| | | | | | - Andrew Pekosz
- Department of Molecular Microbiology and Pathology & Immunology, Washington University in St, Louis, St. Louis, MO 63110
- *Corresponding author: Departments of Molecular Microbiology and Pathology & Immunology, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Ave., St. Louis, MO 63110, , tel: 314.747.2132, fax: 314.362.3203
| |
Collapse
|
35
|
Flandorfer A, García-Sastre A, Basler CF, Palese P. Chimeric influenza A viruses with a functional influenza B virus neuraminidase or hemagglutinin. J Virol 2003; 77:9116-23. [PMID: 12915528 PMCID: PMC187417 DOI: 10.1128/jvi.77.17.9116-9123.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2003] [Accepted: 06/03/2003] [Indexed: 12/13/2022] Open
Abstract
Reassortment of influenza A and B viruses has never been observed in vivo or in vitro. Using reverse genetics techniques, we generated recombinant influenza A/WSN/33 (WSN) viruses carrying the neuraminidase (NA) of influenza B virus. Chimeric viruses expressing the full-length influenza B/Yamagata/16/88 virus NA grew to titers similar to that of wild-type influenza WSN virus. Recombinant viruses in which the cytoplasmic tail or the cytoplasmic tail and the transmembrane domain of the type B NA were replaced with those of the type A NA were impaired in tissue culture. This finding correlates with reduced NA content in virions. We also generated a recombinant influenza A virus expressing a chimeric hemagglutinin (HA) protein in which the ectodomain is derived from type B/Yamagata/16/88 virus HA, whereas both the cytoplasmic and the transmembrane domains are derived from type A/WSN virus HA. This A/B chimeric HA virus did not grow efficiently in MDCK cells. However, after serial passage we obtained a virus population that grew to titers as high as wild-type influenza A virus in MDCK cells. One amino acid change in position 545 (H545Y) was found to be responsible for the enhanced growth characteristics of the passaged virus. Taken together, we show here that the absence of reassortment between influenza viruses belonging to different A and B types is not due to spike glycoprotein incompatibility at the level of the full-length NA or of the HA ectodomain.
Collapse
Affiliation(s)
- Astrid Flandorfer
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
36
|
Machado AV, Naffakh N, van der Werf S, Escriou N. Expression of a foreign gene by stable recombinant influenza viruses harboring a dicistronic genomic segment with an internal promoter. Virology 2003; 313:235-49. [PMID: 12951036 DOI: 10.1016/s0042-6822(03)00289-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Based on the observation that an internally located 3' promoter sequence can be functional (R. Flick and G. Hobom, Virology, 1999, 262(1), 93-103), we generated transfectant influenza A viruses harboring a dicistronic segment containing the CAT gene (660 nt) or a fragment of the Mengo virus VP0 capsid gene (306 nt) under the control of a duplicated 3' promoter sequence. Despite slightly reduced NA expression, the transfectant viruses replicated efficiently and proved to be stable upon both serial passage in vitro in MDCK cells and in vivo replication in the pulmonary tissue of infected mice. Internal initiation of replication and transcription from the second, internal, 3' promoter directed the synthesis of subgenomic vRNA and mRNA and therefore permitted expression of the foreign gene product, e.g., the CAT enzyme. The design of this vector may prove particularly appropriate for the utilization of influenza virus for the expression of heterologous proteins in their native form.
Collapse
Affiliation(s)
- Alexandre Vieira Machado
- Unité de Génétique Moléculaire des Virus Respiratoires, URA 1966 CNRS, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
37
|
Horimoto T, Takada A, Iwatsuki-Horimoto K, Hatta M, Goto H, Kawaoka Y. Generation of influenza A viruses with chimeric (type A/B) hemagglutinins. J Virol 2003; 77:8031-8. [PMID: 12829842 PMCID: PMC161929 DOI: 10.1128/jvi.77.14.8031-8038.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To gain insight into the intertypic incompatibility between type A and B influenza viruses, we focused on the hemagglutinin (HA) gene, systematically studying the compatibility of chimeric (type A/B) HAs with a type A genetic background. An attempt to generate a reassortant containing an intact type B HA segment in a type A virus background by reverse genetics was unsuccessful despite transcription of the type B HA segment by the type A polymerase complex. Although a type A virus with a chimeric HA segment comprising the entire coding sequence of the type B HA flanked by the noncoding sequence of the type A HA was viable, it replicated only marginally. Other chimeric viruses contained type A/B HAs possessing the type A noncoding region together with either the signal peptide or transmembrane/cytoplasmic region of type A virus or both, with the remaining regions derived from the type B HA. Each of these viruses grew to median tissue culture infectious doses of more than 10(5) per ml, but those with more type A HA regions replicated better, suggesting protein-protein interactions or increased HA segment incorporation into virions as contributing factors in the efficient growth of this series of viruses. All of these chimeric (A/B) HA viruses were attenuated in mice compared with wild-type A or B viruses. All animals intranasally immunized with a chimeric virus survived upon challenge with a lethal dose of wild-type type B virus. These results suggest a framework for the design of a novel live vaccine virus.
Collapse
Affiliation(s)
- Taisuke Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Sato Y, Yoshioka K, Suzuki C, Awashima S, Hosaka Y, Yewdell J, Kuroda K. Localization of influenza virus proteins to nuclear dot 10 structures in influenza virus-infected cells. Virology 2003; 310:29-40. [PMID: 12788628 DOI: 10.1016/s0042-6822(03)00104-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied influenza virus M1 protein by generating HeLa and MDCK cell lines that express M1 genetically fused to green fluorescent protein (GFP). GFP-M1 was incorporated into virions produced by influenza virus infected MDCK cells expressing the fusion protein indicating that the fusion protein is at least partially functional. Following infection of either HeLa or MDCK cells with influenza A virus (but not influenza B virus), GFP-M1 redistributes from its cytosolic/nuclear location and accumulates in nuclear dots. Immunofluorescence revealed that the nuclear dots represent nuclear dot 10 (ND10) structures. The colocalization of authentic M1, as well as NS1 and NS2 protein, with ND10 was confirmed by immunofluorescence following in situ isolation of ND10. These findings demonstrate a previously unappreciated involvement of influenza virus with ND10, a structure involved in cellular responses to immune cytokines as well as the replication of a rapidly increasing list of viruses.
Collapse
Affiliation(s)
- Yoshiko Sato
- Department of Virology and Immunology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Crescenzo-Chaigne B, van der Werf S, Naffakh N. Differential effect of nucleotide substitutions in the 3' arm of the influenza A virus vRNA promoter on transcription/replication by avian and human polymerase complexes is related to the nature of PB2 amino acid 627. Virology 2002; 303:240-52. [PMID: 12490387 DOI: 10.1006/viro.2002.1637] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using a genetic system that allows the in vivo reconstitution of active ribonucleoproteins, the ability to ensure transcription/replication of a viral-like reporter RNA harboring the G(3) --> A(3), U(5) --> C(5), and C(8) --> U(8) mutations (triple 3-5-8 mutations) in the 3' arm of the promoter was examined with core proteins from human or avian strains of influenza A viruses. The efficiency of transcription/replication of the viral-like RNA with the triple 3-5-8 mutations in COS-1 cells was found to be slightly decreased as compared to the wild-type RNA when the polymerase was derived from a human virus. In contrast, it was found to be considerably increased when the polymerase was derived from an avian virus, in agreement with published observations using the avian A/FPV/Bratislava virus (G. Neumann and G. Hobom, 1995, J. Gen. Virol. 76, 1709-1717). This increase could be attributed to the compensation of the defect in transcription/replication activity in the COS-1 mammalian cell line due to the presence of a glutamic acid at PB2 residue 627, characteristic of avian strains of influenza viruses. Our results thus suggest that PB2 and/or cellular proteins interacting with PB2 could be involved in RNA conformational changes during the process of transcription/replication.
Collapse
|
40
|
Jackson D, Cadman A, Zurcher T, Barclay WS. A reverse genetics approach for recovery of recombinant influenza B viruses entirely from cDNA. J Virol 2002; 76:11744-7. [PMID: 12388735 PMCID: PMC136801 DOI: 10.1128/jvi.76.22.11744-11747.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recovery of recombinant influenza A virus entirely from cDNA was recently described (9, 19). We adapted the technique for engineering influenza B virus and generated a mutant bearing an amino acid change E116G in the viral neuraminidase which was resistant in vitro to the neuraminidase inhibitor zanamivir. The method also facilitates rapid isolation of single-gene reassortants suitable as vaccine seeds and will aid further investigations of unique features of influenza B virus.
Collapse
Affiliation(s)
- David Jackson
- University of Reading, Whiteknights, Reading RG6 6AJ. GlaxoSmithKline Medicine Research Centre, Stevenage SG1 2NY, United Kingdom
| | | | | | | |
Collapse
|
41
|
Hoffmann E, Mahmood K, Yang CF, Webster RG, Greenberg HB, Kemble G. Rescue of influenza B virus from eight plasmids. Proc Natl Acad Sci U S A 2002; 99:11411-6. [PMID: 12172012 PMCID: PMC123270 DOI: 10.1073/pnas.172393399] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2002] [Indexed: 11/18/2022] Open
Abstract
Influenza B virus causes a significant amount of morbidity and mortality, yet the systems to produce high yield inactivated vaccines for these viruses have lagged behind the development of those for influenza A virus. We have established a plasmid-only reverse genetics system for the generation of recombinant influenza B virus that facilitates the generation of vaccine viruses without the need for time consuming coinfection and selection procedures currently required to produce reassortants. We cloned the eight viral cDNAs of influenza B/Yamanashi/166/98, which yields relatively high titers in embryonated chicken eggs, between RNA polymerase I and RNA polymerase II transcription units. Virus was detected as early as 3 days after transfection of cocultured COS7 and Madin-Darby canine kidney cells and achieved levels of 10(6)-10(7) plaque-forming units per ml of cell supernatant 6 days after transfection. The full-length sequence of the recombinant virus after passage into embryonated chicken eggs was identical to that of the input plasmids. To improve the utility of the eight-plasmid system for generating 6 + 2 reassortants from recently circulating influenza B strains, we optimized the reverse transcriptase-PCR for cloning of the hemagglutinin (HA) and neuraminidase (NA) segments. The six internal genes of B/Yamanashi/166/98 were used as the backbone to generate 6 + 2 reassortants including the HA and NA gene segments from B/Victoria/504/2000, B/Hong Kong/330/2001, and B/Hawaii/10/2001. Our results demonstrate that the eight-plasmid system can be used for the generation of high yields of influenza B virus vaccines expressing current HA and NA glycoproteins from either of the two lineages of influenza B virus.
Collapse
Affiliation(s)
- Erich Hoffmann
- MedImmune Vaccines, 297 North Bernardo Avenue, Mountain View, CA 94043, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Paragas J, Talon J, O'Neill RE, Anderson DK, García-Sastre A, Palese P. Influenza B and C virus NEP (NS2) proteins possess nuclear export activities. J Virol 2001; 75:7375-83. [PMID: 11462009 PMCID: PMC114972 DOI: 10.1128/jvi.75.16.7375-7383.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2001] [Accepted: 05/16/2001] [Indexed: 11/20/2022] Open
Abstract
Nucleocytoplasmic transport of viral ribonucleoproteins (vRNPs) is an essential aspect of the replication cycle for influenza A, B, and C viruses. These viruses replicate and transcribe their genomes in the nuclei of infected cells. During the late stages of infection, vRNPs must be exported from the nucleus to the cytoplasm prior to transport to viral assembly sites on the cellular plasma membrane. Previously, we demonstrated that the influenza A virus nuclear export protein (NEP, formerly referred to as the NS2 protein) mediates the export of vRNPs. In this report, we suggest that for influenza B and C viruses the nuclear export function is also performed by the orthologous NEP proteins (formerly referred to as the NS2 protein). The influenza virus B and C NEP proteins interact in the yeast two-hybrid assay with a subset of nucleoporins and with the Crm1 nuclear export factor and can functionally replace the effector domain from the human immunodeficiency virus type 1 Rev protein. We established a plasmid transfection system for the generation of virus-like particles (VLPs) in which a functional viral RNA-like chloramphenicol acetyltransferase (CAT) gene is delivered to a new cell. VLPs generated in the absence of the influenza B virus NEP protein were unable to transfer the viral RNA-like CAT gene to a new cell. From these data, we suggest that the nuclear export of the influenza B and C vRNPs are mediated through interaction between NEP proteins and the cellular nucleocytoplasmic export machinery.
Collapse
Affiliation(s)
- J Paragas
- Department of Microbiology, Mount Sinai School of Medicine, New York University, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
43
|
Crescenzo-Chaigne B, van der Werf S. Nucleotides at the extremities of the viral RNA of influenza C virus are involved in type-specific interactions with the polymerase complex. J Gen Virol 2001; 82:1075-1083. [PMID: 11297682 DOI: 10.1099/0022-1317-82-5-1075] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza A and C viruses share common sequences in the terminal noncoding regions of the viral RNA segments. Differences at the 5'- and 3'-ends exist, however, that could contribute to the specificity with which the transcription/replication signals are recognized by the cognate polymerase complexes. Previously, by making use of a transient expression system for the transcription and replication of a reporter RNA template bearing either type A or type C extremities, it was shown that a type C RNA template is transcribed and replicated with equal efficiency by either the type A or the type C polymerase complex, whereas a type A RNA template is less efficiently transcribed and replicated by the type C polymerase complex than by the type A complex. To explore the contribution of the nucleotides at the extremities of the RNAs to this type-specificity, the effect of mutations introduced either alone or in combination at nucleotide 5 at the 3'-end and at nucleotides 3', 6' or 8' at the 5'-end of type A or C RNA templates were studied in the presence of either the type A or the type C polymerase complex. The results indicate that the nature of nucleotides 5 and 6' contribute to type-specificity. Moreover, these results underline the importance of the base pairing between nucleotide 3' and 8' at the 5'-end of the RNA. Thus, it could be suggested that the nature of the nucleotides as well as the stability of the secondary structure at the extremities of the viral RNA are important determinants of type-specificity.
Collapse
Affiliation(s)
- Bernadette Crescenzo-Chaigne
- Unité de Génétique Moléculaire des Virus Respiratoires, URA 1966 CNRS, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Sylvie van der Werf
- Unité de Génétique Moléculaire des Virus Respiratoires, URA 1966 CNRS, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| |
Collapse
|
44
|
Abstract
Major developments during the past 5 years concerning influenza prevention by vaccination and treatment with neuraminidase inhibitors are reviewed. These have been accompanied by increased media interest in related issues: pressures on hospital admissions, ethical concerns and controls on prescribing limiting professional autonomy. The new live attenuated influenza vaccines, adjuvanted vaccines and the emerging recombinant DNA vaccines are discussed. Recent information on neuraminidase inhibitor antivirals, surveillance for resistant viruses, the prospects for near patient tests (i.e. tests that can be used near the patient to improve immediate patient management or in the laboratory to give rapid feedback for physicians) and the clinical significance of other respiratory viruses are highlighted. The benefits of recent advances provide challenges for health care delivery and public acceptance as great as those involved in their scientific development.
Collapse
Affiliation(s)
- D M Fleming
- Royal College of General Practitioners, Birmingham, UK
| | | |
Collapse
|