1
|
Manrique-Suárez V, Mangui Catota BA, Camacho Casanova F, Jara Mendoza NA, Contreras Vera MA, Maura Pérez R, Reyes López F, Toledo Alonso R, Castro Henriquez PI, Sánchez Ramos O. Selection of LRP1 ligand phage-displayed single domain antibody that transmigrates BBB. J Drug Target 2025; 33:546-555. [PMID: 39618311 DOI: 10.1080/1061186x.2024.2434908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 11/21/2024] [Indexed: 02/25/2025]
Abstract
Effective drug delivery to the central nervous system (CNS) remains a challenge due to the blood-brain barrier (BBB). Macromolecules such as proteins and peptides are unable to cross BBB and have poor therapeutic efficacy due to little or no drug distribution. A promising alternative is the conjugation of a drug to a shuttle molecule that can reach the CNS via receptor-mediated transcytosis (RMT). Several receptors have been described for RMT, such as low-density lipoprotein receptor-related protein 1 (LRP1). We used phage display technology combined with an in vitro BBB model to identify LRP1 ligands. A single domain antibody (dAb) library was used to enrich for species that selectively bind to immobilised LRP1 ligand. We obtained a novel nanobody, dAb D11, that selectively binds to LRP1 receptor and mediates in vitro internalisation of phage particles in brain endothelial cells, with a dissociation constant Kd of 183.1 ± 85.8 nM. The high permeability of D11 was demonstrated by an in vivo biodistribution assay in mice. We discovered D11, the first LRP1 binding dAb with BBB permeability. Our findings will contribute to the development of RMT-based drugs for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Viana Manrique-Suárez
- Pharmacology Department, School of Biological Sciences, Recombinant Biopharmaceuticals Laboratory, University of Concepcion, Concepcion, Chile
| | - Bryan A Mangui Catota
- Pharmacology Department, School of Biological Sciences, Recombinant Biopharmaceuticals Laboratory, University of Concepcion, Concepcion, Chile
| | - Frank Camacho Casanova
- Pharmacology Department, School of Biological Sciences, Recombinant Biopharmaceuticals Laboratory, University of Concepcion, Concepcion, Chile
| | - Nery A Jara Mendoza
- Pharmacology Department, School of Biological Sciences, Cellular Pharmacology Laboratory, University of Concepcion, Concepcion, Chile
| | - Maria A Contreras Vera
- Pharmacology Department, School of Biological Sciences, Recombinant Biopharmaceuticals Laboratory, University of Concepcion, Concepcion, Chile
| | - Rafael Maura Pérez
- Pathophysiology Department, School of Biological Science, Biotechnology and Biopharmaceutical Laboratory, Universidad de Concepción, Concepcion, Chile
| | - Fátima Reyes López
- Pharmacology Department, School of Biological Sciences, Recombinant Biopharmaceuticals Laboratory, University of Concepcion, Concepcion, Chile
| | - Roberto Toledo Alonso
- Pathophysiology Department, School of Biological Science, Biotechnology and Biopharmaceutical Laboratory, Universidad de Concepción, Concepcion, Chile
- Center of Biotechnology and Biomedicine Spa., Concepción, Chile
| | - Pablo Ignacio Castro Henriquez
- Pharmacology Department, School of Biological Sciences, Recombinant Biopharmaceuticals Laboratory, University of Concepcion, Concepcion, Chile
| | - Oliberto Sánchez Ramos
- Pharmacology Department, School of Biological Sciences, Recombinant Biopharmaceuticals Laboratory, University of Concepcion, Concepcion, Chile
- Center of Biotechnology and Biomedicine Spa., Concepción, Chile
| |
Collapse
|
2
|
Echterhof A, Dharmaraj T, Khosravi A, McBride R, Miesel L, Chia JH, Blankenberg PM, Lin KY, Shen CC, Lee YL, Yeh YC, Liao WT, Blankenberg FG, Dąbrowska K, Amanatullah DF, Frymoyer AR, Bollyky PL. The contribution of neutrophils to bacteriophage clearance and pharmacokinetics in vivo. JCI Insight 2024; 9:e181309. [PMID: 39435664 PMCID: PMC11530120 DOI: 10.1172/jci.insight.181309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
With the increasing prevalence of antimicrobial-resistant bacterial infections, there is interest in using bacteriophages (phages) to treat such infections. However, the factors that govern bacteriophage pharmacokinetics in vivo remain poorly understood. Here, we have examined the contribution of neutrophils, the most abundant phagocytes in the body, to the pharmacokinetics of i.v. administered bacteriophage in uninfected mice. A single dose of LPS-5, a bacteriophage recently used in human clinical trials to treat drug-resistant Pseudomonas aeruginosa, was administered i.v. to both immunocompetent BALB/c and neutropenic CD1 mice. Phage concentrations were assessed in peripheral blood and spleen at 0.25, 1, 2, 4, 8, 12, and 24 hours after administration by plaque assay and qPCR. We observed that the phage clearance was only minimally affected by neutropenia. Indeed, the half-lives of phages in blood in BALB/c and CD1 mice were 3.45 and 3.66 hours, respectively. These data suggest that neutrophil-mediated phagocytosis is not a major determinant of phage clearance. Conversely, we observed a substantial discrepancy in circulating phage levels over time when measured by qPCR versus plaque assay, suggesting that significant inactivation of circulating phages occurs over time. These data indicate that alternative factors, but not neutrophils, inactivate i.v. administered phages.
Collapse
Affiliation(s)
- Arne Echterhof
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Institute of Medical Microbiology, University Hospital of Muenster, Muenster, Germany
| | - Tejas Dharmaraj
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Arya Khosravi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Robert McBride
- Felix Biotechnology, South San Francisco, California, USA
| | - Lynn Miesel
- Pharmacology Discovery Services, Taipei, Taiwan
| | | | - Patrick M. Blankenberg
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | | | - Yu-Ling Lee
- Pharmacology Discovery Services, Taipei, Taiwan
| | | | | | - Francis G. Blankenberg
- Division of Pediatric Radiology and Nuclear Medicine, Department of Radiology, Lucile Packard Children’s Hospital, Stanford, California, USA
| | - Krystyna Dąbrowska
- Laboratory of Phage Molecular Biology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Derek F. Amanatullah
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Adam R. Frymoyer
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
3
|
Raman SK, Siva Reddy DV, Jain V, Bajpai U, Misra A, Singh AK. Mycobacteriophages: therapeutic approach for mycobacterial infections. Drug Discov Today 2024; 29:104049. [PMID: 38830505 DOI: 10.1016/j.drudis.2024.104049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Tuberculosis (TB) is a significant global health threat, and cases of infection with non-tuberculous mycobacteria (NTM) causing lung disease (NTM-LD) are rising. Bacteriophages and their gene products have garnered interest as potential therapeutic options for bacterial infections. Here, we have compiled information on bacteriophages and their products that can kill Mycobacterium tuberculosis or NTM. We summarize the mechanisms whereby viable phages can access macrophage-resident bacteria and not elicit immune responses, review methodologies of pharmaceutical product development containing mycobacteriophages and their gene products, mainly lysins, in the context of drug regulatory requirements and we discuss industrially relevant methods for producing pharmaceutical products comprising mycobacteriophages, emphasizing delivery of mycobacteriophages to the lungs. We conclude with an outline of some recent case studies on mycobacteriophage therapy.
Collapse
Affiliation(s)
- Sunil Kumar Raman
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - D V Siva Reddy
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji , New Delhi 110019, India
| | - Amit Misra
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra 282004, Uttar Pradesh, India.
| |
Collapse
|
4
|
Asar M, Newton-Northup J, Soendergaard M. Improving Pharmacokinetics of Peptides Using Phage Display. Viruses 2024; 16:570. [PMID: 38675913 PMCID: PMC11055145 DOI: 10.3390/v16040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Phage display is a versatile method often used in the discovery of peptides that targets disease-related biomarkers. A major advantage of this technology is the ease and cost efficiency of affinity selection, also known as biopanning, to identify novel peptides. While it is relatively straightforward to identify peptides with optimal binding affinity, the pharmacokinetics of the selected peptides often prove to be suboptimal. Therefore, careful consideration of the experimental conditions, including the choice of using in vitro, in situ, or in vivo affinity selections, is essential in generating peptides with high affinity and specificity that also demonstrate desirable pharmacokinetics. Specifically, in vivo biopanning, or the combination of in vitro, in situ, and in vivo affinity selections, has been proven to influence the biodistribution and clearance of peptides and peptide-conjugated nanoparticles. Additionally, the marked difference in properties between peptides and nanoparticles must be considered. While peptide biodistribution depends primarily on physiochemical properties and can be modified by amino acid modifications, the size and shape of nanoparticles also affect both absorption and distribution. Thus, optimization of the desired pharmacokinetic properties should be an important consideration in biopanning strategies to enable the selection of peptides and peptide-conjugated nanoparticles that effectively target biomarkers in vivo.
Collapse
Affiliation(s)
- Mallika Asar
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA;
| | | | - Mette Soendergaard
- Cell Origins LLC, 1601 South Providence Road Columbia, Columbia, MO 65203, USA;
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| |
Collapse
|
5
|
Kang D, Bagchi D, Chen IA. Pharmacokinetics and Biodistribution of Phages and their Current Applications in Antimicrobial Therapy. ADVANCED THERAPEUTICS 2024; 7:2300355. [PMID: 38933919 PMCID: PMC11198966 DOI: 10.1002/adtp.202300355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 06/28/2024]
Abstract
Antimicrobial resistance remains a critical global health concern, necessitating the investigation of alternative therapeutic approaches. With the diminished efficacy of conventional small molecule drugs due to the emergence of highly resilient bacterial strains, there is growing interest in the potential for alternative therapeutic modalities. As naturally occurring viruses of bacteria, bacteriophage (or phage) are being re-envisioned as a platform to engineer properties that can be tailored to target specific bacterial strains and employ diverse antibacterial mechanisms. However, limited understanding of key pharmacological properties of phage is a major challenge to translating its use from preclinical to clinical settings. Here, we review modern advancements in phage-based antimicrobial therapy and discuss the in vivo pharmacokinetics and biodistribution of phage, addressing critical challenges in their application that must be overcome for successful clinical implementation.
Collapse
Affiliation(s)
- Dayeon Kang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 90024 USA
| | - Damayanti Bagchi
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 90024 USA
| | - Irene A. Chen
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 90024 USA
| |
Collapse
|
6
|
Echterhof A, Dharmaraj T, McBride R, Berry J, Hopkins M, Selvakumar H, Miesel L, Chia JH, Lin KY, Shen CC, Lee YL, Yeh YC, Liao WT, Suh G, Blankenberg FG, Frymoyer AR, Bollyky PL. The contribution of neutrophils to bacteriophage clearance and pharmacokinetics in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577154. [PMID: 38328123 PMCID: PMC10849746 DOI: 10.1101/2024.01.25.577154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
With the increasing prevalence of antimicrobial-resistant bacterial infections, there is great interest in using lytic bacteriophages (phages) to treat such infections. However, the factors that govern bacteriophage pharmacokinetics in vivo remain poorly understood. Here, we have examined the contribution of neutrophils, the most abundant phagocytes in the body, to the pharmacokinetics of intravenously administered bacteriophage in uninfected mice. A single dose of LPS-5, an antipseudomonal bacteriophage recently used in human clinical trials, was administered intravenously to both wild-type BALB/c and neutropenic ICR mice. Phage concentrations were assessed in peripheral blood and spleen at 0.5, 1, 2, 4, 8, 12, and 24 hours after administration by plaque assay and qPCR. We observed that the phage clearance is only minimally affected by neutropenia. Indeed, the half-life of phages in blood in BALB/c and ICR mice is 3.45 and 3.66 hours, respectively. These data suggest that neutrophil-mediated phagocytosis is not a major determinant of phage clearance. Conversely, we observed a substantial discrepancy in circulating phage levels over time when measured by qPCR versus plaque assay, suggesting that substantial functional inactivation of circulating phages occurs over time. These data indicate that circulating factors, but not neutrophils, inactivate intravenously administered phages.
Collapse
|
7
|
Sahagun D, Zahid M. Cardiac-Targeting Peptide: From Discovery to Applications. Biomolecules 2023; 13:1690. [PMID: 38136562 PMCID: PMC10741768 DOI: 10.3390/biom13121690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/31/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Despite significant strides in prevention, diagnosis, and treatment, cardiovascular diseases remain the number one cause of mortality in the United States, with rates climbing at an alarming rate in the developing world. Targeted delivery of therapeutics to the heart has been a lofty goal to achieve with strategies ranging from direct intra-cardiac or intra-pericardial delivery, intra-coronary infusion, to adenoviral, lentiviral, and adeno-associated viral vectors which have preference, if not complete cardio-selectivity, for cardiac tissue. Cell-penetrating peptides (CPP) are 5-30-amino-acid-long peptides that are able to breach cell membrane barriers while carrying cargoes up to several times their size, in an intact functional form. Identified nearly three decades ago, the first of these CPPs came from the HIV coat protein transactivator of transcription. Although a highly efficient CPP, its clinical utility is limited by its robust ability to cross any cell membrane barrier, including crossing the blood-brain barrier and transducing neuronal tissue non-specifically. Several strategies have been utilized to identify cell- or tissue-specific CPPs, one of which is phage display. Using this latter technique, we identified a cardiomyocyte-targeting peptide (CTP) more than a decade ago, a finding that has been corroborated by several independent labs across the world that have utilized CTP for a myriad of different purposes in pre-clinical animal models. The goal of this publication is to provide a comprehensive review of the identification, validation, and application of CTP, and outline its potential in diagnostic and therapeutic applications especially in the field of targeted RNA interference.
Collapse
Affiliation(s)
| | - Maliha Zahid
- Department of Cardiovascular Medicine, Mayo Clinic, Guggenheim Gu9-01B, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA;
| |
Collapse
|
8
|
Wong S, Jimenez S, Slavcev RA. Construction and characterization of a novel miniaturized filamentous phagemid for targeted mammalian gene transfer. Microb Cell Fact 2023; 22:124. [PMID: 37430278 PMCID: PMC10334589 DOI: 10.1186/s12934-023-02135-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/24/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND As simplistic proteinaceous carriers of genetic material, phages offer great potential as targeted vectors for mammalian transgene delivery. The filamentous phage M13 is a single-stranded DNA phage with attractive characteristics for gene delivery, including a theoretically unlimited DNA carrying capacity, amenability to tropism modification via phage display, and a well-characterized genome that is easy to genetically modify. The bacterial backbone in gene transfer plasmids consists of elements only necessary for amplification in prokaryotes, and, as such, are superfluous in the mammalian cell. These problematic elements include antibiotic resistance genes, which can disseminate antibiotic resistance, and CpG motifs, which are inflammatory in animals and can lead to transgene silencing. RESULTS Here, we examined how M13-based phagemids could be improved for transgene delivery by removing the bacterial backbone. A transgene cassette was flanked by isolated initiation and termination elements from the phage origin of replication. Phage proteins provided in trans by a helper would replicate only the cassette, without any bacterial backbone. The rescue efficiency of "miniphagemids" from these split origins was equal to, if not greater than, isogenic "full phagemids" arising from intact origins. The type of cassette encoded by the miniphagemid as well as the choice of host strain constrained the efficiency of phagemid rescue. CONCLUSIONS The use of two separated domains of the f1 ori improves upon a single wildtype origin while still resulting in high titres of miniphagemid gene transfer vectors. Highly pure lysates of miniaturized phagemids could be rapidly obtained in a straightforward procedure without additional downstream processing.
Collapse
Affiliation(s)
- Shirley Wong
- School of Pharmacy, University of Waterloo, Waterloo, Canada.
| | - Salma Jimenez
- School of Pharmacy, University of Waterloo, Waterloo, Canada
| | | |
Collapse
|
9
|
Singh SR, Murali A. pH modulates the role of SP6 RNA polymerase in transcription process: an in silico study. J Biomol Struct Dyn 2023; 41:11763-11780. [PMID: 36709448 DOI: 10.1080/07391102.2023.2170916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/22/2022] [Indexed: 01/30/2023]
Abstract
SP6 RNA polymerase (SP6 RNAP) is an essential enzyme for the transcription process in SP6 bacteriophage. SP6 RNAP plays a vital role in mRNA vaccine designing technology and other translational biotechnology research due to the high specificity towards its promoter. The self-replicating performance also put this polymerase to study extensively. Despite of the reports emphasizing the function of this enzyme, a detailed structural and functional understanding of RNA polymerase is not reported so far. Here, we report the first-ever information about SP6RNAP structure and its effect on promoter binding at different pH environments using molecular docking and molecular dynamics simulation (MDS) study. We also report the changes in polymerase conformations in different pH conditions using in-silico approach. The docking study was also performed for SP6 RNAP with SP6 promoter at different pH environments using the in-silico docking tools and conducted the MDS study for complexes. MM/PBSA and per residue energy contribution has been performed at three different pH environments. The structural aspects confirmed that the pH 7.9 state favors the polymerase functional activity in the transcription process which was in the range reported using transcription assay. This polymerase's unique features may play its emerging role as an efficient transcription factor in translational biological research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Ayaluru Murali
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| |
Collapse
|
10
|
André AS, Moutinho I, Dias JNR, Aires-da-Silva F. In vivo Phage Display: A promising selection strategy for the improvement of antibody targeting and drug delivery properties. Front Microbiol 2022; 13:962124. [PMID: 36225354 PMCID: PMC9549074 DOI: 10.3389/fmicb.2022.962124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
The discovery of hybridoma technology, described by Kohler and Milstein in 1975, and the resulting ability to generate monoclonal antibodies (mAbs) initiated a new era in antibody research and clinical development. However, limitations of the hybridoma technology as a routine antibody generation method in conjunction with high immunogenicity responses have led to the development of alternative approaches for the streamlined identification of most effective antibodies. Within this context, display selection technologies such as phage display, ribosome display, yeast display, bacterial display, and mammalian cell surface display have been widely promoted over the past three decades as ideal alternatives to traditional hybridoma methods. The display of antibodies on phages is probably the most widespread and powerful of these methods and, since its invention in late 1980s, significant technological advancements in the design, construction, and selection of antibody libraries have been made, and several fully human antibodies generated by phage display are currently approved or in various clinical development stages. With evolving novel disease targets and the emerging of a new generation of therapeutic antibodies, such as bispecific antibodies, antibody drug conjugates (ADCs), and chimeric antigen receptor T (CAR-T) cell therapies, it is clear that phage display is expected to continue to play a central role in antibody development. Nevertheless, for non-standard and more demanding cases aiming to generate best-in-class therapeutic antibodies against challenging targets and unmet medical needs, in vivo phage display selections by which phage libraries are directly injected into animals or humans for isolating and identifying the phages bound to specific tissues offer an advantage over conventional in vitro phage display screening procedures. Thus, in the present review, we will first summarize a general overview of the antibody therapeutic market, the different types of antibody fragments, and novel engineered variants that have already been explored. Then, we will discuss the state-of-the-art of in vivo phage display methodologies as a promising emerging selection strategy for improvement antibody targeting and drug delivery properties.
Collapse
Affiliation(s)
- Ana S. André
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Isa Moutinho
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Joana N. R. Dias
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Frederico Aires-da-Silva
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| |
Collapse
|
11
|
Tsedev U, Lin CW, Hess GT, Sarkaria JN, Lam FC, Belcher AM. Phage Particles of Controlled Length and Genome for In Vivo Targeted Glioblastoma Imaging and Therapeutic Delivery. ACS NANO 2022; 16:11676-11691. [PMID: 35830573 DOI: 10.1021/acsnano.1c08720] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
M13 bacteriophage (phage) are versatile, genetically tunable nanocarriers that have been recently adapted for use as diagnostic and therapeutic platforms. Applying p3 capsid chlorotoxin fusion with the "inho" circular single-stranded DNA (cssDNA) gene packaging system, we produced miniature chlorotoxin inho (CTX-inho) phage particles with a minimum length of 50 nm that can target intracranial orthotopic patient-derived GBM22 glioblastoma tumors in the brains of mice. Systemically administered indocyanine green conjugated CTX-inho phage accumulated in brain tumors, facilitating shortwave infrared detection. Furthermore, we show that our inho phage can carry cssDNA that are transcriptionally active when delivered to GBM22 glioma cells in vitro. The ability to modulate the capsid display, surface loading, phage length, and cssDNA gene content makes the recombinant M13 phage particle an ideal delivery platform.
Collapse
Affiliation(s)
- Uyanga Tsedev
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ching-Wei Lin
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Gaelen T Hess
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, Unites States
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Fred C Lam
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Division of Neurosurgery, Saint Elizabeth's Medical Center, Brighton, Massachusetts 02135, United States
| | - Angela M Belcher
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Oppewal T, Jansen ID, Hekelaar J, Mayer C. A Strategy to Select Macrocyclic Peptides Featuring Asymmetric Molecular Scaffolds as Cyclization Units by Phage Display. J Am Chem Soc 2022; 144:3644-3652. [PMID: 35171585 PMCID: PMC8895403 DOI: 10.1021/jacs.1c12822] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Macrocyclic peptides (MPs) have positioned themselves as a privileged class of compounds for the discovery of therapeutics and development of chemical probes. Aided by the development of powerful selection strategies, high-affinity binders against biomolecular targets can readily be elicited from massive, genetically encoded libraries by affinity selection. For example, in phage display, MPs are accessed on the surface of whole bacteriophages via disulfide formation, the use of (symmetric) crosslinkers, or the incorporation of non-canonical amino acids. To facilitate a straightforward cyclization of linear precursors with asymmetric molecular scaffolds, which are often found at the core of naturally occurring MPs, we report an efficient two-step strategy to access MPs via the programmed modification of a unique cysteine residue and an N-terminal amine. We demonstrate that this approach yields MPs featuring asymmetric cyclization units from both synthetic peptides and when linear precursors are appended onto a phage-coat protein. Finally, we showcase that our cyclization strategy is compatible with traditional phage-display protocols and enables the selection of MP binders against a model target protein from naïve libraries. By enabling the incorporation of non-peptidic moieties that (1) can serve as cyclization units, (2) provide interactions for binding, and/or (3) tailor pharmacological properties, our head-to-side-chain cyclization strategy provides access to a currently under-explored chemical space for the development of chemical probes and therapeutics.
Collapse
Affiliation(s)
- Titia
Rixt Oppewal
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9474 AG, The Netherlands
| | - Ivar D. Jansen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9474 AG, The Netherlands
| | - Johan Hekelaar
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9474 AG, The Netherlands
| | - Clemens Mayer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9474 AG, The Netherlands
| |
Collapse
|
13
|
Holger D, Kebriaei R, Morrisette T, Lev K, Alexander J, Rybak M. Clinical Pharmacology of Bacteriophage Therapy: A Focus on Multidrug-Resistant Pseudomonas aeruginosa Infections. Antibiotics (Basel) 2021; 10:556. [PMID: 34064648 PMCID: PMC8151982 DOI: 10.3390/antibiotics10050556] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most common causes of healthcare-associated diseases and is among the top three priority pathogens listed by the World Health Organization (WHO). This Gram-negative pathogen is especially difficult to eradicate because it displays high intrinsic and acquired resistance to many antibiotics. In addition, growing concerns regarding the scarcity of antibiotics against multidrug-resistant (MDR) and extensively drug-resistant (XDR) P. aeruginosa infections necessitate alternative therapies. Bacteriophages, or phages, are viruses that target and infect bacterial cells, and they represent a promising candidate for combatting MDR infections. The aim of this review was to highlight the clinical pharmacology considerations of phage therapy, such as pharmacokinetics, formulation, and dosing, while addressing several challenges associated with phage therapeutics for MDR P. aeruginosa infections. Further studies assessing phage pharmacokinetics and pharmacodynamics will help to guide interested clinicians and phage researchers towards greater success with phage therapy for MDR P. aeruginosa infections.
Collapse
Affiliation(s)
- Dana Holger
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (D.H.); (R.K.); (T.M.); (K.L.)
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (D.H.); (R.K.); (T.M.); (K.L.)
| | - Taylor Morrisette
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (D.H.); (R.K.); (T.M.); (K.L.)
| | - Katherine Lev
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (D.H.); (R.K.); (T.M.); (K.L.)
| | - Jose Alexander
- Department of Microbiology, Virology and Immunology, AdventHealth Central Florida, Orlando, FL 32803, USA;
| | - Michael Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; (D.H.); (R.K.); (T.M.); (K.L.)
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Detroit Medical Center, Department of Pharmacy, Detroit, MI 48201, USA
| |
Collapse
|
14
|
Chung J, Jung Y, Hong C, Kim S, Moon S, Kwak EA, Hwang BJ, Park SH, Seong BL, Kweon DH, Chung WJ. Filamentous anti-influenza agents wrapping around viruses. J Colloid Interface Sci 2021; 583:267-278. [PMID: 33002698 DOI: 10.1016/j.jcis.2020.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Owing to the emerging resistance to current anti-influenza therapies, strategies for blocking virus-cell interaction with agents that mimic interactions with host cell receptors are garnering interest. In this context, a multivalent presentation of sialyl groups on various types of scaffold materials such as dendrimers, liposomes, nanoparticles, and natural/synthetic polymers has been investigated for the inhibition of influenza A virus infection. However, the development of versatile antiviral agents based on monodisperse scaffolds capable of precise molecular design remains challenging. Whether an anisotropically extended filamentous nanostructure can serve as an effective scaffold for maximum inhibition of viral cell attachment has not been investigated. In this study, the preparation of a series of sialyllactose-conjugated filamentous bacteriophages (SLPhages), with controlled loading levels, ligand valencies, and two types of sialyllactose (α2,3' and α2,6'), is demonstrated. With optimal ligand loading and valency, SLPhages showed inhibitory activity (in vitro) against influenza A viruses at concentrations of tens of picomolar. This remarkable inhibition is due to the strong interaction between the SLPhage and the virus; this interaction is adequately potent to compensate for the cost of the bending and wrapping of the SLPhage around the influenza virus. Our study may open new avenues for the development of filamentous anti-viral agents, in which virus-wrapping or aggregation is the primary feature responsible for the blocking of cell entry.
Collapse
Affiliation(s)
- Jinhyo Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Younghun Jung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Caleb Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Subin Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seokoh Moon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eun A Kwak
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Beom Jeung Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seong-Hyun Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; Center for Biologics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea; Center for Biologics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
15
|
Liver sinusoidal endothelial cells contribute to the uptake and degradation of entero bacterial viruses. Sci Rep 2020; 10:898. [PMID: 31965000 PMCID: PMC6972739 DOI: 10.1038/s41598-020-57652-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/18/2019] [Indexed: 01/01/2023] Open
Abstract
The liver is constantly exposed to dietary antigens, viruses, and bacterial products with inflammatory potential. For decades cellular uptake of virus has been studied in connection with infection, while the few studies designed to look into clearance mechanisms focused mainly on the role of macrophages. In recent years, attention has been directed towards the liver sinusoidal endothelial cells (LSECs), which play a central role in liver innate immunity by their ability to scavenge pathogen- and damage-associated molecular patterns. Every day our bodies are exposed to billions of gut-derived pathogens which must be efficiently removed from the circulation to prevent inflammatory and/or immune reactions in other vascular beds. Here, we have used GFP-labelled Enterobacteria phage T4 (GFP-T4-phage) as a model virus to study the viral scavenging function and metabolism in LSECs. The uptake of GFP-T4-phages was followed in real-time using deconvolution microscopy, and LSEC identity confirmed by visualization of fenestrae using structured illumination microscopy. By combining these imaging modalities with quantitative uptake and inhibition studies of radiolabelled GFP-T4-phages, we demonstrate that the bacteriophages are effectively degraded in the lysosomal compartment. Due to their high ability to take up and degrade circulating bacteriophages the LSECs may act as a primary anti-viral defence mechanism.
Collapse
|
16
|
Dąbrowska K, Abedon ST. Pharmacologically Aware Phage Therapy: Pharmacodynamic and Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies. Microbiol Mol Biol Rev 2019; 83:e00012-19. [PMID: 31666296 PMCID: PMC6822990 DOI: 10.1128/mmbr.00012-19] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The use of viruses infecting bacteria (bacteriophages or phages) to treat bacterial infections has been ongoing clinically for approximately 100 years. Despite that long history, the growing international crisis of resistance to standard antibiotics, abundant anecdotal evidence of efficacy, and one successful modern clinical trial of efficacy, this phage therapy is not yet a mainstream approach in medicine. One explanation for why phage therapy has not been subject to more widespread implementation is that phage therapy research, both preclinical and clinical, can be insufficiently pharmacologically aware. Consequently, here we consider the pharmacological obstacles to phage therapy effectiveness, with phages in phage therapy explicitly being considered to serve as drug equivalents. The study of pharmacology has traditionally been differentiated into pharmacokinetic and pharmacodynamic aspects. We therefore separately consider the difficulties that phages as virions can have in traveling through body compartments toward reaching their target bacteria (pharmacokinetics) and the difficulties that phages can have in exerting antibacterial activity once they have reached those bacteria (pharmacodynamics). The latter difficulties, at least in part, are functions of phage host range and bacterial resistance to phages. Given the apparently low toxicity of phages and the minimal side effects of phage therapy as practiced, phage therapy should be successful so long as phages can reach the targeted bacteria in sufficiently high numbers, adsorb, and then kill those bacteria. Greater awareness of what obstacles to this success generally or specifically can exist, as documented in this review, should aid in the further development of phage therapy toward wider use.
Collapse
Affiliation(s)
- Krystyna Dąbrowska
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, Ohio, USA
| |
Collapse
|
17
|
Sellers DL, Tan JKY, Pineda JMB, Peeler DJ, Porubsky VL, Olden BR, Salipante SJ, Pun SH. Targeting Ligands Deliver Model Drug Cargo into the Central Nervous System along Autonomic Neurons. ACS NANO 2019; 13:10961-10971. [PMID: 31589023 PMCID: PMC7651855 DOI: 10.1021/acsnano.9b01515] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
While biologic drugs such as proteins, peptides, or nucleic acids have shown promise in the treatment of neurodegenerative diseases, the blood-brain barrier (BBB) severely limits drug delivery to the central nervous system (CNS) after systemic administration. Consequently, drug delivery challenges preclude biological drug candidates from the clinical armamentarium. In order to target drug delivery and uptake into to the CNS, we used an in vivo phage display screen to identify peptides able to target drug-uptake by the vast array of neurons of the autonomic nervous system (ANS). Using next-generation sequencing, we identified 21 candidate targeted ANS-to-CNS uptake ligands (TACL) that enriched bacteriophage accumulation and delivered protein-cargo into the CNS after intraperitoneal (IP) administration. The series of TACL peptides were synthesized and tested for their ability to deliver a model enzyme (NeutrAvidin-horseradish peroxidase fusion) to the brain and spinal cord. Three TACL-peptides facilitated significant active enzyme delivery into the CNS, with limited accumulation in off-target organs. Peptide structure and serum stability is increased when internal cysteine residues are cyclized by perfluoroarylation with decafluorobiphenyl, which increased delivery to the CNS further. TACL-peptide was demonstrated to localize in parasympathetic ganglia neurons in addition to neuronal structures in the hindbrain and spinal cord. By targeting uptake into ANS neurons, we demonstrate the potential for TACL-peptides to bypass the blood-brain barrier and deliver a model drug into the brain and spinal cord.
Collapse
Affiliation(s)
- Drew L. Sellers
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - James-Kevin Y. Tan
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195, USA
| | - Julio Marco B. Pineda
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195, USA
| | - David J. Peeler
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195, USA
| | - Veronica L. Porubsky
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195, USA
| | - Brynn R. Olden
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Suzie H. Pun
- Department of Bioengineering, University of Washington, Seattle, Washington, 98195, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington, 98195, USA
| |
Collapse
|
18
|
Sartorius R, D'Apice L, Prisco A, De Berardinis P. Arming Filamentous Bacteriophage, a Nature-Made Nanoparticle, for New Vaccine and Immunotherapeutic Strategies. Pharmaceutics 2019; 11:437. [PMID: 31480551 PMCID: PMC6781307 DOI: 10.3390/pharmaceutics11090437] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022] Open
Abstract
The pharmaceutical use of bacteriophages as safe and inexpensive therapeutic tools is collecting renewed interest. The use of lytic phages to fight antibiotic-resistant bacterial strains is pursued in academic and industrial projects and is the object of several clinical trials. On the other hand, filamentous bacteriophages used for the phage display technology can also have diagnostic and therapeutic applications. Filamentous bacteriophages are nature-made nanoparticles useful for their size, the capability to enter blood vessels, and the capacity of high-density antigen expression. In the last decades, our laboratory focused its efforts in the study of antigen delivery strategies based on the filamentous bacteriophage 'fd', able to trigger all arms of the immune response, with particular emphasis on the ability of the MHC class I restricted antigenic determinants displayed on phages to induce strong and protective cytotoxic responses. We showed that fd bacteriophages, engineered to target mouse dendritic cells (DCs), activate innate and adaptive responses without the need of exogenous adjuvants, and more recently, we described the display of immunologically active lipids. In this review, we will provide an overview of the reported applications of the bacteriophage carriers and describe the advantages of exploiting this technology for delivery strategies.
Collapse
Affiliation(s)
- Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), 80131 CNR Naples, Italy
| | - Luciana D'Apice
- Institute of Biochemistry and Cell Biology (IBBC), 80131 CNR Naples, Italy.
| | - Antonella Prisco
- Institute of Genetics and Biophysics "A. Buzzati-Traverso" (IGB), 80131 CNR Naples, Italy
| | | |
Collapse
|
19
|
Bao Q, Li X, Han G, Zhu Y, Mao C, Yang M. Phage-based vaccines. Adv Drug Deliv Rev 2019; 145:40-56. [PMID: 30594492 DOI: 10.1016/j.addr.2018.12.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 10/01/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023]
Abstract
Bacteriophages, or more colloquially as phages, are viruses that possess the ability to infect and replicate with bacterial cells. They are assembled from two major types of biomolecules, the nucleic acids and the proteins, with the latter forming a capsid and the former being encapsulated. In the eukaryotic hosts, phages are inert particulate antigens and cannot trigger pathogenesis. In recent years, many studies have been explored about using phages as nanomedicine platforms for developing vaccines due to their unique biological characteristics. The whole phage particles can be used for vaccine design in the form of phage-displayed vaccines or phage DNA vaccines. Phage-displayed vaccines are the phages with peptide or protein antigens genetically displayed on their surfaces as well as those with antigens chemically conjugated or biologically bound on their surfaces. The phages can then deliver the immunogenic peptides or proteins to the target cells or tissues. Phage DNA vaccines are the eukaryotic promoter-driven vaccine genes inserted in the phage genomes, which are carried by phages to the target cells to generate antigens. The antigens, either as the immunogenic peptides or proteins displayed on the phages, or as the products expressed from the vaccine genes, can serve as vaccines to elicit immune responses for disease prevention and treatment. Both phage-displayed vaccines and phage DNA vaccines promise a brilliant future for developing vaccines. This review presents the recent advancements in the field of phage-based vaccines and their applications in both the prevention and treatment of various diseases. It also discusses the challenges and perspectives in moving this field forwards.
Collapse
|
20
|
Dąbrowska K. Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med Res Rev 2019; 39:2000-2025. [PMID: 30887551 PMCID: PMC6767042 DOI: 10.1002/med.21572] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/23/2019] [Accepted: 02/26/2019] [Indexed: 12/18/2022]
Abstract
Bacteriophages are not forgotten viruses anymore: scientists and practitioners seek to understand phage pharmacokinetics in animals and humans, investigating bacteriophages as therapeutics, nanocarriers or microbiome components. This review provides a comprehensive overview of factors that determine phage circulation, penetration, and clearance, and that in consequence determine phage applicability for medicine. It makes use of experimental data collected by the phage community so far (PubMed 1924‐2016, including non‐English reports), combining elements of critical and systematic review. This study covers phage ability to enter a system by various routes of administration, how (and if) the phage may access various tissues and organs, and finally what mechanisms determine the courses of phage clearance. The systematic review method was applied to analyze (i) phage survival in the gut (gut transit) and (ii) phage ability to enter the mammalian system by many administration routes. Aspects that have not yet been covered by a sufficient number of reports for mathematical analysis, as well as mechanisms underlying trends, are discussed in the form of a critical review. In spite of the extraordinary diversity of bacteriophages and possible phage applications, the analysis revealed that phage morphology, phage specificity, phage dose, presence of sensitive bacteria or the characteristics of treated individuals (age, taxonomy) may affect phage bioavailability in animals and humans. However, once phages successfully enter the body, they reach most organs, including the central nervous system. Bacteriophages are cleared mainly by the immune system: innate immunity removes phages even when no specific response to bacteriophages has yet developed.
Collapse
Affiliation(s)
- Krystyna Dąbrowska
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Research and Development Center, Regional Specialized Hospital, Wrocław, Poland
| |
Collapse
|
21
|
Vitetta L, Vitetta G, Hall S. Immunological Tolerance and Function: Associations Between Intestinal Bacteria, Probiotics, Prebiotics, and Phages. Front Immunol 2018; 9:2240. [PMID: 30356736 PMCID: PMC6189397 DOI: 10.3389/fimmu.2018.02240] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Post-birth there is a bacterial assault on all mucosal surfaces. The intestinal microbiome is an important participant in health and disease. The pattern of composition and concentration of the intestinal microbiome varies greatly. Therefore, achieving immunological tolerance in the first 3-4 years of life is critical for maintaining health throughout a lifetime. Probiotic bacteria are organisms that afford beneficial health effects to the host and in certain instances may protect against the development of disease. The potential benefits of modifying the composition of the intestinal microbial cohort for therapeutic benefit is evident in the use in high risks groups such as premature infants, children receiving antibiotics, rotavirus infections in non-vaccinated children and traveler's diarrhea in adults. Probiotics and prebiotics are postulated to have immunomodulating capabilities by influencing the intestinal microbial cohort and dampening the activity of pathobiont intestinal microbes, such as Klebsiella pneumonia and Clostridia perfringens. Lactobacilli and Bifidobacteria are examples of probiotics found in the large intestine and so far, the benefits afforded to probiotics have varied in efficacy. Most likely the efficacy of probiotic bacteria has a multifactorial dependency, namely on a number of factors that include agents used, the dose, the pattern of dosing, and the characteristics of the host and the underlying luminal microbial environment and the activity of bacteriophages. Bacteriophages, are small viruses that infect and lyse intestinal bacteria. As such it can be posited that these viruses display an effective local protective control mechanism for the intestinal barrier against commensal pathobionts that indirectly may assist the host in controlling bacterial concentrations in the gut. A co-operative activity may be envisaged between the intestinal epithelia, mucosal immunity and the activity of bacteriophages to eliminate pathobiots, highlighting the potential role of bacteriophages in assisting with maintaining intestinal homeostasis. Hence bacteriophage local control of inflammation and immune responses may be an additional immunological defense mechanism that exploits bacteriophage-mucin glycoprotein interactions that controls bacterial diversity and abundance in the mucin layers of the gut. Moreover, and importantly the efficacy of probiotics may be dependent on the symbiotic incorporation of prebiotics, and the abundance and diversity of the intestinal microbiome encountered. The virome may be an important factor that determines the efficacy of some probiotic formulations.
Collapse
Affiliation(s)
- Luis Vitetta
- Discipline of Pharmacology, Faculty of Medicine and Health, School of Medicine, The University of Sydney, Camperdown, NSW, Australia
- Medlab Clinical Ltd., Sydney, NSW, Australia
| | | | - Sean Hall
- Medlab Clinical Ltd., Sydney, NSW, Australia
| |
Collapse
|
22
|
Current state of in vivo panning technologies: Designing specificity and affinity into the future of drug targeting. Adv Drug Deliv Rev 2018; 130:39-49. [PMID: 29964079 DOI: 10.1016/j.addr.2018.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/24/2018] [Accepted: 06/22/2018] [Indexed: 11/20/2022]
Abstract
Targeting ligands are used in drug delivery to improve drug distribution to desired cells or tissues and to facilitate cellular entry. In vivo biopanning, whereby billions of potential ligand sequences are screened in biologically-relevant and complex conditions, is a powerful method for identification of novel target ligands. This tool has impacted drug delivery technologies and expanded our arsenal of therapeutics and diagnostics. Within this review we will discuss current in vivo panning technologies and ways that these technologies can be improved to advance next-generation drug delivery strategies.
Collapse
|
23
|
Internalization of a polysialic acid-binding Escherichia coli bacteriophage into eukaryotic neuroblastoma cells. Nat Commun 2017; 8:1915. [PMID: 29203765 PMCID: PMC5715158 DOI: 10.1038/s41467-017-02057-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 11/03/2017] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic organisms are continuously exposed to bacteriophages, which are efficient gene transfer agents in bacteria. However, bacteriophages are considered not to pass the eukaryotic cell membrane and enter nonphagocytic cells. Here we report the binding and penetration of Escherichia coli PK1A2 bacteriophage into live eukaryotic neuroblastoma cells in vitro. The phage interacts with cell surface polysialic acid, which shares structural similarity with the bacterial phage receptor. Using fluorescence and electron microscopy, we show that phages are internalized via the endolysosomal route and persist inside the human cells up to one day without affecting cell viability. Phage capsid integrity is lost in lysosomes, and the phage DNA is eventually degraded. We did not detect the entry of phage DNA into the nucleus; however, we speculate that this might occur as a rare event, and propose that this potential mechanism could explain prokaryote–eukaryote gene flow. Eukaryotic organisms are continuously exposed to bacteriophages, but these are not thought to enter non-phagocytic cells. Here, Lehti et al. show that a bacteriophage can bind to a specific receptor on the surface of human neuroblastoma cells in vitro, and be internalized via the endolysosomal route.
Collapse
|
24
|
Autonomous self-navigating drug-delivery vehicles: from science fiction to reality. Ther Deliv 2017; 8:1063-1075. [DOI: 10.4155/tde-2017-0086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Low efficacy of targeted nanomedicines in biological experiments enforced us to challenge the traditional concept of drug targeting and suggest a paradigm of ‘addressed self-navigating drug-delivery vehicles,’ in which affinity selection of targeting peptides and vasculature-directed in vivo phage screening is replaced by the migration selection, which explores ability of ‘promiscuous’ phages and their proteins to migrate through the tumor-surrounding cellular barriers, using a ‘hub and spoke’ delivery strategy, and penetrate into the tumor affecting the diverse tumor cell population. The ‘self-navigating’ drug-delivery paradigm can be used as a theoretical and technical platform in design of a novel generation of molecular medications and imaging probes for precise and personal medicine. [Formula: see text]
Collapse
|
25
|
Towards a transcriptome-based theranostic platform for unfavorable breast cancer phenotypes. Proc Natl Acad Sci U S A 2016; 113:12780-12785. [PMID: 27791177 DOI: 10.1073/pnas.1615288113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Inflammatory breast carcinoma (IBC) is one of the most lethal forms of human breast cancer, and effective treatment for IBC is an unmet clinical need in contemporary oncology. Tumor-targeted theranostic approaches are emerging in precision medicine, but only a few specific biomarkers are available. Here we report up-regulation of the 78-kDa glucose-regulated protein (GRP78) in two independent discovery and validation sets of specimens derived from IBC patients, suggesting translational promise for clinical applications. We show that a GRP78-binding motif displayed on either bacteriophage or adeno-associated virus/phage (AAVP) particles or loop-grafted onto a human antibody fragment specifically targets orthotopic IBC and other aggressive breast cancer models in vivo. To evaluate the theranostic value, we used GRP78-targeting AAVP particles to deliver the human Herpes simplex virus thymidine kinase type-1 (HSVtk) transgene, obtaining simultaneous in vivo diagnosis through PET imaging and tumor treatment by selective activation of the prodrug ganciclovir at tumor sites. Translation of this AAVP system is expected simultaneously to image, monitor, and treat the IBC phenotype and possibly other aggressive (e.g., invasive and/or metastatic) subtypes of breast cancer, based on the inducible cell-surface expression of the stress-response chaperone GRP78, and possibily other cell-surface receptors in human tumors.
Collapse
|
26
|
Targeted molecular-genetic imaging and ligand-directed therapy in aggressive variant prostate cancer. Proc Natl Acad Sci U S A 2016; 113:12786-12791. [PMID: 27791181 DOI: 10.1073/pnas.1615400113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aggressive variant prostate cancers (AVPC) are a clinically defined group of tumors of heterogeneous morphologies, characterized by poor patient survival and for which limited diagnostic and treatment options are currently available. We show that the cell surface 78-kDa glucose-regulated protein (GRP78), a receptor that binds to phage-display-selected ligands, such as the SNTRVAP motif, is a candidate target in AVPC. We report the presence and accessibility of this receptor in clinical specimens from index patients. We also demonstrate that human AVPC cells displaying GRP78 on their surface could be effectively targeted both in vitro and in vivo by SNTRVAP, which also enabled specific delivery of siRNA species to tumor xenografts in mice. Finally, we evaluated ligand-directed strategies based on SNTRVAP-displaying adeno-associated virus/phage (AAVP) particles in mice bearing MDA-PCa-118b, a patient-derived xenograft (PDX) of castration-resistant prostate cancer bone metastasis that we exploited as a model of AVPC. For theranostic (a merging of the terms therapeutic and diagnostic) studies, GRP78-targeting AAVP particles served to deliver the human Herpes simplex virus thymidine kinase type-1 (HSVtk) gene, which has a dual function as a molecular-genetic sensor/reporter and a cell suicide-inducing transgene. We observed specific and simultaneous PET imaging and treatment of tumors in this preclinical model of AVPC. Our findings demonstrate the feasibility of GPR78-targeting, ligand-directed theranostics for translational applications in AVPC.
Collapse
|
27
|
Müller J, Reichel R, Vogt S, Müller SP, Sauerwein W, Brandau W, Eggert A, Schramm A. Identification and Tumour-Binding Properties of a Peptide with High Affinity to the Disialoganglioside GD2. PLoS One 2016; 11:e0163648. [PMID: 27716771 PMCID: PMC5055303 DOI: 10.1371/journal.pone.0163648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/12/2016] [Indexed: 11/18/2022] Open
Abstract
Neuroectodermal tumours are characterized by aberrant processing of disialogangliosides concomitant with high expression of GD2 or GD3 on cell surfaces. Antibodies targeting GD2 are already in clinical use for therapy of neuroblastoma, a solid tumour of early childhood. Here, we set out to identify peptides with high affinity to human disialoganglioside GD2. To this end, we performed a combined in vivo and in vitro screen using a recombinant phage displayed peptide library. We isolated a phage displaying the peptide sequence WHWRLPS that specifically binds to the human disialoganglioside GD2. Binding specificity was confirmed by mutational scanning and by comparative analyses using structurally related disialogangliosides. In vivo, significant enrichment of phage binding to xenografts of human neuroblastoma cells in mice was observed. Tumour-specific phage accumulation could be blocked by intravenous coinjection of the corresponding peptide. Comparative pharmacokinetic analyses revealed higher specific accumulation of 68Ga-labelled GD2-binding peptide compared to 111In-labelled peptide in xenografts of human neuroblastoma. In contrast to 124I-MIBG, which is currently evaluated as a neuroblastoma marker in PET/CT, 68Ga-labelled GD2-specific peptide spared the thyroid but was enriched in the kidneys, which could be partially blocked by infusion of amino acids.In summary, we here report on a novel tumour-homing peptide that specifically binds to the disialoganglioside GD2, accumulates in xenografts of neuroblastoma cells in mice and bears the potential for tumour detection using PET/CT. Thus, this peptide may serve as a new scaffold for diagnosing GD2-positive tumours of neuroectodermal origin.
Collapse
Affiliation(s)
- Jan Müller
- Pediatric Oncology and Hematology, University Children’s Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robin Reichel
- Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Vogt
- Pediatric Oncology and Hematology, University Children’s Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan P. Müller
- Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang Sauerwein
- Radiation Oncology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang Brandau
- Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Angelika Eggert
- Pediatric Oncology and Hematology, Charité Universitätsmedizin, Berlin, Germany
| | - Alexander Schramm
- Pediatric Oncology and Hematology, University Children’s Hospital Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
28
|
Wen AM, Steinmetz NF. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev 2016; 45:4074-126. [PMID: 27152673 PMCID: PMC5068136 DOI: 10.1039/c5cs00287g] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review provides an overview of recent developments in "chemical virology." Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials.
Collapse
Affiliation(s)
- Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA. and Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
29
|
Targeted axonal import (TAxI) peptide delivers functional proteins into spinal cord motor neurons after peripheral administration. Proc Natl Acad Sci U S A 2016; 113:2514-9. [PMID: 26888285 DOI: 10.1073/pnas.1515526113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A significant unmet need in treating neurodegenerative disease is effective methods for delivery of biologic drugs, such as peptides, proteins, or nucleic acids into the central nervous system (CNS). To date, there are no operative technologies for the delivery of macromolecular drugs to the CNS via peripheral administration routes. Using an in vivo phage-display screen, we identify a peptide, targeted axonal import (TAxI), that enriched recombinant bacteriophage accumulation and delivered protein cargo into spinal cord motor neurons after intramuscular injection. In animals with transected peripheral nerve roots, TAxI delivery into motor neurons after peripheral administration was inhibited, suggesting a retrograde axonal transport mechanism for delivery into the CNS. Notably, TAxI-Cre recombinase fusion proteins induced selective recombination and tdTomato-reporter expression in motor neurons after intramuscular injections. Furthermore, TAxI peptide was shown to label motor neurons in the human tissue. The demonstration of a nonviral-mediated delivery of functional proteins into the spinal cord establishes the clinical potential of this technology for minimally invasive administration of CNS-targeted therapeutics.
Collapse
|
30
|
Wu CH, Liu IJ, Lu RM, Wu HC. Advancement and applications of peptide phage display technology in biomedical science. J Biomed Sci 2016; 23:8. [PMID: 26786672 PMCID: PMC4717660 DOI: 10.1186/s12929-016-0223-x] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/11/2016] [Indexed: 12/25/2022] Open
Abstract
Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.
Collapse
Affiliation(s)
- Chien-Hsun Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Ruei-Min Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
31
|
Henry KA, Arbabi-Ghahroudi M, Scott JK. Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front Microbiol 2015; 6:755. [PMID: 26300850 PMCID: PMC4523942 DOI: 10.3389/fmicb.2015.00755] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/10/2015] [Indexed: 12/23/2022] Open
Abstract
For the past 25 years, phage display technology has been an invaluable tool for studies of protein-protein interactions. However, the inherent biological, biochemical, and biophysical properties of filamentous bacteriophage, as well as the ease of its genetic manipulation, also make it an attractive platform outside the traditional phage display canon. This review will focus on the unique properties of the filamentous bacteriophage and highlight its diverse applications in current research. Particular emphases are placed on: (i) the advantages of the phage as a vaccine carrier, including its high immunogenicity, relative antigenic simplicity and ability to activate a range of immune responses, (ii) the phage's potential as a prophylactic and therapeutic agent for infectious and chronic diseases, (iii) the regularity of the virion major coat protein lattice, which enables a variety of bioconjugation and surface chemistry applications, particularly in nanomaterials, and (iv) the phage's large population sizes and fast generation times, which make it an excellent model system for directed protein evolution. Despite their ubiquity in the biosphere, metagenomics work is just beginning to explore the ecology of filamentous and non-filamentous phage, and their role in the evolution of bacterial populations. Thus, the filamentous phage represents a robust, inexpensive, and versatile microorganism whose bioengineering applications continue to expand in new directions, although its limitations in some spheres impose obstacles to its widespread adoption and use.
Collapse
Affiliation(s)
- Kevin A. Henry
- Human Health Therapeutics Portfolio, National Research Council Canada, OttawaON, Canada
| | - Mehdi Arbabi-Ghahroudi
- Human Health Therapeutics Portfolio, National Research Council Canada, OttawaON, Canada
- School of Environmental Sciences, University of Guelph, GuelphON, Canada
- Department of Biology, Carleton University, OttawaON, Canada
| | - Jamie K. Scott
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCCanada
- Faculty of Health Sciences, Simon Fraser University, BurnabyBC, Canada
| |
Collapse
|
32
|
Lee KL, Shukla S, Wu M, Ayat NR, El Sanadi CE, Wen AM, Edelbrock JF, Pokorski JK, Commandeur U, Dubyak GR, Steinmetz NF. Stealth filaments: Polymer chain length and conformation affect the in vivo fate of PEGylated potato virus X. Acta Biomater 2015; 19:166-79. [PMID: 25769228 PMCID: PMC4411193 DOI: 10.1016/j.actbio.2015.03.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/22/2015] [Accepted: 03/03/2015] [Indexed: 12/23/2022]
Abstract
Nanoparticles hold great promise for delivering medical cargos to cancerous tissues to enhance contrast and sensitivity of imaging agents or to increase specificity and efficacy of therapeutics. A growing body of data suggests that nanoparticle shape, in combination with surface chemistry, affects their in vivo fates, with elongated filaments showing enhanced tumor targeting and tissue penetration, while promoting immune evasion. The synthesis of high aspect ratio filamentous materials at the nanoscale remains challenging using synthetic routes; therefore we turned toward nature's materials, developing and studying the filamentous structures formed by the plant virus potato virus X (PVX). We recently demonstrated that PVX shows enhanced tumor homing in various preclinical models. Like other nanoparticle systems, the proteinaceous platform is cleared from circulation and tissues by the mononuclear phagocyte system (MPS). To increase bioavailability we set out to develop PEGylated stealth filaments and evaluate the effects of PEG chain length and conformation on pharmacokinetics, biodistribution, as well as potential immune and inflammatory responses. We demonstrate that PEGylation effectively reduces immune recognition while increasing pharmacokinetic profiles. Stealth filaments show reduced interaction with cells of the MPS; the protein:polymer hybrids are cleared from the body tissues within hours to days indicating biodegradability and biocompatibility. Tissue compatibility is indicated with no apparent inflammatory signaling in vivo. Tailoring PEG chain length and conformation (brush vs. mushroom) allows tuning of the pharmacokinetics, yielding long-circulating stealth filaments for applications in nanomedicine.
Collapse
Affiliation(s)
- Karin L Lee
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, OH 44106, United States
| | - Sourabh Shukla
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, OH 44106, United States
| | - Mengzhi Wu
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, OH 44106, United States
| | - Nadia R Ayat
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, OH 44106, United States
| | - Caroline E El Sanadi
- Department of Physiology and Biophysics, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, OH 44106, United States
| | - Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, OH 44106, United States
| | - John F Edelbrock
- Department of Macromolecular Science and Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, OH 44106, United States
| | - Jonathan K Pokorski
- Department of Macromolecular Science and Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, OH 44106, United States
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - George R Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, OH 44106, United States
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, OH 44106, United States; Department of Macromolecular Science and Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, OH 44106, United States; Department of Radiology, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, OH 44106, United States; Department of Materials Science and Engineering, Case Western Reserve University Schools of Medicine and Engineering, Cleveland, OH 44106, United States.
| |
Collapse
|
33
|
To Target or Not to Target: Active vs. Passive Tumor Homing of Filamentous Nanoparticles Based on Potato virus X. Cell Mol Bioeng 2015; 8:433-444. [PMID: 26316894 PMCID: PMC4540758 DOI: 10.1007/s12195-015-0388-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 03/24/2015] [Indexed: 11/21/2022] Open
Abstract
Nanoparticles are promising platforms for the diagnosis and treatment of cancer. Diverse classes and shapes of materials have been investigated to establish design principles that achieve the effective partitioning of medical cargos between tumors and healthy tissues. Molecular targeting strategies combined with specific nanoparticle shapes confer tissue-specificity on the carriers, allowing the cell-specific delivery of cargos. We recently developed a filamentous platform technology in which the plant virus Potato virus X (PVX) was used as a scaffold. These particles are flexible 515 × 13 nm filaments that encourage passive tumor homing. Here we sought to advance the PVX platform by including a molecular targeting strategy based on cyclic RGD peptides, which specifically bind to integrins upregulated on tumor cells, neovasculature, and metastatic sites. Although the RGD-targeted filaments outperformed the PEGylated stealth filaments in vitro, enhanced tumor cell targeting did not translate into improved tumor homing in vivo in mouse tumor models. The RGD-PVX and PEG-PVX filaments showed contrasting biodistribution profiles. Both formulations were cleared by the liver and spleen, but only the stealth filaments accumulated in tumors, whereas the RGD-targeted filaments were sequestered in the lungs. These results provide insight into the design principles for virus-based nanoparticles that promote the delivery of medical cargos to the appropriate cell types.
Collapse
|
34
|
Sarhan WA, Azzazy HME. Phage approved in food, why not as a therapeutic? Expert Rev Anti Infect Ther 2014; 13:91-101. [DOI: 10.1586/14787210.2015.990383] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Kim KH, Lee GY, Jang JC, Kim JE, Kim YY. Evaluation of Anti-SE Bacteriophage as Feed Additives to Prevent Salmonella enteritidis (SE) in Broiler. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:386-93. [PMID: 25049801 PMCID: PMC4093478 DOI: 10.5713/ajas.2012.12138] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 10/29/2012] [Accepted: 07/31/2012] [Indexed: 11/27/2022]
Abstract
This experiment was conducted to evaluate anti-Salmonella enteritidis (anti-SE) bacteriophage as feed additives to prevent Salmonella enteritidis in broilers. The experimental diets were formulated for 2 phases feeding trial, and 3 different levels (0.05, 0.1 and 0.2%) of anti-SE bacteriophage were supplemented in basal diet. The basal diet was regarded as the control treatment. A total of 320 1-d-old male broilers (Ross 308) were allotted by randomized complete block (RCB) design in 8 replicates with 10 chicks per pen. All birds were raised on rice hull bedding in ambient controlled environment and free access to feed and water. There were no significant differences in body weight gain, feed intake and feed conversion ratio (FCR) at terminal period among treatments (p>0.05). Relative weights of liver, spleen, abdominal fat and tissue muscle of breast obtained from each anti-SE bacteriophage treatment were similar to control, with a slightly higher value in anti-SE bacteriophage 0.2%. In addition, a numerical difference of glutamic-oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT) and LDL cholesterol level was observed in the 0.2% anti-SE bacteriophage application even though blood profiles were not significantly affected by supplemented levels of anti-SE bacteriophage (p>0.05). In the result of a 14 d record after Salmonella enteritidis challenge of 160 birds from 4 previous treatments, mortality was linearly decreased with increasing anti-SE bacteriophage level (p<0.05), and Salmonella enteritidis concentration in the cecum was decreased with increasing levels of anti-SE bacteriophage (p<0.05). Based on the results of this study, it is considered that supplementation of 0.2% anti-SE bacteriophage may not cause any negative effect on growth, meat production, and it reduces mortality after Salmonella enteritidis challenge. These results imply to a possible use of anti-SE bacteriophage as an alternative feed additive instead of antibiotics in broilers diet.
Collapse
Affiliation(s)
- K H Kim
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Korea
| | - G Y Lee
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Korea
| | - J C Jang
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Korea
| | - J E Kim
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Korea
| | - Y Y Kim
- Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Korea
| |
Collapse
|
36
|
Schoonen L, van Hest JCM. Functionalization of protein-based nanocages for drug delivery applications. NANOSCALE 2014; 6:7124-41. [PMID: 24860847 DOI: 10.1039/c4nr00915k] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Traditional drug delivery strategies involve drugs which are not targeted towards the desired tissue. This can lead to undesired side effects, as normal cells are affected by the drugs as well. Therefore, new systems are now being developed which combine targeting functionalities with encapsulation of drug cargo. Protein nanocages are highly promising drug delivery platforms due to their perfectly defined structures, biocompatibility, biodegradability and low toxicity. A variety of protein nanocages have been modified and functionalized for these types of applications. In this review, we aim to give an overview of different types of modifications of protein-based nanocontainers for drug delivery applications.
Collapse
Affiliation(s)
- Lise Schoonen
- Institute of Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | | |
Collapse
|
37
|
Luckanagul JA, Lee LA, You S, Yang X, Wang Q. Plant virus incorporated hydrogels as scaffolds for tissue engineering possess low immunogenicity in vivo. J Biomed Mater Res A 2014; 103:887-95. [PMID: 24829052 DOI: 10.1002/jbm.a.35227] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/02/2014] [Accepted: 05/13/2014] [Indexed: 12/16/2022]
Abstract
Viruses are no longer recognized purely for being ubiquitous pathogens, but have served as building blocks for material chemistry and nanotechnology. Thousands of coat protein subunits of a viral particle can be modified chemically and/or genetically. We have previously shown that the three-dimensional porous hydrogels can easily be functionalized by Tobacco mosaic virus (TMV), a rod-like plant virus, using its mutant, RGD-TMV. RGD-TMV hosted bioadhesive peptide (RGD) in the hydrogel, which was shown to enhance cell attachment and promote osteogenic differentiation of cultured stem cell. To translate this technology to potential clinical applications, we sought to study the biocompatibility of the hydrogel. In this paper, the hydrogels were implanted in vivo and assessed for their immunogenicity, toxicity, and biodegradability. Immune response for TMV substantially decreased when incorporated in the hydrogel implants. The implanted TMV hydrogels exhibited no apparent toxicity and were degradable in mice. The results highlighted the feasibility of using TMV incorporated hydrogels as scaffolding materials for regenerative medicine in terms of biocompatibility and biodegradability.
Collapse
Affiliation(s)
- Jittima Amie Luckanagul
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina
| | | | | | | | | |
Collapse
|
38
|
Proteasome activator complex PA28 identified as an accessible target in prostate cancer by in vivo selection of human antibodies. Proc Natl Acad Sci U S A 2013; 110:13791-6. [PMID: 23918357 DOI: 10.1073/pnas.1300013110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antibody cancer therapies rely on systemically accessible targets and suitable antibodies that exert a functional activity or deliver a payload to the tumor site. Here, we present proof-of-principle of in vivo selection of human antibodies in tumor-bearing mice that identified a tumor-specific antibody able to deliver a payload and unveils the target antigen. By using an ex vivo enrichment process against freshly disaggregated tumors to purge the repertoire, in combination with in vivo biopanning at optimized phage circulation time, we have identified a human domain antibody capable of mediating selective localization of phage to human prostate cancer xenografts. Affinity chromatography followed by mass spectrometry analysis showed that the antibody recognizes the proteasome activator complex PA28. The specificity of soluble antibody was confirmed by demonstrating its binding to the active human PA28αβ complex. Whereas systemically administered control phage was confined in the lumen of blood vessels of both normal tissues and tumors, the selected phage spread from tumor vessels into the perivascular tumor parenchyma. In these areas, the selected phage partially colocalized with PA28 complex. Furthermore, we found that the expression of the α subunit of PA28 [proteasome activator complex subunit 1 (PSME1)] is elevated in primary and metastatic human prostate cancer and used anti-PSME1 antibodies to show that PSME1 is an accessible marker in mouse xenograft tumors. These results support the use of PA28 as a tumor marker and a potential target for therapeutic intervention in prostate cancer.
Collapse
|
39
|
Yu H, Segers F, Sliedregt‐Bol K, Bot I, Woltman AM, Boross P, Verbeek S, Overkleeft H, Marel GA, Kooten C, Berkel TJC, Biessen EAL. Identification of a novel CD40 ligand for targeted imaging of inflammatory plaques by phage display. FASEB J 2013; 27:4136-46. [DOI: 10.1096/fj.12-224667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Haixiang Yu
- Division of BiopharmaceuticsLeiden/Amsterdam Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Filip Segers
- Division of BiopharmaceuticsLeiden/Amsterdam Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | | | - Ilze Bot
- Division of BiopharmaceuticsLeiden/Amsterdam Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Andrea M. Woltman
- Department of NephrologyLeiden University Medical CenterLeidenThe Netherlands
| | - Peter Boross
- Department of Human and Clinical GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Sjef Verbeek
- Department of Human and Clinical GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Herman Overkleeft
- Department of Bioorganic ChemistryLeiden UniversityLeidenThe Netherlands
| | - Gijs A. Marel
- Department of Bioorganic ChemistryLeiden UniversityLeidenThe Netherlands
| | - Cees Kooten
- Department of NephrologyLeiden University Medical CenterLeidenThe Netherlands
| | - Theo J. C. Berkel
- Division of BiopharmaceuticsLeiden/Amsterdam Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Erik A. L. Biessen
- Division of BiopharmaceuticsLeiden/Amsterdam Center for Drug ResearchLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
40
|
Bábíčková J, Tóthová Ľ, Boor P, Celec P. In vivo phage display--a discovery tool in molecular biomedicine. Biotechnol Adv 2013; 31:1247-59. [PMID: 23623852 DOI: 10.1016/j.biotechadv.2013.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/15/2013] [Accepted: 04/15/2013] [Indexed: 12/13/2022]
Abstract
In vivo phage display is a high-throughput method for identifying target ligands specific for different vascular beds. Targeting is possible due to the heterogeneous expression of receptors and other antigens in a particular vascular bed. Such expression is additionally influenced by the physiological or pathological status of the vasculature. In vivo phage display represents a technique that is usable in both, vascular mapping and targeted drug development. In this review, several important methodological aspects of in vivo phage display experiments are discussed. These include choosing an appropriate phage library, an appropriate animal model and the route of phage library administration. In addition, peptides or antibodies identified by in vivo phage display homing to specific types of vascular beds, including the altered vasculature present in several types of diseases are summarized. Still, confirmation in independent experiments and reproduction of identified sequences are needed for enhancing the clinical applicability of in vivo phage display research.
Collapse
Affiliation(s)
- Janka Bábíčková
- Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia; Division of Nephrology, RWTH University, Aachen, Germany
| | | | | | | |
Collapse
|
41
|
Wen AM, Rambhia PH, French RH, Steinmetz NF. Design rules for nanomedical engineering: from physical virology to the applications of virus-based materials in medicine. J Biol Phys 2013; 39:301-25. [PMID: 23860875 PMCID: PMC3662409 DOI: 10.1007/s10867-013-9314-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 02/07/2013] [Indexed: 12/17/2022] Open
Abstract
Physical virology seeks to define the principles of physics underlying viral infections, traditionally focusing on the fundamental processes governing virus assembly, maturation, and disassembly. A detailed understanding of virus structure and assembly has facilitated the development and analysis of virus-based materials for medical applications. In this Physical Virology review article, we discuss the recent developments in nanomedicine that help us to understand how physical properties affect the in vivo fate and clinical impact of (virus-based) nanoparticles. We summarize and discuss the design rules that need to be considered for the successful development and translation of virus-based nanomaterials from bench to bedside.
Collapse
Affiliation(s)
- Amy M. Wen
- />Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Pooja H. Rambhia
- />Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Roger H. French
- />Materials Science and Engineering, School of Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| | - Nicole F. Steinmetz
- />Department of Biomedical Engineering, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
- />Materials Science and Engineering, School of Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA
- />Department of Radiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| |
Collapse
|
42
|
Tóthová L, Bábíčková J, Celec P. Phage survival: The biodegradability of M13 phage display libraryin vitro. Biotechnol Appl Biochem 2012; 59:490-4. [DOI: 10.1002/bab.1050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 10/04/2012] [Indexed: 01/02/2023]
Affiliation(s)
- L'ubomíra Tóthová
- Institute of Molecular Biomedicine; Comenius University; Bratislava; Slovakia
| | - Janka Bábíčková
- Institute of Molecular Biomedicine; Comenius University; Bratislava; Slovakia
| | | |
Collapse
|
43
|
Smith MW, Al-Jayyoussi G, Gumbleton M. Peptide sequences mediating tropism to intact blood-brain barrier: an in vivo biodistribution study using phage display. Peptides 2012; 38:172-80. [PMID: 22955033 DOI: 10.1016/j.peptides.2012.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 12/15/2022]
Abstract
Peptide motifs that demonstrate tropism for the blood brain barrier (BBB) are of real translational value in developing innovative delivery strategies for biological brain targeted therapies. In vivo peptide-phage display affords peptide selection against the full complement of biological markers within the correct cellular macro- and micro-environments. Here a stringent in vivo biopanning protocol was employed in the rat aimed at identifying cyclic 7-mer peptide motifs that mediate tropism to brain microvasculature. Five rounds of biopanning identified 349 unique peptide motifs in the brain tissue gray matter compartment (microvasculature and parenchyma). While in general no consensus was evident linking peptide physico-chemical properties and brain tropism, peptides bearing c-SxTSSTx-c or c-xxxSSTx-c motifs were found to be present in high abundance. Based on amino acid frequency distribution of the 349 unique peptides sequences a theoretical 'idealized' peptide pattern, c-PP(S/P)SSST-c, could be derived. For the most abundant experimental peptide sequence found in brain tissue, c-SYTSSTM-c, an in vivo pharmacokinetic and whole body tissue biodistribution study was performed. Based upon tissue exposure data (i.e. tissue AUC((0-infinity))) the sequence c-SYTSSTM-c efficiently retargeted phage virions to the brain providing an approximate 5-fold greater (P<0.05) accumulation in brain over control phage; in all other organs no significant (P>0.05) difference in tissue tropism between c-SYTSSTM-c and control phages were evident. This peptide and more generally the peptide motifs, -SxTSSTx- or -xxxSSTx-, warrant further investigation as agents mediating sequence-dependent tropism to brain microvasculature potentially able to deliver biologic cargo to the CNS.
Collapse
Affiliation(s)
- Mathew W Smith
- Cardiff School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | | | | |
Collapse
|
44
|
Abstract
Although the natural hosts for bacteriophages are bacteria, a growing body of data shows that phages can also interact with some populations of mammalian cells, especially with cells of the immune system. In general, these interactions include two main aspects. The first is the phage immunogenicity, that is, the capacity of phages to induce specific immune responses, in particular the generation of specific antibodies against phage antigens. The other aspect includes the immunomodulatory activity of phages, that is, the nonspecific effects of phages on different functions of major populations of immune cells involved in both innate and adaptive immune responses. These functions include, among others, phagocytosis and the respiratory burst of phagocytic cells, the production of cytokines, and the generation of antibodies against nonphage antigens. The aim of this chapter is to discuss the interactions between phages and cells of the immune system, along with their implications for phage therapy. These topics are presented based on the results of experimental studies and unique data on immunomodulatory effects found in patients with bacterial infections treated with phage preparations.
Collapse
|
45
|
Identification of peptides for tissue-specific delivery. Methods Mol Biol 2012. [PMID: 22454074 DOI: 10.1007/978-1-61779-767-5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Antisense-mediated exon skipping has shown to be a promising therapeutic approach and is in clinical trials for Duchenne muscular dystrophy. However, after systemic treatment the majority of the injected antisense oligonucleotides (AONs) will not end up in the intended tissue. This mistargeting of AONs might have detrimental effects, especially with long-term treatment and continuous accumulation of AONs. Further, even when no detrimental effects occur, mistargeted AONs are lost for exon skipping in the intended tissue. One way to reduce the amount of mistargeted AONs is by adding a peptide that specifically binds to and is taken up by the intended tissue. Such peptides can be found by screening phage display libraries. With in silico, in vitro, and in vivo testing, the peptides that bind the intended tissue most efficiently and most specifically can be identified.
Collapse
|
46
|
Deramchia K, Jacobin-Valat MJ, Vallet A, Bazin H, Santarelli X, Sanchez S, Dos Santos P, Franconi JM, Claverol S, Bonetto S, Clofent-Sanchez G. In vivo phage display to identify new human antibody fragments homing to atherosclerotic endothelial and subendothelial tissues [corrected]. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2576-89. [PMID: 22521648 DOI: 10.1016/j.ajpath.2012.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 02/04/2012] [Accepted: 02/14/2012] [Indexed: 12/24/2022]
Abstract
In vivo phage display selection is a powerful strategy for directly identifying agents that target the vasculature of normal or diseased tissues in living animals. We describe here a new in vivo biopanning strategy in which a human phage single-chain antibody (scFv) library was injected into high-fat diet-fed ApoE(-/-) mice. Extracellular and internalized phage scFvs were selectively recovered from atherosclerotic vascular endothelium and subjacent tissues. After three successive biopanning rounds, a panel of six clones with distinct gene sequences was isolated. Four scFvs produced and purified in soluble form were shown to interact in vitro with a rabbit atheromatous protein extract by time-resolved fluorescence resonance energy transfer and to target the endothelial cell surface and inflamed intima-related regions of rabbit and human tissue sections ex vivo. These new scFvs selected in a mouse model recognized both rabbit and human tissue, underlying the interspecies similarities of the recognized epitopes. By combining immunoprecipitation and mass spectrometry, one of the selected scFvs was shown to recognize carbonic anhydrase II, an up-regulated enzyme involved in resorption of ectopic calcification. These results show that in vivo biopanning selection in hypercholesterolemic animals makes it possible to identify both scFvs homing to atherosclerotic endothelial and subendothelial tissues, and lesion-associated biomarkers. Such scFvs offer promising opportunities in the field of molecular targeting for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Kamel Deramchia
- Magnetic Resonance Center of Biological Systems, UMR 5536, National Center for Scientific Research, Bordeaux Segalen University, Bordeaux, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Segers FME, Yu H, Molenaar TJM, Prince P, Tanaka T, van Berkel TJC, Biessen EAL. Design and validation of a specific scavenger receptor class AI binding peptide for targeting the inflammatory atherosclerotic plaque. Arterioscler Thromb Vasc Biol 2012; 32:971-8. [PMID: 22282357 DOI: 10.1161/atvbaha.111.235358] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Scavenger receptor A (SR-A) is abundantly expressed by macrophage and plays a critical role in foam cell formation and atherogenesis. In search of selective SR-AI antagonists, we have used affinity selection of a phage displayed peptide library on the synthetic extracellular domain of SR-AI. METHODS AND RESULTS Phage selection led to an almost 1,000-fold enrichment of SR-AI binding phage, which bound avidly to human THP-1 cells. A 15-mer corresponding to the peptide insert of the major SR-AI binding phage (PP1) displaced phage binding to SR-AI. Peptides, docked to a streptavidin scaffold, were effectively internalized by macrophages in an SR-AI-dependent manner. The enriched phage pool and streptavidin bound PP1 exhibited marked uptake by hepatic macrophages in mice. Importantly, PP1 significantly increased streptavidin as well as particulate accumulation in advanced aortic plaques, and in particular intraplaque macrophage, of apolipoprotein E(-/-) mice. CONCLUSIONS We have identified a novel peptide antagonist selective for SR-AI; this antagonist could be a valuable tool in SR-AI targeted imaging of atherosclerotic lesions.
Collapse
Affiliation(s)
- Filip M E Segers
- Department of General Surgery, Maastricht University, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
48
|
Haq IU, Chaudhry WN, Akhtar MN, Andleeb S, Qadri I. Bacteriophages and their implications on future biotechnology: a review. Virol J 2012; 9:9. [PMID: 22234269 PMCID: PMC3398332 DOI: 10.1186/1743-422x-9-9] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 01/10/2012] [Indexed: 11/10/2022] Open
Abstract
Recently it has been recognized that bacteriophages, the natural predators of bacteria can be used efficiently in modern biotechnology. They have been proposed as alternatives to antibiotics for many antibiotic resistant bacterial strains. Phages can be used as biocontrol agents in agriculture and petroleum industry. Moreover phages are used as vehicles for vaccines both DNA and protein, for the detection of pathogenic bacterial strain, as display system for many proteins and antibodies. Bacteriophages are diverse group of viruses which are easily manipulated and therefore they have potential uses in biotechnology, research, and therapeutics. The aim of this review article is to enable the wide range of researchers, scientists, and biotechnologist who are putting phages into practice, to accelerate the progress and development in the field of biotechnology.
Collapse
Affiliation(s)
- Irshad Ul Haq
- NUST Center of Virology & Immunology (NCVI), National University of Sciences & Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - Waqas Nasir Chaudhry
- NUST Center of Virology & Immunology (NCVI), National University of Sciences & Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - Maha Nadeem Akhtar
- NUST Center of Virology & Immunology (NCVI), National University of Sciences & Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - Saadia Andleeb
- NUST Center of Virology & Immunology (NCVI), National University of Sciences & Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - Ishtiaq Qadri
- NUST Center of Virology & Immunology (NCVI), National University of Sciences & Technology (NUST), H-12, Islamabad 44000, Pakistan
| |
Collapse
|
49
|
Abstract
Bacteriophage-based medical research provides the opportunity to develop targeted nanomedicines with heightened efficiency and safety profiles. Filamentous phages also can and have been formulated as targeted drug-delivery nanomedicines, and phage may also serve as promising alternatives/complements to antibiotics. Over the past decade the use of phage for both the prophylaxis and the treatment of bacterial infection, has gained special significance in view of a dramatic rise in the prevalence of antibiotic resistance bacterial strains. Two potential medical applications of phages are the treatment of bacterial infections and their use as immunizing agents in diagnosis and monitoring patients with immunodeficiencies. Recently, phages have been employed as gene-delivery vectors (phage nanomedicine), for nearly half a century as tools in genetic research, for about two decades as tools for the discovery of specific target-binding proteins and peptides, and for almost a decade as tools for vaccine development. As phage applications to human therapeutic development grow at an exponential rate, it will become essential to evaluate host immune responses to initial and repetitive challenges by therapeutic phage in order to develop phage therapies that offer suitable utility. This paper examines and discusses phage nanomedicine applications and the immunomodulatory effects of bacteriophage exposure and treatment modalities.
Collapse
|
50
|
Vaks L, Benhar I. In vivo characteristics of targeted drug-carrying filamentous bacteriophage nanomedicines. J Nanobiotechnology 2011; 9:58. [PMID: 22185583 PMCID: PMC3281789 DOI: 10.1186/1477-3155-9-58] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 12/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Targeted drug-carrying phage nanomedicines are a new class of nanomedicines that combines biological and chemical components into a modular nanometric drug delivery system. The core of the system is a filamentous phage particle that is produced in the bacterial host Escherichia coli. Target specificity is provided by a targeting moiety, usually an antibody that is displayed on the tip of the phage particle. A large drug payload is chemically conjugated to the protein coat of the phage via a chemically or genetically engineered linker that provides for controlled release of the drug after the particle homed to the target cell. Recently we have shown that targeted drug-carrying phage nanomedicines can be used to eradicate pathogenic bacteria and cultured tumor cells with great potentiation over the activity of the free untargeted drug. We have also shown that poorly water soluble drugs can be efficiently conjugated to the phage coat by applying hydrophilic aminoglycosides as branched solubility-enhancing linkers. RESULTS With an intention to move to animal experimentation of efficacy, we tested anti-bacterial drug-carrying phage nanomedicines for toxicity and immunogenicity and blood pharmacokinetics upon injection into mice. Here we show that anti-bacterial drug-carrying phage nanomedicines that carry the antibiotic chloramphenicol conjugated via an aminoglycoside linker are non-toxic to mice and are greatly reduced in immunogenicity in comparison to native phage particles or particles to which the drug is conjugated directly and are cleared from the blood more slowly in comparison to native phage particles. CONCLUSION Our results suggest that aminoglycosides may serve as branched solubility enhancing linkers for drug conjugation that also provide for a better safety profile of the targeted nanomedicine.
Collapse
Affiliation(s)
- Lilach Vaks
- Department of Molecular Microbiology and Biotechnology, The George S, Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|