1
|
Smith VH, Holt RD, Smith MS, Niu Y, Barfield M. Resources, mortality, and disease ecology: Importance of positive feedbacks between host growth rate and pathogen dynamics. Isr J Ecol Evol 2015; 61:37-49. [PMID: 27642269 PMCID: PMC5026129 DOI: 10.1080/15659801.2015.1035508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Resource theory and metabolic scaling theory suggest that the dynamics of a pathogen within a host should strongly depend upon the rate of host cell metabolism. Once an infection occurs, key ecological interactions occur on or within the host organism that determine whether the pathogen dies out, persists as a chronic infection, or grows to densities that lead to host death. We hypothesize that, in general, conditions favoring rapid host growth rates should amplify the replication and proliferation of both fungal and viral pathogens. If a host population experiences an increase in mortality, to persist it must have a higher growth rate, per host, often reflecting greater resource availability per capita. We hypothesize that this could indirectly foster the pathogen, which also benefits from increased within-host resource turnover. We first bring together in a short review a number of key prior studies which illustrate resource effects on viral and fungal pathogen dynamics. We then report new results from a semi-continuous cell culture experiment with SHIV, demonstrating that higher mortality rates indeed can promote viral proliferation. We develop a simple model that illustrates dynamical consequences of these resource effects, including interesting effects such as alternative stable states and oscillatory dynamics. Our paper contributes to a growing body of literature at the interface of ecology and infectious disease epidemiology, emphasizing that host abundances alone do not drive community dynamics: the physiological state and resource content of infected hosts also strongly influence host-pathogen interactions.
Collapse
Affiliation(s)
- Val H Smith
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045
| | - Robert D Holt
- Department of Biology, University of Florida, PO Box 118525, Gainesville, FL 32611-8525. . Phone 1.352.392.6917
| | - Marilyn S Smith
- Department of Microbiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Yafen Niu
- Department of Microbiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Michael Barfield
- Department of Biology, University of Florida, PO Box 118525, Gainesville, FL 32611-8525. . Phone 1.352.392.6914
| |
Collapse
|
2
|
Gondim MVP, da Silva JX, Prosdocimi F, Leonardecz-Neto E, Franco OL, Argañaraz ER. Evidences for viral strain selection in late stages of HIV infection: an analysis of Vpu alleles. Protein J 2012; 31:184-93. [PMID: 22237729 DOI: 10.1007/s10930-011-9389-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
One of the most studied topics about AIDS disease is the presence of different progression levels in patients infected by HIV. Several studies have shown that this progression is directly associated with host genetics, although viral factors are also known to play a role. Here we explore the contribution of Vpu protein in the evolution of viral population. The sequence variation of Vpu was analyzed during HIV infection in peripheral blood monocyte cells of 12 patients in different clinical stages of HIV-1 infection early and late stages of infections, separated by at least 4 years. The clustering analysis of Vpu sequences showed higher diversity of early alleles, non-random distribution of sequences, and viral evolution strains selection. Forty-two amino acid modifications were found in the multiple alignments of the 57 different alleles found for early stage were 23 modifications were found in the late stage dataset. Interestingly fourteen alteration of early stage were located in conserved site related with Vpu functions alterations while these alterations appear with less frequency in the late stage of infection. Moreover, late stage alleles tend to be similar with the Vpu wild type sequence, suggesting viral selection toward populations harboring more efficient variants during the course of infection. This would contribute to higher infectivity and viral replication actually observed at the aggressive late stages of infection. These data, in conjunction with in vitro experiments, will be important to elucidation of the physiological relevance of Vpu protein in the pathogenic mechanisms of AIDS.
Collapse
|
3
|
Inhibition of β-TrcP-dependent ubiquitination of p53 by HIV-1 Vpu promotes p53-mediated apoptosis in human T cells. Blood 2011; 117:6600-7. [PMID: 21521785 DOI: 10.1182/blood-2011-01-333427] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
HIV-1 viral protein U (Vpu) is involved in ubiquitination and degradation of BM stromal cell Ag 2 and surface receptor CD4 through their recruitment to SCF(β-TrcP) (Skp1/Cul1/F-box) ubiquitin ligase (SCF) complex. Here, we show that specific interaction of wild-type Vpu protein with SCF complex leads to inhibition of ubiquitination and proteasomal degradation of p53 protein in a β-TrcP-dependent manner. Successful interaction of SCF(β-TrcP) complex with β-TrcP binding motif (DS(52)GNES(56)) present in Vpu is essential because mutant Vpu possessing specific alanine substitutions (DA(52)GNEA(56)) in the β-TrcP binding motif not only failed to stabilize p53 protein but was also unable to inhibit ubiquitination of p53 protein. Furthermore, Vpu competes efficiently with the interaction of p53 protein with the β-TrcP subunit of the SCF complex and inhibits subsequent ubiquitination of p53 proteins in a dose-dependent manner. We also observed potent apoptotic activity in a p53 null cell line (H-1299) that was cotransfected with p53 and Vpu-expressing plasmids. Furthermore, MOLT-3 (human T-lymphoblast) cells when infected with vesicular stomatitis virus glycoprotein-pseudotypic HIV-1 possessing wild-type vpu gene exhibited maximum activation of p53/Bax proteins and p53-mediated cell death. These findings establish a novel function of Vpu in modulating the stability of p53 protein that correlates positively with apoptosis during late stages of HIV-1 infection.
Collapse
|
4
|
Is the high virulence of HIV-1 an unfortunate coincidence of primate lentiviral evolution? Nat Rev Microbiol 2009; 7:467-76. [PMID: 19305418 DOI: 10.1038/nrmicro2111] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the subset of primate lentiviruses that contain a vpu gene - HIV-1 and its simian precursors - the Nef protein has lost the ability to down-modulate CD3, block T cell activation and suppress programmed death. Vpu counteracts a host restriction factor induced by the inflammatory cytokine interferon-alpha. I propose that the acquisition of vpu may have allowed the viral lineage that gave rise to HIV-1 to evolve towards greater pathogenicity by removing the selective pressure for a protective Nef function that prevents damagingly high levels of immune activation.
Collapse
|
5
|
Noel RJ, Rivera-Amill V, Buch S, Kumar A. Opiates, immune system, acquired immunodeficiency syndrome, and nonhuman primate model. J Neurovirol 2009; 14:279-85. [PMID: 18780228 DOI: 10.1080/13550280802078209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Both human immunodeficiency virus (HIV) and illicit drug addiction remain major health problems not only in the United States but all over globe. The effect of drug addiction on HIV/AIDS (acquired immunodeficiency syndrome) has been somewhat underexplored. However, in United States more than one fourth of HIV-positive individuals are injection drug users. Opiates are known to negatively affect the immune system, and therefore may have deleterious effects on progression of disease among HIV-infected individuals. This review discusses the effects of opiates on immune system as well as its effect on HIV replication and AIDS progression. In addition, the effects of opiates on disease progression in non-human primate model of AIDS is presented with at least one possible reason for rapid disease progression in multi-virus the challenge model.
Collapse
|
6
|
Yankee TM, Sheffer D, Liu Z, Dhillon S, Jia F, Chebloune Y, Stephens EB, Narayan O. Longitudinal study to assess the safety and efficacy of a live-attenuated SHIV vaccine in long term immunized rhesus macaques. Virology 2008; 383:103-11. [PMID: 18986665 DOI: 10.1016/j.virol.2008.09.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/06/2008] [Accepted: 09/26/2008] [Indexed: 01/19/2023]
Abstract
Live-attenuated viruses derived from SIV and SHIV have provided the most consistent protection against challenge with pathogenic viruses, but concerns regarding their long-term safety and efficacy have hampered their clinical usefulness. We report a longitudinal study in which we evaluated the long-term safety and efficacy of DeltavpuSHIV(PPC), a live virus vaccine derived from SHIV(PPC). Macaques were administered two inoculations of DeltavpuSHIV(PPC), three years apart, and followed for eight years. None of the five vaccinated macaques developed an AIDS-like disease from the vaccine. At eight years, macaques were challenged with pathogenic SIV and SHIV. None of the four macaques with detectable cellular-mediated immunity prior to challenge had detectable viral RNA in the plasma. This study demonstrates that multiple inoculations of a live vaccine virus can be used safely and can significantly extend the efficacy of the vaccine, as compared to a single inoculation, which is efficacious for approximately three years.
Collapse
Affiliation(s)
- Thomas M Yankee
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, 3025 WHW - MS 3029, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Nomaguchi M, Fujita M, Adachi A. Role of HIV-1 Vpu protein for virus spread and pathogenesis. Microbes Infect 2008; 10:960-7. [PMID: 18672082 DOI: 10.1016/j.micinf.2008.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vpu is an accessory viral protein almost unique to HIV-1 among primate immunodeficiency viruses, and has two major functions: degradation of the CD4 molecule in endoplasmic reticulum and enhancement of virion release from cells. Recent identification of a novel host restriction factor, tetherin, as a Vpu-antagonist suggests that Vpu contributes to virus spread by facilitating progeny virion production. This review focuses on the two distinct functions of Vpu and summarizes current knowledge on its virological role in the HIV-1 life cycle.
Collapse
Affiliation(s)
- Masako Nomaguchi
- Department of Virology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima-shi, Tokushima, 770-8503, Japan
| | | | | |
Collapse
|
8
|
Kumar A, Liu Z, Sheffer D, Smith M, Singh DK, Buch S, Narayan O. Protection of macaques against AIDS with a live attenuated SHIV vaccine is of finite duration. Virology 2007; 371:238-45. [PMID: 17988702 DOI: 10.1016/j.virol.2007.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 10/08/2007] [Accepted: 10/10/2007] [Indexed: 11/28/2022]
Abstract
Using background data that live vaccines against several viral pathogens are effective in inducing life-long protection against disease, we undertook studies in macaques to determine the duration of protection that two live SHIV vaccines could induce against AIDS. Earlier studies had established that macaques immunized once with a live vaccine and challenged 6 months later were protected, and that other macaques given two sequential inoculations of live vaccines were protected for at least 1 year. Protection was associated with persistence of the vaccine viruses. In this study, we sought to determine whether the duration of protection in macaques given a single inoculation of replication competent live vaccines would extend beyond 3 years. Two groups of four rhesus macaques were inoculated with two live SHIV vaccines, respectively. The viruses replicated transiently in all animals but at the 3-year time point, PCR analysis of PBMC did not detect DNA of either virus in any of the animals, and all were negative for CMI responses in the blood. All 8 animals succumbed to disease when challenged with pathogenic viruses.
Collapse
Affiliation(s)
- Anil Kumar
- Division of Pharmacology, School of Pharmacy, University of Missouri, Kansas City, MO 64108, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Priceputu E, Hanna Z, Hu C, Simard MC, Vincent P, Wildum S, Schindler M, Kirchhoff F, Jolicoeur P. Primary human immunodeficiency virus type 1 nef alleles show major differences in pathogenicity in transgenic mice. J Virol 2007; 81:4677-93. [PMID: 17314161 PMCID: PMC1900134 DOI: 10.1128/jvi.02691-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that the human immunodeficiency virus type 1 NL4-3 Nef is necessary and sufficient to induce a severe AIDS-like disease in transgenic (Tg) mice when the protein is expressed under the regulatory sequences of the human CD4 gene. We have now assayed additional Nef alleles (SF2, JR-CSF, YU10x, and NL4-3 [T71R] Nef alleles), including some from long-term nonprogressors (AD-93, 032an, and 039nm alleles) in the same Tg system and compared their pathogenicities. All these Nef alleles downregulated cell surface CD4 in human cells in vitro and also, with the exception of Nef(YU10x), in Tg CD4(+) T cells. Depletion of double-positive and single-positive thymocytes occurred with all alleles but was less pronounced in Nef(YU10x) Tg mice. A loss of peripheral CD4(+) T cells was observed with all alleles but was minimal in Nef(YU10x) Tg mice. In Nef(032an) and Nef(SF2) Tg mice, T-cell loss was severe despite lower levels of Tg expression, suggesting a higher virulence of these alleles. All Nef alleles except the Nef(YU10x) and Nef(NL4-3(T71R)) alleles induced an enhanced activated memory (CD25(+) CD69(+) CD44(high) CD45RB(low) CD62L(low)) and apoptotic phenotype. Also, all could interact with and/or activate PAK2 except the Nef(JR-CSF) allele. Organ (lung and kidney) diseases were present in Nef(NL4-3(T71R)), Nef(032an), Nef(039nm), and Nef(SF2) Tg mice, despite very low levels of Tg expression for the last strain. However, no organ disease or minimal organ disease developed in Nef(YU10x) and Nef(AD-93) Tg mice and Nef(JR-CSF) Tg mice, respectively, despite high levels of Tg expression. Our data show that important differences in the pathogenicities of various Nef alleles can be scored in Tg mice. Interestingly, our results also revealed that some phenotypes can segregate independently, such as CD4(+) T-cell depletion and activation, as well as severe depletion of thymic CD4(+) T cells and peripheral CD4(+) T cells. Therefore, expression of Nef alleles in Tg mice under the CD4C regulatory elements represents a novel assay for measuring their pathogenicity. Because of the very high similarity of this murine AIDS-like disease to human AIDS, this assay may have a predictive value regarding the behavior of Nef in infected humans.
Collapse
Affiliation(s)
- Elena Priceputu
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, 4/312, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Liu Z, Singh DK, Sheffer D, Smith MS, Dhillon S, Chebloune Y, Hegde R, Buch S, Narayan O. Immunoprophylaxis against AIDS in macaques with a lentiviral DNA vaccine. Virology 2006; 351:444-54. [PMID: 16650448 DOI: 10.1016/j.virol.2006.03.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 03/07/2006] [Accepted: 03/23/2006] [Indexed: 11/21/2022]
Abstract
We earlier reported that immunization of macaques with a reverse transcriptase-deleted SHIV(KU2) (DeltartSHIV(KU2)) plasmid that contained HIV-1(HXB2) env and SIV gag-nef induced protection against AIDS caused by challenge virus SHIV89.6P with a heterologous env. We further deleted vif and integrase from DeltartSHIV(KU2) and substituted the 3'LTR with SV40 poly A sequences, creating Delta4SHIV(KU2) (M) and a parallel construct containing gag-nef of HIV-1(SF2), Delta4SHIV(KU2) (H). Six macaques received two intramuscular injections of the (M) DNA, and another six received three injections of the (H) DNA. Three of the latter group received two post-challenge boosts with (M) DNA vaccine. Seven virus control macaques were inoculated with SHIV89.6P. All twelve immunized macaques were challenged with SHIV89.6P virus, and CMI responses were measured by ELISPOT assays. Virus control animals all developed progressive infection, whereas vaccinated macaques from both groups controlled virus replication, with plasma viral loads dropping to undetectable levels between weeks 6 and 126 p.i. This DNA vaccine was efficacious even though it encoded Env, Gag, and Nef that were genetically distinct from the proteins in the challenge virus. The DNA vaccine induced broad-based protection without using viral proteins to boost the immunity.
Collapse
Affiliation(s)
- ZhenQian Liu
- Marion Merrell Dow Laboratory of Viral Pathogenesis, Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Apetrei C, Lerche NW, Pandrea I, Gormus B, Silvestri G, Kaur A, Robertson DL, Hardcastle J, Lackner AA, Marx PA. Kuru experiments triggered the emergence of pathogenic SIVmac. AIDS 2006; 20:317-21. [PMID: 16439864 DOI: 10.1097/01.aids.0000206498.71041.0e] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Cristian Apetrei
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana 70433, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dazza MC, Ekwalanga M, Nende M, Shamamba KB, Bitshi P, Paraskevis D, Saragosti S. Characterization of a novel vpu-harboring simian immunodeficiency virus from a Dent's Mona monkey (Cercopithecus mona denti). J Virol 2005; 79:8560-71. [PMID: 15956597 PMCID: PMC1143702 DOI: 10.1128/jvi.79.13.8560-8571.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 02/24/2005] [Indexed: 02/04/2023] Open
Abstract
We report the identification of a new simian immunodeficiency virus (SIV), designated SIVden, in a naturally infected Dent's Mona monkey (Cercopithecus mona denti), which was kept as pet in Kinshasa, capital of the Democratic Republic of Congo. SIVden is genetically distinct from the previously characterized primate lentiviruses. Analysis of the full-length genomic sequence revealed the presence of a vpu open reading frame. This gene is also found in the virus lineage of human immunodeficiency virus type 1 (HIV-1) and chimpanzee immunodeficiency virus (SIVcpz) and was recently described in viruses isolated from Cercopithecus nictitans, Cercopithecus mona, and Cercopithecus cephus. The SIVden vpu coding region is shorter than the HIV-1/SIVcpz and the SIVgsn, SIVmon, and SIVmus counterparts. Unlike Pan troglodytes schweinfurthii viruses (SIVcpzPts) and Cercopithecus monkey viruses (SIVgsn, SIVmon, and SIVmus), the SIVden Vpu contains the characteristic DSGXES motif which was shown to be involved in Vpu-mediated CD4 and IkappaBalpha proteolysis in HIV-1 infected cells. Although it harbors a vpu gene, SIVden is phylogenetically closer to SIVdeb isolated from De Brazza's monkeys (Cercopithecus neglectus), which lacks a vpu gene, than to Cercopithecus monkey viruses, which harbor a vpu sequence.
Collapse
|
14
|
Singh DK, Liu Z, Sheffer D, Mackay GA, Smith M, Dhillon S, Hegde R, Jia F, Adany I, Narayan O. A noninfectious simian/human immunodeficiency virus DNA vaccine that protects macaques against AIDS. J Virol 2005; 79:3419-28. [PMID: 15731236 PMCID: PMC1075712 DOI: 10.1128/jvi.79.6.3419-3428.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian/human immunodeficiency virus SHIV(KU2) replicates with extremely high titers in macaques. In order to determine whether the DNA of the viral genome could be used as a vaccine if the DNA were rendered noninfectious, we deleted the reverse transcriptase gene from SHIVKU2 and inserted this DNA (DeltartSHIVKU2) into a plasmid that was then used to test gene expression and immunogenicity. Transfection of Jurkat and human embryonic kidney epithelial (HEK 293) cells with the DNA resulted in production of all of the major viral proteins and their precursors and transient export of a large quantity of the Gag p27 into the supernatant fluid. As expected, no infectious virus was produced in these cultures. Four macaques were injected intradermally with 2 mg of the DNA at 0, 8, and 18 weeks. The animals developed neutralizing antibodies and low enzyme-linked immunospot assay (E-SPOT) titers against SHIVKU2. These four animals and two unvaccinated control animals were then challenged with heterologous SHIV89.6P administered into their rectums. The two control animals developed viral RNA titers exceeding 10(6) copies/ml of plasma, and these titers were accompanied by the loss of CD4+ T cells by 2 weeks after challenge. The two control animals died at weeks 8 and 16, respectively. All four of the immunized animals became infected with the challenge virus but developed lower titers of viral RNA in plasma than the control animals, and the titers decreased over time in three of the four macaques. The fourth animal remained viremic and died at week 47. Whereas the control animals failed to develop E-SPOT responses, all four of the immunized animals developed anamnestic E-SPOT responses after challenge. The animal that died developed the highest E-SPOT response and was the only one that produced neutralizing antibodies against the challenge virus. These results established that noninfectious DNA of pathogenic SHIV could be used as a vaccine to prevent AIDS, even though the immunological assays used did not predict the manner in which the challenge virus would replicate in the vaccinated animals.
Collapse
Affiliation(s)
- Dinesh K Singh
- Marion Merrell Dow Laboratory of Viral Pathogenesis, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rücker E, Grivel JC, Münch J, Kirchhoff F, Margolis L. Vpr and Vpu are important for efficient human immunodeficiency virus type 1 replication and CD4+ T-cell depletion in human lymphoid tissue ex vivo. J Virol 2004; 78:12689-93. [PMID: 15507658 PMCID: PMC525056 DOI: 10.1128/jvi.78.22.12689-12693.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The relevance of the accessory vpr, vpu, and nef genes for human immunodeficiency virus type 1 (HIV-1) replication in human lymphoid tissue (HLT), the major site of viral replication in vivo, is largely unknown. Here, we show that an individual deletion of nef, vpr, or vpu significantly decreases HIV-1 replication and prevents CD4+ T-cell depletion in ex vivo HLT. However, only combined defects in all three accessory genes entirely disrupt the replicative capacity of HIV-1. Our results demonstrate that nef, vpr, and vpu are all essential for efficient viral spread in HLT, suggesting an important role in AIDS pathogenesis.
Collapse
Affiliation(s)
- Elke Rücker
- National Institute of Child Health, Building 10, Room 9D58, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
16
|
Mackay GA, Liu Z, Singh DK, Smith MS, Mukherjee S, Sheffer D, Jia F, Adany I, Sun KH, Dhillon S, Zhuge W, Narayan O. Protection Against Late-Onset AIDS in Macaques Prophylactically Immunized with a Live Simian HIV Vaccine Was Dependent on Persistence of the Vaccine Virus. THE JOURNAL OF IMMUNOLOGY 2004; 173:4100-7. [PMID: 15356160 DOI: 10.4049/jimmunol.173.6.4100] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This is a 5-year follow-up study on 12 macaques that were immunized orally with two live SHIV vaccines, six with V1 and six with V2. All 12 macaques became persistently infected after transient replication of the vaccine viruses; all were challenged vaginally 6 mo later with homologous pathogenic SHIV(KU-1). Two of the V1 group developed full-blown AIDS without evidence of vaccine virus DNA in tissues. The data on the 10 vaccinated survivors showed that all 10 became infected with SHIV(KU-1) and that DNA of both vaccine and SHIV(KU-1) viruses were present 6 mo postchallenge, with minimal replication of SHIV(KU-1). During the following 5 years, these animals remained persistently infected, but with only one of the two viruses. Six animals eliminated their vaccine virus after variable periods of time and four of these succumbed to reactivation of the challenge virus and AIDS. Five years after challenge, four latently infected animals, two with V2 and two with SHIV(KU-1), were reinoculated with SHIV(KU-1.) This resulted in transient superinfection and the animals promptly returned to their prechallenge status. Immunosuppression of the four animals 1 year later with Abs to CD8+ lymphocytes resulted in transiently productive replication of their respective latent viruses, and upon recovery of CD8+ lymphocytes, they reverted to their latent virus status. The major finding was that of eight animals that eliminated the vaccine virus, six developed AIDS. The two others harboring SHIV(KU-1) remain at risk for developing late-onset disease. The primary correlate against AIDS was persistence of the vaccine virus.
Collapse
Affiliation(s)
- Glenn A Mackay
- Marion Merrell Dow Laboratory of Viral Pathogenesis, Division of Infectious Diseases, Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Komoto S, Tsuji S, Ibrahim MS, Li YG, Warachit J, Taniguchi K, Ikuta K. The vpu protein of human immunodeficiency virus type 1 plays a protective role against virus-induced apoptosis in primary CD4(+) T lymphocytes. J Virol 2003; 77:10304-13. [PMID: 12970415 PMCID: PMC228500 DOI: 10.1128/jvi.77.19.10304-10313.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previous data revealed that primary cultures of peripheral blood mononuclear cells (PBMCs) were killed by apoptosis at higher rates after infection with two CRF01_AE primary isolates of human immunodeficiency virus type 1 (HIV-1) than after infection with five other CRF01_AE primary isolates, five subtype B primary isolates, and two subtype B laboratory strains. Here, we show evidence that mutations at the vpu gene which were exclusively identified only in the two CRF01_AE isolates mentioned above are involved in their abilities to induce massive apoptosis in primary CD4(+) T lymphocytes. The rates of virus production by these two isolates in the culture media of infected PBMCs were lower (the same as those of the other CRF01_AE isolates) than those of the subtype B isolates. To confirm the correlation between the higher apoptosis-inducing abilities and the mutations at the vpu gene, infectious molecular clone pNL4-3-based vpu mutants were constructed and examined for their apoptosis induction levels. The apoptosis induction levels after introduction of the vpu mutations were greatly increased in primary CD4(+) T lymphocytes. In contrast, the apoptosis induction abilities of these vpu mutants were lower in human T-cell line MT-4. Thus, the Vpu protein of HIV-1 could play a protective role against virus-induced apoptosis in primary CD4(+) T lymphocytes.
Collapse
Affiliation(s)
- Satoshi Komoto
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
HIV accessory genes are expressed throughout the viral life cycle and regulate wide-ranging aspects of virus replication including viral infectivity (Vif and Nef), viral gene expression (Vpr) and progeny virion production (Vpu). While in many cases the molecular basis of accessory protein function is not fully understood, a consensus is emerging that these viral products are generally devoid of enzymatic activity and instead act as multifunctional adapters, subverting normal cellular processes to serve the needs of the virus. This review focuses on presenting our current knowledge of the HIV-1-specific Vpu protein and its essential role in regulating viral particle release, viral load and expression of the CD4 receptor.
Collapse
Affiliation(s)
- Stephan Bour
- Bioinformatics Core Facility, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4, Center Drive, Room 337, Bethesda, MD 20892-0460, USA.
| | | |
Collapse
|
19
|
Kumar A, Mukherjee S, Shen J, Buch S, Li Z, Adany I, Liu Z, Zhuge W, Piatak M, Lifson J, McClure H, Narayan O. Immunization of macaques with live simian human immunodeficiency virus (SHIV) vaccines conferred protection against AIDS induced by homologous and heterologous SHIVs and simian immunodeficiency virus. Virology 2002; 301:189-205. [PMID: 12359422 DOI: 10.1006/viro.2002.1544] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To evaluate the vaccine potential of SHIVs attenuated by deletion of viral accessory genes, seven rhesus macaques were sequentially immunized with Delta vpu Delta nefSHIV-4 (vaccine-I) followed by Delta vpuSHIV(PPC) (vaccine-II). Despite the absence of virological evidence of productive infection with the vaccine strains, based on analysis of infectivity among peripheral blood mononuclear cells (PBMC) of the vaccinated animals, all seven animals developed binding as well as neutralizing antibodies against both vaccine-I and -II. The animals also developed vaccine virus-specific CTLs that recognized homologous as well as heterologous pathogenic SHIVs and SIV, and also soluble inhibitory factors that blocked the in vitro replication of the vaccine strains and different challenge viruses. Virus-specific cellular and humoral responses were sustained throughout a 58-week prechallenge period. To model aspects of natural transmission, the animals received a mucosal (rectal) challenge, with a mixture of three challenge viruses, SHIV(KU), SHIV(89.6)P, and SIV(mac)R71/17E. Two mock-vaccinated control animals inoculated with the same mixture of challenge viruses developed large numbers of infectious PBMC, high plasma viremia, and precipitous loss of CD4(+) T cells. The control animals did not develop any immune responses and succumbed to AIDS between 6 and 7 weeks postchallenge. All seven vaccinated animals became infected with challenge viruses as indicated by the presence of infectious cells in the PBMC and/or viral RNA in plasma. However, peak plasma viremia in vaccinates was two to nearly five logs lower than in the control animals and later plasma viral RNA became undetectable in all vaccinates. Vaccinated animals maintained normal CD4(+) T cell levels throughout the study. Challenge with pathogenic viruses caused massive anamnestic responses as determined by quantitation of virus-specific CD4(+) and CD8(+) T cells by intracellular IFN-gamma staining, and these cells persisted for at least 74 weeks. The study is still in progress and at this time DNA of SIV has become undetectable in lymph nodes of six of the seven vaccinates, SHIV(89.6)P in five of the seven, and SHIV(KU) in three of the seven animals.
Collapse
Affiliation(s)
- Anil Kumar
- University of Kansas Medical Center, Department of Microbiology, Molecular Genetics and Immunology, Kansas City 66160, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Smith MS, Niu Y, Li Z, Adany I, Pinson DM, Liu ZQ, Berry T, Sheffer D, Jia F, Narayan O. Systemic infection and limited replication of SHIV vaccine virus in brains of macaques inoculated intracerebrally with infectious viral DNA. Virology 2002; 301:130-5. [PMID: 12359453 DOI: 10.1006/viro.2002.1548] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SHIV deleted in two accessory genes, DeltavpuDeltanef SHIV(PPC), functioned well as a vaccine against later challenge with highly pathogenic SHIV(KU), and it was able to reach the brain after oral inoculation of live virus. In this study, the proviral genome cloned into a plasmid was inoculated as DNA intracerebrally and spread systemically. Few regions of the brain had detectable proviral DNA by real-time PCR. Two measures of virus replication, detection of viral mRNA expression and circular proviral DNA, were negative for those brain regions, with the exception of the infection site in the right parietal lobe, whereas lymphoid tissues were positive by both measures. Histopathological analyses of all the sampled brain and spinal cord regions did not reveal any abnormalities. Despite intracerebral inoculation of the viral DNA, the brain was not targeted for high levels of virus replication.
Collapse
Affiliation(s)
- Marilyn S Smith
- Marion Merrell Dow Laboratory of Viral Pathogenesis, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|