1
|
Zhan J, Wang J, Liang Y, Wang L, Huang L, Liu S, Zeng X, Zeng E, Wang H. Apoptosis dysfunction: unravelling the interplay between ZBP1 activation and viral invasion in innate immune responses. Cell Commun Signal 2024; 22:149. [PMID: 38402193 PMCID: PMC10893743 DOI: 10.1186/s12964-024-01531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/13/2024] [Indexed: 02/26/2024] Open
Abstract
Apoptosis plays a pivotal role in pathogen elimination and maintaining homeostasis. However, viruses have evolved strategies to evade apoptosis, enabling their persistence within the host. Z-DNA binding protein 1 (ZBP1) is a potent innate immune sensor that detects cytoplasmic nucleic acids and activates the innate immune response to clear pathogens. When apoptosis is inhibited by viral invasion, ZBP1 can be activated to compensate for the effect of apoptosis by triggering an innate immune response. This review examined the mechanisms of apoptosis inhibition and ZBP1 activation during viral invasion. The authors outlined the mechanisms of ZBP1-induced type I interferon, pyroptosis and necroptosis, as well as the crosstalk between ZBP1 and the cGAS-STING signalling pathway. Furthermore, ZBP1 can reverse the suppression of apoptotic signals induced by viruses. Intriguingly, a positive feedback loop exists in the ZBP1 signalling pathway, which intensifies the innate immune response while triggering a cytokine storm, leading to tissue and organ damage. The prudent use of ZBP1, which is a double-edged sword, has significant clinical implications for treating infections and inflammation.
Collapse
Affiliation(s)
- Jianhao Zhan
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- HuanKui Academy, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jisheng Wang
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yuqing Liang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Lisha Wang
- HuanKui Academy, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Le Huang
- HuanKui Academy, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Shanshan Liu
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Xiaoping Zeng
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Medical College, Jinhua Polytechnic, Jinhua, Zhejiang Province, 321017, China
| | - Erming Zeng
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Hongmei Wang
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Medical College, Jinhua Polytechnic, Jinhua, Zhejiang Province, 321017, China.
| |
Collapse
|
2
|
Ivanišević V, Žilić L, Čunko M, Fadiga H, Munitić I, Jurak I. RNA Editing-Dependent and -Independent Roles of Adenosine Deaminases Acting on RNA Proteins in Herpesvirus Infection-Hints on Another Layer of Complexity. Viruses 2023; 15:2007. [PMID: 37896783 PMCID: PMC10611208 DOI: 10.3390/v15102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The Adenosine Deaminases Acting on RNA (ADAR) catalyze the posttranscriptional deamination of adenosine residues to inosine in double-stranded RNAs (dsRNAs, A-to-I editing), preventing the overactivation of dsRNA sensor molecules and interferons. RNA editing is the cornerstone of innate immunity that distinguishes between self and non-self (virus), and it is essential for normal regulation of cellular homeostasis. Although much is already known about the role of ADAR proteins in RNA virus infection, the role of ADAR proteins in herpesvirus infection remains largely unexplored. In this review, we provide several lines of evidence from studies of different herpesviruses for another level of complexity in regulating the already intricate biphasic life cycle of herpesviruses.
Collapse
Affiliation(s)
| | | | | | | | | | - Igor Jurak
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia (L.Ž.)
| |
Collapse
|
3
|
Rajendren S, Karijolich J. The Impact of RNA modifications on the Biology of DNA Virus Infection. Eur J Cell Biol 2022; 101:151239. [PMID: 35623231 PMCID: PMC9549750 DOI: 10.1016/j.ejcb.2022.151239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/26/2022] Open
Abstract
Approximately 170 RNA modifications have been identified and these are critical for determining the fate and function of cellular RNAs. Similar to human transcripts, viral RNAs possess an extensive RNA modification landscape. While initial efforts largely focused on investigating the RNA modification landscape in the context of RNA virus infection, a growing body of work has explored the impact of RNA modifications on DNA virus biology. These studies have revealed roles for RNA modifications in DNA virus infection, including gene regulation and viral pathogenesis. In this review, we will discuss the current knowledge on how RNA modifications impact DNA virus biology.
Collapse
|
4
|
Abstract
C6 deamination of adenosine (A) to inosine (I) in double-stranded RNA (dsRNA) is catalyzed by a family of enzymes known as ADARs (adenosine deaminases acting on RNA) encoded by three genes in mammals. Alternative promoters and splicing produce two ADAR1 proteins, an interferon-inducible cytoplasmic p150 and a constitutively expressed p110 that like ADAR2 is a nuclear enzyme. ADAR3 lacks deaminase activity. A-to-I editing occurs with both viral and cellular RNAs. Deamination activity is dependent on dsRNA substrate structure and regulatory RNA-binding proteins and ranges from highly site selective with hepatitis D RNA and glutamate receptor precursor messenger RNA (pre-mRNA) to hyperediting of measles virus and polyomavirus transcripts and cellular inverted Alu elements. Because I base-pairs as guanosine instead of A, editing can alter mRNA decoding, pre-mRNA splicing, and microRNA silencing. Editing also alters dsRNA structure, thereby suppressing innate immune responses including interferon production and action. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Christian K Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen 63225, Germany
| | - Cyril X George
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| | - Charles E Samuel
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| |
Collapse
|
5
|
Dai X, Hakizimana O, Zhang X, Kaushik AC, Zhang J. Orchestrated efforts on host network hijacking: Processes governing virus replication. Virulence 2021; 11:183-198. [PMID: 32050846 PMCID: PMC7051146 DOI: 10.1080/21505594.2020.1726594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With the high pervasiveness of viral diseases, the battle against viruses has never ceased. Here we discuss five cellular processes, namely "autophagy", "programmed cell death", "immune response", "cell cycle alteration", and "lipid metabolic reprogramming", that considerably guide viral replication after host infection in an orchestrated manner. On viral infection, "autophagy" and "programmed cell death" are two dynamically synchronized cell survival programs; "immune response" is a cell defense program typically suppressed by viruses; "cell cycle alteration" and "lipid metabolic reprogramming" are two altered cell housekeeping programs tunable in both directions. We emphasize on their functionalities in modulating viral replication, strategies viruses have evolved to tune these processes for their benefit, and how these processes orchestrate and govern cell fate upon viral infection. Understanding how viruses hijack host networks has both academic and industrial values in providing insights toward therapeutic strategy design for viral disease control, offering useful information in applications that aim to use viral vectors to improve human health such as gene therapy, and providing guidelines to maximize viral particle yield for improved vaccine production at a reduced cost.
Collapse
Affiliation(s)
- Xiaofeng Dai
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | | | - Xuanhao Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Aman Chandra Kaushik
- School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Jianying Zhang
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Department of Biological Sciences, University of Texas at El Paso, EI Paso, TX, USA
| |
Collapse
|
6
|
Peng C, Zhou Y, Cao S, Pant A, Campos Guerrero ML, McDonald P, Roy A, Yang Z. Identification of Vaccinia Virus Inhibitors and Cellular Functions Necessary for Efficient Viral Replication by Screening Bioactives and FDA-Approved Drugs. Vaccines (Basel) 2020; 8:vaccines8030401. [PMID: 32708182 PMCID: PMC7564539 DOI: 10.3390/vaccines8030401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Four decades after the eradication of smallpox, poxviruses continue to threaten the health of humans and other animals. Vaccinia virus (VACV) was used as the vaccine that successfully eradicated smallpox and is a prototypic member of the poxvirus family. Many cellular pathways play critical roles in productive poxvirus replication. These pathways provide opportunities to expand the arsenal of poxvirus antiviral development by targeting the cellular functions required for efficient poxvirus replication. In this study, we developed and optimized a secreted Gaussia luciferase-based, simplified assay procedure suitable for high throughput screening. Using this procedure, we screened a customized compound library that contained over 3200 bioactives and FDA (Food and Drug Administration)-approved chemicals, most having known cellular targets, for their inhibitory effects on VACV replication. We identified over 140 compounds that suppressed VACV replication. Many of these hits target cellular pathways previously reported to be required for efficient VACV replication, validating the effectiveness of our screening. Importantly, we also identified hits that target cellular functions with previously unknown roles in the VACV replication cycle. Among those in the latter category, we verified the antiviral role of several compounds targeting the janus kinase/signal transducer and activator of transcription-3 (JAK/STAT3) signaling pathway by showing that STAT3 inhibitors reduced VACV replication. Our findings identify pathways that are candidates for use in the prevention and treatment of poxvirus infections and additionally provide a foundation to investigate diverse cellular pathways for their roles in poxvirus replications.
Collapse
Affiliation(s)
- Chen Peng
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.P.); (Y.Z.); (S.C.); (A.P.); (M.L.C.G.)
| | - Yanan Zhou
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.P.); (Y.Z.); (S.C.); (A.P.); (M.L.C.G.)
| | - Shuai Cao
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.P.); (Y.Z.); (S.C.); (A.P.); (M.L.C.G.)
| | - Anil Pant
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.P.); (Y.Z.); (S.C.); (A.P.); (M.L.C.G.)
| | - Marlene L. Campos Guerrero
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.P.); (Y.Z.); (S.C.); (A.P.); (M.L.C.G.)
| | - Peter McDonald
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS 66045, USA; (P.M.); (A.R.)
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS 66045, USA; (P.M.); (A.R.)
| | - Zhilong Yang
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA; (C.P.); (Y.Z.); (S.C.); (A.P.); (M.L.C.G.)
- Correspondence:
| |
Collapse
|
7
|
Lamers MM, van den Hoogen BG, Haagmans BL. ADAR1: "Editor-in-Chief" of Cytoplasmic Innate Immunity. Front Immunol 2019; 10:1763. [PMID: 31404141 PMCID: PMC6669771 DOI: 10.3389/fimmu.2019.01763] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
Specialized receptors that recognize molecular patterns such as double stranded RNA duplexes-indicative of viral replication-are potent triggers of the innate immune system. Although their activation is beneficial during viral infection, RNA transcribed from endogenous mobile genetic elements may also act as ligands potentially causing autoimmunity. Recent advances indicate that the adenosine deaminase ADAR1 through RNA editing is involved in dampening the canonical antiviral RIG-I-like receptor-, PKR-, and OAS-RNAse L pathways to prevent autoimmunity. However, this inhibitory effect must be overcome during viral infections. In this review we discuss ADAR1's critical role in balancing immune activation and self-tolerance.
Collapse
|
8
|
Adenosine Deaminase Acting on RNA 1 Associates with Orf Virus OV20.0 and Enhances Viral Replication. J Virol 2019; 93:JVI.01912-18. [PMID: 30651363 DOI: 10.1128/jvi.01912-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/21/2018] [Indexed: 01/08/2023] Open
Abstract
Orf virus (ORFV) infects sheep and goats and is also an important zoonotic pathogen. The viral protein OV20.0 has been shown to suppress innate immunity by targeting the double-stranded RNA (dsRNA)-activated protein kinase (PKR) by multiple mechanisms. These mechanisms include a direct interaction with PKR and binding with two PKR activators, dsRNA and the cellular PKR activator (PACT), which ultimately leads to the inhibition of PKR activation. In the present study, we identified a novel association between OV20.0 and adenosine deaminase acting on RNA 1 (ADAR1). OV20.0 bound directly to the dsRNA binding domains (RBDs) of ADAR1 in the absence of dsRNA. Additionally, OV20.0 preferentially interacted with RBD1 of ADAR1, which was essential for its dsRNA binding ability and for the homodimerization that is critical for intact adenosine-to-inosine (A-to-I)-editing activity. Finally, the association with OV20.0 suppressed the A-to-I-editing ability of ADAR1, while ADAR1 played a proviral role during ORFV infection by inhibiting PKR phosphorylation. These observations revealed a new strategy used by OV20.0 to evade antiviral responses via PKR.IMPORTANCE Viruses evolve specific strategies to counteract host innate immunity. ORFV, an important zoonotic pathogen, encodes OV20.0 to suppress PKR activation via multiple mechanisms, including interactions with PKR and two PKR activators. In this study, we demonstrated that OV20.0 interacts with ADAR1, a cellular enzyme responsible for converting adenosine (A) to inosine (I) in RNA. The RNA binding domains, but not the catalytic domain, of ADAR1 are required for this interaction. The OV20.0-ADAR1 association affects the functions of both proteins; OV20.0 suppressed the A-to-I editing of ADAR1, while ADAR1 elevated OV20.0 expression. The proviral role of ADAR1 is likely due to the inhibition of PKR phosphorylation. As RNA editing by ADAR1 contributes to the stability of the genetic code and the structure of RNA, these observations suggest that in addition to serving as a PKR inhibitor, OV20.0 might modulate ADAR1-dependent gene expression to combat antiviral responses or achieve efficient viral infection.
Collapse
|
9
|
Vongsutilers V, Sawaspaiboontawee K, Tuesuwan B, Shinohara Y, Kawai G. 5-Methylcytosine containing CG decamer as Z-DNA embedded sequence for a potential Z-DNA binding protein probe. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:485-497. [PMID: 30188765 DOI: 10.1080/15257770.2018.1498512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Attempting to elucidate biological significance of the left-handed Z-DNA is a research challenge due to Z-DNA potential role in many diseases. Discovery of Z-DNA binding proteins has ignited the interest in search for Z-DNA functions. Biosensor with Z-DNA forming probe can be useful to study the interaction between Z-DNA conformation and Z-DNA binding proteins. In this study, 5-methylcytosine (mC) containing CG decamers were characterized for their suitability to form Z-DNA and to be used in Z-DNA forming probe. The 5'-thiol oligonucleotide embedded with 5'-mCGmCGmCGmCGm CG-3' was designed and developed as a potential Z-DNA forming probe for Z-DNA binding protein screening.
Collapse
Affiliation(s)
- Vorasit Vongsutilers
- a Department of Food and Pharmaceutical Chemistry , Chulalongkorn University , Bangkok , Thailand.,b Medicinal and Analytical Pharmaceutical Chemistry Research Unit , Chulalongkorn University Drug and Health Product Innovation Promotion Center , Bangkok , Thailand
| | - Kulwadee Sawaspaiboontawee
- a Department of Food and Pharmaceutical Chemistry , Chulalongkorn University , Bangkok , Thailand.,b Medicinal and Analytical Pharmaceutical Chemistry Research Unit , Chulalongkorn University Drug and Health Product Innovation Promotion Center , Bangkok , Thailand
| | - Bodin Tuesuwan
- a Department of Food and Pharmaceutical Chemistry , Chulalongkorn University , Bangkok , Thailand.,b Medicinal and Analytical Pharmaceutical Chemistry Research Unit , Chulalongkorn University Drug and Health Product Innovation Promotion Center , Bangkok , Thailand
| | - Yoko Shinohara
- c Department of Life and Environmental Sciences , Chiba Institute of Technology , Chiba , Japan
| | - Gota Kawai
- c Department of Life and Environmental Sciences , Chiba Institute of Technology , Chiba , Japan
| |
Collapse
|
10
|
Vongsutilers V, Gannett PM. C8-Guanine modifications: effect on Z-DNA formation and its role in cancer. Org Biomol Chem 2018. [DOI: 10.1039/c8ob00030a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Participation of Z DNA in normal and disease related biological processes.
Collapse
Affiliation(s)
- V. Vongsutilers
- Department of Food and Pharmaceutical Chemistry
- Faculty of Pharmaceutical Sciences
- Chulalongkorn University
- Thailand
| | - P. M. Gannett
- College of Pharmacy
- Nova Southeastern University
- Ft. Lauderdale
- USA
| |
Collapse
|
11
|
Human Cytomegalovirus pTRS1 and pIRS1 Antagonize Protein Kinase R To Facilitate Virus Replication. J Virol 2016; 90:3839-3848. [PMID: 26819306 DOI: 10.1128/jvi.02714-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) counteracts host defenses that otherwise act to limit viral protein synthesis. One such defense is the antiviral kinase protein kinase R (PKR), which inactivates the eukaryotic initiation factor 2 (eIF2) translation initiation factor upon binding to viral double-stranded RNAs. Previously, the viral TRS1 and IRS1 proteins were found to antagonize the antiviral kinase PKR outside the context of HCMV infection, and the expression of either pTRS1 or pIRS1 was shown to be necessary for HCMV replication. In this study, we found that expression of either pTRS1 or pIRS1 is necessary to prevent PKR activation during HCMV infection and that antagonism of PKR is critical for efficient viral replication. Consistent with a previous study, we observed decreased overall levels of protein synthesis, reduced viral protein expression, and diminished virus replication in the absence of both pTRS1 and pIRS1. In addition, both PKR and eIF2α were phosphorylated during infection when pTRS1 and pIRS1 were absent. We also found that expression of pTRS1 was both necessary and sufficient to prevent stress granule formation in response to eIF2α phosphorylation. Depletion of PKR prevented eIF2α phosphorylation, rescued HCMV replication and protein synthesis, and reversed the accumulation of stress granules in infected cells. Infection with an HCMV mutant lacking the pTRS1 PKR binding domain resulted in PKR activation, suggesting that pTRS1 inhibits PKR through a direct interaction. Together our results show that antagonism of PKR by HCMV pTRS1 and pIRS1 is critical for viral protein expression and efficient HCMV replication. IMPORTANCE To successfully replicate, viruses must counteract host defenses that limit viral protein synthesis. We have identified inhibition of the antiviral kinase PKR by the viral proteins TRS1 and IRS1 and shown that this is a critical step in HCMV replication. Our results suggest that inhibiting pTRS1 and pIRS1 function or restoring PKR activity during infection may be a successful strategy to limit HCMV disease.
Collapse
|
12
|
ADAR enzyme and miRNA story: a nucleotide that can make the difference. Int J Mol Sci 2013; 14:22796-816. [PMID: 24256817 PMCID: PMC3856091 DOI: 10.3390/ijms141122796] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/21/2022] Open
Abstract
Adenosine deaminase acting on RNA (ADAR) enzymes convert adenosine (A) to inosine (I) in double-stranded (ds) RNAs. Since Inosine is read as Guanosine, the biological consequence of ADAR enzyme activity is an A/G conversion within RNA molecules. A-to-I editing events can occur on both coding and non-coding RNAs, including microRNAs (miRNAs), which are small regulatory RNAs of ~20–23 nucleotides that regulate several cell processes by annealing to target mRNAs and inhibiting their translation. Both miRNA precursors and mature miRNAs undergo A-to-I RNA editing, affecting the miRNA maturation process and activity. ADARs can also edit 3′ UTR of mRNAs, further increasing the interplay between mRNA targets and miRNAs. In this review, we provide a general overview of the ADAR enzymes and their mechanisms of action as well as miRNA processing and function. We then review the more recent findings about the impact of ADAR-mediated activity on the miRNA pathway in terms of biogenesis, target recognition, and gene expression regulation.
Collapse
|
13
|
Ng SK, Weissbach R, Ronson GE, Scadden ADJ. Proteins that contain a functional Z-DNA-binding domain localize to cytoplasmic stress granules. Nucleic Acids Res 2013; 41:9786-99. [PMID: 23982513 PMCID: PMC3834823 DOI: 10.1093/nar/gkt750] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Long double-stranded RNA may undergo hyper-editing by adenosine deaminases that act on RNA (ADARs), where up to 50% of adenosine residues may be converted to inosine. However, although numerous RNAs may undergo hyper-editing, the role for inosine-containing hyper-edited double-stranded RNA in cells is poorly understood. Nevertheless, editing plays a critical role in mammalian cells, as highlighted by the analysis of ADAR-null mutants. In particular, the long form of ADAR1 (ADAR1p150) is essential for viability. Moreover, a number of studies have implicated ADAR1p150 in various stress pathways. We have previously shown that ADAR1p150 localized to cytoplasmic stress granules in HeLa cells following either oxidative or interferon-induced stress. Here, we show that the Z-DNA-binding domain (ZαADAR1) exclusively found in ADAR1p150 is required for its localization to stress granules. Moreover, we show that fusion of ZαADAR1 to either green fluorescent protein (GFP) or polypyrimidine binding protein 4 (PTB4) also results in their localization to stress granules. We additionally show that the Zα domain from other Z-DNA-binding proteins (ZBP1, E3L) is likewise sufficient for localization to stress granules. Finally, we show that Z-RNA or Z-DNA binding is important for stress granule localization. We have thus identified a novel role for Z-DNA-binding domains in mammalian cells.
Collapse
Affiliation(s)
- Siew Kit Ng
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | | | | |
Collapse
|
14
|
Bierle CJ, Semmens KM, Geballe AP. Double-stranded RNA binding by the human cytomegalovirus PKR antagonist TRS1. Virology 2013; 442:28-37. [PMID: 23601785 DOI: 10.1016/j.virol.2013.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/15/2013] [Accepted: 03/25/2013] [Indexed: 02/02/2023]
Abstract
Protein Kinase R (PKR) inhibits translation initiation following double-stranded RNA (dsRNA) binding and thereby represses viral replication. Human cytomegalovirus (HCMV) encodes two noncanonical dsRNA binding proteins, IRS1 and TRS1, and the expression of at least one of these PKR antagonists is essential for HCMV replication. In this study, we investigated the role of dsRNA binding by TRS1 in PKR inhibition. We found that purified TRS1 binds specifically to dsRNA with an affinity lower than that of PKR. Point mutants in the TRS1 dsRNA binding domain that were deficient in rescuing the replication of vaccinia virus lacking its PKR antagonist E3L were unable to bind to dsRNA but retained the ability bind to PKR. Thus TRS1 binding to dsRNA and to PKR are separable. Overall, our results are most consistent with a model in which TRS1 binds simultaneously to both dsRNA and PKR to inhibit PKR activation.
Collapse
Affiliation(s)
- Craig J Bierle
- Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98115, United States.
| | | | | |
Collapse
|
15
|
Bratke KA, McLysaght A, Rothenburg S. A survey of host range genes in poxvirus genomes. INFECTION GENETICS AND EVOLUTION 2012; 14:406-25. [PMID: 23268114 DOI: 10.1016/j.meegid.2012.12.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/01/2012] [Accepted: 12/06/2012] [Indexed: 12/17/2022]
Abstract
Poxviruses are widespread pathogens, which display extremely different host ranges. Whereas some poxviruses, including variola virus, display narrow host ranges, others such as cowpox viruses naturally infect a wide range of mammals. The molecular basis for differences in host range are poorly understood but apparently depend on the successful manipulation of the host antiviral response. Some poxvirus genes have been shown to confer host tropism in experimental settings and are thus called host range factors. Identified host range genes include vaccinia virus K1L, K3L, E3L, B5R, C7L and SPI-1, cowpox virus CP77/CHOhr, ectromelia virus p28 and 022, and myxoma virus T2, T4, T5, 11L, 13L, 062R and 063R. These genes encode for ankyrin repeat-containing proteins, tumor necrosis factor receptor II homologs, apoptosis inhibitor T4-related proteins, Bcl-2-related proteins, pyrin domain-containing proteins, cellular serine protease inhibitors (serpins), short complement-like repeats containing proteins, KilA-N/RING domain-containing proteins, as well as inhibitors of the double-stranded RNA-activated protein kinase PKR. We conducted a systematic survey for the presence of known host range genes and closely related family members in poxvirus genomes, classified them into subgroups based on their phylogenetic relationship and correlated their presence with the poxvirus phylogeny. Common themes in the evolution of poxvirus host range genes are lineage-specific duplications and multiple independent inactivation events. Our analyses yield new insights into the evolution of poxvirus host range genes. Implications of our findings for poxvirus host range and virulence are discussed.
Collapse
Affiliation(s)
- Kirsten A Bratke
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
16
|
Stress granule formation induced by measles virus is protein kinase PKR dependent and impaired by RNA adenosine deaminase ADAR1. J Virol 2012; 87:756-66. [PMID: 23115276 DOI: 10.1128/jvi.02270-12] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ADAR1, an interferon (IFN)-inducible double-stranded (ds) RNA-specific adenosine deaminase, downregulates host innate responses, including activation of the dsRNA-dependent protein kinase (PKR) and induction of IFN-β mRNA. Conversely, PKR amplifies IFN-β induction by measles virus (MV) and inhibits virus protein synthesis. Formation of stress granules (SGs), cytoplasmic aggregates of stalled translation complexes and RNA-binding proteins, is a host response to virus infection mediated by translation initiation factor eIF2α phosphorylation. We examined the roles of PKR and ADAR1 in SG formation using HeLa cells stably deficient in either PKR (PKR(kd)) or ADAR1 (ADAR1(kd)) compared to control (CON(kd)) cells. Infection with either wild-type (WT) MV or an isogenic mutant lacking C protein expression (C(ko)) comparably induced formation of SG in ADAR1(kd) cells, whereas only the C(ko) mutant was an efficient inducer in control cells. Both ADAR1 and PKR colocalized with SG following infection. MV-induced; SG formation was PKR dependent but impaired by ADAR1. Complementation of ADAR1(kd) cells by expression of either p150 WT isoform or the p150 Zα (Y177A) Z-DNA-binding mutant of ADAR1 restored suppression of host responses, including SG formation and PKR activation. In contrast, neither the p110 WT isoform nor the p150 catalytic (H910A, E912A) mutant of ADAR1 complemented the ADAR1(kd) phenotype. These results further establish ADAR1 as a suppressor of host innate responses, including activation of PKR and the subsequent SG response.
Collapse
|
17
|
Leung DW, Basler CF, Amarasinghe GK. Molecular mechanisms of viral inhibitors of RIG-I-like receptors. Trends Microbiol 2012; 20:139-46. [PMID: 22325030 DOI: 10.1016/j.tim.2011.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 12/19/2011] [Accepted: 12/23/2011] [Indexed: 12/25/2022]
Abstract
Activation of innate immune signaling pathways through cytosolic RIG-I-like receptors (RLR) is a crucial response that is antagonized by many viruses. A variety of RNA-related pathogen-associated molecular patterns (PAMPS) have been identified and their role in RLR activation has been examined. Recent studies suggest that several virus-encoded components that antagonize RLR signaling interact with and inhibit the interferon (IFN)-α/β activation pathway using both RNA-dependent and RNA-independent mechanisms. The structural basis for these RLR inhibitory mechanisms, as well as the multifunctional nature of viral RLR antagonists, is reviewed in the context of recent biochemical and structural studies.
Collapse
Affiliation(s)
- Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | |
Collapse
|
18
|
Abstract
Double-stranded RNA (dsRNA) functions both as a substrate of ADARs and also as a molecular trigger of innate immune responses. ADARs, adenosine deaminases that act on RNA, catalyze the deamination of adenosine (A) to produce inosine (I) in dsRNA. ADARs thereby can destablize RNA structures, because the generated I:U mismatch pairs are less stable than A:U base pairs. Additionally, I is read as G instead of A by ribosomes during translation and by viral RNA-dependent RNA polymerases during RNA replication. Members of several virus families have the capacity to produce dsRNA during viral genome transcription and replication. Sequence changes (A-G, and U-C) characteristic of A-I editing can occur during virus growth and persistence. Foreign viral dsRNA also mediates both the induction and the action of interferons. In this chapter our current understanding of the role and significance of ADARs in the context of innate immunity, and as determinants of the outcome of viral infection, will be considered.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
19
|
Dominissini D, Moshitch-Moshkovitz S, Amariglio N, Rechavi G. Adenosine-to-inosine RNA editing meets cancer. Carcinogenesis 2011; 32:1569-77. [PMID: 21715563 DOI: 10.1093/carcin/bgr124] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The role of epigenetics in tumor onset and progression has been extensively addressed. Discoveries in the last decade completely changed our view on RNA. We now realize that its diversity lies at the base of biological complexity. Adenosine-to-inosine (A-to-I) RNA editing emerges a central generator of transcriptome diversity and regulation in higher eukaryotes. It is the posttranscriptional deamination of adenosine to inosine in double-stranded RNA catalyzed by enzymes of the adenosine deaminase acting on RNA (ADAR) family. Thought at first to be restricted to coding regions of only a few genes, recent bioinformatic analyses fueled by high-throughput sequencing revealed that it is a widespread modification affecting mostly non-coding repetitive elements in thousands of genes. The rise in scope is accompanied by discovery of a growing repertoire of functions based on differential decoding of inosine by the various cellular machineries: when recognized as guanosine, it can lead to protein recoding, alternative splicing or altered microRNA specificity; when recognized by inosine-binding proteins, it can result in nuclear retention of the transcript or its degradation. An imbalance in expression of ADAR enzymes with consequent editing dysregulation is a characteristic of human cancers. These alterations may be responsible for activating proto-oncogenes or inactivating tumor suppressors. While unlikely to be an early initiating 'hit', editing dysregulation seems to contribute to tumor progression and thus should be considered a 'driver mutation'. In this review, we examine the contribution of A-to-I RNA editing to carcinogenesis.
Collapse
Affiliation(s)
- Dan Dominissini
- Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | | | | | | |
Collapse
|
20
|
Gallo A, Locatelli F. ADARs: allies or enemies? The importance of A-to-I RNA editing in human disease: from cancer to HIV-1. Biol Rev Camb Philos Soc 2011; 87:95-110. [PMID: 21682836 DOI: 10.1111/j.1469-185x.2011.00186.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adenosine deaminases acting on RNA (ADARs) are enzymes that convert adenosine (A) to inosine (I) in nuclear-encoded RNAs and viral RNAs. The activity of ADARs has been demonstrated to be essential in mammals and serves to fine-tune different proteins and modulate many molecular pathways. Recent findings have shown that ADAR activity is altered in many pathological tissues. Moreover, it has been shown that modulation of RNA editing is important for cell proliferation and migration, and has a protective effect on ischaemic insults. This review summarises available recent knowledge on A-to-I RNA editing and ADAR enzymes, with particular attention given to the emerging role played by these enzymes in cancer, some infectious diseases and immune-mediated disorders.
Collapse
Affiliation(s)
- Angela Gallo
- RNA Editing Laboratory, Oncohaematology Department, IRCCS, Ospedale Pediatrico "Bambino Gesù", Rome, Italy.
| | | |
Collapse
|
21
|
Zamyatnin AA, Lyamzaev KG, Zinovkin RA. A-to-I RNA editing: a contribution to diversity of the transcriptome and an organism's development. BIOCHEMISTRY (MOSCOW) 2011; 75:1316-23. [PMID: 21314598 DOI: 10.1134/s0006297910110027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The complexity of multicellular organisms requires both an increase in genetic information and fine tuning in regulation of gene expression. One of the mechanisms responsible for these functions is RNA editing. RNA editing is a complex process affecting the mechanism of changes in transcriptome sequences. The best studied example of this process is A-to-I RNA editing. On the organism's level, RNA editing plays a key role during ontogenesis and in the defense against pathogens. Disorders in A-to-I RNA editing lead to serious abnormalities. The importance of RNA editing increases with an increase in the organism's complexity. Correct RNA editing is an indispensable factor of an organism's development and probably determines the lifespan of higher eukaryotes.
Collapse
Affiliation(s)
- A A Zamyatnin
- Institute of Mitoengineering and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| | | | | |
Collapse
|
22
|
Rubins KH, Hensley LE, Relman DA, Brown PO. Stunned silence: gene expression programs in human cells infected with monkeypox or vaccinia virus. PLoS One 2011; 6:e15615. [PMID: 21267444 PMCID: PMC3022624 DOI: 10.1371/journal.pone.0015615] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/12/2010] [Indexed: 12/20/2022] Open
Abstract
Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV), an emerging human pathogen, and Vaccinia virus (VAC), a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated) MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA), or poly (I-C) was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C) induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection.
Collapse
Affiliation(s)
- Kathleen H. Rubins
- Departments of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lisa E. Hensley
- United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - David A. Relman
- Departments of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
23
|
Samuel CE. Adenosine deaminases acting on RNA (ADARs) are both antiviral and proviral. Virology 2011; 411:180-93. [PMID: 21211811 DOI: 10.1016/j.virol.2010.12.004] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/04/2010] [Indexed: 12/18/2022]
Abstract
A-to-I RNA editing, the deamination of adenosine (A) to inosine (I) that occurs in regions of RNA with double-stranded character, is catalyzed by a family of Adenosine Deaminases Acting on RNA (ADARs). In mammals there are three ADAR genes. Two encode proteins that possess demonstrated deaminase activity: ADAR1, which is interferon-inducible, and ADAR2 which is constitutively expressed. ADAR3, by contrast, has not yet been shown to be an active enzyme. The specificity of the ADAR1 and ADAR2 deaminases ranges from highly site-selective to non-selective, dependent on the duplex structure of the substrate RNA. A-to-I editing is a form of nucleotide substitution editing, because I is decoded as guanosine (G) instead of A by ribosomes during translation and by polymerases during RNA-dependent RNA replication. Additionally, A-to-I editing can alter RNA structure stability as I:U mismatches are less stable than A:U base pairs. Both viral and cellular RNAs are edited by ADARs. A-to-I editing is of broad physiologic significance. Among the outcomes of A-to-I editing are biochemical changes that affect how viruses interact with their hosts, changes that can lead to either enhanced or reduced virus growth and persistence depending upon the specific virus.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
24
|
George CX, Gan Z, Liu Y, Samuel CE. Adenosine deaminases acting on RNA, RNA editing, and interferon action. J Interferon Cytokine Res 2010; 31:99-117. [PMID: 21182352 DOI: 10.1089/jir.2010.0097] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) catalyze adenosine (A) to inosine (I) editing of RNA that possesses double-stranded (ds) structure. A-to-I RNA editing results in nucleotide substitution, because I is recognized as G instead of A both by ribosomes and by RNA polymerases. A-to-I substitution can also cause dsRNA destabilization, as I:U mismatch base pairs are less stable than A:U base pairs. Three mammalian ADAR genes are known, of which two encode active deaminases (ADAR1 and ADAR2). Alternative promoters together with alternative splicing give rise to two protein size forms of ADAR1: an interferon-inducible ADAR1-p150 deaminase that binds dsRNA and Z-DNA, and a constitutively expressed ADAR1-p110 deaminase. ADAR2, like ADAR1-p110, is constitutively expressed and binds dsRNA. A-to-I editing occurs with both viral and cellular RNAs, and affects a broad range of biological processes. These include virus growth and persistence, apoptosis and embryogenesis, neurotransmitter receptor and ion channel function, pancreatic cell function, and post-transcriptional gene regulation by microRNAs. Biochemical processes that provide a framework for understanding the physiologic changes following ADAR-catalyzed A-to-I ( = G) editing events include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA-structure-dependent activities such as microRNA production or targeting or protein-RNA interactions.
Collapse
Affiliation(s)
- Cyril X George
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
25
|
Li Z, Wolff KC, Samuel CE. RNA adenosine deaminase ADAR1 deficiency leads to increased activation of protein kinase PKR and reduced vesicular stomatitis virus growth following interferon treatment. Virology 2009; 396:316-22. [PMID: 19913273 DOI: 10.1016/j.virol.2009.10.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/06/2009] [Accepted: 10/16/2009] [Indexed: 12/24/2022]
Abstract
Two size forms of ADAR1 adenosine deaminase are known, one constitutively expressed (p110) and the other interferon (IFN)-induced (p150). To test the role of ADAR1 in viral infection, HeLa cells with ADAR1 stably knocked down and 293 cells overexpressing ADAR1 were utilized. Overexpression of p150 ADAR1 had no significant effect on the yield of vesicular stomatitis virus. Likewise, reduction of p110 and p150 ADAR1 proteins to less than approximately 10 to 15% of parental levels (ADAR1-deficient) had no significant effect on VSV growth in the absence of IFN treatment. However, inhibition of virus growth following IFN treatment was approximately 1 log(10) further reduced compared to ADAR1-sufficient cells. The level of phosphorylated protein kinase PKR was increased in ADAR1-deficient cells compared to ADAR1-sufficient cells following IFN treatment, regardless of viral infection. These results suggest that ADAR1 suppresses activation of PKR and inhibition of VSV growth in response to IFN treatment.
Collapse
Affiliation(s)
- Zhiqun Li
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
26
|
Perdiguero B, Esteban M. The Interferon System and Vaccinia Virus Evasion Mechanisms. J Interferon Cytokine Res 2009; 29:581-98. [DOI: 10.1089/jir.2009.0073] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Beatriz Perdiguero
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, Madrid, Spain
| | - Mariano Esteban
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, Madrid, Spain
| |
Collapse
|
27
|
George CX, Li Z, Okonski KM, Toth AM, Wang Y, Samuel CE. Tipping the balance: antagonism of PKR kinase and ADAR1 deaminase functions by virus gene products. J Interferon Cytokine Res 2009; 29:477-87. [PMID: 19715457 PMCID: PMC2956706 DOI: 10.1089/jir.2009.0065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 06/29/2009] [Indexed: 12/11/2022] Open
Abstract
The protein kinase regulated by RNA (PKR) and the adenosine deaminase acting on RNA (ADAR1) are interferon-inducible enzymes that play important roles in biologic processes including the antiviral actions of interferons, signal transduction, and apoptosis. PKR catalyzes the RNA-dependent phosphorylation of protein synthesis initiation factor eIF-2 alpha, thereby leading to altered translational patterns in interferon-treated and virus-infected cells. PKR also modulates signal transduction responses, including the induction of interferon. ADAR1 catalyzes the deamination of adenosine (A) to generate inosine (I) in RNAs with double-stranded character. Because I is recognized as G instead of A, A-to-I editing by ADAR1 can lead to genetic recoding and altered RNA structures. The importance of PKR and ADAR1 in innate antiviral immunity is illustrated by a number of viruses that encode either RNA or protein viral gene products that antagonize PKR and ADAR1 enzymatic activity, localization, or stability.
Collapse
Affiliation(s)
- Cyril X George
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Lippmann J, Rothenburg S, Deigendesch N, Eitel J, Meixenberger K, van Laak V, Slevogt H, N'guessan PD, Hippenstiel S, Chakraborty T, Flieger A, Suttorp N, Opitz B. IFNbeta responses induced by intracellular bacteria or cytosolic DNA in different human cells do not require ZBP1 (DLM-1/DAI). Cell Microbiol 2008; 10:2579-88. [PMID: 18771559 DOI: 10.1111/j.1462-5822.2008.01232.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intracellular bacteria and cytosolic stimulation with DNA activate type I IFN responses independently of Toll-like receptors, most Nod-like receptors and RIG-like receptors. A recent study suggested that ZBP1 (DLM-1/DAI) represents the long anticipated pattern recognition receptor which mediates IFNalpha/beta responses to cytosolic DNA in mice. Here we show that Legionella pneumophila infection, and intracellular challenge with poly(dA-dT), but not with poly(dG-dC), induced expression of IFNbeta, full-length hZBP1 and a prominent splice variant lacking the first Zalpha domain (hZBP1DeltaZalpha) in human cells. Overexpression of hZBP1 but not hZBP1DeltaZalpha slightly amplified poly(dA-dT)-stimulated IFNbeta reporter activation in HEK293 cells, but had no effect on IFNbeta and IL-8 production induced by bacteria or poly(dA-dT) in A549 cells. We found that mZBP1 siRNA impaired poly(dA-dT)-induced IFNbeta responses in mouse L929 fibroblasts at a later time point, while multiple hZBP1 siRNAs did not suppress IFNbeta or IL-8 expression induced by poly(dA-dT) or bacterial infection in human cells. In contrast, IRF3 siRNA strongly impaired the IFNbeta responses to poly(dA-dT) or bacterial infection. In conclusion, intracellular bacteria and cytosolic poly(dA-dT) activate IFNbeta responses in different human cells without requiring human ZBP1.
Collapse
Affiliation(s)
- Juliane Lippmann
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Guerra S, Cáceres A, Knobeloch KP, Horak I, Esteban M. Vaccinia virus E3 protein prevents the antiviral action of ISG15. PLoS Pathog 2008; 4:e1000096. [PMID: 18604270 PMCID: PMC2434199 DOI: 10.1371/journal.ppat.1000096] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 05/29/2008] [Indexed: 01/15/2023] Open
Abstract
The ubiquitin-like modifier ISG15 is one of the most predominant proteins induced by type I interferons (IFN). In this study, murine embryo fibroblast (MEFs) and mice lacking the gene were used to demonstrate a novel role of ISG15 as a host defense molecule against vaccinia virus (VACV) infection. In MEFs, the growth of replication competent Western Reserve (WR) VACV strain was affected by the absence of ISG15, but in addition, virus lacking E3 protein (VVDeltaE3L) that is unable to grow in ISG15+/+ cells replicated in ISG15-deficient cells. Inhibiting ISG15 with siRNA or promoting its expression in ISG15-/- cells with a lentivirus vector showed that VACV replication was controlled by ISG15. Immunoprecipitation analysis revealed that E3 binds ISG15 through its C-terminal domain. The VACV antiviral action of ISG15 and its interaction with E3 are events independent of PKR (double-stranded RNA-dependent protein kinase). In mice lacking ISG15, infection with VVDeltaE3L caused significant disease and mortality, an effect not observed in VVDeltaE3L-infected ISG15+/+ mice. Pathogenesis in ISG15-deficient mice infected with VVDeltaE3L or with an E3L deletion mutant virus lacking the C-terminal domain triggered an enhanced inflammatory response in the lungs compared with ISG15+/+-infected mice. These findings showed an anti-VACV function of ISG15, with the virus E3 protein suppressing the action of the ISG15 antiviral factor.
Collapse
Affiliation(s)
- Susana Guerra
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, Madrid, Spain
- Department of Preventive Medicine and Public Health, Universidad Autónoma, Madrid, Spain
- * E-mail: (SG); (ME)
| | - Ana Cáceres
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, Madrid, Spain
| | - Klaus-Peter Knobeloch
- Abteilung Molekulare Genetik, Leibniz Institut fur Molekulare Pharmakologie, Berlin, Germany
| | - Ivan Horak
- Abteilung Molekulare Genetik, Leibniz Institut fur Molekulare Pharmakologie, Berlin, Germany
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología CSIC, Campus Universidad Autónoma, Madrid, Spain
- * E-mail: (SG); (ME)
| |
Collapse
|
31
|
Vasudevaraju P, Bharathi, Garruto R, Sambamurti K, Rao K. Role of DNA dynamics in Alzheimer's disease. ACTA ACUST UNITED AC 2008; 58:136-48. [DOI: 10.1016/j.brainresrev.2008.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/14/2008] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
|
32
|
TAKAOKA A, TANIGUCHI T. Cytosolic DNA recognition for triggering innate immune responses. Adv Drug Deliv Rev 2008; 60:847-57. [PMID: 18280611 DOI: 10.1016/j.addr.2007.12.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 12/18/2007] [Indexed: 11/27/2022]
Abstract
The detection of microbial components by pattern recognition receptors (PRRs) and the subsequent triggering of innate immune responses constitute the first line of defense against infections. Recently, much attention has been focused on cytosolic nucleic acid receptors; the activation of these receptors commonly evokes a robust innate immune response, the hallmark of which is the induction of type I interferon (IFN) genes. In addition to receptors for RNA, receptors that detect DNA exposed in the cytosol and activate innate immune responses have long been thought to exist. Recently, DAI (DLM-1/ZBP1) has been identified as a candidate cytosolic DNA sensor. Cytosolic signaling by DNA-activated DAI (DLM-1/ZBP1) signaling results in activation of the two pathways of gene transcription critical to innate immune responses, the IRF and NF-kappaB pathways. In this review, we summarize our current view of activation mechanism and immunological roles of DAI (DLM-1/ZBP1) and related molecules. In addition, we also discuss the issue of self vs. non-self DNA recognition by DAI (DLM-1/ZBP1) and other DNA sensors in terms of the possible involvement in autoimmune abnormalities.
Collapse
|
33
|
Loss of protein kinase PKR expression in human HeLa cells complements the vaccinia virus E3L deletion mutant phenotype by restoration of viral protein synthesis. J Virol 2007; 82:840-8. [PMID: 17959656 DOI: 10.1128/jvi.01891-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The E3L proteins encoded by vaccinia virus bind double-stranded RNA and mediate interferon resistance, promote virus growth, and impair virus-mediated apoptosis. Among the cellular proteins implicated as targets of E3L is the protein kinase regulated by RNA (PKR). To test in human cells the role of PKR in conferring the E3L mutant phenotype, HeLa cells stably deficient in PKR generated by an RNA interference-silencing strategy were compared to parental and control knockdown cells following infection with either an E3L deletion mutant (DeltaE3L) or wild-type (WT) virus. The growth yields of WT virus were comparable in PKR-sufficient and -deficient cells. By contrast, the single-cycle yield of DeltaE3L virus was increased by nearly 2 log(10) in PKR-deficient cells over the impaired growth in PKR-sufficient cells. Furthermore, virus-induced apoptosis characteristic of the DeltaE3L mutant in PKR-sufficient cells was effectively abolished in PKR-deficient HeLa cells. The viral protein synthesis pattern was altered in DeltaE3L-infected PKR-sufficient cells, characterized by an inhibition of late viral protein expression, whereas in PKR-deficient cells, late protein accumulation was restored. Phosphorylation of both PKR and the alpha subunit of protein synthesis initiation factor 2 (eIF-2alpha) was elevated severalfold in DeltaE3L-infected PKR-sufficient, but not PKR-deficient, cells. WT virus did not significantly increase PKR or eIF-2alpha phosphorylation in either PKR-sufficient or -deficient cells, both of which supported efficient WT viral protein production. Finally, apoptosis induced by infection of PKR-sufficient HeLa cells with DeltaE3L virus was blocked by a caspase antagonist, but mutant virus growth was not rescued, suggesting that translation inhibition rather than apoptosis activation is a principal factor limiting virus growth.
Collapse
|
34
|
Expression of the E3L gene of vaccinia virus in transgenic mice decreases host resistance to vaccinia virus and Leishmania major infections. J Virol 2007; 82:254-67. [PMID: 17959665 DOI: 10.1128/jvi.01384-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E3L gene of vaccinia virus (VACV) encodes the E3 protein that in cultured cells inhibits the activation of interferon (IFN)-induced proteins, double-stranded RNA-dependent protein kinase (PKR), 2'-5'-oligoadenylate synthetase/RNase L (2-5A system) and adenosine deaminase (ADAR-1), thus helping the virus to evade host responses. Here, we have characterized the in vivo E3 functions in a murine inducible cell culture system (E3L-TetOFF) and in transgenic mice (TgE3L). Inducible E3 expression in cultured cells conferred on cells resistance to the antiviral action of IFN against different viruses, while expression of the E3L gene in TgE3L mice triggered enhanced sensitivity of the animals to pathogens. Virus infection monitored in TgE3L mice by different inoculation routes (intraperitoneal and tail scarification) showed that transgenic mice became more susceptible to VACV infection than control mice. TgE3L mice were also more susceptible to Leishmania major infection, leading to an increase in parasitemia compared to control mice. The enhanced sensitivity of TgE3L mice to VACV and L. major infections occurred together with alterations in the host immune system, as revealed by decreased T-cell responses to viral antigens in the spleen and lymph nodes and by differences in the levels of specific innate cell populations. These results demonstrate that expression of the E3L gene in transgenic mice partly reverses the resistance of the host to viral and parasitic infections and that these effects are associated with immune alterations.
Collapse
|
35
|
García MA, Gil J, Ventoso I, Guerra S, Domingo E, Rivas C, Esteban M. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 2007; 70:1032-60. [PMID: 17158706 PMCID: PMC1698511 DOI: 10.1128/mmbr.00027-06] [Citation(s) in RCA: 614] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The double-stranded RNA-dependent protein kinase PKR is a critical mediator of the antiproliferative and antiviral effects exerted by interferons. Not only is PKR an effector molecule on the cellular response to double-stranded RNA, but it also integrates signals in response to Toll-like receptor activation, growth factors, and diverse cellular stresses. In this review, we provide a detailed picture on how signaling downstream of PKR unfolds and what are the ultimate consequences for the cell fate. PKR activation affects both transcription and translation. PKR phosphorylation of the alpha subunit of eukaryotic initiation factor 2 results in a blockade on translation initiation. However, PKR cannot avoid the translation of some cellular and viral mRNAs bearing special features in their 5' untranslated regions. In addition, PKR affects diverse transcriptional factors such as interferon regulatory factor 1, STATs, p53, activating transcription factor 3, and NF-kappaB. In particular, how PKR triggers a cascade of events involving IKK phosphorylation of IkappaB and NF-kappaB nuclear translocation has been intensively studied. At the cellular and organism levels PKR exerts antiproliferative effects, and it is a key antiviral agent. A point of convergence in both effects is that PKR activation results in apoptosis induction. The extent and strength of the antiviral action of PKR are clearly understood by the findings that unrelated viral proteins of animal viruses have evolved to inhibit PKR action by using diverse strategies. The case for the pathological consequences of the antiproliferative action of PKR is less understood, but therapeutic strategies aimed at targeting PKR are beginning to offer promising results.
Collapse
Affiliation(s)
- M A García
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Toth AM, Zhang P, Das S, George CX, Samuel CE. Interferon action and the double-stranded RNA-dependent enzymes ADAR1 adenosine deaminase and PKR protein kinase. ACTA ACUST UNITED AC 2007; 81:369-434. [PMID: 16891177 DOI: 10.1016/s0079-6603(06)81010-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ann M Toth
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|
37
|
Zahn RC, Schelp I, Utermöhlen O, von Laer D. A-to-G hypermutation in the genome of lymphocytic choriomeningitis virus. J Virol 2006; 81:457-64. [PMID: 17020943 PMCID: PMC1797460 DOI: 10.1128/jvi.00067-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The interferon-inducible adenosine deaminase that acts on double-stranded RNA (ADAR1-L) has been proposed to be one of the antiviral effector proteins within the complex innate immune response. Here, the potential role of ADAR1-L in the innate immune response to lymphocytic choriomeningitis virus (LCMV), a widely used virus model, was studied. Infection with LCMV clearly upregulated ADAR1-L expression and activity. The editing activity of ADAR1-L on an RNA substrate was not inhibited by LCMV replication. Accordingly, an adenosine-to-guanosine (A-to-G) and uracil-to-cytidine (U-to-C) hypermutation pattern was found in the LCMV genomic RNA in infected cell lines and in mice. In addition, two hypermutated clones with a high level of A-to-G or U-to-C mutations within a short stretch of the viral genome were isolated. Analysis of the functionality of viral glycoprotein revealed that A-to-G- and U-to-C-mutated LCMV genomes coded for nonfunctional glycoprotein at a surprisingly high frequency. Approximately half the GP clones with an amino acid mutation lacked functionality. These results suggest that ADAR1-L-induced mutations in the viral RNA lead to a loss of viral protein function and reduced viral infectivity. This study therefore provides strong support for the contribution of ADAR1-L to the innate antiviral immune response.
Collapse
Affiliation(s)
- Roland C Zahn
- Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt, Germany
| | | | | | | |
Collapse
|
38
|
Deigendesch N, Koch-Nolte F, Rothenburg S. ZBP1 subcellular localization and association with stress granules is controlled by its Z-DNA binding domains. Nucleic Acids Res 2006; 34:5007-20. [PMID: 16990255 PMCID: PMC1636418 DOI: 10.1093/nar/gkl575] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Z-DNA binding protein 1 (ZBP1) belongs to a family of proteins that contain the Zα domain, which binds specifically to left-handed Z-DNA and Z-RNA. Like all vertebrate proteins in the Zα family, it contains two Zα-like domains and is highly inducible by immunostimulation. Using circular dichroism spectroscopy and electrophoretic mobility shift assays we show that both Zα domains can bind Z-DNA independently and that substrate binding is greatly enhanced when both domains are linked. Full length ZBP1 and a prominent splice variant lacking the first Zα domain (ΔZα) showed strikingly different subcellular localizations. While the full length protein showed a finely punctate cytoplasmatic distribution, ZBP1ΔZα accumulated in large cytoplasmic granules. Mutation of residues important for Z-DNA binding in the first Zα domain resulted in a distribution comparable to that of ZBP1ΔZα. The ZBP1ΔZα granules are distinct from stress granules (SGs) and processing bodies but dynamically interacted with these. Polysome stabilization led to the disassembly of ZBP1ΔZα granules, indicating that mRNA are integral components. Heat shock and arsenite exposure had opposing effects on ZBP1 isoforms: while ZBP1ΔZα granules disassembled, full length ZBP1 accumulated in SGs. Our data link ZBP1 to mRNA sorting and metabolism and indicate distinct roles for ZBP1 isoforms.
Collapse
Affiliation(s)
- Nikolaus Deigendesch
- Institute for Immunology, University Hospital EppendorfHamburg, Germany
- Department of Biology, Massachusetts Institute of TechnologyCambridge, MA, USA
| | | | - Stefan Rothenburg
- Institute for Immunology, University Hospital EppendorfHamburg, Germany
- To whom correspondence should be addressed. Tel: +49 40 428037922; Fax: +49 40 428034243;
| |
Collapse
|
39
|
Fenner BJ, Goh W, Kwang J. Sequestration and protection of double-stranded RNA by the betanodavirus b2 protein. J Virol 2006; 80:6822-33. [PMID: 16809288 PMCID: PMC1489041 DOI: 10.1128/jvi.00079-06] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 04/24/2006] [Indexed: 12/31/2022] Open
Abstract
Betanodavirus B2 belongs to a group of functionally related proteins from the sense-strand RNA virus family Nodaviridae that suppress cellular RNA interference. The B2 proteins of insect alphanodaviruses block RNA interference by binding to double-stranded RNA (dsRNA), thus preventing Dicer-mediated cleavage and the subsequent generation of short interfering RNAs. We show here that the fish betanodavirus B2 protein also binds dsRNA. Binding is sequence independent, and maximal binding occurs with dsRNA substrates greater than 20 bp in length. The binding of B2 to long dsRNA is sufficient to completely block Dicer cleavage of dsRNA in vitro. Protein-protein interaction studies indicated that B2 interacts with itself and with other dsRNA binding proteins, the interaction occurring through binding to shared dsRNA substrates. Induction of the dsRNA-dependent interferon response was not antagonized by B2, as the interferon-responsive Mx gene of permissive fish cells was induced by wild-type viral RNA1 but not by a B2 mutant. The induction of Mx instead relied solely on viral RNA1 accumulation, which is impaired in the B2 mutant. Hyperediting of virus dsRNA and site-specific editing of 5-HT2C mRNA were both antagonized by B2. RNA editing was not, however, observed in transfected wild-type or B2 mutant RNA1, suggesting that this pathway does not contribute to the RNA1 accumulation defect of the B2 mutant. We thus conclude that betanodavirus B2 is a dsRNA binding protein that sequesters and protects both long and short dsRNAs to protect betanodavirus from cellular RNA interference.
Collapse
Affiliation(s)
- Beau J Fenner
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | | | | |
Collapse
|
40
|
Cárdenas WB, Loo YM, Gale M, Hartman AL, Kimberlin CR, Martínez-Sobrido L, Saphire EO, Basler CF. Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J Virol 2006; 80:5168-78. [PMID: 16698997 PMCID: PMC1472134 DOI: 10.1128/jvi.02199-05] [Citation(s) in RCA: 349] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 03/11/2006] [Indexed: 01/20/2023] Open
Abstract
The Ebola virus (EBOV) VP35 protein blocks the virus-induced phosphorylation and activation of interferon regulatory factor 3 (IRF-3), a transcription factor critical for the induction of alpha/beta interferon (IFN-alpha/beta) expression. However, the mechanism(s) by which this blockage occurs remains incompletely defined. We now provide evidence that VP35 possesses double-stranded RNA (dsRNA)-binding activity. Specifically, VP35 bound to poly(rI) . poly(rC)-coated Sepharose beads but not control beads. In contrast, two VP35 point mutants, R312A and K309A, were found to be greatly impaired in their dsRNA-binding activity. Competition assays showed that VP35 interacted specifically with poly(rI) . poly(rC), poly(rA) . poly(rU), or in vitro-transcribed dsRNAs derived from EBOV sequences, and not with single-stranded RNAs (ssRNAs) or double-stranded DNA. We then screened wild-type and mutant VP35s for their ability to target different components of the signaling pathways that activate IRF-3. These experiments indicate that VP35 blocks activation of IRF-3 induced by overexpression of RIG-I, a cellular helicase recently implicated in the activation of IRF-3 by either virus or dsRNA. Interestingly, the VP35 mutants impaired for dsRNA binding have a decreased but measurable IFN antagonist activity in these assays. Additionally, wild-type and dsRNA-binding-mutant VP35s were found to have equivalent abilities to inhibit activation of the IFN-beta promoter induced by overexpression of IPS-1, a recently identified signaling molecule downstream of RIG-I, or by overexpression of the IRF-3 kinases IKKepsilon and TBK-1. These data support the hypothesis that dsRNA binding may contribute to VP35 IFN antagonist function. However, additional mechanisms of inhibition, at a point proximal to the IRF-3 kinases, most likely also exist.
Collapse
Affiliation(s)
- Washington B Cárdenas
- Department of Microbiology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hartwig D, Schütte C, Warnecke J, Dorn I, Hennig H, Kirchner H, Schlenke P. The large form of ADAR 1 is responsible for enhanced hepatitis delta virus RNA editing in interferon-alpha-stimulated host cells. J Viral Hepat 2006; 13:150-7. [PMID: 16475990 DOI: 10.1111/j.1365-2893.2005.00663.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hepatitis delta virus (HDV) RNA editing controls the formation of hepatitis-delta-antigen-S and -L and therefore indirectly regulates HDV replication. Editing is thought to be catalysed by the adenosine deaminase acting on RNA1 (ADAR1) of which two different forms exist, interferon (IFN)-alpha-inducible ADAR1-L and constitutively expressed ADAR1-S. ADAR1-L is hypothesized to be a part of the innate cellular immune system, responsible for deaminating adenosines in viral dsRNAs. We examined the influence of both forms on HDV RNA editing in IFN-alpha-stimulated and unstimulated hepatoma cells. For gene silencing, an antisense oligodeoxyribonucleotide against a common sequence of both forms of ADAR1 and another one specific for ADAR1-L alone were used. IFN-alpha treatment of host cells led to approximately twofold increase of RNA editing compared with unstimulated controls. If ADAR1-L expression was inhibited, this substantial increase in editing could no longer be observed. In unstimulated cells, ADAR1-L suppression had only minor effects on editing. Inhibition of both forms of ADAR1 simultaneously led to a substantial decrease of edited RNA independently of IFN-alpha-stimulation. In conclusion, the two forms of ADAR1 are responsible almost alone for HDV editing. In unstimulated cells, ADAR1-S is the main editing activity. The increase of edited RNA under IFN-alpha-stimulation is because of induction of ADAR1-L, showing for the first time that this IFN-inducible protein is involved in the base modification of replicating HDV RNA. Thus, induction of ADAR1-L may at least partially cause the antiviral effect of IFN-alpha in natural immune response to HDV as well as in case of therapeutic administration of IFN.
Collapse
Affiliation(s)
- D Hartwig
- Institut für Immunologie und Transfusionsmedizin, Universität zu Lübeck, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
Dave RS, McGettigan JP, Qureshi T, Schnell MJ, Nunnari G, Pomerantz RJ. siRNA targeting vaccinia virus double-stranded RNA binding protein [E3L] exerts potent antiviral effects. Virology 2006; 348:489-97. [PMID: 16480752 DOI: 10.1016/j.virol.2006.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 01/05/2006] [Accepted: 01/09/2006] [Indexed: 11/22/2022]
Abstract
The Vaccinia virus gene, E3L, encodes a double-stranded RNA [dsRNA]-binding protein. We hypothesized that, owing to the critical nature of dsRNA in triggering host innate antiviral responses, E3L-specific small-interfering RNAs [siRNAs] should be effective antiviral agents against pox viruses, for which Vaccinia virus is an appropriate surrogate. In this study, we have utilized two human cell types, namely, HeLa and 293T, one which responds to interferon [IFN]-beta and the other produces and responds to IFN-beta, respectively. The antiviral effects were equally robust in HeLa and 293T cells. However, in the case of 293T cells, several distinct features were observed, when IFN-beta is activated in these cells. Vaccinia virus replication was inhibited by 97% and 98% as compared to control infection in HeLa and 293T cells transfected with E3L-specific siRNAs, respectively. These studies demonstrate the utility of E3L-specific siRNAs as potent antiviral agents for small pox and related pox viruses.
Collapse
Affiliation(s)
- Rajnish S Dave
- The Dorrance H. Hamilton Laboratories, Division of Infectious Diseases, Center for Human Virology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Gil J, Esteban M. Vaccinia virus recombinants as a model system to analyze interferon-induced pathways. J Interferon Cytokine Res 2005; 24:637-46. [PMID: 15684816 DOI: 10.1089/jir.2004.24.637] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The interferons (IFNs) are a family of cytokines with broad antiviral activities that also control cell proliferation and modulate immune responses. IFNs exert their pleiotropic actions through the regulation of multiple pathways that have been subjected to extensive study using diverse approaches. The scope of this review is to show how we can take advantage of vaccinia virus (VV) to study IFN-related pathways. We summarize and present the different VV models available for studying IFN function and the possibilities that they offer to analyze IFN-induced pathways, IFN modulators, and the biologic effects at the molecular and cellular levels. Emphasis is given to studies of dsRNA-activated signaling with VV lacking E3L (VV DeltaE3L) and in RNA-activated protein kinase (PKR)-related pathways, through the use of VV recombinants (VVr) with inducible PKR (VV PKR). The latest system is versatile, as expression of PKR can be regulated and induced at different times; similarly, VVr can be generated expressing other PKR modulators. As an example of the utility of VVr, we describe how this model has been used to analyze the antiviral and proapoptotic functions of PKR, the impact of PKR on translation, and the PKR-induced activation of the nuclear factor-kappaB (NF-kappaB) pathway.
Collapse
Affiliation(s)
- Jesús Gil
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma, 28049 Madrid, Spain
| | | |
Collapse
|
44
|
Brandt T, Heck MC, Vijaysri S, Jentarra GM, Cameron JM, Jacobs BL. The N-terminal domain of the vaccinia virus E3L-protein is required for neurovirulence, but not induction of a protective immune response. Virology 2005; 333:263-70. [PMID: 15721360 DOI: 10.1016/j.virol.2005.01.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 01/04/2005] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
Encephalitis is a rare, but serious complication from vaccination against smallpox using replication competent strains of vaccinia virus. In this report we describe mutants of vaccinia virus, containing N-terminal deletions of the vaccinia virus interferon resistance gene, E3L, that are attenuated for neuropathogenesis in a mouse model system. These recombinant viruses replicated to high titers in the nasal mucosa after intra-nasal infection of C57BL/6 mice but failed to spread to the lungs or brain. These viruses demonstrated reduced pathogenicity after intra-cranial infection as well, indicating a decrease in neurovirulence. Intra-nasal inoculation or inoculation by scarification with a low dose of recombinant virus containing a deletion of the entire N-terminal domain of E3L protected against challenge with a high dose of wild-type vaccinia virus, suggesting that this replication competent, but attenuated strain of vaccinia virus may have promise as an improved vaccine for protecting against smallpox, and as a vector for inducing mucosal immunity to heterologous pathogenic organisms.
Collapse
Affiliation(s)
- Teresa Brandt
- Graduate Program in Molecular and Cellular Biology, School of Life Sciences/The Biodesign Institute, Arizona State University Box 874501 Tempe, AZ 85287-4501, USA
| | | | | | | | | | | |
Collapse
|
45
|
Seet BT, Johnston JB, Brunetti CR, Barrett JW, Everett H, Cameron C, Sypula J, Nazarian SH, Lucas A, McFadden G. Poxviruses and immune evasion. Annu Rev Immunol 2003; 21:377-423. [PMID: 12543935 DOI: 10.1146/annurev.immunol.21.120601.141049] [Citation(s) in RCA: 483] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Large DNA viruses defend against hostile assault executed by the host immune system by producing an array of gene products that systematically sabotage key components of the inflammatory response. Poxviruses target many of the primary mediators of innate immunity including interferons, tumor necrosis factors, interleukins, complement, and chemokines. Poxviruses also manipulate a variety of intracellular signal transduction pathways such as the apoptotic response. Many of the poxvirus genes that disrupt these pathways have been hijacked directly from the host immune system, while others have demonstrated no clear resemblance to any known host genes. Nonetheless, the immunological targets and the diversity of strategies used by poxviruses to disrupt these host pathways have provided important insights into diverse aspects of immunology, virology, and inflammation. Furthermore, because of their anti-inflammatory nature, many of these poxvirus proteins hold promise as potential therapeutic agents for acute or chronic inflammatory conditions.
Collapse
Affiliation(s)
- Bruce T Seet
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hornemann S, Harlin O, Staib C, Kisling S, Erfle V, Kaspers B, Häcker G, Sutter G. Replication of modified vaccinia virus Ankara in primary chicken embryo fibroblasts requires expression of the interferon resistance gene E3L. J Virol 2003; 77:8394-407. [PMID: 12857909 PMCID: PMC165266 DOI: 10.1128/jvi.77.15.8394-8407.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Highly attenuated modified vaccinia virus Ankara (MVA) serves as a candidate vaccine to immunize against infectious diseases and cancer. MVA was randomly obtained by serial growth in cultures of chicken embryo fibroblasts (CEF), resulting in the loss of substantial genomic information including many genes regulating virus-host interactions. The vaccinia virus interferon (IFN) resistance gene E3L is among the few conserved open reading frames encoding viral immune defense proteins. To investigate the relevance of E3L in the MVA life cycle, we generated the deletion mutant MVA-DeltaE3L. Surprisingly, we found that MVA-DeltaE3L had lost the ability to grow in CEF, which is the first finding of a vaccinia virus host range phenotype in this otherwise highly permissive cell culture. Reinsertion of E3L led to the generation of revertant virus MVA-E3rev and rescued productive replication in CEF. Nonproductive infection of CEF with MVA-DeltaE3L allowed viral DNA replication to occur but resulted in an abrupt inhibition of viral protein synthesis at late times. Under these nonpermissive conditions, CEF underwent apoptosis starting as early as 6 h after infection, as shown by DNA fragmentation, Hoechst staining, and caspase activation. Moreover, we detected high levels of active chicken alpha/beta IFN (IFN-alpha/beta) in supernatants of MVA-DeltaE3L-infected CEF, while moderate IFN quantities were found after MVA or MVA-E3rev infection and no IFN activity was present upon infection with wild-type vaccinia viruses. Interestingly, pretreatment of CEF with similar amounts of recombinant chicken IFN-alpha inhibited growth of vaccinia viruses, including MVA. We conclude that efficient propagation of MVA in CEF, the tissue culture system used for production of MVA-based vaccines, essentially requires conserved E3L gene function as an inhibitor of apoptosis and/or IFN induction.
Collapse
|
47
|
Affiliation(s)
- J B Johnston
- Robarts Research Institute and Department of Microbiology and Immunology, The University of Western Ontario, London, Canada N6G 2V4
| | | |
Collapse
|
48
|
Wong SK, Sato S, Lazinski DW. Elevated activity of the large form of ADAR1 in vivo: very efficient RNA editing occurs in the cytoplasm. RNA (NEW YORK, N.Y.) 2003; 9:586-98. [PMID: 12702817 PMCID: PMC1370424 DOI: 10.1261/rna.5160403] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Accepted: 02/11/2003] [Indexed: 05/21/2023]
Abstract
Mammalian cells express small and large forms of the RNA editing enzyme ADAR1, referred to as ADAR1-S and ADAR1-L, respectively. Here we observed that ADAR1-L was >70-fold more active than was ADAR1-S when assayed with a substrate that could be edited in either the nucleus or cytoplasm, and was also much more active when assayed with a substrate that was generated in the cytoplasm during viral replication. In contrast, when a substrate that could only be edited within the nucleus was assayed, the activity of ADAR1-S was found to be somewhat higher than that of ADAR1-L. We show here not only that editing could occur in the cytoplasm but also that the process was extremely efficient, occurred rapidly, and could occur in the absence of translation. Consistent with the observation that editing in the cytoplasm can be very efficient, deletion of the nuclear localization signal from ADAR2 resulted in a protein with 15-fold higher activity when tested with a substrate that contained an editing site in the mature message. In addition to its potential role in an antiviral response, we propose that ADAR1-L is the form primarily responsible for editing mRNAs in which the editing site is retained after processing.
Collapse
Affiliation(s)
- Swee Kee Wong
- Department of Molecular Biology and Microbiology, Raymond and Beverly Sackler Research Foundation Laboratory, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
49
|
Affiliation(s)
- C Jungwirth
- Institute for Virology and Immunobiology, University of Würzburg, D-97078 Würzburg, Germany
| |
Collapse
|
50
|
Abstract
The action of interferons (IFNs) on virus-infected cells and surrounding tissues elicits an antiviral state that is characterized by the expression and antiviral activity of IFN-stimulated genes. In turn, viruses encode mechanisms to counteract the host response and support efficient viral replication, thereby minimizing the therapeutic antiviral power of IFNs. In this review, we discuss the interplay between the IFN system and four medically important and challenging viruses -- influenza, hepatitis C, herpes simplex and vaccinia -- to highlight the diversity of viral strategies. Understanding the complex network of cellular antiviral processes and virus-host interactions should aid in identifying new and common targets for the therapeutic intervention of virus infection. This effort must take advantage of the recent developments in functional genomics, bioinformatics and other emerging technologies.
Collapse
Affiliation(s)
- Michael G Katze
- Department of Microbiology, University of Washington, Seattle, Washington 98195-8070, USA.
| | | | | |
Collapse
|