1
|
Zhang X, Lim K, Qiu Y, Hazawa M, Wong RW. Strategies for the Viral Exploitation of Nuclear Pore Transport Pathways. Viruses 2025; 17:151. [PMID: 40006906 PMCID: PMC11860923 DOI: 10.3390/v17020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Viruses frequently exploit the host's nucleocytoplasmic trafficking machinery to facilitate their replication and evade immune defenses. By encoding specialized proteins and other components, they strategically target host nuclear transport receptors (NTRs) and nucleoporins within the spiderweb-like inner channel of the nuclear pore complex (NPC), enabling efficient access to the host nucleus. This review explores the intricate mechanisms governing the nuclear import and export of viral components, with a focus on the interplay between viral factors and host determinants that are essential for these processes. Given the pivotal role of nucleocytoplasmic shuttling in the viral life cycle, we also examine therapeutic strategies aimed at disrupting the host's nuclear transport pathways. This includes evaluating the efficacy of pharmacological inhibitors in impairing viral replication and assessing their potential as antiviral treatments. Furthermore, we emphasize the need for continued research to develop targeted therapies that leverage vulnerabilities in nucleocytoplasmic trafficking. Emerging high-resolution techniques, such as advanced imaging and computational modeling, are transforming our understanding of the dynamic interactions between viruses and the NPC. These cutting-edge tools are driving progress in identifying novel therapeutic opportunities and uncovering deeper insights into viral pathogenesis. This review highlights the importance of these advancements in paving the way for innovative antiviral strategies.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Yujia Qiu
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
| | - Masaharu Hazawa
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
2
|
Lin HS, Li CH, Chen LW, Wang SS, Chen LY, Hung CH, Lin CL, Chang PJ. The varicella-zoster virus ORF16 protein promotes both the nuclear transport and the protein abundance of the viral DNA polymerase subunit ORF28. Virus Res 2024; 345:199379. [PMID: 38643859 PMCID: PMC11061344 DOI: 10.1016/j.virusres.2024.199379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/23/2024]
Abstract
Although all herpesviruses utilize a highly conserved replication machinery to amplify their viral genomes, different members may have unique strategies to modulate the assembly of their replication components. Herein, we characterize the subcellular localization of seven essential replication proteins of varicella-zoster virus (VZV) and show that several viral replication enzymes such as the DNA polymerase subunit ORF28, when expressed alone, are localized in the cytoplasm. The nuclear import of ORF28 can be mediated by the viral DNA polymerase processivity factor ORF16. Besides, ORF16 could markedly enhance the protein abundance of ORF28. Noteworthily, an ORF16 mutant that is defective in nuclear transport still retained the ability to enhance ORF28 abundance. The low abundance of ORF28 in transfected cells was due to its rapid degradation mediated by the ubiquitin-proteasome system. We additionally reveal that radicicol, an inhibitor of the chaperone Hsp90, could disrupt the interaction between ORF16 and ORF28, thereby affecting the nuclear entry and protein abundance of ORF28. Collectively, our findings imply that the cytoplasmic retention and rapid degradation of ORF28 may be a key regulatory mechanism for VZV to prevent untimely viral DNA replication, and suggest that Hsp90 is required for the interaction between ORF16 and ORF28.
Collapse
Affiliation(s)
- Huang-Shen Lin
- Department of Internal Medicine, Division of Infectious Diseases, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Cheng-Han Li
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Lee-Wen Chen
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan; Department of Pediatric Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Shie-Shan Wang
- Department of Pediatric Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Li-Yu Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
| |
Collapse
|
3
|
Abstract
Human herpesviruses are large double-stranded DNA viruses belonging to the Herpesviridae family. The main characteristics of these viruses are their ability to establish a lifelong latency into the host with a potential to reactivate periodically. Primary infections and reactivations with herpesviruses are responsible for a large spectrum of diseases and may result in severe complications in immunocompromised patients. The viral DNA polymerase is a key enzyme in the replicative cycle of herpesviruses, and the target of most antiviral agents (i.e., nucleoside, nucleotide and pyrophosphate analogs). However, long-term prophylaxis and treatment with these antivirals may lead to the emergence of drug-resistant isolates harboring mutations in genes encoding viral enzymes that phosphorylate drugs (nucleoside analogs) and/or DNA polymerases, with potential cross-resistance between the different analogs. Drug resistance mutations mainly arise in conserved regions of the polymerase and exonuclease functional domains of these enzymes. In the polymerase domain, mutations associated with resistance to nucleoside/nucleotide analogs may directly or indirectly affect drug binding or incorporation into the primer strand, or increase the rate of extension of DNA to overcome chain termination. In the exonuclease domain, mutations conferring resistance to nucleoside/nucleotide analogs may reduce the rate of excision of incorporated drug, or continue DNA elongation after drug incorporation without excision. Mutations associated with resistance to pyrophosphate analogs may alter drug binding or the conformational changes of the polymerase domain required for an efficient activity of the enzyme. Novel herpesvirus inhibitors with a potent antiviral activity against drug-resistant isolates are thus needed urgently.
Collapse
Affiliation(s)
| | - Guy Boivin
- CHU de Québec-Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
4
|
Sajidah ES, Lim K, Wong RW. How SARS-CoV-2 and Other Viruses Build an Invasion Route to Hijack the Host Nucleocytoplasmic Trafficking System. Cells 2021; 10:1424. [PMID: 34200500 PMCID: PMC8230057 DOI: 10.3390/cells10061424] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
The host nucleocytoplasmic trafficking system is often hijacked by viruses to accomplish their replication and to suppress the host immune response. Viruses encode many factors that interact with the host nuclear transport receptors (NTRs) and the nucleoporins of the nuclear pore complex (NPC) to access the host nucleus. In this review, we discuss the viral factors and the host factors involved in the nuclear import and export of viral components. As nucleocytoplasmic shuttling is vital for the replication of many viruses, we also review several drugs that target the host nuclear transport machinery and discuss their feasibility for use in antiviral treatment.
Collapse
Affiliation(s)
- Elma Sakinatus Sajidah
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
5
|
Lee J, Kwon YE, Kim Y, Choi JS. Enhanced transfection efficiency of low generation PAMAM dendrimer conjugated with the nuclear localization signal peptide derived from herpesviridae. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:22-41. [PMID: 32897813 DOI: 10.1080/09205063.2020.1815496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polyamidoamine (PAMAM) dendrimer is an extensively studied polymer in the biomedical research because of its low polydispersity, distinct molecular structure, and surface functionalities. Generally, a high-generational PAMAM dendrimer is used for gene delivery because transfection efficiency is dependent on charge density; however, an increase in charge density induces disruption of the cellular membrane, and damage to the membrane results in cytotoxicity. In this study, we selected PAMAM generation 2 to reduce the cytotoxic effect and conjugated RRILH and RRLHL sequences, nuclear localization signals (NLS) derived from herpesviridae to PAMAM generation 2. The transfection efficiency of RRILH-PAMAM G2 and RRLHL-PAMAM G2 was similar to that of polyethylenimine (PEI) in Neuro2A, HT22, and HaCaT cells, whereas their transfection efficiency was much higher than that of PEI in NIH3T3 cells. RRILH-PAMAM G2 showed relatively lower cytotoxicity than did RRLHL-PAMAM G2 in all cell lines, but the transfection capacity of the two polymers was similar. Our study shows that low-generational PAMAM dendrimer conjugated with NLS sequences has potential as an alternative to PEI in gene delivery.
Collapse
Affiliation(s)
- Jeil Lee
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Yong-Eun Kwon
- Center for Scientific Instrumentation, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Younjin Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Mechanisms Mediating Nuclear Trafficking Involved in Viral Propagation by DNA Viruses. Viruses 2019; 11:v11111035. [PMID: 31703327 PMCID: PMC6893576 DOI: 10.3390/v11111035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Typical viral propagation involves sequential viral entry, uncoating, replication, gene transcription and protein synthesis, and virion assembly and release. Some viral proteins must be transported into host nucleus to facilitate viral propagation, which is essential for the production of mature virions. During the transport process, nuclear localization signals (NLSs) play an important role in guiding target proteins into nucleus through the nuclear pore. To date, some classical nuclear localization signals (cNLSs) and non-classical NLSs (ncNLSs) have been identified in a number of viral proteins. These proteins are involved in viral replication, expression regulation of viral genes and virion assembly. Moreover, other proteins are transported into nucleus with unknown mechanisms. This review highlights our current knowledge about the nuclear trafficking of cellular proteins associated with viral propagation.
Collapse
|
7
|
Zmasek CM, Knipe DM, Pellett PE, Scheuermann RH. Classification of human Herpesviridae proteins using Domain-architecture Aware Inference of Orthologs (DAIO). Virology 2019; 529:29-42. [PMID: 30660046 PMCID: PMC6502252 DOI: 10.1016/j.virol.2019.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
Abstract
We developed a computational approach called Domain-architecture Aware Inference of Orthologs (DAIO) for the analysis of protein orthology by combining phylogenetic and protein domain-architecture information. Using DAIO, we performed a systematic study of the proteomes of all human Herpesviridae species to define Strict Ortholog Groups (SOGs). In addition to assessing the taxonomic distribution for each protein based on sequence similarity, we performed a protein domain-architecture analysis for every protein family and computationally inferred gene duplication events. While many herpesvirus proteins have evolved without any detectable gene duplications or domain rearrangements, numerous herpesvirus protein families do exhibit complex evolutionary histories. Some proteins acquired additional domains (e.g., DNA polymerase), whereas others show a combination of domain acquisition and gene duplication (e.g., betaherpesvirus US22 family), with possible functional implications. This novel classification system of SOGs for human Herpesviridae proteins is available through the Virus Pathogen Resource (ViPR, www.viprbrc.org).
Collapse
Affiliation(s)
| | - David M Knipe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Philip E Pellett
- Department of Biochemistry, Microbiology & Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, CA 92037, USA; Department of Pathology, University of California, San Diego, CA 92093, USA; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
Döhner K, Ramos-Nascimento A, Bialy D, Anderson F, Hickford-Martinez A, Rother F, Koithan T, Rudolph K, Buch A, Prank U, Binz A, Hügel S, Lebbink RJ, Hoeben RC, Hartmann E, Bader M, Bauerfeind R, Sodeik B. Importin α1 is required for nuclear import of herpes simplex virus proteins and capsid assembly in fibroblasts and neurons. PLoS Pathog 2018; 14:e1006823. [PMID: 29304174 PMCID: PMC5773220 DOI: 10.1371/journal.ppat.1006823] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/18/2018] [Accepted: 12/16/2017] [Indexed: 01/28/2023] Open
Abstract
Herpesviruses are large DNA viruses which depend on many nuclear functions, and therefore on host transport factors to ensure specific nuclear import of viral and host components. While some import cargoes bind directly to certain transport factors, most recruit importin β1 via importin α. We identified importin α1 in a small targeted siRNA screen to be important for herpes simplex virus (HSV-1) gene expression. Production of infectious virions was delayed in the absence of importin α1, but not in cells lacking importin α3 or importin α4. While nuclear targeting of the incoming capsids, of the HSV-1 transcription activator VP16, and of the viral genomes were not affected, the nuclear import of the HSV-1 proteins ICP4 and ICP0, required for efficient viral transcription, and of ICP8 and pUL42, necessary for DNA replication, were reduced. Furthermore, quantitative electron microscopy showed that fibroblasts lacking importin α1 contained overall fewer nuclear capsids, but an increased proportion of mature nuclear capsids indicating that capsid formation and capsid egress into the cytoplasm were impaired. In neurons, importin α1 was also not required for nuclear targeting of incoming capsids, but for nuclear import of ICP4 and for the formation of nuclear capsid assembly compartments. Our data suggest that importin α1 is specifically required for the nuclear localization of several important HSV1 proteins, capsid assembly, and capsid egress into the cytoplasm, and may become rate limiting in situ upon infection at low multiplicity or in terminally differentiated cells such as neurons. Nuclear pore complexes are highly selective gateways that penetrate the nuclear envelope for bidirectional trafficking between the cytoplasm and the nucleoplasm. Viral and host cargoes have to engage specific transport factors to achieve active nuclear import and export. Like many human and animal DNA viruses, herpesviruses are critically dependent on many functions of the host cell nucleus. Alphaherpesviruses such as herpes simplex virus (HSV) cause many diseases upon productive infection in epithelial cells, fibroblasts and neurons. Here, we asked which nuclear transport factors of the host cells help HSV-1 to translocate viral components into the nucleus for viral gene expression, nuclear capsid assembly, capsid egress into the cytoplasm, and production of infectious virions. Our data show that HSV-1 requires the nuclear import factor importin α1 for efficient replication and virus assembly in fibroblasts and in mature neurons. To our knowledge this is the first time that a specific importin α isoform is shown to be required for herpesvirus infection. Our study fosters our understanding on how the different but highly homologous importin α isoforms could fulfill specific functions in vivo which are only understood for a very limited number of host and viral cargos.
Collapse
Affiliation(s)
- Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Dagmara Bialy
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Fenja Anderson
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Franziska Rother
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Thalea Koithan
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Kathrin Rudolph
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anna Buch
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ute Prank
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anne Binz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Stefanie Hügel
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rob C. Hoeben
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Enno Hartmann
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Rudolf Bauerfeind
- Research Core Unit Laser Microscopy, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
9
|
Wang YP, Du WJ, Huang LP, Wei YW, Wu HL, Feng L, Liu CM. The Pseudorabies Virus DNA Polymerase Accessory Subunit UL42 Directs Nuclear Transport of the Holoenzyme. Front Microbiol 2016; 7:124. [PMID: 26913023 PMCID: PMC4753316 DOI: 10.3389/fmicb.2016.00124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/25/2016] [Indexed: 01/13/2023] Open
Abstract
Pseudorabies virus (PRV) DNA replication occurs in the nuclei of infected cells and requires the viral DNA polymerase. The PRV DNA polymerase comprises a catalytic subunit, UL30, and an accessory subunit, UL42, that confers processivity to the enzyme. Its nuclear localization is a prerequisite for its enzymatic function in the initiation of viral DNA replication. However, the mechanisms by which the PRV DNA polymerase holoenzyme enters the nucleus have not been determined. In this study, we characterized the nuclear import pathways of the PRV DNA polymerase catalytic and accessory subunits. Immunofluorescence analysis showed that UL42 localizes independently in the nucleus, whereas UL30 alone predominantly localizes in the cytoplasm. Intriguingly, the localization of UL30 was completely shifted to the nucleus when it was coexpressed with UL42, demonstrating that nuclear transport of UL30 occurs in an UL42-dependent manner. Deletion analysis and site-directed mutagenesis of the two proteins showed that UL42 contains a functional and transferable bipartite nuclear localization signal (NLS) at amino acids 354–370 and that K354, R355, and K367 are important for the NLS function, whereas UL30 has no NLS. Coimmunoprecipitation assays verified that UL42 interacts with importins α3 and α4 through its NLS. In vitro nuclear import assays demonstrated that nuclear accumulation of UL42 is a temperature- and energy-dependent process and requires both importins α and β, confirming that UL42 utilizes the importin α/β-mediated pathway for nuclear entry. In an UL42 NLS-null mutant, the UL42/UL30 heterodimer was completely confined to the cytoplasm when UL42 was coexpressed with UL30, indicating that UL30 utilizes the NLS function of UL42 for its translocation into the nucleus. Collectively, these findings suggest that UL42 contains an importin α/β-mediated bipartite NLS that transports the viral DNA polymerase holoenzyme into the nucleus in an in vitro expression system.
Collapse
Affiliation(s)
- Yi-Ping Wang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences Harbin, China
| | - Wen-Juan Du
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences Harbin, China
| | - Li-Ping Huang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences Harbin, China
| | - Yan-Wu Wei
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences Harbin, China
| | - Hong-Li Wu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences Harbin, China
| | - Li Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences Harbin, China
| | - Chang-Ming Liu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences Harbin, China
| |
Collapse
|
10
|
Kukhanova MK, Korovina AN, Kochetkov SN. Human herpes simplex virus: Life cycle and development of inhibitors. BIOCHEMISTRY (MOSCOW) 2015; 79:1635-52. [DOI: 10.1134/s0006297914130124] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Regulated transport into the nucleus of herpesviridae DNA replication core proteins. Viruses 2013; 5:2210-34. [PMID: 24064794 PMCID: PMC3798897 DOI: 10.3390/v5092210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 12/11/2022] Open
Abstract
The Herpesvirdae family comprises several major human pathogens belonging to three distinct subfamilies. Their double stranded DNA genome is replicated in the nuclei of infected cells by a number of host and viral products. Among the latter the viral replication complex, whose activity is strictly required for viral replication, is composed of six different polypeptides, including a two-subunit DNA polymerase holoenzyme, a trimeric primase/helicase complex and a single stranded DNA binding protein. The study of herpesviral DNA replication machinery is extremely important, both because it provides an excellent model to understand processes related to eukaryotic DNA replication and it has important implications for the development of highly needed antiviral agents. Even though all known herpesviruses utilize very similar mechanisms for amplification of their genomes, the nuclear import of the replication complex components appears to be a heterogeneous and highly regulated process to ensure the correct spatiotemporal localization of each protein. The nuclear transport process of these enzymes is controlled by three mechanisms, typifying the main processes through which protein nuclear import is generally regulated in eukaryotic cells. These include cargo post-translational modification-based recognition by the intracellular transporters, piggy-back events allowing coordinated nuclear import of multimeric holoenzymes, and chaperone-assisted nuclear import of specific subunits. In this review we summarize these mechanisms and discuss potential implications for the development of antiviral compounds aimed at inhibiting the Herpesvirus life cycle by targeting nuclear import of the Herpesvirus DNA replicating enzymes.
Collapse
|
12
|
Inhibition of herpesvirus and influenza virus replication by blocking polymerase subunit interactions. Antiviral Res 2013; 99:318-27. [DOI: 10.1016/j.antiviral.2013.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 11/18/2022]
|
13
|
Nuclear transport of Epstein-Barr virus DNA polymerase is dependent on the BMRF1 polymerase processivity factor and molecular chaperone Hsp90. J Virol 2013; 87:6482-91. [PMID: 23552409 DOI: 10.1128/jvi.03428-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Epstein-Barr virus (EBV) replication proteins are transported into the nucleus to synthesize viral genomes. We here report molecular mechanisms for nuclear transport of EBV DNA polymerase. The EBV DNA polymerase catalytic subunit BALF5 was found to accumulate in the cytoplasm when expressed alone, while the EBV DNA polymerase processivity factor BMRF1 moved into the nucleus by itself. Coexpression of both proteins, however, resulted in efficient nuclear transport of BALF5. Deletion of the nuclear localization signal of BMRF1 diminished the proteins' nuclear transport, although both proteins can still interact. These results suggest that BALF5 interacts with BMRF1 to effect transport into the nucleus. Interestingly, we found that Hsp90 inhibitors or knockdown of Hsp90β with short hairpin RNA prevented the BALF5 nuclear transport, even in the presence of BMRF1, both in transfection assays and in the context of lytic replication. Immunoprecipitation analyses suggested that the molecular chaperone Hsp90 interacts with BALF5. Treatment with Hsp90 inhibitors blocked viral DNA replication almost completely during lytic infection, and knockdown of Hsp90β reduced viral genome synthesis. Collectively, we speculate that Hsp90 interacts with BALF5 in the cytoplasm to assist complex formation with BMRF1, leading to nuclear transport. Hsp90 inhibitors may be useful for therapy for EBV-associated diseases in the future.
Collapse
|
14
|
Genotypic characterization of herpes simplex virus DNA polymerase UL42 processivity factor. Antiviral Res 2011; 93:199-203. [PMID: 22061617 DOI: 10.1016/j.antiviral.2011.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/14/2011] [Accepted: 10/19/2011] [Indexed: 12/17/2022]
Abstract
The herpes simplex virus (HSV) DNA polymerase is composed of the UL30 catalytic subunit and the UL42 processivity factor. The UL42 subunit increases the processivity of the polymerase along the DNA template during replication. The molecular mechanisms of HSV resistance to drugs interfering with viral DNA synthesis reported so far mainly rely on modifications of the viral thymidine kinase and DNA polymerase. We aimed to extensively describe the genetic variations of HSV UL42 processivity factor and to evaluate its potential involvement in resistance to antivirals. The full-length UL42 gene sequence of HSV was investigated among two laboratory strains (KOS and gHSV-2), 94 drug-sensitive clinical isolates and 25 phenotypically ACV-resistant clinical isolates. This work provided extensive data about natural variability of UL42 processivity factor among both HSV-1 and HSV-2 strains and showed that this viral protein is highly conserved among HSV strains, with a weaker variability for HSV-2. The analysis of 25 HSV clinical isolates exhibiting ACV-resistance documented most of the previously reported mutations related to UL42 natural polymorphism in addition to some unpreviously described polymorphisms. Surprisingly, a single-base deletion in UL42 gene sequence leading to a frameshift in the C-terminal region was identified among 3 HSV clinical isolates. From this preliminary study, UL42 processivity factor did not seem to be likely involved in HSV resistance to antivirals.
Collapse
|
15
|
Alvisi G, Avanzi S, Musiani D, Camozzi D, Leoni V, Ly-Huynh JD, Ripalti A. Nuclear import of HSV-1 DNA polymerase processivity factor UL42 is mediated by a C-terminally located bipartite nuclear localization signal. Biochemistry 2009; 47:13764-77. [PMID: 19053255 DOI: 10.1021/bi800869y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The polymerase accessory protein of the human herpes simplex virus type 1 (HSV-1) DNA polymerase UL42 plays an essential role in viral replication, conferring processivity to the catalytic subunit UL30. We show here that UL42 is imported to the nucleus of living cells in a Ran- and energy-dependent fashion, through a process that requires a C-terminally located bipartite nuclear localization signal (UL42-NLSbip; PTTKRGRSGGEDARADALKKPK(413)). Moreover cytoplasmic mutant derivatives of UL42 lacking UL42-NLSbip are partially relocalized into the cell nucleus upon HSV-1 infection or coexpression with UL30, implying that the HSV-1 DNA polymerase holoenzyme can assemble in the cytoplasm before nuclear translocation occurs, thus explaining why the UL42 C-terminal domain is not strictly required for viral replication in cultured cells. However, mutation of both UL30 and UL42 NLS results in retention of the DNA polymerase holoenzyme in the cytoplasm, suggesting that simultaneous inhibition of both NLSs could represent a viable strategy to hinder HSV-1 replication. Intriguingly, UL42-NLSbip is composed of two stretches of basic amino acids matching the consensus for classical monopartite NLSs (NLSA, PTTKRGR(397); NLSB, KKPK(413)), neither of which are capable of targeting GFP to the nucleus on their own, consistent with the hypothesis that P and G residues in position +3 of monopartite NLSs are not compatible with nuclear transport in the absence of additional basic sequences located in close proximity. Our results showing that substitution of G or P of the NLS with an A residue partially confers NLS function will help to redefine the consensus for monopartite NLSs.
Collapse
Affiliation(s)
- Gualtiero Alvisi
- Dipartimento di Ematologia e Scienze Oncologiche L.A. Seragnoli, Universita degli Studi di Bologna, Bologna, Italia.
| | | | | | | | | | | | | |
Collapse
|
16
|
Burnett JW, Laing JM, Aurelian L. Acute skin eruptions that are positive for herpes simplex virus DNA polymerase in patients with stem cell transplantation: a new manifestation within the erythema multiforme reactive dermatoses. ACTA ACUST UNITED AC 2008; 144:902-7. [PMID: 18645142 DOI: 10.1001/archderm.144.7.902] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Patients with stem cell transplantation (SCT) develop erythematous eruptions (SCTE) that are often misdiagnosed and poorly treated. Latent herpes simplex virus (HSV) is likely to be reactivated by SCT-associated immunosuppression. Therefore, one of the differential diagnostic possibilities for SCTE is HSV-associated erythema multiforme (HAEM) in which HSV genetic fragments localize in stem cells that deliver them to the skin on differentiation. OBSERVATIONS Lesional skin from patients with SCTE, HAEM, HSV, or drug-induced erythema (DIEM) was stained with antibodies to the HSV antigen DNA polymerase (Pol) and the major capsid protein, virion protein 5 (VP5). The HSV DNA polymerase Pol was expressed in 79% of patients with SCTE and 75% of those with HAEM. The protein VP5 was not expressed in these patients, indicative of the absence of virus replication. Findings in patients with DIEM were negative for both antigens, and those with HSV lesions were positive for both antigens. CONCLUSIONS There is a growing problem with SCTE, related to the increasing numbers of performed SCT. The greater frequency of SCT-generated circulating stem cells in patients with hematological malignant neoplasms (who have latent HSV infection) may result in a widespread SCTE characterized by skin deposition of HSV DNA fragments, notably those expressing Pol antigen. This HAEM-like presentation should be considered in the differential diagnosis of SCTE. Prolonged high-dosage antiviral chemotherapy during and after hospitalization may be warranted.
Collapse
Affiliation(s)
- Joseph W Burnett
- Department of Dermatology, University of Maryland, 4401 Roland Ave, Baltimore, MD 21210, USA.
| | | | | |
Collapse
|
17
|
Alvisi G, Ripalti A, Ngankeu A, Giannandrea M, Caraffi SG, Dias MM, Jans DA. Human cytomegalovirus DNA polymerase catalytic subunit pUL54 possesses independently acting nuclear localization and ppUL44 binding motifs. Traffic 2006; 7:1322-32. [PMID: 16911590 DOI: 10.1111/j.1600-0854.2006.00477.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The catalytic subunit of human cytomegalovirus (HCMV) DNA polymerase pUL54 is a 1242-amino-acid protein, whose function, stimulated by the processivity factor, phosphoprotein UL44 (ppUL44), is essential for viral replication. The C-terminal residues (amino acids 1220-1242) of pUL54 have been reported to be sufficient for ppUL44 binding in vitro. Although believed to be important for functioning in the nuclei of infected cells, no data are available on either the interaction of pUL54 with ppUL44 in living mammalian cells or the mechanism of pUL54 nuclear transport and its relationship with that of ppUL44. The present study examines for the first time the nuclear import pathway of pUL54 and its interaction with ppUL44 using dual color, quantitative confocal laser scanning microscopy on live transfected cells and quantitative gel mobility shift assays. We showed that of two nuclear localization signals (NLSs) located at amino acids 1153-1159 (NLSA) and 1222-1227 (NLSB), NLSA is sufficient to confer nuclear localization on green fluorescent protein (GFP) by mediating interaction with importin alpha/beta. We also showed that pUL54 residues 1213-1242 are sufficient to confer ppUL44 binding abilities on GFP and that pUL54 and ppUL44 can be transported to the nucleus as a complex. Our work thus identified distinct sites within the HCMV DNA polymerase, which represent potential therapeutic targets and establishes the molecular basis of UL54 nuclear import.
Collapse
Affiliation(s)
- Gualtiero Alvisi
- Dipartimento di Medicina Clinica Specialistica e Sperimentale, Sezione di Microbiologia, Università degli Studi di Bologna, via Massarenti 9, 40138 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
18
|
Loregian A, Palù G. Disruption of the interactions between the subunits of herpesvirus DNA polymerases as a novel antiviral strategy. Clin Microbiol Infect 2005; 11:437-46. [PMID: 15882193 DOI: 10.1111/j.1469-0691.2005.01149.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Most biological processes depend on the co-ordinated formation of protein-protein interactions. Besides their importance for virus replication, several interactions between virus proteins have been proposed as attractive targets for antiviral drug discovery, as the exquisite specificity of such cognate interactions affords the possibility of interfering with them in a highly specific and effective manner. There is a considerable need for new drugs active against herpesviruses, since available agents, most of which target the polymerisation activity of the virus DNA polymerase, are limited by pharmacokinetic issues, toxicity and antiviral resistance. A potential novel target for anti-herpesvirus drugs is the interaction between the two subunits of the virus DNA polymerase. This review focuses on recent developments using peptides and small molecules to inhibit protein-protein interactions between herpesvirus DNA polymerase subunits.
Collapse
Affiliation(s)
- A Loregian
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Padova, Italy.
| | | |
Collapse
|
19
|
Chen Y, Ciustea M, Ricciardi RP. Processivity factor of KSHV contains a nuclear localization signal and binding domains for transporting viral DNA polymerase into the nucleus. Virology 2005; 340:183-91. [PMID: 16043206 DOI: 10.1016/j.virol.2005.06.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 12/08/2004] [Accepted: 06/08/2005] [Indexed: 11/16/2022]
Abstract
Kaposi's sarcoma-associated human herpesvirus (KSHV) encodes a processivity factor (PF-8, ORF59) that forms homodimers and binds to viral DNA polymerase (Pol-8, ORF9). PF-8 is essential for stabilizing Pol-8 on template DNA so that Pol-8 can incorporate nucleotides continuously. Here, the intracellular interaction of these two viral proteins was examined by confocal immunofluorescence microscopy. When individually expressed, PF-8 was observed exclusively in the nucleus, whereas Pol-8 was found only in the cytoplasm. However, when co-expressed, Pol-8 was co-translocated with PF-8 into the nucleus. Mutational analysis revealed that PF-8 contains a nuclear localization signal (NLS) as well as domains located at the N-terminus and the C-proximal regions that are required for Pol-8 binding. This study suggests that the mechanism that enables PF-8 to transport Pol-8 into the nucleus is the first critical step required for Pol-8 and PF-8 to function processively in KSHV DNA synthesis.
Collapse
Affiliation(s)
- Yali Chen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | |
Collapse
|
20
|
Burch AD, Weller SK. Herpes simplex virus type 1 DNA polymerase requires the mammalian chaperone hsp90 for proper localization to the nucleus. J Virol 2005; 79:10740-9. [PMID: 16051866 PMCID: PMC1182622 DOI: 10.1128/jvi.79.16.10740-10749.2005] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many viruses and bacteriophage utilize chaperone systems for DNA replication and viral morphogenesis. We have previously shown that in the herpes simplex virus type 1 (HSV-1)-infected cell nucleus, foci enriched in the Hsp70/Hsp40 chaperone machinery are formed adjacent to viral replication compartments (A. D. Burch and S. K. Weller, J. Virol. 78:7175-7185, 2004). These foci have now been named virus-induced chaperone-enriched (VICE) foci. Since the Hsp90 chaperone machinery is known to engage the Hsp70/Hsp40 system in eukaryotes, the subcellular localization of Hsp90 in HSV-1-infected cells was analyzed. Hsp90 is found within viral replication compartments as well as in the Hsp70/Hsp40-enriched foci. Geldanamycin, an inhibitor of Hsp90, results in decreased HSV-1 yields and blocks viral DNA synthesis. Furthermore, we have found that the viral DNA polymerase is mislocalized to the cytoplasm in both infected and transfected cells in the presence of geldanamycin. Additionally, in the presence of an Hsp90 inhibitor, proteasome-dependent degradation of the viral polymerase was detected by Western blot analysis. These data identify the HSV-1 polymerase as a putative client protein of the Hsp90 chaperone system. Perturbations in this association appear to result in degradation, aberrant folding, and/or intracellular localization of the viral polymerase.
Collapse
Affiliation(s)
- April D Burch
- University of Connecticut Health Center, Department of Molecular, Microbial, and Structural Biology, MC3205, 263 Farmington Ave., Farmington, CT 06030, USA
| | | |
Collapse
|
21
|
Loregian A, Rigatti R, Murphy M, Schievano E, Palu G, Marsden HS. Inhibition of human cytomegalovirus DNA polymerase by C-terminal peptides from the UL54 subunit. J Virol 2003; 77:8336-44. [PMID: 12857903 PMCID: PMC165265 DOI: 10.1128/jvi.77.15.8336-8344.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In common with other herpesviruses, the human cytomegalovirus (HCMV) DNA polymerase contains a catalytic subunit (Pol or UL54) and an accessory protein (UL44) that is thought to increase the processivity of the enzyme. The observation that antisense inhibition of UL44 synthesis in HCMV-infected cells strongly inhibits viral DNA replication, together with the structural similarity predicted for the herpesvirus processivity subunits, highlights the importance of the accessory protein for virus growth and raises the possibility that the UL54/UL44 interaction might be a valid target for antiviral drugs. To investigate this possibility, overlapping peptides spanning residues 1161 to 1242 of UL54 were synthesized and tested for inhibition of the interaction between purified UL54 and UL44 proteins. A peptide, LPRRLHLEPAFLPYSVKAHECC, corresponding to residues 1221 to 1242 at the very C terminus of UL54, disrupted both the physical interaction between the two proteins and specifically inhibited the stimulation of UL54 by UL44. A mutant peptide lacking the two carboxy-terminal cysteines was markedly less inhibitory, suggesting a role for these residues in the UL54/UL44 interaction. Circular dichroism spectroscopy indicated that the UL54 C-terminal peptide can adopt a partially alpha-helical structure. Taken together, these results indicate that the two subunits of HCMV DNA polymerase most likely interact in a way which is analogous to that of the two subunits of herpes simplex virus DNA polymerase, even though there is no sequence homology in the binding site, and suggest that the UL54 peptide, or derivatives thereof, could form the basis for developing a new class of anti-HCMV inhibitors that act by disrupting the UL54/UL44 interaction.
Collapse
Affiliation(s)
- Arianna Loregian
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, 35121 Padua, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Loregian A, Marsden HS, Palù G. Protein-protein interactions as targets for antiviral chemotherapy. Rev Med Virol 2002; 12:239-62. [PMID: 12125015 DOI: 10.1002/rmv.356] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most cellular and viral processes depend on the coordinated formation of protein-protein interactions. With a better understanding of the molecular biology and biochemistry of human viruses it has become possible to screen for and detect inhibitors with activity against specific viral functions and to develop new approaches for the treatment of viral infections. A novel strategy to inhibit viral replication is based on the disruption of viral protein-protein complexes by peptides that mimic either face of the interaction between subunits. Peptides and peptide mimetics capable of dissociating protein-protein interactions have such exquisite specificity that they hold great promise as the next generation of therapeutic agents. This review is focused on recent developments using peptides and small molecules to inhibit protein-protein interactions between cellular and/or viral proteins with comments on the practicalities of transforming chemical leads into derivatives with the characteristics desired of medicinal compounds.
Collapse
Affiliation(s)
- Arianna Loregian
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35121 Padova, Italy
| | | | | |
Collapse
|
23
|
Mao H, Rosenthal KS. An N-terminal arginine-rich cluster and a proline-alanine-threonine repeat region determine the cellular localization of the herpes simplex virus type 1 ICP34.5 protein and its ligand, protein phosphatase 1. J Biol Chem 2002; 277:11423-31. [PMID: 11788604 DOI: 10.1074/jbc.m111553200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ICP34.5 protein facilitates herpes simplex virus replication by binding and activating protein phosphatase 1 (PP1) by means of a very conserved C-terminal GADD34-like region. Natural variants of the ICP34.5 differing in the number of arginines in an Arg-rich cluster at the N terminus and the number of Pro-Ala-Thr repeats in the central bridge region of the protein were cloned as fusion proteins with a reporter peptide (c-Myc or hrGFP) at the C terminus. The natural variants were obtained from strains differing in passage history, tissue culture behavior, and neuroinvasive disease potential. In transfected cells, these variants localized to different subcellular compartments. The N-terminal Arg-rich cluster acted as a cellular localization signal for discrete regions of the nucleus and cytoplasm, but the ultimate location of ICP34.5 was determined by the number of Pro-Ala-Thr repeats in the central bridge region. PP1 colocalized with the ICP34.5 variant in cells expressing the ICP34.5. The ICP34.5-mediated, herpes simplex virus strain-dependent differences in the modulation of PP1 location and function may be responsible for the strain-associated differences in tissue culture behavior and virulence of the virus.
Collapse
Affiliation(s)
- Hanwen Mao
- Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44272, USA
| | | |
Collapse
|