1
|
Yan M, Su A, Meyer D, Sosa GR, Fritsch H, Pitters M, Fischer N, Herrler G, Becher P. Precursor of H-type II histo-blood group antigen and subterminal sialic acids on gangliosides are significantly implicated in cell entry and infection by a porcine P[11] rotavirus. Emerg Microbes Infect 2025; 14:2447608. [PMID: 39726161 PMCID: PMC11727068 DOI: 10.1080/22221751.2024.2447608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/21/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Rotaviruses, non-enveloped viruses with a double-stranded RNA genome, are the leading etiological pathogen of acute gastroenteritis in young children and animals. The P[11] genotype of rotaviruses exhibits a tropism for neonates. In the present study, a binding assay using synthetic oligosaccharides demonstrated that the VP8* protein of P[11] porcine rotavirus (PRV) strain 4555 binds to lacto-N-neotetraose (LNnT) with the sequence Galβ1,4-GlcNAcβ1,3-Galβ1,4-Glc, one of the core parts of histo-blood group antigen (HBGA) and milk glycans. However, infections were significantly inhibited by blocking of endogenous monosialoganglioside (GM) GM1a with cholera toxin B subunit and preincubation of the virus with exogenous GM1a, suggesting that GM1a is involved in the infection of P[11] PRV 4555. In addition to GM1a, preincubation of the virus with exogenous disialogangliosides (GD) GD1a, GD1b, and trisialoganglioside (GT) GT1b also prevented infection. In contrast, exogenous ganglioside GM3 only inhibited infections at an early time point, and exogenous asyalosphingolipids GA1 and LacCer did not show any inhibitory effect on infections. This indicates that P[11] PRV 4555 preferentially utilizes gangliosides containing subterminal sialic acids. Further experiments revealed that P[11] PRV 4555 infections were prevented by preincubation of the virus with Neu5Ac and Neu5Gc. These results confirmed that sialic acids are essential for P[11] PRV 4555 cell entry, despite the classification as NA-resistant strain. Overall, our results proved that P[11] rotavirus not only binds to the Gal-GlcNAc motif but also utilizes gangliosides containing subterminal sialic acids.
Collapse
Affiliation(s)
- Miaomiao Yan
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ang Su
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Denise Meyer
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gleyder Roman Sosa
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Henrik Fritsch
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Malte Pitters
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole Fischer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Georg Herrler
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
2
|
Song F, Zeng Y, Sheng R, Lin Y, Wang X, Hong C, Luo G, Wang Y, Fang M, He S, Zhang S, Zheng Q, Li T, Ge S, Zhang J, Xia N. VP8 Mosaic Nanoparticles Elicit Cross-Neutralizing Immune Responses and Provide Protection Against Heterotypic Rotavirus Challenge in Mice. ACS NANO 2024; 18:31809-31822. [PMID: 39497609 DOI: 10.1021/acsnano.4c07061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Group A rotaviruses (RVA) remain one of the dominant pathogens causing diarrhea in children under 5 years of age worldwide, despite a sharp decrease of RVA-associated diarrhea and mortality since the introduction of rotavirus vaccines. The decreased effectiveness of live attenuated rotavirus vaccines, coupled with the emergence of new rotavirus genotypes and the risk of cross-species virus transmission, underscores the necessity to develop more effective and broad-spectrum rotavirus vaccines. In this study, we utilized nanoparticles coupled with the SpyCatcher-SpyTag system to effectively display the truncated VP8-1 protein. The modular display of the monovalent VP8-1 proteins markedly increased the immunogenicity of VP8-1. Furthermore, the bivalent display of VP8-1 proteins from simian rotavirus SA11 and lamb rotavirus LLR on the same particle not only increased immunogenicity against homotypic antigens but also elicited robust heterotypic immune responses and conferred effective protection against a distant heterotypic rotavirus with sequence identities of only 62%-66% in an adult mouse model. Therefore, mosaic VP8 nanoparticles could be considered as a viable strategy for the development of the next-generation broad-spectrum rotavirus vaccine.
Collapse
Affiliation(s)
- Feibo Song
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yuanjun Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Roufang Sheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yunyun Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xuechun Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Congming Hong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Guoxing Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yingbin Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Mujin Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shuizhen He
- Haicang Hospital of Xiamen, Xiamen 361026, China
| | - Shiyin Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tingdong Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shengxiang Ge
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jun Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Chen Q, Chen Y, Bao C, Xiang H, Gao Q, Mao L. Mechanism and complex roles of HSC70/HSPA8 in viral entry. Virus Res 2024; 347:199433. [PMID: 38992806 PMCID: PMC11305274 DOI: 10.1016/j.virusres.2024.199433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
The process of viruses entering host cells is complex, involving multiple aspects of the molecular organization of the cell membrane, viral proteins, the interaction of receptor molecules, and cellular signaling. Most viruses depend on endocytosis for uptake, when viruses reach the appropriate location, they are released from the vesicles, undergo uncoating, and release their genomes. Heat shock cognate protein 70(HSC70): also known as HSPA8, a protein involved in mediating clathrin-mediated endocytosis (CME), is involved in various viral entry processes. In this mini-review, our goal is to provide a summary of the function of HSC70 in viral entry. Understanding the interaction networks of HSC70 with viral proteins helps to provide new directions for targeted therapeutic strategies against viral infections.
Collapse
Affiliation(s)
- Qiaoqiao Chen
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Yiwen Chen
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Chenxuan Bao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University,Kunshan, Jiangsu, PR China
| | - Huayuan Xiang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University,Kunshan, Jiangsu, PR China
| | - Qing Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University,Kunshan, Jiangsu, PR China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, PR China; Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University,Kunshan, Jiangsu, PR China.
| |
Collapse
|
4
|
Sossa-Rojas H, Franco-Maz PG, Zapata-Acevedo C, Gutierrez-Castañeda LD, Guerrero C. Preclinical evaluation of oncolytic potential human rotavirus Wt 1-5 in gastric adenocarcinoma. PLoS One 2023; 18:e0285543. [PMID: 37186587 PMCID: PMC10184912 DOI: 10.1371/journal.pone.0285543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/25/2023] [Indexed: 05/17/2023] Open
Abstract
Despite advances in biomedical research, gastric cancer remains the leading cause of morbidity and mortality worldwide due to the limited efficacy of conventional therapies. In recent decades, oncolytic viruses have emerged as a biological therapeutic alternative to cancer due to their selectivity, effectiveness, and low toxicity. However, clinical trials have shown that developing a virus with selectivity for multiple tumor receptors and the ability to penetrate and diffuse through the tumor microenvironment to reactivate the immune system remains challenging. This study aimed to examine the oncolytic potential of tumor cell-adapted rotavirus Wt1-5 in gastric adenocarcinoma samples. This study focused on determining the propagation capacity of the RV Wt1-5 through the tumor and the importance of the expression of cell surface co-receptors, including integrin β3, protein disulfide isomerase (PDI), and heat shock proteins (Hsp-90, -70, -60, -40, and Hsc 70), during infection of tumor cells. These proteins were found to be differentially expressed in tumor cells compared to adjacent non-tumor cells. Preincubation of gastric tumor cells with antibodies against these proteins decreased rotavirus infections, validating their importance in the binding and entry of RV Wt1-5 into tumor cells, as previously reported. Upon RV infection, apoptosis was one of the types of death that was observed. This was evidenced by evaluating the expression of CASP-3, -9, PARP, cytochrome C, Bax, Bid, p53, and Bcl-2, as well as observing morphological changes such as chromatin margination, nuclear condensation, and fragmentation. Finally, at 60 h.p.i, histological analysis revealed that oncolysis compromised the entire thickness of the tumor. Therefore, the results suggest that RV Wt1-5 could be a novel therapeutic agent co-adjuvant agent for conventional and targeted therapies in managing GC. Ex vivo infection of the tumor tissue model showed characteristics of an immune response that could be explored in future studies.
Collapse
Affiliation(s)
- Henry Sossa-Rojas
- Departamento de Ciencias Básicas y Medicina Oral, Facultad de Odontología, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, D.C., Colombia
| | - Pedro Gabriel Franco-Maz
- Departamento de Morfología, Facultad de Medicina, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, D.C., Colombia
- Servicio de Patología, Hospital Universitario La Samaritana, Bogotá, D.C., Colombia
| | - Carlos Zapata-Acevedo
- Departamento de Cirugía, Facultad de Medicina, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, D.C., Colombia
- Servicio de Cirugía General, Hospital Universitario La Samaritana, Bogoté, D.C., Colombia
| | - Luz Dary Gutierrez-Castañeda
- Research Institute, Grupos Ciencias Básicas en Salud - CBS-FUCS, Fundación Universitaria de Ciencias de la Salud, Hospital Infantil Universitario de San Josá, Bogotá, D.C., Colombia
| | - Carlos Guerrero
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, D.C., Colombia
| |
Collapse
|
5
|
Amimo JO, Raev SA, Chepngeno J, Mainga AO, Guo Y, Saif L, Vlasova AN. Rotavirus Interactions With Host Intestinal Epithelial Cells. Front Immunol 2021; 12:793841. [PMID: 35003114 PMCID: PMC8727603 DOI: 10.3389/fimmu.2021.793841] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Rotavirus (RV) is the foremost enteric pathogen associated with severe diarrheal illness in young children (<5years) and animals worldwide. RV primarily infects mature enterocytes in the intestinal epithelium causing villus atrophy, enhanced epithelial cell turnover and apoptosis. Intestinal epithelial cells (IECs) being the first physical barrier against RV infection employs a range of innate immune strategies to counteract RVs invasion, including mucus production, toll-like receptor signaling and cytokine/chemokine production. Conversely, RVs have evolved numerous mechanisms to escape/subvert host immunity, seizing translation machinery of the host for effective replication and transmission. RV cell entry process involve penetration through the outer mucus layer, interaction with cell surface molecules and intestinal microbiota before reaching the IECs. For successful cell attachment and entry, RVs use sialic acid, histo-blood group antigens, heat shock cognate protein 70 and cell-surface integrins as attachment factors and/or (co)-receptors. In this review, a comprehensive summary of the existing knowledge of mechanisms underlying RV-IECs interactions, including the role of gut microbiota, during RV infection is presented. Understanding these mechanisms is imperative for developing efficacious strategies to control RV infections, including development of antiviral therapies and vaccines that target specific immune system antagonists within IECs.
Collapse
Affiliation(s)
- Joshua Oluoch Amimo
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Sergei Alekseevich Raev
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Juliet Chepngeno
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Alfred Omwando Mainga
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Yusheng Guo
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Linda Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
6
|
Tugizov S. Virus-associated disruption of mucosal epithelial tight junctions and its role in viral transmission and spread. Tissue Barriers 2021; 9:1943274. [PMID: 34241579 DOI: 10.1080/21688370.2021.19432749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Oropharyngeal, airway, intestinal, and genital mucosal epithelia are the main portals of entry for the majority of human pathogenic viruses. To initiate systemic infection, viruses must first be transmitted across the mucosal epithelium and then spread across the body. However, mucosal epithelia have well-developed tight junctions, which have a strong barrier function that plays a critical role in preventing the spread and dissemination of viral pathogens. Viruses can overcome these barriers by disrupting the tight junctions of mucosal epithelia, which facilitate paracellular viral penetration and initiate systemic disease. Disruption of tight and adherens junctions may also release the sequestered viral receptors within the junctional areas, and liberation of hidden receptors may facilitate viral infection of mucosal epithelia. This review focuses on possible molecular mechanisms of virus-associated disruption of mucosal epithelial junctions and its role in transmucosal viral transmission and spread.
Collapse
Affiliation(s)
- Sharof Tugizov
- Department of Medicine, School of Medicine, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Tugizov S. Virus-associated disruption of mucosal epithelial tight junctions and its role in viral transmission and spread. Tissue Barriers 2021; 9:1943274. [PMID: 34241579 DOI: 10.1080/21688370.2021.1943274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Oropharyngeal, airway, intestinal, and genital mucosal epithelia are the main portals of entry for the majority of human pathogenic viruses. To initiate systemic infection, viruses must first be transmitted across the mucosal epithelium and then spread across the body. However, mucosal epithelia have well-developed tight junctions, which have a strong barrier function that plays a critical role in preventing the spread and dissemination of viral pathogens. Viruses can overcome these barriers by disrupting the tight junctions of mucosal epithelia, which facilitate paracellular viral penetration and initiate systemic disease. Disruption of tight and adherens junctions may also release the sequestered viral receptors within the junctional areas, and liberation of hidden receptors may facilitate viral infection of mucosal epithelia. This review focuses on possible molecular mechanisms of virus-associated disruption of mucosal epithelial junctions and its role in transmucosal viral transmission and spread.
Collapse
Affiliation(s)
- Sharof Tugizov
- Department of Medicine, School of Medicine, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Cell surface heat shock protein-mediated entry of tumor cell-adapted rotavirus into U-937 cells. Folia Microbiol (Praha) 2021; 66:623-638. [PMID: 33950511 DOI: 10.1007/s12223-020-00845-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/21/2020] [Indexed: 10/21/2022]
Abstract
Rotaviruses infect cells by binding to specific cell surface molecules including gangliosides, heat shock protein cognate protein 70 (Hsc70), and some integrins. The characterization of cell surface receptors defining viral tropism is crucial for inhibiting entry into the normal cells or the cancer cells. In the present work, several tumor cell-adapted rotavirus isolates were tested for their interaction with some heat shock proteins (HSPs) present in the U-937 cells, derived from a human pleural effusion (histiocytic lymphoma monocyte). This interaction was examined by virus overlay protein-binding (VOPB), immunochemistry, immuno-dot blot assays, and flow cytometry. The results indicated that the rotavirus isolates studied were able to infect U937 cells by interacting with Hsp90, Hsp70, Hsp60, Hsp40, Hsc70, protein disulfide isomerase (PDI), and integrin β3, which are implicated in cellular proliferation, differentiation, and cancer development. Interestingly, these cellular proteins were found to be associated in lipid microdomains (rafts), facilitating in this way eventual sequential interactions of the rotavirus particles with the cell surface receptors. The rotavirus tropism for U937 cells through the use of these cell surface proteins made this rotavirus isolates an attractive target for the development of oncolytic strategies in the context of alternative and complementary treatment of cancer.
Collapse
|
9
|
Arias CF, López S. Rotavirus cell entry: not so simple after all. Curr Opin Virol 2021; 48:42-48. [PMID: 33887683 DOI: 10.1016/j.coviro.2021.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 01/25/2023]
Abstract
Rotaviruses are important agents of severe gastroenteritis in young children, and show a very selective cell and tissue tropism, as well as significant age and host restriction. In the last few years, these properties have been associated with the initial interaction of the virus with histo-blood group antigens on the cell surface, although post-attachment interactions have also been found to define the susceptibility to infection of human enteroids. These initial interactions seem also to determine the virus entry pathway, as well as the induction of signaling cascades that influence the virus intracellular vesicular traffic and escape from endosomes. Here we review the current knowledge of the different stages of the virus entry journey.
Collapse
Affiliation(s)
- Carlos F Arias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, Mexico.
| | - Susana López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| |
Collapse
|
10
|
Guerrero R, Guerrero C, Acosta O. Induction of Cell Death in the Human Acute Lymphoblastic Leukemia Cell Line Reh by Infection with Rotavirus Isolate Wt1-5. Biomedicines 2020; 8:E242. [PMID: 32722005 PMCID: PMC7460319 DOI: 10.3390/biomedicines8080242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/27/2022] Open
Abstract
Cancer is a major health problem that poses a great challenge to health care systems worldwide. Tools for cancer treatment have rapidly advanced in recent years, resulting in therapeutic strategies which are alternative and complementary to conventional treatment. To identify the cell surface receptors used by a tumor cell-adapted rotavirus and the cell death markers induced by its infection, we use Wt1-5, a rotavirus isolate recently adapted to tumor cells, to infect the human acute lymphoblastic leukemia cell line, Reh. The expression of cell surface receptors used by Wt1-5 was determined using flow cytometry and an antibody blocking assay to test for their implication in virus infection. Viral antigens and cell death markers induced by rotavirus infection were followed by flow cytometric analysis. The present study showed that rotavirus Wt1-5 was able to use cell surface proteins such as heat shock proteins (HSPs) 90, 70, 60 and 40, Hsc70, PDI and integrin β3. Rotavirus Wt1-5 induced cytotoxic effects including changes in cell membrane permeability, alteration of mitochondrial membrane potential, DNA fragmentation and activation of cell death signaling. Wt1-5 deserves to be further studied as a candidate oncolytic agent due to its ability to induce apoptosis in lymphoblastic leukemia-derived cells.
Collapse
Affiliation(s)
| | - Carlos Guerrero
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 30 No. 45-03 Bloque 47, Ciudad Universitaria, Bogotá 111321, Colombia; (R.G.); (O.A.)
| | | |
Collapse
|
11
|
Rodríguez JM, Luque D. Structural Insights into Rotavirus Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:45-68. [PMID: 31317495 DOI: 10.1007/978-3-030-14741-9_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
12
|
Antirotaviral activity of bovine milk components: Extending the list of inhibitory proteins and seeking a better understanding of their neutralization mechanism. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Shepherd FK, Murtaugh MP, Chen F, Culhane MR, Marthaler DG. Longitudinal Surveillance of Porcine Rotavirus B Strains from the United States and Canada and In Silico Identification of Antigenically Important Sites. Pathogens 2017; 6:pathogens6040064. [PMID: 29207506 PMCID: PMC5750588 DOI: 10.3390/pathogens6040064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022] Open
Abstract
Rotavirus B (RVB) is an important swine pathogen, but control and prevention strategies are limited without an available vaccine. To develop a subunit RVB vaccine with maximal effect, we characterized the amino acid sequence variability and predicted antigenicity of RVB viral protein 7 (VP7), a major neutralizing antibody target, from clinically infected pigs in the United States and Canada. We identified genotype-specific antigenic sites that may be antibody neutralization targets. While some antigenic sites had high amino acid functional group diversity, nine antigenic sites were completely conserved. Analysis of nucleotide substitution rates at amino acid sites (dN/dS) suggested that negative selection appeared to be playing a larger role in the evolution of the identified antigenic sites when compared to positive selection, and was identified in six of the nine conserved antigenic sites. These results identified important characteristics of RVB VP7 variability and evolution and suggest antigenic residues on RVB VP7 that are negatively selected and highly conserved may be good candidate regions to include in a subunit vaccine design due to their tendency to remain stable.
Collapse
Affiliation(s)
- Frances K Shepherd
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA.
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA.
| | - Fangzhou Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Marie R Culhane
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Avenue, St. Paul, MN 55108, USA.
| | - Douglas G Marthaler
- Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA.
| |
Collapse
|
14
|
A Point Mutation in the Rhesus Rotavirus VP4 Protein Generated through a Rotavirus Reverse Genetics System Attenuates Biliary Atresia in the Murine Model. J Virol 2017; 91:JVI.00510-17. [PMID: 28515290 DOI: 10.1128/jvi.00510-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 12/25/2022] Open
Abstract
Rotavirus infection is one of the most common causes of diarrheal illness in humans. In neonatal mice, rhesus rotavirus (RRV) can induce biliary atresia (BA), a disease resulting in inflammatory obstruction of the extrahepatic biliary tract and intrahepatic bile ducts. We previously showed that the amino acid arginine (R) within the sequence SRL (amino acids 445 to 447) in the RRV VP4 protein is required for viral binding and entry into biliary epithelial cells. To determine if this single amino acid (R) influences the pathogenicity of the virus, we generated a recombinant virus with a single amino acid mutation at this site through a reverse genetics system. We demonstrated that the RRV mutant (RRVVP4-R446G) produced less symptomatology and replicated to lower titers both in vivo and in vitro than those seen with wild-type RRV, with reduced binding in cholangiocytes. Our results demonstrate that a single amino acid change in the RRV VP4 gene influences cholangiocyte tropism and reduces pathogenicity in mice.IMPORTANCE Rotavirus is the leading cause of diarrhea in humans. Rhesus rotavirus (RRV) can also lead to biliary atresia (a neonatal human disease) in mice. We developed a reverse genetics system to create a mutant of RRV (RRVVP4-R446G) with a single amino acid change in the VP4 protein compared to that of wild-type RRV. In vitro, the mutant virus had reduced binding and infectivity in cholangiocytes. In vivo, it produced fewer symptoms and lower mortality in neonatal mice, resulting in an attenuated form of biliary atresia.
Collapse
|
15
|
Mohanty SK, Donnelly B, Lobeck I, Walther A, Dupree P, Coots A, Meller J, McNeal M, Sestak K, Tiao G. The SRL peptide of rhesus rotavirus VP4 protein governs cholangiocyte infection and the murine model of biliary atresia. Hepatology 2017; 65:1278-1292. [PMID: 27859498 PMCID: PMC5360466 DOI: 10.1002/hep.28947] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/08/2016] [Indexed: 12/24/2022]
Abstract
UNLABELLED Biliary atresia (BA) is a neonatal obstructive cholangiopathy that progresses to end-stage liver disease, often requiring transplantation. The murine model of BA, employing rhesus rotavirus (RRV), parallels human disease and has been used to elucidate mechanistic aspects of a virus induced biliary cholangiopathy. We previously reported that the RRV VP4 gene plays an integral role in activating the immune system and induction of BA. Using rotavirus binding and blocking assays, this study elucidated how RRV VP4 protein governs cholangiocyte susceptibility to infection both in vitro and in vivo in the murine model of BA. We identified the amino acid sequence on VP4 and its cholangiocyte binding protein, finding that the sequence is specific to those rotavirus strains that cause obstructive cholangiopathy. Pretreatment of murine and human cholangiocytes with this VP4-derived peptide (TRTRVSRLY) significantly reduced the ability of RRV to bind and infect cells. However, the peptide did not block cholangiocyte binding of TUCH and Ro1845, strains that do not induce murine BA. The SRL sequence within TRTRVSRLY is required for cholangiocyte binding and viral replication. The cholangiocyte membrane protein bound by SRL was found to be Hsc70. Inhibition of Hsc70 by small interfering RNAs reduced RRV's ability to infect cholangiocytes. This virus-cholangiocyte interaction is also seen in vivo in the murine model of BA, where inoculation of mice with TRTRVSRLY peptide significantly reduced symptoms and mortality in RRV-injected mice. CONCLUSION The tripeptide SRL on RRV VP4 binds to the cholangiocyte membrane protein Hsc70, defining a novel binding site governing VP4 attachment. Investigations are underway to determine the cellular response to this interaction to understand how it contributes to the pathogenesis of BA. (Hepatology 2017;65:1278-1292).
Collapse
Affiliation(s)
- Sujit K. Mohanty
- Department of Pediatric and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOH
| | - Bryan Donnelly
- Department of Pediatric and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOH
| | - Inna Lobeck
- Department of Pediatric and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOH
| | - Ashley Walther
- Department of Pediatric and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOH
| | - Phylicia Dupree
- Department of Pediatric and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOH
| | - Abigail Coots
- Department of Pediatric and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOH
| | - Jaroslaw Meller
- Department of Environmental HealthUniversity of Cincinnati & Division of Biomedical Informatics, Cincinnati Children's Hospital Medical CenterCincinnatiOH
| | - Monica McNeal
- Division of Infectious DiseasesCincinnati Children's Hospital Medical CenterCincinnatiOH
| | - Karol Sestak
- Tulane National Primate Research CenterCovingtonLA
| | - Greg Tiao
- Department of Pediatric and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOH
| |
Collapse
|
16
|
|
17
|
Cevallos Porta D, López S, Arias CF, Isa P. Polarized rotavirus entry and release from differentiated small intestinal cells. Virology 2016; 499:65-71. [PMID: 27639572 DOI: 10.1016/j.virol.2016.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 01/26/2023]
Abstract
Rotaviruses infect mature enterocytes from small intestine, however most data about their cellular entry are from studies carried out in non-intestinal polarized or non-polarized cell lines. In this work the entry of porcine rotavirus YM strain into small intestinal cell line IPEC-J2 was studied. It was found that YM and the human rotavirus Wa strain infect preferentially from the basolateral cell surface. Cell infection from the apical and basolateral surfaces was dependent on the presence of cholesterol. The treatment with neuraminidase, sucrose, and bafilomycin suggests that there are differences in the receptor usage and entry mechanism of the virus from the apical and basolateral surface. While cell entry is more efficient from basolateral surface, the viruses egressed mainly from the apical cell side.
Collapse
Affiliation(s)
- Diego Cevallos Porta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico.
| | - Susana López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico.
| | - Carlos F Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico.
| | - Pavel Isa
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, Mexico.
| |
Collapse
|
18
|
Guerrero CA, Acosta O. Inflammatory and oxidative stress in rotavirus infection. World J Virol 2016; 5:38-62. [PMID: 27175349 PMCID: PMC4861870 DOI: 10.5501/wjv.v5.i2.38] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/23/2015] [Accepted: 01/29/2016] [Indexed: 02/05/2023] Open
Abstract
Rotaviruses are the single leading cause of life-threatening diarrhea affecting children under 5 years of age. Rotavirus entry into the host cell seems to occur by sequential interactions between virion proteins and various cell surface molecules. The entry mechanisms seem to involve the contribution of cellular molecules having binding, chaperoning and oxido-reducing activities. It appears to be that the receptor usage and tropism of rotaviruses is determined by the species, cell line and rotavirus strain. Rotaviruses have evolved functions which can antagonize the host innate immune response, whereas are able to induce endoplasmic reticulum (ER) stress, oxidative stress and inflammatory signaling. A networking between ER stress, inflammation and oxidative stress is suggested, in which release of calcium from the ER increases the generation of mitochondrial reactive oxygen species (ROS) leading to toxic accumulation of ROS within ER and mitochondria. Sustained ER stress potentially stimulates inflammatory response through unfolded protein response pathways. However, the detailed characterization of the molecular mechanisms underpinning these rotavirus-induced stressful conditions is still lacking. The signaling events triggered by host recognition of virus-associated molecular patterns offers an opportunity for the development of novel therapeutic strategies aimed at interfering with rotavirus infection. The use of N-acetylcysteine, non-steroidal anti-inflammatory drugs and PPARγ agonists to inhibit rotavirus infection opens a new way for treating the rotavirus-induced diarrhea and complementing vaccines.
Collapse
|
19
|
|
20
|
Hussein HAM, Walker LR, Abdel-Raouf UM, Desouky SA, Montasser AKM, Akula SM. Beyond RGD: virus interactions with integrins. Arch Virol 2015; 160:2669-81. [PMID: 26321473 PMCID: PMC7086847 DOI: 10.1007/s00705-015-2579-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
Viruses successfully infect host cells by initially binding to the surfaces of the cells, followed by an intricate entry process. As multifunctional heterodimeric cell-surface receptor molecules, integrins have been shown to usefully serve as entry receptors for a plethora of viruses. However, the exact role(s) of integrins in viral pathogen internalization has yet to be elaborately described. Notably, several viruses harbor integrin-recognition motifs displayed on viral envelope/capsid-associated proteins. The most common of these motifs is the minimal peptide sequence for binding integrins, RGD (Arg-Gly-Asp), which is known for its role in virus infection via its ability to interact with over half of the more than 20 known integrins. Not all virus-integrin interactions are RGD-dependent, however. Non-RGD-binding integrins have also been shown to effectively promote virus entry and infection as well. Such virus-integrin binding is shown to facilitate adhesion, cytoskeleton rearrangement, integrin activation, and increased intracellular signaling. Also, we have attempted to discuss the role of carbohydrate moieties in virus interactions with receptor-like host cell surface integrins that drive the process of internalization. As much as possible, this article examines the published literature regarding the role of integrins in terms of virus infection and virus-encoded glycosylated proteins that mediate interactions with integrins, and it explores the idea of targeting these receptors as a therapeutic treatment option.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Lia R Walker
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Usama M Abdel-Raouf
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Sayed A Desouky
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | | | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
21
|
Romero-Maraccini OC, Shisler JL, Nguyen TH. Solar and temperature treatments affect the ability of human rotavirus wa to bind to host cells and synthesize viral RNA. Appl Environ Microbiol 2015; 81:4090-7. [PMID: 25862222 PMCID: PMC4524135 DOI: 10.1128/aem.00027-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/01/2015] [Indexed: 12/13/2022] Open
Abstract
Rotavirus, the leading cause of diarrheal diseases in children under the age of five, is often resistant to conventional wastewater treatment and thus can remain infectious once released into the aquatic environment. Solar and heat treatments can inactivate rotavirus, but it is unknown how these treatments inactivate the virus on a molecular level. To answer this question, our approach was to correlate rotavirus inactivation with the inhibition of portions of the virus life cycle as a means to identify the mechanisms of solar or heat inactivation. Specifically, the integrity of the rotavirus NSP3 gene, virus-host cell interaction, and viral RNA synthesis were examined after heat (57°C) or solar treatment of rotavirus. Only the inhibition of viral RNA synthesis positively correlated with a loss of rotavirus infectivity; 57°C treatment of rotavirus resulted in a decrease of rotavirus RNA synthesis at the same rate as rotavirus infectivity. These data suggest that heat treatment neutralized rotaviruses primarily by targeting viral transcription functions. In contrast, when using solar disinfection, the decrease in RNA synthesis was responsible for approximately one-half of the decrease in infectivity, suggesting that other mechanisms, including posttranslational, contribute to inactivation. Nevertheless, both solar and heat inactivation of rotaviruses disrupted viral RNA synthesis as a mechanism for inactivation.
Collapse
Affiliation(s)
- Ofelia C Romero-Maraccini
- Department of Civil and Environmental Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joanna L Shisler
- Department of Microbiology, College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
22
|
Tawar RG, Colpitts CC, Lupberger J, El-Saghire H, Zeisel MB, Baumert TF. Claudins and pathogenesis of viral infection. Semin Cell Dev Biol 2015; 42:39-46. [PMID: 25960372 DOI: 10.1016/j.semcdb.2015.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 01/06/2023]
Abstract
Since their discovery, tremendous progress has been made in our understanding of the roles of claudins in tight junction physiology. In addition, interactions between claudins and other cellular proteins have highlighted their novel roles in cell physiology. Moreover, the importance of claudins is becoming apparent in the pathophysiology of several diseases, including viral infections. Notable is the discovery of CLDN1 as an essential host factor for hepatitis C virus (HCV) entry, which led to detailed characterization of CLDN1 and its association with tetraspanin CD81 for the initiation of HCV infection. CLDN1 has also been shown to facilitate dengue virus entry. Furthermore, owing to the roles of claudins in forming anatomical barriers, several viruses have been shown to alter claudin expression at the tight junction. This review summarizes the role of claudins in viral infection, with particular emphasis on HCV.
Collapse
Affiliation(s)
- Rajiv G Tawar
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France; University of Strasbourg, Strasbourg, France
| | - Che C Colpitts
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France; University of Strasbourg, Strasbourg, France
| | - Joachim Lupberger
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France; University of Strasbourg, Strasbourg, France
| | - Hussein El-Saghire
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France; University of Strasbourg, Strasbourg, France
| | - Mirjam B Zeisel
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France; University of Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France; University of Strasbourg, Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
23
|
Abstract
Gastroenteritis is a clinical illness of humans and other animals that is characterized by vomiting and diarrhea and caused by a variety of pathogens, including viruses. An increasing number of viral species have been associated with gastroenteritis or have been found in stool samples as new molecular tools have been developed. In this work, a DNA microarray capable in theory of parallel detection of more than 100 viral species was developed and tested. Initial validation was done with 10 different virus species, and an additional 5 species were validated using clinical samples. Detection limits of 1 × 10(3) virus particles of Human adenovirus C (HAdV), Human astrovirus (HAstV), and group A Rotavirus (RV-A) were established. Furthermore, when exogenous RNA was added, the limit for RV-A detection decreased by one log. In a small group of clinical samples from children with gastroenteritis (n = 76), the microarray detected at least one viral species in 92% of the samples. Single infection was identified in 63 samples (83%), and coinfection with more than one virus was identified in 7 samples (9%). The most abundant virus species were RV-A (58%), followed by Anellovirus (15.8%), HAstV (6.6%), HAdV (5.3%), Norwalk virus (6.6%), Human enterovirus (HEV) (9.2%), Human parechovirus (1.3%), Sapporo virus (1.3%), and Human bocavirus (1.3%). To further test the specificity and sensitivity of the microarray, the results were verified by reverse transcription-PCR (RT-PCR) detection of 5 gastrointestinal viruses. The RT-PCR assay detected a virus in 59 samples (78%). The microarray showed good performance for detection of RV-A, HAstV, and calicivirus, while the sensitivity for HAdV and HEV was low. Furthermore, some discrepancies in detection of mixed infections were observed and were addressed by reverse transcription-quantitative PCR (RT-qPCR) of the viruses involved. It was observed that differences in the amount of genetic material favored the detection of the most abundant virus. The microarray described in this work should help in understanding the etiology of gastroenteritis in humans and animals.
Collapse
|
24
|
Li W, Wang G, Liang W, Kang K, Guo K, Zhang Y. Integrin β3 is required in infection and proliferation of classical swine fever virus. PLoS One 2014; 9:e110911. [PMID: 25340775 PMCID: PMC4207786 DOI: 10.1371/journal.pone.0110911] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/24/2014] [Indexed: 12/25/2022] Open
Abstract
Classical Swine Fever (CSF) is a highly infectious fatal pig disease, resulting in huge economic loss to the swine industry. Integrins are membrane-bound signal mediators, expressed on a variety of cell surfaces and are known as receptors or co-receptors for many viruses. However, the role of integrin β3 in CSFV infection is unknown. Here, through quantitive PCR, immunofluorescence (IFC) and immunocytohistochemistry (ICC), we revealed that ST (swine testicles epithelial) cells have a prominent advantage in CSFV proliferation as compared to EC (swine umbilical vein endothelial cell), IEC (swine intestinal epithelial cell) and PK (porcine kidney epithelial) cells. Meanwhile, ST cells had remarkably more integrin β3 expression as compared to EC, IEC and PK cells, which was positively correlated with CSFV infection and proliferation. Integrin β3 was up-regulated post CSFV infection in all the four cell lines, while the CSFV proliferation rate was decreased in integrin β3 function-blocked cells. ShRNA1755 dramatically decreased integrin β3, with a deficiency of 96% at the mRNA level and 80% at the protein level. CSFV proliferation was dramatically reduced in integrin β3 constantly-defected cells (ICDC), with the deficiencies of 92.6%, 99% and 81.7% at 24 h, 48 h and 72 h post CSFV infection, respectively. These results demonstrate that integrin β3 is required in CSFV infection and proliferation, which provide a new insight into the mechanism of CSFV infection.
Collapse
Affiliation(s)
- Weiwei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Gang Wang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Wulong Liang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Kai Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
25
|
Abdelhakim AH, Salgado EN, Fu X, Pasham M, Nicastro D, Kirchhausen T, Harrison SC. Structural correlates of rotavirus cell entry. PLoS Pathog 2014; 10:e1004355. [PMID: 25211455 PMCID: PMC4161437 DOI: 10.1371/journal.ppat.1004355] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 07/24/2014] [Indexed: 01/06/2023] Open
Abstract
Cell entry by non-enveloped viruses requires translocation into the cytosol of a macromolecular complex--for double-strand RNA viruses, a complete subviral particle. We have used live-cell fluorescence imaging to follow rotavirus entry and penetration into the cytosol of its ∼ 700 Å inner capsid particle ("double-layered particle", DLP). We label with distinct fluorescent tags the DLP and each of the two outer-layer proteins and track the fates of each species as the particles bind and enter BSC-1 cells. Virions attach to their glycolipid receptors in the host cell membrane and rapidly become inaccessible to externally added agents; most particles that release their DLP into the cytosol have done so by ∼ 10 minutes, as detected by rapid diffusional motion of the DLP away from residual outer-layer proteins. Electron microscopy shows images of particles at various stages of engulfment into tightly fitting membrane invaginations, consistent with the interpretation that rotavirus particles drive their own uptake. Electron cryotomography of membrane-bound virions also shows closely wrapped membrane. Combined with high resolution structural information about the viral components, these observations suggest a molecular model for membrane disruption and DLP penetration.
Collapse
Affiliation(s)
- Aliaa H. Abdelhakim
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eric N. Salgado
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaofeng Fu
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Mithun Pasham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniela Nicastro
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Tomas Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen C. Harrison
- Laboratory of Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Relative roles of GM1 ganglioside, N-acylneuraminic acids, and α2β1 integrin in mediating rotavirus infection. J Virol 2014; 88:4558-71. [PMID: 24501414 DOI: 10.1128/jvi.03431-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED N-acetyl- and N-glycolylneuraminic acids (Sia) and α2β1 integrin are frequently used by rotaviruses as cellular receptors through recognition by virion spike protein VP4. The VP4 subunit VP8*, derived from Wa rotavirus, binds the internal N-acetylneuraminic acid on ganglioside GM1. Wa infection is increased by enhanced internal Sia access following terminal Sia removal from main glycan chains with sialidase. The GM1 ligand cholera toxin B (CTB) reduces Wa infectivity. Here, we found sialidase treatment increased cellular GM1 availability and the infectivity of several other human (including RV-3) and animal rotaviruses, typically rendering them susceptible to methyl α-d-N-acetylneuraminide treatment, but did not alter α2β1 usage. CTB reduced the infectivity of these viruses. Aceramido-GM1 inhibited Wa and RV-3 infectivity in untreated and sialidase-treated cells, and GM1 supplementation increased their infectivity, demonstrating the importance of GM1 for infection. Wa recognition of α2β1 and internal Sia were at least partially independent. Rotavirus usage of GM1 was mapped to VP4 using virus reassortants, and RV-3 VP8* bound aceramido-GM1 by saturation transfer difference nuclear magnetic resonance (STD NMR). Most rotaviruses recognizing terminal Sia did not use GM1, including RRV. RRV VP8* interacted minimally with aceramido-GM1 by STD NMR. Unusually, TFR-41 rotavirus infectivity depended upon terminal Sia and GM1. Competition of CTB, Sia, and/or aceramido-GM1 with cell binding by VP8* from representative rotaviruses showed that rotavirus Sia and GM1 preferences resulted from VP8*-cell binding. Our major finding is that infection by human rotaviruses of commonly occurring VP4 serotypes involves VP8* binding to cell surface GM1 glycan, typically including the internal N-acetylneuraminic acid. IMPORTANCE Rotaviruses, the major cause of severe infantile gastroenteritis, recognize cell surface receptors through virus spike protein VP4. Several animal rotaviruses are known to bind sialic acids at the termini of main carbohydrate chains. Conversely, only a single human rotavirus is known to bind sialic acid. Interestingly, VP4 of this rotavirus bound to sialic acid that forms a branch on the main carbohydrate chain of the GM1 ganglioside. Here, we use several techniques to demonstrate that other human rotaviruses exhibit similar GM1 usage properties. Furthermore, binding by VP4 to cell surface GM1, involving branched sialic acid recognition, is shown to facilitate infection. In contrast, most animal rotaviruses that bind terminal sialic acids did not utilize GM1 for VP4 cell binding or infection. These studies support a significant role for GM1 in mediating host cell invasion by human rotaviruses.
Collapse
|
27
|
McNeal MM, Bernstein DI. Rotaviruses. VIRAL INFECTIONS OF HUMANS 2014:713-732. [DOI: 10.1007/978-1-4899-7448-8_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
28
|
Carbohydrate recognition by rotaviruses. ACTA ACUST UNITED AC 2013; 15:101-6. [DOI: 10.1007/s10969-013-9167-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/13/2013] [Indexed: 02/04/2023]
|
29
|
Díaz-Salinas MA, Romero P, Espinosa R, Hoshino Y, López S, Arias CF. The spike protein VP4 defines the endocytic pathway used by rotavirus to enter MA104 cells. J Virol 2013; 87:1658-63. [PMID: 23175367 PMCID: PMC3554179 DOI: 10.1128/jvi.02086-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/13/2012] [Indexed: 12/22/2022] Open
Abstract
Rotaviruses are internalized into MA104 cells by endocytosis, with different endocytic pathways used depending on the virus strain. The bovine rotavirus UK strain enters cells through a clathrin-mediated endocytic process, while the simian rhesus rotavirus (RRV) strain uses a poorly defined endocytic pathway that is clathrin and caveolin independent. The viral surface protein VP7 and the spike protein VP4 interact with cellular receptors during cell binding and penetration. To determine the viral protein that defines the mechanism of internalization, we used a panel of UK × RRV reassortant viruses having different combinations of the viral structural proteins. Characterization of the infectivities of these reassortants in MA104 cells either transfected with a small interfering RNA (siRNA) against the heavy chain of clathrin or incubated with hypertonic medium that destabilizes the clathrin coat clearly showed that VP4 determines the pathway of virus entry. Of interest, the characterization of Nar3, a sialic acid-independent variant of RRV, showed that a single amino acid change in VP4 shifts the route of entry from being clathrin dependent to clathrin independent. Furthermore, characterizations of several additional rotavirus strains that differ in their use of cellular receptors showed that all entered cells by clathrin-mediated endocytosis, suggesting that diverse VP4-cell surface interactions can lead to rotavirus cell entry through this endocytic pathway.
Collapse
Affiliation(s)
- Marco A. Díaz-Salinas
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Chamilpa, Cuernavaca, México
| | - Pedro Romero
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Chamilpa, Cuernavaca, México
| | - Rafaela Espinosa
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Chamilpa, Cuernavaca, México
| | - Yasutaka Hoshino
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Susana López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Chamilpa, Cuernavaca, México
| | - Carlos F. Arias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Chamilpa, Cuernavaca, México
| |
Collapse
|
30
|
Abstract
Cell entry of rotaviruses is a complex process, which involves sequential interactions with several cell surface molecules. Among the molecules implicated are gangliosides, glycosphingolipids with one or more sialic acid (SA) residues. The role of gangliosides in rotavirus cell entry was studied by silencing the expression of two key enzymes involved in their biosynthesis--the UDP-glucose:ceramide glucosyltransferase (UGCG), which transfers a glucose molecule to ceramide to produce glucosylceramide GlcCer, and the lactosyl ceramide-α-2,3-sialyl transferase 5 (GM3-s), which adds the first SA to lactoceramide-producing ganglioside GM3. Silencing the expression of both enzymes resulted in decreased ganglioside levels (as judged by GM1a detection). Four rotavirus strains tested (human Wa, simian RRV, porcine TFR-41, and bovine UK) showed a decreased infectivity in cells with impaired ganglioside synthesis; however, their replication after bypassing the entry step was not affected, confirming the importance of gangliosides for cell entry of the viruses. Interestingly, viral binding to the cell surface was not affected in cells with inhibited ganglioside synthesis, but the infectivity of all strains tested was inhibited by preincubation of gangliosides with virus prior to infection. These data suggest that rotaviruses can attach to cell surface in the absence of gangliosides but require them for productive cell entry, confirming their functional role during rotavirus cell entry.
Collapse
|
31
|
Huang P, Xia M, Tan M, Zhong W, Wei C, Wang L, Morrow A, Jiang X. Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner. J Virol 2012; 86:4833-4843. [PMID: 22345472 PMCID: PMC3347384 DOI: 10.1128/jvi.05507-11] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 02/07/2012] [Indexed: 02/07/2023] Open
Abstract
Rotaviruses (RVs), an important cause of severe diarrhea in children, have been found to recognize sialic acid as receptors for host cell attachment. While a few animal RVs (of P[1], P[2], P[3], and P[7]) are sialidase sensitive, human RVs and the majority of animal RVs are sialidase insensitive. In this study, we demonstrated that the surface spike protein VP8* of the major P genotypes of human RVs interacts with the secretor histo-blood group antigens (HBGAs). Strains of the P[4] and P[8] genotypes shared reactivity with the common antigens of Lewis b (Le(b)) and H type 1, while strains of the P[6] genotype bound the H type 1 antigen only. The bindings between recombinant VP8* and human saliva, milk, or synthetic HBGA oligosaccharides were demonstrated, which was confirmed by blockade of the bindings by monoclonal antibodies (MAbs) specific to Le(b) and/or H type 1. In addition, specific binding activities were observed when triple-layered particles of a P[8] (Wa) RV were tested. Our results suggest that the spike protein VP8* of RVs is involved in the recognition of human HBGAs that may function as ligands or receptors for RV attachment to host cells.
Collapse
Affiliation(s)
| | | | - Ming Tan
- Division of Infectious Diseases
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | - Ardythe Morrow
- Division of Epidemiology and Biostatistics, Cincinnati Children's Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Xi Jiang
- Division of Infectious Diseases
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
32
|
Calderon MN, Guerrero CA, Acosta O, Lopez S, Arias CF. Inhibiting rotavirus infection by membrane-impermeant thiol/disulfide exchange blockers and antibodies against protein disulfide isomerase. Intervirology 2012; 55:451-64. [PMID: 22398681 DOI: 10.1159/000335262] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 11/21/2011] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Determining the effect of membrane-impermeant thiol/disulfide exchange inhibitors on rhesus rotavirus infectivity in MA104 cells and investigating protein disulfide isomerase (PDI) as a potential target for these inhibitors. METHODS Cells were treated with DTNB [5,5-dithio-bis-(2-nitrobenzoic acid)], bacitracin or anti-PDI antibodies and then infected with virus. Triple-layered particles (TLPs) were also pretreated with inhibitors before inoculation. The effects of these inhibitors on α-sarcin co-entry, virus binding to cells and PDI-TLP interaction were also examined. FACS analysis, cell-surface protein biotin-labeling, lipid-raft isolation and ELISA were performed to determine cell-surface PDI expression. RESULTS Infectivity became reduced by 50% when cells or TLPs were treated with 1 or 6 mM DTNB, respectively; infectivity became reduced by 50% by 20 mM bacitracin treatment of cells whereas TLPs were insensitive to bacitracin treatment; anti-PDI antibodies decreased viral infectivity by about 45%. The presence of DTNB (2.5 mM) or bacitracin (20 mM) was unable to prevent virus binding to cells and rotavirus-induced α-sarcin co-entry. CONCLUSIONS It was concluded that thiol/disulfide exchange was involved in rotavirus entry process and that cell-surface PDI was at least a potential target for DTNB and bacitracin-induced infectivity inhibition.
Collapse
Affiliation(s)
- Martha N Calderon
- Chemistry Department, Science Faculty, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
33
|
Rhesus rotavirus entry into a polarized epithelium is endocytosis dependent and involves sequential VP4 conformational changes. J Virol 2010; 85:2492-503. [PMID: 21191022 DOI: 10.1128/jvi.02082-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rotavirus (RV) cell entry is an incompletely understood process, involving VP4 and VP7, the viral proteins composing the outermost layer of the nonenveloped RV triple-layered icosahedral particle (TLP), encasing VP6. VP4 can exist in three conformational states: soluble, cleaved spike, and folded back. In order to better understand the events leading to RV entry, we established a detection system to image input virus by monitoring the rhesus RV (RRV) antigens VP4, VP6, and VP7 at very early times postinfection. We provide evidence that decapsidation occurs directly after cell membrane penetration. We also demonstrate that several VP4 and VP7 conformational changes take place during entry. In particular, we detected, for the first time, the generation of folded-back VP5 in the context of the initiation of infection. Folded-back VP5 appears to be limited to the entry step. We furthermore demonstrate that RRV enters the cell cytoplasm through an endocytosis pathway. The endocytosis hypothesis is supported by the colocalization of RRV antigens with the early endosome markers Rab4 and Rab5. Finally, we provide evidence that the entry process is likely dependent on the endocytic Ca(2+) concentration, as bafilomycin A1 treatment as well as an augmentation of the extracellular calcium reservoir using CaEGTA, which both lead to an elevated intraendosomal calcium concentration, resulted in the accumulation of intact virions in the actin network. Together, these findings suggest that internalization, decapsidation, and cell membrane penetration involve endocytosis, calcium-dependent uncoating, and VP4 conformational changes, including a fold-back.
Collapse
|
34
|
Fleming FE, Graham KL, Takada Y, Coulson BS. Determinants of the specificity of rotavirus interactions with the alpha2beta1 integrin. J Biol Chem 2010; 286:6165-74. [PMID: 21138834 DOI: 10.1074/jbc.m110.142992] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The human α2β1 integrin binds collagen and acts as a cellular receptor for rotaviruses and human echovirus 1. These ligands require the inserted (I) domain within the α2 subunit of α2β1 for binding. Previous studies have identified the binding sites for collagen and echovirus 1 in the α2 I domain. We used CHO cells expressing mutated α2β1 to identify amino acids involved in binding to human and animal rotaviruses. Residues where mutation affected rotavirus binding were located in several exposed loops and adjacent regions of the α2 I domain. Binding by all rotaviruses was eliminated by mutations in the activation-responsive αC-α6 and αF helices. This is a novel feature that distinguishes rotavirus from other α2β1 ligands. Mutation of residues that co-ordinate the metal ion (Ser-153, Thr-221, and Glu-256 in α2 and Asp-130 in β1) and nearby amino acids (Ser-154, Gln-215, and Asp-219) also inhibited rotavirus binding. The importance of most of these residues was greatest for binding by human rotaviruses. These mutations inhibit collagen binding to α2β1 (apart from Glu-256) but do not affect echovirus binding. Overall, residues where mutation affected both rotavirus and collagen recognition are located at one side of the metal ion-dependent adhesion site, whereas those important for collagen alone cluster nearby. Mutations eliminating rotavirus and echovirus binding are distinct, consistent with the respective preference of these viruses for activated or inactive α2β1. In contrast, rotavirus and collagen utilize activated α2β1 and show an overlap in α2β1 residues important for binding.
Collapse
Affiliation(s)
- Fiona E Fleming
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
35
|
Rotaviruses require basolateral molecules for efficient infection of polarized MDCKII cells. Virus Res 2010; 147:231-41. [DOI: 10.1016/j.virusres.2009.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 11/09/2009] [Accepted: 11/13/2009] [Indexed: 11/21/2022]
|
36
|
Abstract
Infecting nearly every child by age five, rotaviruses are the major causative agents of severe gastroenteritis in young children. While much is known about the structure of these nonenveloped viruses and their components, the exact mechanism of viral cell entry is still poorly understood. A consensus opinion that appears to be emerging from recent studies is that rotavirus cell entry involves a series of complex and coordinated events following proteolytic priming of the virus. Rotaviruses attach to the cell through sialic acid containing receptors, with integrins and Hsc70 acting as postattachment receptors, all localized on lipid rafts. Unlike other endocytotic mechanisms, this internalization pathway appears to be independent of clathrin or caveola. Equally complex and coordinated is the fascinating structural gymnastics of the VP4 spikes that are implicated in facilitating optimal interface between viral and host components. While these studies only begin to capture the basic cellular, molecular, and structural mechanisms of cell entry, the unusual features they have uncovered and many intriguing questions they have raised undoubtedly will prompt further investigations.
Collapse
Affiliation(s)
- Matthew Baker
- National Center for Macromolecular Imaging, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | | |
Collapse
|
37
|
Jokinen J, White DJ, Salmela M, Huhtala M, Käpylä J, Sipilä K, Puranen JS, Nissinen L, Kankaanpää P, Marjomäki V, Hyypiä T, Johnson MS, Heino J. Molecular mechanism of alpha2beta1 integrin interaction with human echovirus 1. EMBO J 2009; 29:196-208. [PMID: 19927126 DOI: 10.1038/emboj.2009.326] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 10/08/2009] [Indexed: 11/09/2022] Open
Abstract
Conformational activation increases the affinity of integrins to their ligands. On ligand binding, further changes in integrin conformation elicit cellular signalling. Unlike any of the natural ligands of alpha2beta1 integrin, human echovirus 1 (EV1) seemed to bind more avidly a 'closed' than an activated 'open' form of the alpha2I domain. Furthermore, a mutation E336A in the alpha2 subunit, which inactivated alpha2beta1 as a collagen receptor, enhanced alpha2beta1 binding to EV1. Thus, EV1 seems to recognize an inactive integrin, and not even the virus binding could trigger the conformational activation of alpha2beta1. This was supported by the fact that the integrin clustering by EV1 did not activate the p38 MAP kinase pathway, a signalling pathway that was shown to be dependent on E336-related conformational changes in alpha2beta1. Furthermore, the mutation E336A did neither prevent EV1 induced and alpha2beta1 mediated protein kinase C activation nor EV1 internalization. Thus, in its entry strategy EV1 seems to rely on the activation of signalling pathways that are dependent on alpha2beta1 clustering, but do not require the conformational regulation of the receptor.
Collapse
Affiliation(s)
- Johanna Jokinen
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Isa P, Sánchez-Alemán MA, López S, Arias CF. Dissecting the role of integrin subunits alpha 2 and beta 3 in rotavirus cell entry by RNA silencing. Virus Res 2009; 145:251-9. [PMID: 19635510 DOI: 10.1016/j.virusres.2009.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 07/15/2009] [Accepted: 07/17/2009] [Indexed: 12/16/2022]
Abstract
Several cell surface molecules have been implicated in rotavirus cell entry, however, their individual relevance during this process is unknown. In this work, the expression of integrins alpha2, beta2, and alpha v beta 3, the heat shock cognate protein 70, and of ganglioside GM1 in different cell lines of human and simian origin was correlated with the infectivity of four rotavirus strains. We observed that different combinations of receptor expression correlated with the infectivity of rotavirus strains, suggesting that the participation of several receptors is important for rotavirus infection. To characterize the relevance of integrins alpha2 and alpha v beta 3 in more detail, their expression was silenced using RNA interference. About 80% decrease in the cell content of integrins resulted in 15-30% decrease of infectivity of strains RRV and Wa when measured by a focus-forming assay, while there was no decrease of infectivity when measured by flow cytometry in integrin-deficient cells. Altogether these data suggest that integrins alpha2 and alpha v beta 3 do not play a major role in the rotavirus entry process.
Collapse
Affiliation(s)
- Pavel Isa
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico.
| | | | | | | |
Collapse
|
39
|
Abstract
Rotavirus, a nonturreted member of the Reoviridae, is the causative agent of severe infantile diarrhea. The double-stranded RNA genome encodes six structural proteins that make up the triple-layer particle. X-ray crystallography has elucidated the structure of one of these capsid proteins, VP6, and two domains from VP4, the spike protein. Complementing this work, electron cryomicroscopy (cryoEM) has provided relatively low-resolution structures for the triple-layer capsid in several biochemical states. However, a complete, high-resolution structural model of rotavirus remains unresolved. Combining new structural analysis techniques with the subnanometer-resolution cryoEM structure of rotavirus, we now provide a more detailed structural model for the major capsid proteins and their interactions within the triple-layer particle. Through a series of intersubunit interactions, the spike protein (VP4) adopts a dimeric appearance above the capsid surface, while forming a trimeric base anchored inside one of the three types of aqueous channels between VP7 and VP6 capsid layers. While the trimeric base suggests the presence of three VP4 molecules in one spike, only hints of the third molecule are observed above the capsid surface. Beyond their interactions with VP4, the interactions between VP6 and VP7 subunits could also be readily identified. In the innermost T=1 layer composed of VP2, visualization of the secondary structure elements allowed us to identify the polypeptide fold for VP2 and examine the complex network of interactions between this layer and the T=13 VP6 layer. This integrated structural approach has resulted in a relatively high-resolution structural model for the complete, infectious structure of rotavirus, as well as revealing the subtle nuances required for maintaining interactions in such a large macromolecular assembly.
Collapse
|
40
|
Endoplasmic reticulum chaperones are involved in the morphogenesis of rotavirus infectious particles. J Virol 2008; 82:5368-80. [PMID: 18385250 DOI: 10.1128/jvi.02751-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The final assembly of rotavirus particles takes place in the endoplasmic reticulum (ER). In this work, we evaluated by RNA interference the relevance to rotavirus assembly and infectivity of grp78, protein disulfide isomerase (PDI), grp94, calnexin, calreticulin, and ERp57, members of the two ER folding systems described herein. Silencing the expression of grp94 and Erp57 had no effect on rotavirus infectivity, while knocking down the expression of any of the other four chaperons caused a reduction in the yield of infectious virus of about 50%. In grp78-silenced cells, the maturation of the oligosaccharide chains of NSP4 was retarded. In cells with reduced levels of calnexin, the oxidative folding of VP7 was impaired and the trimming of NSP4 was accelerated, and in calreticulin-silenced cells, the formation of disulfide bonds of VP7 was also accelerated. The knockdown of PDI impaired the formation and/or rearrangement of the VP7 disulfide bonds. All these conditions also affected the correct assembly of virus particles, since compared with virions from control cells, they showed an altered susceptibility to EGTA and heat treatments, a decreased specific infectivity, and a diminished reactivity to VP7 with monoclonal antibody M60, which recognizes only this protein when its disulfide bonds have been correctly formed. In the case of grp78-silenced cells, the virus produced bound less efficiently to MA104 cells than virus obtained from control cells. All these results suggest that these chaperones are involved in the quality control of rotavirus morphogenesis. The complexity of the steps of rotavirus assembly that occur in the ER provide a useful model for studying the organization and operation of the complex network of chaperones involved in maintaining the quality control of this organelle.
Collapse
|
41
|
|
42
|
Rotavirus replication in intestinal cells differentially regulates integrin expression by a phosphatidylinositol 3-kinase-dependent pathway, resulting in increased cell adhesion and virus yield. J Virol 2007; 82:148-60. [PMID: 17942548 DOI: 10.1128/jvi.01980-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Changes in the interactions between intestinal cells and their surrounding environment during virus infection have not been well documented. The growth and survival of intestinal epithelial cells, the main targets of rotavirus infection, are largely dependent on the interaction of cell surface integrins with the extracellular matrix. In this study, we detected alterations in cellular integrin expression following rotavirus infection, identified the signaling components required, and analyzed the subsequent effects on cell binding to the matrix component collagen. After rotavirus infection of intestinal cells, expression of alpha2beta1 and beta2 integrins was up-regulated, whereas that of alphaVbeta3, alphaVbeta5, and alpha5beta1 integrins, if present, was down-regulated. This differential regulation of integrins was reflected at the transcriptional level. It was unrelated to the use of integrins as rotavirus receptors, as both integrin-using and integrin-independent viruses induced integrin regulation. Using pharmacological agents that inhibit kinase activity, integrin regulation was shown to be dependent on phosphatidylinositol 3-kinase (PI3K) but independent of the activities of the mitogen-activated protein kinases p38 and ERK1/2, and cyclooxygenase-2. Replication-dependent activation of the PI3K/Akt pathway was observed following infection of intestinal and nonintestinal cell lines. Rotavirus activation of PI3K was important for regulation of alpha2beta1 expression. Blockade of integrin regulation by PI3K inhibition led to decreased adherence of infected intestinal cells to collagen and a concomitant decrease in virus titer. These findings indicate that rotavirus-induced PI3K activation causes regulation of integrin expression in intestinal cells, leading to prolonged adherence of infected cells to collagen and increased virus production.
Collapse
|
43
|
Gualtero DF, Guzmán F, Acosta O, Guerrero CA. Amino acid domains 280–297 of VP6 and 531–554 of VP4 are implicated in heat shock cognate protein hsc70-mediated rotavirus infection. Arch Virol 2007; 152:2183-96. [PMID: 17876681 DOI: 10.1007/s00705-007-1055-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 08/08/2007] [Indexed: 12/17/2022]
Abstract
The rotavirus infection mechanism seems to be a multi-step process which is still not fully understood. The heat shock cognate protein hsc70 has been proposed as being a co-receptor molecule for rotavirus entry into susceptible cells. In this work, an attempt was made to determine the existence of possible domains for VP4 and VP6 binding to hsc70. We selected amino acid sequences 531-554 from VP4 and 280-297 from VP6 on the basis of already recognized sequences for binding to hsc70. This study determined that DLPs and synthetic peptides from VP6 (aa 280-297) and VP4 (aa 531-554), individually or in combination, inhibited rotavirus RRV, YM and WA entry into MA104 and Caco-2 cells in an additive and dose-dependent manner. Hyperimmune sera against these synthetic peptides blocked infection by infectious TLPs. Capture ELISA results showed that DLPs interact with hsc70, probably through VP6 as the specific interaction between hcs70 and DLPs was disrupted by a VP6 peptide. These results suggest that VP6 takes part during rotavirus cell entry by binding to hsc70. This, as well as previous work, provides insight concerning the function of hsc70 within a multi-step model of rotavirus entry.
Collapse
Affiliation(s)
- D F Gualtero
- Departamento de Ciencias Fisiológicas, Facultad de Medicina-Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | |
Collapse
|
44
|
Fleming FE, Graham KL, Taniguchi K, Takada Y, Coulson BS. Rotavirus-neutralizing antibodies inhibit virus binding to integrins alpha 2 beta 1 and alpha 4 beta 1. Arch Virol 2007; 152:1087-101. [PMID: 17318737 DOI: 10.1007/s00705-007-0937-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 01/08/2007] [Indexed: 11/25/2022]
Abstract
Rotavirus outer capsid proteins VP5(*), VP8(*) and VP7 elicit neutralizing, protective antibodies. The alpha 2 beta 1 integrin is a cellular receptor for rotavirus that is bound by VP5(*). Some rotaviruses also recognize the alpha 4 beta 1 integrin. In this study, the effects of antibodies to rotavirus on virus binding to recombinant alpha 2 beta 1 and alpha 4 beta 1 expressed on K562 cells were determined. All neutralizing monoclonal antibodies to VP5(*) tested (YO-2C2, 2G4, 1A10) and two to VP7 (RV-3:2, RV-4:2) inhibited rotavirus binding to alpha 2 beta 1. Rotavirus binding to alpha 4 beta 1 was reduced by 2G4 and neutralizing antibody F45:2, directed to VP7. However, a neutralizing antibody to VP8(*) (RV-5:2) and one to VP7 (RV-3:1) did not affect rotavirus binding to these integrins. Virus-cell binding was unaffected by non-neutralizing antibody RVA to the rotavirus inner capsid protein VP6. The attachment of human rotavirus strain Wa to these integrins was inhibited by infection sera with neutralizing activity collected from two children hospitalised with severe rotavirus gastroenteritis. A negative reference serum did not affect rotavirus-cell attachment. As the binding of rotaviruses to alpha 2 beta 1 and alpha 4 beta 1 is inhibited by neutralizing antibodies to VP5(*) and VP7, and serum from children with rotavirus disease, rotavirus recognition of these integrins may be important for host infection.
Collapse
Affiliation(s)
- F E Fleming
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Australia
| | | | | | | | | |
Collapse
|
45
|
Abstract
Rotaviruses, the leading cause of severe dehydrating diarrhea in infants and young children worldwide, are non-enveloped viruses formed by three concentric layers of protein that enclose a genome of double-stranded RNA. These viruses have a specific cell tropism in vivo, infecting primarily the mature enterocytes of the villi of the small intestine. It has been found that rotavirus cell entry is a complex multistep process, in which different domains of the rotavirus surface proteins interact sequentially with different cell surface molecules, which act as attachment and entry receptors. These recently described molecules include integrins (alpha2beta1, alphavbeta3, and alphaxbeta2) and a heat shock protein (hsc70), and have been found to be associated with cell membrane lipid microdomains. The requirement for several cell molecules, which might need to be present and organized in a precise fashion, could explain the cell and tissue tropism of these viruses. This review focuses on recent data describing the interactions between the virus and its receptors, the role of lipid microdomains in rotavirus infection, and the possible mechanism of rotavirus cell entry.
Collapse
Affiliation(s)
- S Lopez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mexico.
| | | |
Collapse
|
46
|
Pesavento JB, Crawford SE, Estes MK, Prasad BVV. Rotavirus proteins: structure and assembly. Curr Top Microbiol Immunol 2006; 309:189-219. [PMID: 16913048 DOI: 10.1007/3-540-30773-7_7] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rotavirus is a major pathogen of infantile gastroenteritis. It is a large and complex virus with a multilayered capsid organization that integrates the determinants of host specificity, cell entry, and the enzymatic functions necessary for endogenous transcription of the genome that consists of 11 dsRNA segments. These segments encode six structural and six nonstructural proteins. In the last few years, there has been substantial progress in our understanding of both the structural and functional aspects of a variety of molecular processes involved in the replication of this virus. Studies leading to this progress using of a variety of structural and biochemical techniques including the recent application of RNA interference technology have uncovered several unique and intriguing features related to viral morphogenesis. This review focuses on our current understanding of the structural basis of the molecular processes that govern the replication of rotavirus.
Collapse
Affiliation(s)
- J B Pesavento
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
47
|
López T, López S, Arias CF. Heat shock enhances the susceptibility of BHK cells to rotavirus infection through the facilitation of entry and post-entry virus replication steps. Virus Res 2006; 121:74-83. [PMID: 16737757 DOI: 10.1016/j.virusres.2006.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 04/20/2006] [Accepted: 04/21/2006] [Indexed: 12/19/2022]
Abstract
Rotavirus infection is known to induce several cellular stress proteins, although their possible involvement in the replication cycle of the virus has not been studied. In addition, the heat shock cognate protein hsc70 has been shown to function as a post-attachment receptor during virus entry. In this work we have studied the effect of heat shock on the susceptibility of cells to rotavirus infection. BHK cells, which are largely refractory to the virus, became about 100-fold more susceptible when heat-treated, while the rotavirus highly susceptible MA104 cells did not significantly modified their susceptibility upon heat stress, suggesting that heat shock induces factors that are rate-limiting the replication of rotaviruses in BHK but not in MA104 cells. The heat treatment was shown to facilitate the rotavirus infection of BHK cells at the penetration and post-penetration levels, and each of these stages seems to contribute comparably to the overall observed 100-fold increase in infectivity. Since the binding of the virus to the cell surface was not affected, the caloric stress probably facilitates the penetration and/or uncoating of the virus. The pathway of virus entry into heat-shocked BHK cells seems to be similar to that used in MA104 cells, since treatments that affect MA104 cell infection also affected rotavirus infectivity in heat-treated BHK cells.
Collapse
Affiliation(s)
- Tomás López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México/UNAM, Av. Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | | | | |
Collapse
|
48
|
Graham KL, Takada Y, Coulson BS. Rotavirus spike protein VP5* binds alpha2beta1 integrin on the cell surface and competes with virus for cell binding and infectivity. J Gen Virol 2006; 87:1275-1283. [PMID: 16603530 DOI: 10.1099/vir.0.81580-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rotaviruses recognize several cell-surface molecules, including the alpha2beta1 integrin, and the processes of rotavirus cell attachment and entry appear to be multifactorial. The VP5* subunit of the rotavirus spike protein VP4 contains the alpha2beta1 ligand sequence Asp-Gly-Glu at residues 308-310. Binding to alpha2beta1 and infectivity of monkey rotavirus strain RRV and human rotavirus strain Wa, but not porcine rotavirus strain CRW-8, are inhibited by peptides containing Asp-Gly-Glu. Asp308 and Gly309 are necessary for the binding of RRV VP5* (aa 248-474) to expressed I domain of the alpha2 integrin subunit. Here, the ability of RRV VP5* to bind cells and affect rotavirus-integrin interactions was determined. Interestingly, VP5* bound to cells at 4 and 37 degrees C, both via alpha2beta1 and independently of this integrin. Prior VP5* binding at 37 degrees C eliminated RRV binding to cellular alpha2beta1 and reduced RRV and Wa infectivity in MA104 cells by 38-46 %. VP5* binding did not affect the infectivity of CRW-8. VP5* binding at 4 degrees C did not affect permissive-cell infection by RRV, indicating an energy requirement for VP5* competition with virus for infectivity. Mutagenesis of VP5* Asp308 and Gly309 eliminated VP5* binding to alpha2beta1 and the VP5* inhibition of rotavirus cell binding and infection, but not alpha2beta1-independent cell binding by VP5*. These studies show for the first time that expressed VP5* binds cell-surface alpha2beta1 using Asp308 and Gly309 and inhibits the infection of homologous and heterologous rotaviruses that use alpha2beta1 as a receptor.
Collapse
Affiliation(s)
- Kate L Graham
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| | - Yoshikazu Takada
- The University of California, Davis, UC Davis Medical Center, 4645 2nd Avenue, Sacramento, CA 95817, USA
| | - Barbara S Coulson
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
49
|
Pérez-Vargas J, Romero P, López S, Arias CF. The peptide-binding and ATPase domains of recombinant hsc70 are required to interact with rotavirus and reduce its infectivity. J Virol 2006; 80:3322-31. [PMID: 16537599 PMCID: PMC1440403 DOI: 10.1128/jvi.80.7.3322-3331.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The heat shock cognate protein hsc70 has been implicated as a postattachment cell receptor for rotaviruses. Here we show that hsc70 interacts specifically with rotaviruses through its peptide-binding domain, since a recombinant full-length hsc70 protein and its peptide-binding domain, but not its ATPase domain, bound triple-layered particles in a solid-phase assay, and known ligands of hsc70 competed this binding. The peptide ligands of hsc70 were also shown to block rotavirus infectivity when added to cells before virus infection, suggesting that hsc70 on the surface of MA104 cells also interacts with the virus through its peptide-binding domain and that this interaction is important for virus entry. When purified infectious virus was incubated with soluble hsc70 in the presence of the cochaperone hsp40 and ATP and then pelleted through a sucrose cushion, the recovered virus had lost 60% of its infectivity, even though hsc70 was not detected in the pellet fraction. The hsc70-treated virus showed slightly different reactivities with monoclonal antibodies and was more susceptible to heat and basic pHs than the untreated virus, suggesting that hsc70 induces a subtle conformational change in the virus that results in a reduction of its infectivity. The relevance of the ATPase activity of hsc70 for reducing virus infectivity was demonstrated by the finding that in the presence of a nonhydrolyzable analogue of ATP, virus infectivity was not affected, and a mutant protein lacking ATPase activity failed to reduce virus infection. Altogether, these results suggest that during cell infection, the interaction of the virus with hsc70 on the surface of MA104 cells results in a conformational change of virus particles that facilitates their entry into the cell cytoplasm.
Collapse
Affiliation(s)
- Jimena Pérez-Vargas
- Departamento de Génetica del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos 62210, Mexico
| | | | | | | |
Collapse
|
50
|
Molecular Virology of Enteric Viruses (with Emphasis on Caliciviruses). VIRUSES IN FOODS 2006:43-100. [PMCID: PMC7120911 DOI: 10.1007/0-387-29251-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|