1
|
Tonne JM, Budzik K, Carrasco TF, Ebbert L, Thompson J, Nace R, Kendall B, Diaz RM, Russell SJ, Vile RG. Smoldering oncolysis by foamy virus carrying CD19 as a CAR target escapes CAR T detection by genomic modification. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200852. [PMID: 39220111 PMCID: PMC11362648 DOI: 10.1016/j.omton.2024.200852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/10/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have had limited success against solid tumors. Here, we used an oncolytic foamy virus (oFV) to display a model CAR target antigen (CD19) on tumors in combination with anti-CD19 CAR T cells. We generated oFV-Δbel2 and oFV-bel2 vectors to test the efficiency and stability of viral/CD19 spread. While both viruses conferred equal CAR T killing in vitro, the oFV-Δbel2 virus acquired G-to-A mutations, whereas oFV-bel2 virus had genome deletions. In subcutaneous tumor models in vivo, CAR T cells led to a significant decrease in oFV-specific bioluminescence, confirming clearance of oFV-infected tumor cells. However, the most effective therapy was with high-dose oFV in the absence of CAR T cells, indicating that CAR T clearance of oFV was detrimental. Moreover, in tumors that escaped CAR T cell treatment, resurgent virus contained deletions within the oFV-CD19 transgene, allowing the virus to escape CAR T elimination. Therefore, oFV represents a slow smoldering type of oncolytic virus, whose chronic spread through tumors generates anti-tumor therapy, which is abolished by CAR T therapy. These results suggest that further development of this oncolytic platform, with additional immunotherapeutic arming, may allow for an effective combination of chronic oncolysis.
Collapse
Affiliation(s)
- Jason M. Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Karol Budzik
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Talia Fernandez Carrasco
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Vyriad Inc, Rochester, MN 55901, USA
| | - Landon Ebbert
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Rebecca Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin Kendall
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Rosa M. Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Vyriad Inc, Rochester, MN 55901, USA
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Seroprevalence of feline foamy virus in domestic cats in Poland. J Vet Res 2021; 65:407-413. [PMID: 35111993 PMCID: PMC8775732 DOI: 10.2478/jvetres-2021-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
Feline foamy virus (FFVfca) is widespread and its prevalence in naturally infected domestic cats ranges between 30% and 80% worldwide. The infection is persistent, with a sustained antibody response in FFVfca-positive cats; however to date, no defined disease or clinical symptoms have been proved to be associated with it. The goal of the presented study was to determine the prevalence of FFVfca infection in domestic cats in Poland.
Material and Methods
A total of 223 serum samples collected from domestic cats were tested with a glutathione S-transferase capture ELISA test to detect antibodies specific to capsid (Gag), accessory (Bet) and envelope (Env) FFVfca antigens. A Western blot test was used to confirm the ELISA results.
Results
The cut-off value for the Gag antigen was established by calculation and evaluation with the immunoblotting assay. The cut-off values for Bet and Env were calculated from the reactivity of Gag-negative samples. The sera of 99 cats (44%) showed reactivity to Gag, those of 80 did so (35.9 %) to Bet, while only 56 samples (25%) were reactive to Env. Only 51 (22.9%) sera were positive for all antigens. The main diagnostic antigen was selected to be Gag. A statistically significant association was found between FFVfca status and the age of the cat.
Conclusions
This study proved the high seroprevalence of FFVfca in domestic cats in Poland for the first time and confirmed that adult cats are at higher FFVfca infection risk than preadult cats. Its results correspond to those reported from other countries.
Collapse
|
3
|
Oncolytic Foamy Virus - generation and properties of a nonpathogenic replicating retroviral vector system that targets chronically proliferating cancer cells. J Virol 2021; 95:JVI.00015-21. [PMID: 33692205 PMCID: PMC8139661 DOI: 10.1128/jvi.00015-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nonpathogenic retroviruses of the Spumaretrovirinae subfamily can persist long-term in the cytoplasm of infected cells, completing their lifecycle only after the nuclear membrane dissolves at the time of cell division. Since the targeting of slowly dividing cancer cells remains an unmet need in oncolytic virotherapy we constructed a replication competent Foamy Virus vector (oFV) from the genomes of two chimpanzee Simian Foamy Viruses (PAN1 and PAN2) and inserted a GFP transgene in place of the bel-2 open reading frame. oFV-GFP infected and propagated with slow kinetics in multiple human tumor cell lines, inducing a syncytial cytopathic effect. Infection of growth arrested MRC5 cells was not productive, but oFV genomes persisted in the cytoplasm and the productive viral lifecycle resumed when cell division was later restored. In vivo, the virus propagated extensively in intraperitoneal ovarian cancer xenografts, slowing tumor growth, significantly prolonging survival of the treated mice and sustaining GFP transgene expression for at least 45 days. Our data indicate that oFV is a promising new replication-competent viral and gene delivery platform for efficient targeting of the most fundamental trait of cancer cells, their ability to sustain chronic proliferation.Significance:The infectivity of certain retroviruses is limited to dividing cells, which makes them attractive tools for targeting cancer cell proliferation. Previously developed replication-competent gammaretroviral vectors spread efficiently in rapidly dividing cancer cells, but not in cancer cells that divide more slowly. In contrast to rapidly proliferating transplantable mouse tumors, slow proliferation is a hallmark of human cancers and may have contributed to the clinical failure of the preclinically promising Murine Leukemia Virus vector Toca511 which failed to show efficacy in a phase 3 clinical trial in patients with glioblastoma. The studies presented in our manuscript show that oncolytic Foamy Virus (oFV) vectors are capable of persisting unintegrated in quiescent cells and resuming their life cycle once the cells start dividing again. This property of oFVs, together with their lack of pathogenicity and their ability to catalyze the fusion of infected cancer cells, makes them an attractive platform for further investigation.
Collapse
|
4
|
Functional Analyses of Bovine Foamy Virus-Encoded miRNAs Reveal the Importance of a Defined miRNA for Virus Replication and Host-Virus Interaction. Viruses 2020; 12:v12111250. [PMID: 33147813 PMCID: PMC7693620 DOI: 10.3390/v12111250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
In addition to regulatory or accessory proteins, some complex retroviruses gain a repertoire of micro-RNAs (miRNAs) to regulate and control virus–host interactions for efficient replication and spread. In particular, bovine and simian foamy viruses (BFV and SFV) have recently been shown to express a diverse set of RNA polymerase III-directed miRNAs, some with a unique primary miRNA double-hairpin, dumbbell-shaped structure not known in other viruses or organisms. While the mechanisms of expression and structural requirements have been studied, the functional importance of these miRNAs is still far from understood. Here, we describe the in silico identification of BFV miRNA targets and the subsequent experimental validation of bovine Ankyrin Repeat Domain 17 (ANKRD17) and Bax-interacting factor 1 (Bif1) target genes in vitro and, finally, the suppression of ANKRD17 downstream genes in the affected pathway. Deletion of the entire miRNA cassette in the non-coding part of the U3 region of the long terminal repeats attenuated replication of corresponding BFV mutants in bovine cells. This repression can be almost completely trans-complemented by the most abundant miRNA BF2-5p having the best scores for predicted and validated BFV miRNA target genes. Deletion of the miRNA cassette does not grossly affect particle release and overall particle composition.
Collapse
|
5
|
Ledesma-Feliciano C, Troyer RM, Zheng X, Miller C, Cianciolo R, Bordicchia M, Dannemiller N, Gagne R, Beatty J, Quimby J, Löchelt M, VandeWoude S. Feline Foamy Virus Infection: Characterization of Experimental Infection and Prevalence of Natural Infection in Domestic Cats with and without Chronic Kidney Disease. Viruses 2019; 11:E662. [PMID: 31330990 PMCID: PMC6669521 DOI: 10.3390/v11070662] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/22/2022] Open
Abstract
Foamy viruses (FVs) are globally prevalent retroviruses that establish apparently apathogenic lifelong infections. Feline FV (FFV) has been isolated from domestic cats with concurrent diseases, including urinary syndromes. We experimentally infected five cats with FFV to study viral kinetics and tropism, peripheral blood mononuclear cell (PBMC) phenotype, urinary parameters, and histopathology. A persistent infection of primarily lymphoid tropism was detected with no evidence of immunological or hematologic perturbations. One cat with a significant negative correlation between lymphocytes and PBMC proviral load displayed an expanded FFV tissue tropism. Significantly increased blood urea nitrogen and ultrastructural kidney changes were noted in all experimentally infected cats, though chemistry parameters were not outside of normal ranges. Histopathological changes were observed in the brain, large intestine, and other tissues. In order to determine if there is an association of FFV with Chronic Kidney Disease, we additionally screened 125 Australian pet cats with and without CKD for FFV infection and found that FFV is highly prevalent in older cats, particularly in males with CKD, though this difference was not statistically significant compared to controls. Acute FFV infection was clinically silent, and while some measures indicated mild changes, there was no overt association of FFV infection with renal disease.
Collapse
Affiliation(s)
- Carmen Ledesma-Feliciano
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Aurora, CO 80045, USA
| | - Ryan M Troyer
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Department of Microbiology and Immunology, University of Western Ontario, 1151 Richmond St., London, ON N6A 5C1, Canada
| | - Xin Zheng
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Craig Miller
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74075, USA
| | - Rachel Cianciolo
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Matteo Bordicchia
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Nicholas Dannemiller
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Roderick Gagne
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Julia Beatty
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Jessica Quimby
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Department of Veterinary Clinical Sciences, The Ohio State University Veterinary Medical Center, 601 Vernon Tharpe Street, Columbus, OH 43210, USA
| | - Martin Löchelt
- Department of Viral Transformation Mechanisms, Research Program Infection, Inflammation and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
6
|
Lee GE, Kim J, Shin CG. Single residue mutation in integrase catalytic core domain affects feline foamy viral DNA integration. Biosci Biotechnol Biochem 2018; 83:270-280. [PMID: 30319037 DOI: 10.1080/09168451.2018.1530969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
DD(35)E motif in catalytic core domain (CCD) of integrase (IN) is extremely involved in retroviral integration step. Here, nine single residue mutants of feline foamy virus (FFV) IN were generated to study their effects on IN activities and on viral replication. As expected, mutations in the highly conserved D107, D164, and E200 residues abolished all IN catalytic activities (3'-end processing, strand transfer, and disintegration) as well as viral infectivity by blocking viral DNA integration into cellular DNA. However, Q165, Y191, and S195 mutants, which are located closely to DDE motif were observed to have diverse levels of enzymatic activities, compared to those of the wild type IN. Their mutant viruses produced by one-cycle transfection showed different infectivity on their natural host cells. Therefore, it is likely that effects of single residue mutation at DDE motif is critical on viral replication depending on the position of the residues.
Collapse
Affiliation(s)
- Ga-Eun Lee
- a Department of Systems Biotechnology , Chung-Ang University , Anseong , Republic of Korea
| | - Jinsun Kim
- a Department of Systems Biotechnology , Chung-Ang University , Anseong , Republic of Korea
| | - Cha-Gyun Shin
- a Department of Systems Biotechnology , Chung-Ang University , Anseong , Republic of Korea
| |
Collapse
|
7
|
Wei G, Kehl T, Bao Q, Benner A, Lei J, Löchelt M. The chromatin binding domain, including the QPQRYG motif, of feline foamy virus Gag is required for viral DNA integration and nuclear accumulation of Gag and the viral genome. Virology 2018; 524:56-68. [PMID: 30145377 DOI: 10.1016/j.virol.2018.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 01/15/2023]
Abstract
The retroviral Gag protein, the major component of released particles, plays different roles in particle assembly, maturation or infection of new host cells. Here, we characterize the Gag chromatin binding site including the highly conserved QPQRYG motif of feline foamy virus, a member of the Spumaretrovirinae. Mutagenesis of critical residues in the chromatin binding site/QPQRYG motif almost completely abrogates viral DNA integration and reduces nuclear accumulation of Gag and viral DNA. Genome packaging, reverse transcription, particle release and uptake into new target cells are not affected. The integrity of the QPQRYG motif appears to be important for processes after cytosolic entry, likely influencing incoming virus capsids or disassembly intermediates but not Gag synthesized de novo in progeny virus-producing cells. According to our data, chromatin binding is a shared feature among foamy viruses but further work is needed to understand the mechanisms involved.
Collapse
Affiliation(s)
- Guochao Wei
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Timo Kehl
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Qiuying Bao
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Janet Lei
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Martin Löchelt
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany.
| |
Collapse
|
8
|
Ledesma-Feliciano C, Hagen S, Troyer R, Zheng X, Musselman E, Slavkovic Lukic D, Franke AM, Maeda D, Zielonka J, Münk C, Wei G, VandeWoude S, Löchelt M. Replacement of feline foamy virus bet by feline immunodeficiency virus vif yields replicative virus with novel vaccine candidate potential. Retrovirology 2018; 15:38. [PMID: 29769087 PMCID: PMC5956581 DOI: 10.1186/s12977-018-0419-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/03/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Hosts are able to restrict viral replication to contain virus spread before adaptive immunity is fully initiated. Many viruses have acquired genes directly counteracting intrinsic restriction mechanisms. This phenomenon has led to a co-evolutionary signature for both the virus and host which often provides a barrier against interspecies transmission events. Through different mechanisms of action, but with similar consequences, spumaviral feline foamy virus (FFV) Bet and lentiviral feline immunodeficiency virus (FIV) Vif counteract feline APOBEC3 (feA3) restriction factors that lead to hypermutation and degradation of retroviral DNA genomes. Here we examine the capacity of vif to substitute for bet function in a chimeric FFV to assess the transferability of anti-feA3 factors to allow viral replication. RESULTS We show that vif can replace bet to yield replication-competent chimeric foamy viruses. An in vitro selection screen revealed that an engineered Bet-Vif fusion protein yields suboptimal protection against feA3. After multiple passages through feA3-expressing cells, however, variants with optimized replication competence emerged. In these variants, Vif was expressed independently from an N-terminal Bet moiety and was stably maintained. Experimental infection of immunocompetent domestic cats with one of the functional chimeras resulted in seroconversion against the FFV backbone and the heterologous FIV Vif protein, but virus could not be detected unambiguously by PCR. Inoculation with chimeric virus followed by wild-type FFV revealed that repeated administration of FVs allowed superinfections with enhanced antiviral antibody production and detection of low level viral genomes, indicating that chimeric virus did not induce protective immunity against wild-type FFV. CONCLUSIONS Unrelated viral antagonists of feA3 cellular restriction factors can be exchanged in FFV, resulting in replication competence in vitro that was attenuated in vivo. Bet therefore may have additional functions other than A3 antagonism that are essential for successful in vivo replication. Immune reactivity was mounted against the heterologous Vif protein. We conclude that Vif-expressing FV vaccine vectors may be an attractive tool to prevent or modulate lentivirus infections with the potential option to induce immunity against additional lentivirus antigens.
Collapse
Affiliation(s)
- Carmen Ledesma-Feliciano
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sarah Hagen
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, (Deutsches Krebsforschungszentrum Heidelberg, DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Ryan Troyer
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.,Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Xin Zheng
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Esther Musselman
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Dragana Slavkovic Lukic
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, (Deutsches Krebsforschungszentrum Heidelberg, DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Department of Internal Medicine II, Division of Hematology, University Hospital of Würzburg, Würzburg, Germany
| | - Ann-Mareen Franke
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, (Deutsches Krebsforschungszentrum Heidelberg, DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Roche Pharma AG, Grenzach-Wyhlen, Germany
| | - Daniel Maeda
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, (Deutsches Krebsforschungszentrum Heidelberg, DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Jörg Zielonka
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Roche Glycart AG, Schlieren, 8952, Switzerland
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Guochao Wei
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, (Deutsches Krebsforschungszentrum Heidelberg, DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Division of Infectious Disease, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Martin Löchelt
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, (Deutsches Krebsforschungszentrum Heidelberg, DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| |
Collapse
|
9
|
Liu Y, Betts MJ, Lei J, Wei G, Bao Q, Kehl T, Russell RB, Löchelt M. Mutagenesis of N-terminal residues of feline foamy virus Gag reveals entirely distinct functions during capsid formation, particle assembly, Gag processing and budding. Retrovirology 2016; 13:57. [PMID: 27549192 PMCID: PMC4994201 DOI: 10.1186/s12977-016-0291-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Foamy viruses (FVs) of the Spumaretrovirinae subfamily are distinct retroviruses, with many features of their molecular biology and replication strategy clearly different from those of the Orthoretroviruses, such as human immunodeficiency, murine leukemia, and human T cell lymphotropic viruses. The FV Gag N-terminal region is responsible for capsid formation and particle budding via interaction with Env. However, the critical residues or motifs in this region and their functional interaction are currently ill-defined, especially in non-primate FVs. RESULTS Mutagenesis of N-terminal Gag residues of feline FV (FFV) reveals key residues essential for either capsid assembly and/or viral budding via interaction with the FFV Env leader protein (Elp). In an in vitro Gag-Elp interaction screen, Gag mutations abolishing particle assembly also interfered with Elp binding, indicating that Gag assembly is a prerequisite for this highly specific interaction. Gradient sedimentation analyses of cytosolic proteins indicate that wild-type Gag is mostly assembled into virus capsids. Moreover, proteolytic processing of Gag correlates with capsid assembly and is mostly, if not completely, independent from particle budding. In addition, Gag processing correlates with the presence of packaging-competent FFV genomic RNA suggesting that Pol encapsidation via genomic RNA is a prerequisite for Gag processing. Though an appended heterogeneous myristoylation signal rescues Gag particle budding of mutants unable to form capsids or defective in interacting with Elp, it fails to generate infectious particles that co-package Pol, as evidenced by a lack of Gag processing. CONCLUSIONS Changes in proteolytic Gag processing, intracellular capsid assembly, particle budding and infectivity of defined N-terminal Gag mutants highlight their essential, distinct and only partially overlapping roles during viral assembly and budding. Discussion of these findings will be based on a recent model developed for Gag-Elp interactions in prototype FV.
Collapse
Affiliation(s)
- Yang Liu
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Matthew J Betts
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Janet Lei
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Department of Oncology, University of Oxford, Oxford, UK
| | - Guochao Wei
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Qiuying Bao
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Biology Department, East China Normal University, Shanghai, China
| | - Timo Kehl
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Robert B Russell
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Martin Löchelt
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| |
Collapse
|
10
|
Lei J, Osen W, Gardyan A, Hotz-Wagenblatt A, Wei G, Gissmann L, Eichmüller S, Löchelt M. Replication-Competent Foamy Virus Vaccine Vectors as Novel Epitope Scaffolds for Immunotherapy. PLoS One 2015; 10:e0138458. [PMID: 26397953 PMCID: PMC4580568 DOI: 10.1371/journal.pone.0138458] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/31/2015] [Indexed: 12/19/2022] Open
Abstract
The use of whole viruses as antigen scaffolds is a recent development in vaccination that improves immunogenicity without the need for additional adjuvants. Previous studies highlighted the potential of foamy viruses (FVs) in prophylactic vaccination and gene therapy. Replication-competent FVs can trigger immune signaling and integrate into the host genome, resulting in persistent antigen expression and a robust immune response. Here, we explored feline foamy virus (FFV) proteins as scaffolds for therapeutic B and T cell epitope delivery in vitro. Infection- and cancer-related B and T cell epitopes were grafted into FFV Gag, Env, or Bet by residue replacement, either at sites of high local sequence homology between the epitope and the host protein or in regions known to tolerate sequence alterations. Modified proviruses were evaluated in vitro for protein steady state levels, particle release, and virus titer in permissive cells. Modification of Gag and Env was mostly detrimental to their function. As anticipated, modification of Bet had no impact on virion release and affected virus titers of only some recombinants. Further evaluation of Bet as an epitope carrier was performed using T cell epitopes from the model antigen chicken ovalbumin (OVA), human tyrosinase-related protein 2 (TRP-2), and oncoprotein E7 of human papillomavirus type 16 (HPV16E7). Transfection of murine cells with constructs encoding Bet-epitope chimeric proteins led to efficient MHC-I-restricted epitope presentation as confirmed by interferon-gamma enzyme-linked immunospot assays using epitope-specific cytotoxic T lymphocyte (CTL) lines. FFV infection-mediated transduction of cells with epitope-carrying Bet also induced T-cell responses, albeit with reduced efficacy, in a process independent from the presence of free peptides. We show that primate FV Bet is also a promising T cell epitope carrier for clinical translation. The data demonstrate the utility of replication-competent and -attenuated FVs as antigen carriers in immunotherapy.
Collapse
Affiliation(s)
- Janet Lei
- Division of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfram Osen
- Division of Translational Immunology, Research Program Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adriane Gardyan
- Division of Translational Immunology, Research Program Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Bioinformatics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guochao Wei
- Division of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lutz Gissmann
- Division of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Eichmüller
- Division of Translational Immunology, Research Program Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Löchelt
- Division of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Blochmann R, Curths C, Coulibaly C, Cichutek K, Kurth R, Norley S, Bannert N, Fiebig U. A novel small animal model to study the replication of simian foamy virus in vivo. Virology 2014; 448:65-73. [DOI: 10.1016/j.virol.2013.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/09/2013] [Accepted: 09/29/2013] [Indexed: 10/26/2022]
|
12
|
Mühle M, Hoffmann K, Löchelt M, Denner J. Construction and characterisation of replicating foamy viral vectors expressing HIV-1 epitopes recognised by broadly neutralising antibodies. Antiviral Res 2013; 100:314-20. [PMID: 24055836 DOI: 10.1016/j.antiviral.2013.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/26/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
Abstract
With the aim to develop a replicating vector system for the delivery of HIV-1 antigens on the basis of an apathogenic foamy virus we recently showed that immunisation with purified recombinant hybrid antigens composed of the feline foamy virus Bet protein and parts of the transmembrane envelope protein of HIV-1 induced antibodies with an epitope specificity identical to that of the broadly neutralising antibody 2F5 (Mühle et al., Immunol Res., 2013, 56:61-72). Here we set out to further improve the HIV-1 inserts consisting of the membrane proximal external region (MPER) and the fusion peptide proximal region (FPPR) by stepwise shortening distinct linker residues between both domains. In a subset of these antigens, enhanced recognition by 2F5 and 4E10 was observed, indicating that a specific positioning of FPPR and MPER domains is critical for improved antibody binding. Introduction of these optimised inserts as well as of the MPER domain alone into the feline foamy virus backbone was compatible with virus replication, giving viral titres similar to wild-type virus after extended passaging. Most importantly, expression of the HIV-1 transgenes in infected feline CRFK cells remained stable in three out of four constructs and was detectable after serial passages for several weeks. These data encourage further testing of these vectors in vivo, which may allow insights into the necessity of affinity maturation for the induction of broadly reactive HIV-1 antibodies.
Collapse
Affiliation(s)
- Michael Mühle
- Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | | | | | | |
Collapse
|
13
|
Liu W, Lei J, Liu Y, Slavkovic Lukic D, Räthe AM, Bao Q, Kehl T, Bleiholder A, Hechler T, Löchelt M. Feline foamy virus-based vectors: advantages of an authentic animal model. Viruses 2013; 5:1702-18. [PMID: 23857307 PMCID: PMC3738957 DOI: 10.3390/v5071702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/13/2013] [Accepted: 06/25/2013] [Indexed: 02/07/2023] Open
Abstract
New-generation retroviral vectors have potential applications in vaccination and gene therapy. Foamy viruses are particularly interesting as vectors, because they are not associated to any disease. Vector research is mainly based on primate foamy viruses (PFV), but cats are an alternative animal model, due to their smaller size and the existence of a cognate feline foamy virus (FFV). The potential of replication-competent (RC) FFV vectors for vaccination and replication-deficient (RD) FFV-based vectors for gene delivery purposes has been studied over the past years. In this review, the key achievements and functional evaluation of the existing vectors from in vitro cell culture systems to out-bred cats will be described. The data presented here demonstrate the broad application spectrum of FFV-based vectors, especially in pathogen-specific prophylactic and therapeutic vaccination using RD vectors in cats and in classical gene delivery. In the cat-based system, FFV-based vectors provide an advantageous platform to evaluate and optimize the applicability, efficacy and safety of foamy virus (FV) vectors, especially the understudied aspect of FV cell and organ tropism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Martin Löchelt
- Department of Genome Modifications, Research Program Infection and Cancer, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; E-Mails: (W.L.); (J.L.); (Y.L.); (D.S.L.); (A.-M.R.); (Q.B.); (T.K.); (A.B.); (T.H.)
| |
Collapse
|
14
|
Mühle M, Hoffmann K, Löchelt M, Denner J. Immunisation with foamy virus Bet fusion proteins as novel strategy for HIV-1 epitope delivery. Immunol Res 2013; 56:61-72. [PMID: 23440699 DOI: 10.1007/s12026-013-8387-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The induction of 2F5- and 4E10-like antibodies broadly neutralising HIV-1 and targeting the membrane external proximal region (MPER) of the transmembrane envelope protein gp41 would be a major advancement for the development of a preventive HIV-1 vaccine, but successful attempts remain rare. Recent studies demonstrated that broadly reactive antibodies develop relatively late during infection and after intensive affinity maturation. Therefore, a prolonged antigen delivery might be beneficial to induce them. Replicating foamy viruses which are characterised by apathogenic but persistent infection could represent suitable carrier viruses for this purpose. In order to develop such a system, we modified the accessory foamy virus Bet protein to contain the MPER of gp41, or the MPER linked to the stabilising fusion peptide proximal region of gp41 and analysed here the antigenic and immunogenic properties of such hybrid proteins. The antigens, expressed and purified to homogeneity, were recognised by the monoclonal antibodies 2F5 and 4E10 with nanomolar affinities and induced high levels of antibodies specific to gp41 after immunisation of rats. The antisera also bound to virus particles attached to infected cells, and peptide-based epitope mapping showed that they recognised the 2F5 epitope. Although no HIV-1 neutralising activity was observed, the presented data demonstrate that using the foamy virus Bet for HIV-1 epitope delivery is successfully applicable. Together with the attractive potential for sustained antigen expression after transfer to replicating virus, these results should therefore provide a first basis for the development of chimeric foamy viruses as novel HIV-1 vaccine vectors.
Collapse
Affiliation(s)
- Michael Mühle
- Center for HIV and Retrovirology, Robert Koch Institute, Berlin, Germany
| | | | | | | |
Collapse
|
15
|
Chareza S, Slavkovic Lukic D, Liu Y, Räthe AM, Münk C, Zabogli E, Pistello M, Löchelt M. Molecular and functional interactions of cat APOBEC3 and feline foamy and immunodeficiency virus proteins: different ways to counteract host-encoded restriction. Virology 2012; 424:138-46. [PMID: 22265237 DOI: 10.1016/j.virol.2011.12.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/23/2011] [Accepted: 12/26/2011] [Indexed: 11/28/2022]
Abstract
Defined host-encoded feline APOBEC3 (feA3) cytidine deaminases efficiently restrict the replication and spread of exogenous retroviruses like Feline Immunodeficiency Virus (FIV) and Feline Foamy Virus (FFV) which developed different feA3 counter-acting strategies. Here we characterize the molecular interaction of FFV proteins with the diverse feA3 proteins. The FFV accessory protein Bet is the virus-encoded defense factor which is shown here to bind all feA3 proteins independent of whether they restrict FFV, a feature shared with FIV Vif that induces degradation of all feA3s including those that do not inactivate FIV. In contrast, only some feA3 proteins bind to FFV Gag, a pattern that in part reflects the restriction pattern detected. Additionally, one-domain feA3 proteins can homo- and hetero-dimerize in vitro, but a trans-dominant phenotype of any of the low-activity feA3 forms on FFV restriction by one of the highly-active feA3Z2 proteins was not detectable.
Collapse
Affiliation(s)
- Sarah Chareza
- German Cancer Research Center (DKFZ), Research Program Infection and Cancer, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
N-terminally myristoylated feline foamy virus Gag allows Env-independent budding of sub-viral particles. Viruses 2011; 3:2223-37. [PMID: 22163342 PMCID: PMC3230849 DOI: 10.3390/v3112223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 01/09/2023] Open
Abstract
Foamy viruses (FVs) are distinct retroviruses classified as Spumaretrovirinae in contrast to the other retroviruses, the Orthoretrovirinae. As a unique feature of FVs, Gag is not sufficient for sub-viral particle (SVP) release. In primate and feline FVs (PFV and FFV), particle budding completely depends on the cognate FV Env glycoproteins. It was recently shown that an artificially added N-terminal Gag myristoylation signal (myr-signal) overcomes this restriction in PFV inducing an Orthoretrovirus-like budding phenotype. Here we show that engineered, heterologous N-terminal myr-signals also induce budding of the distantly related FFV Gag. The budding efficiency depends on the myr-signal and its location relative to the N-terminus of Gag. When the first nine amino acid residues of FFV Gag were replaced by known myr-signals, the budding efficiency as determined by the detection of extracellular SVPs was low. In contrast, adding myr-signals to the intact N-terminus of FFV Gag resulted in a more efficient SVP release. Importantly, budding of myr-Gag proteins was sensitive towards inhibition of cellular N-myristoyltransferases. As expected, the addition or insertion of myr-signals that allowed Env-independent budding of FFV SVPs also retargeted Gag to plasma membrane-proximal sites and other intracellular membrane compartments. The data confirm that membrane-targeted FV Gag has the capacity of SVP formation.
Collapse
|
17
|
Liu W, Backes P, Löchelt M. Importance of the major splice donor and redefinition of cis-acting sequences of gutless feline foamy virus vectors. Virology 2009; 394:208-17. [PMID: 19775717 DOI: 10.1016/j.virol.2009.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/07/2009] [Accepted: 08/19/2009] [Indexed: 12/18/2022]
Abstract
Foamy virus vectors are potent alternatives to lenti- and gamma-retroviral vectors for gene therapy. To construct and optimize gutless feline foamy virus (FFV) replication-deficient (RD) vectors, viral elements essential for optimal efficient marker gene transduction were characterized and fine-mapped and packaging clones constructed. For these purposes, new Gag and Pol expression clones which allow efficient expression of packaging proteins and vectors carrying deletions in coding and non-coding regions of the genome were constructed and functionally evaluated. These studies demonstrate that the 5' major splice donor (5' SD) is indispensable for RD vectors while defined mutations introduced to inactivate the gag start codon improve transgene delivery efficiency. Based on these findings, new gutless FFV vectors were generated yielding un-concentrated vector titers above 10(5) transducing units (TU)/ml. By minimizing the second cis-acting sequence in the pol gene, only 3.8 kb viral sequences are maintained in the novel gutless FFV RD vectors.
Collapse
Affiliation(s)
- Weibin Liu
- Division of Genome Modifications and Carcinogenesis, Focus Infection and Cancer, German Cancer Research Center, (F020), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
18
|
German AC, Harbour DA, Helps CR, Gruffydd-Jones TJ. Is feline foamy virus really apathogenic? Vet Immunol Immunopathol 2008; 123:114-8. [PMID: 18342375 DOI: 10.1016/j.vetimm.2008.01.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Feline foamy virus (FFV) is a retrovirus commonly found in cats. It is generally thought to be apathogenic, making it a suitable candidate as a gene therapy vector. However, there have been reports of association of FFV with chronic progressive arthritis and a cofactor effect with feline immunodeficiency virus. This study investigated experimental FFV infection and whether this was associated with signs of disease. Eight young specific pathogen free cats were inoculated intramuscularly with FFV. The cats were examined twice weekly and blood and pharyngeal samples were taken. Haematology, biochemistry and FFV quantitative polymerase chain reaction (qPCR) were performed. Tissue samples were also collected throughout the six month period. FFV was initially detected by qPCR in the blood within the first two weeks of infection and viraemia persisted throughout the study. Two peaks of viraemia were observed, at day 20 (80-170FFU/ml blood) and day 155 (332-415FFU/ml blood). FFV was also consistently detected in oropharyngeal samples after day 36. Anti-FFV IgG was detected in all cats by ELISA; antibody levels had an early peak around day 35 and then increased again following the second rise in circulating viral load. All cats remained clinically normal, except for one cat with an unrelated gingivitis. None of the cats developed pyrexia. The biochemical profile and blood cell counts remained within normal limits except for one cat with a persistent eosinophilia. Initial fluctuations in white cell counts settled within three weeks and did not deviate outside of the normal ranges. All tissue samples contained FFV DNA; lymphoreticular tissues, salivary gland and lung had the highest viral loads. Although there were no gross pathological lesions on post mortem examination, histologically a mild glomerulonephritis and a moderate interstitial pneumonia were observed in all cats. We conclude that during the six month period of infection, although cats appeared clinically normal, histopathological changes were observed in the lungs and kidneys. Further investigation of the significance of these changes is warranted before FFV is developed as a vector for gene delivery.
Collapse
Affiliation(s)
- A C German
- School of Clinical Veterinary Science, University of Bristol, Langford BS40 5DU, United Kingdom.
| | | | | | | |
Collapse
|
19
|
Bastone P, Romen F, Liu W, Wirtz R, Koch U, Josephson N, Langbein S, Löchelt M. Construction and characterization of efficient, stable and safe replication-deficient foamy virus vectors. Gene Ther 2007; 14:613-20. [PMID: 17203107 DOI: 10.1038/sj.gt.3302890] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
As serious side effects affected recent virus-mediated gene transfer studies, novel vectors with improved safety profiles are urgently needed. In the present study, replication-deficient retroviral vectors based on feline foamy virus (FFV) were constructed and analyzed. The novel FFV vectors are devoid of almost the complete env gene plus the internal promoter - accessory bel gene cassette including the gene for the viral transcriptional transactivator Bel1/Tas. In these Bel1/Tas-independent vectors, expression of the lacZ (beta-galactosidase) marker gene is directed by the heterologous, constitutively active human ubiquitin C promoter (ubi). Env-transcomplemented vectors have un-concentrated titers of more than 10(5) transducing units/ml. The vectors allow efficient transduction of a broad array of diverse target cells, which can be increased by repeated vector exposure. However, the number of lacZ marker gene expressing cells decreased slightly upon serial passages of the transduced cells. Vectors carrying a self-inactivating (SIN) deletion of the TATA box and most parts of the viral promoter were not rescued by wt FFV whereas those with the intact or a partially deleted promoter were readily reactivated. This finding indicates that the viral promoters are in fact non-functional, pointing to a highly advantageous safety profile of these new FFV-ubi-lacZ-SIN vectors.
Collapse
Affiliation(s)
- P Bastone
- Abt. Genomveränderungen und Karzinogenese, Forschungsschwerpunkt Infektion und Krebs, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Romen F, Pawlita M, Sehr P, Bachmann S, Schröder J, Lutz H, Löchelt M. Antibodies against Gag are diagnostic markers for feline foamy virus infections while Env and Bet reactivity is undetectable in a substantial fraction of infected cats. Virology 2006; 345:502-8. [PMID: 16297422 DOI: 10.1016/j.virol.2005.10.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 09/12/2005] [Accepted: 10/18/2005] [Indexed: 11/17/2022]
Abstract
Spumaretroviruses or foamy viruses constitute a distinct subfamily of retroviruses. The biology of foamy viruses within the authentic host, their mode of transmission, and disease potential in the authentic host or after zoonotic transmission into human or other species are almost unknown. Using feline foamy virus (FFV) as model system, we established modular enzyme-linked immunosorbent assays (ELISA) suited to determine feline IgG and IgM antibody responses against structural and non-structural FFV proteins. We validated the ELISAs with standard reference sera. In 99 cats admitted to a Swiss veterinary hospital, overall FFV Gag antibody prevalence was 36%, reactivity against Env and the non-structural protein Bet each was about 25%, and 19% of the sera were directed against all three FFV antigens. With one exception, all Bet- and/or Env-positive sera were also positive for Gag. In this small epidemiological pilot study, FFV antibodies were not significantly associated with clinical disease.
Collapse
Affiliation(s)
- Fabian Romen
- Department of Genome Modifications and Carcinogenesis, Research Program Infection and Cancer, German Cancer Research Center, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Bastone P, Bravo IG, Löchelt M. Feline foamy virus-mediated marker gene transfer: identification of essential genetic elements and influence of truncated and chimeric proteins. Virology 2006; 348:190-9. [PMID: 16443252 DOI: 10.1016/j.virol.2005.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 11/22/2005] [Accepted: 12/16/2005] [Indexed: 11/16/2022]
Abstract
Retroviral vectors derived from foamy or spumaretroviruses are considered promising tools for targeted gene delivery and vaccination purposes. In order to fully exploit this potential, we identified essential cis-acting sequences on the feline foamy virus (FFV) genome by constructing and analyzing a series of FFV-based replication-deficient vector genomes. Cis-acting sequences essentially required for marker gene transfer were found to be localized at two sites on the FFV genome: (i) in the 5'-untranslated region and close to the gag ATG and (ii) in the central part of the pol gene. The presence of two cis-acting sequences and their relative location on the FFV genome are similar but not identical to the functionally corresponding elements described for simian and primate foamy viruses.
Collapse
Affiliation(s)
- Patrizia Bastone
- Department Genome Modifications and Carcinogenesis, Focus Infection and Cancer, German Cancer Research Centre, Heidelberg, Germany
| | | | | |
Collapse
|
22
|
Löchelt M, Romen F, Bastone P, Muckenfuss H, Kirchner N, Kim YB, Truyen U, Rösler U, Battenberg M, Saib A, Flory E, Cichutek K, Münk C. The antiretroviral activity of APOBEC3 is inhibited by the foamy virus accessory Bet protein. Proc Natl Acad Sci U S A 2005; 102:7982-7. [PMID: 15911774 PMCID: PMC1142374 DOI: 10.1073/pnas.0501445102] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2005] [Indexed: 02/06/2023] Open
Abstract
Genome hypermutation of different orthoretroviruses by cellular cytidine deaminases of the APOBEC3 family during reverse transcription has recently been observed. Lentiviruses like HIV-1 have acquired proteins preventing genome editing in the newly infected cell. Here we show that feline foamy virus (FFV), a typical member of the foamy retrovirus subfamily Spumaretrovirinae, is also refractory to genome deamination. APOBEC3-like FFV genome editing in APOBEC3-positive feline CRFK cells only occurs when the accessory FFV Bet protein is functionally inactivated. Editing of bet-deficient FFV genomes is paralleled by a strong decrease in FFV titer. In contrast to lentiviruses, cytidine deamination already takes place in APOBEC3-positive FFV-producing cells, because edited proviral DNA genomes are consistently present in released particles. By cloning the feline APOBEC3 orthologue, we found that its homology to the second domain of human APOBEC3F is 48%. Expression of feline APOBEC3 in APOBEC3-negative human 293T cells reproduced the effects seen in homologous CRFK cells: Bet-deficient FFV displayed severely reduced titers, high-level genome editing, reduced particle release, and suppressed Gag processing. Although WT Bet efficiently preserved FFV infectivity and genome integrity, it sustained particle release and Gag processing only when fe3 was moderately expressed. Similar to lentiviral Vif proteins, FFV Bet specifically bound feline APOBEC3. In particles from Bet-deficient FFV, feline APOBEC3 was clearly present, whereas its foamy viral antagonist Bet was undetectable in purified WT particles. This is the first report that, in addition to lentiviruses, the foamy viruses also developed APOBEC3-counter-acting proteins.
Collapse
Affiliation(s)
- Martin Löchelt
- Department Genome Modifications and Carcinogenesis, Focus Infection and Cancer, German Cancer Research Center, 69009 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bastone P, Löchelt M. Kinetics and characteristics of replication-competent revertants derived from self-inactivating foamy virus vectors. Gene Ther 2004; 11:465-73. [PMID: 14973540 DOI: 10.1038/sj.gt.3302185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, self-inactivating (SIN) retroviral vectors based on feline foamy virus (FFV) were constructed and analysed. The FFV SIN vectors were devoid of the core FFV long terminal repeat promoter plus upstream sequences but contained all structural and regulatory genes. This design allowed sensitive detection of replication-competent revertants (RCRs). The FFV SIN vectors efficiently transduced the green fluorescence protein into recipient cells. However, RCRs appeared after serial passages of transduced cells. In all RCR clones analysed, parts of the heterologous cytomegalovirus immediate early promoter, originally driving expression of the FFV vector genome, were taken up to restore the deleted SIN promoter function required for replication competence. The RCRs were strongly reduced in replication capacity compared with the parental replication-competent vectors containing the FFV promoter. In all RCR genomes analysed, the uptake of the heterologous promoter was accompanied by deletion of almost the complete marker gene. Although the RCRs described in this study may not have the capacity to spread in humans and animals, they may pose a theoretical risk, for instance during transduction of haematopoietic stem cells. Thus, FV-based SIN vectors require additional genetic modifications in order to avoid RCRs.
Collapse
Affiliation(s)
- P Bastone
- Abt. Genomveränderung und Carcinogenese, Forschungsschwerpunkt Infektion und Krebs, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | |
Collapse
|
24
|
German AC, Helps CR, Harbour DA. FIP: a novel approach to vaccination. Proceedings from the 2nd International FCoV/FIP Symposium, Glasgow, 4-7 August 2002. J Feline Med Surg 2004; 6:119-24. [PMID: 15123157 PMCID: PMC7129736 DOI: 10.1016/j.jfms.2003.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2003] [Indexed: 10/31/2022]
Abstract
Feline infectious peritonitis (FIP) is a fatal disease of cats. Early attempts at vaccination have been unsuccessful, some even serving to exacerbate the disease through antibody-dependent enhancement. Replication-incompetent feline foamy virus (FFV) transducing vectors are being developed as potential vaccine agents, into which immunogenic fragments of feline coronavirus (FCoV) proteins will be inserted. To use a recombinant viral vector to express FCoV proteins, the agent chosen should be apathogenic and replication incompetent within the host following gene delivery. Spumaviruses confer several advantages over the more traditionally explored retroviral vectors. Stable helper cell line clones have been established by transfection of CRFK cells with FFV tas and assessed using beta-galactosidase assays, PCR, immunofluorescence and western blotting. The generation of infectious virions using these cell lines has been investigated using tas-deleted FFV vectors containing the enhanced green fluorescent protein (eGFP) cassette.
Collapse
Affiliation(s)
- A C German
- Department of Clinical Veterinary Science, University of Bristol, Langford, Bristol BS40 5DU, UK.
| | | | | |
Collapse
|
25
|
Weikel J, Löchelt M, Truyen U. Demonstration of feline foamy virus in experimentally infected cats by immunohistochemistry. ACTA ACUST UNITED AC 2004; 50:415-7. [PMID: 14633220 DOI: 10.1046/j.0931-184x.2003.00565.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Foamy viruses (FV) are complex retroviruses which are commonly isolated from cats, cattle and non-human primates. The infection is persistent and infected animals have a sustained antibody response. The role of FV in diseases remains unclear, in cats, a possible association with uncharacterized renal symptoms remains to be confirmed. To demonstrate feline FV (FFV) in tissues of experimentally infected cats three polyclonal monospecific antisera from rabbits against three different viral proteins, the structural Gag and the non-structural Bel 1 and Bet proteins were tested for their applicability in immunohistochemistry with paraffin sections. Only the Bet antiserum allowed detection of FFV-specific proteins, the antibodies against Gag and Bel 1 did not work even after pre-treatment of the slides with proteinase K or cooking in a pressure cooking pot. The Bet-reactive antibodies were detected using a commercial streptavidin kit and revealed Bet in the cytoplasm of cells from different lymphoid tissues like lymphnodes, tonsils, thymus and spleen. The method described opens new ways to explore the in vivo replication and tissue specificity of FFV and its possible role in disease.
Collapse
Affiliation(s)
- J Weikel
- Tiergesundheitsdienst Bayern e.V., Zentralinstitut (Leiter Dr J. Böttcher), Senator-Gerauer-Strasse 23, 85586 Poing, Germany.
| | | | | |
Collapse
|
26
|
Abstract
An overview of the pattern and mechanisms of spuma or foamy virus (FV) gene expression is presented. FVs are complex retroviruses with respect to their genetic outfit and the elements used to control and regulate expression of the viral genome. The increased insight into transcriptional and posttranscriptional mechanisms has revealed that the FVs are distinct, unconventional retroviruses clearly apart from the orthoretroviruses. Although less characterized than the orthoretroviruses, FVs have several unique features that are important for construction and assembly of FV-based vectors for targeted gene delivery and vaccination purposes. Some of these distinguishing features are directly related to the FV-specific mechanisms of gene expression and include (1) the presence of an internal, functional active second transcription unit for expression of the nonstructural genes, (2) the utilization of a subgenomic, spliced transcript for Pol protein expression, and (3) distinct but not yet understood mechanisms for the nuclear exit of defined transcripts and thus an additional level of posttranscriptional control of gene expression. Finally, the interactions of the viral transactivator not only with both viral promoters but also with regulatory elements controlling the expression of defined cellular genes are an important issue with respect to vector development and the apparent apathogenicity of FVs in their natural hosts.
Collapse
Affiliation(s)
- M Löchelt
- Abteilung Retrovirale Genexpression, Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69009 Heidelberg, Germany.
| |
Collapse
|
27
|
Schwantes A, Truyen U, Weikel J, Weiss C, Löchelt M. Application of chimeric feline foamy virus-based retroviral vectors for the induction of antiviral immunity in cats. J Virol 2003; 77:7830-42. [PMID: 12829823 PMCID: PMC161927 DOI: 10.1128/jvi.77.14.7830-7842.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to define the potential and applicability of replication-competent foamy virus-based vaccine vectors, recombinant feline foamy virus (FFV) vectors encoding defined segments of the feline calicivirus (FCV) capsid protein E domain were constructed. In cell cultures, these FFV-FCV vectors efficiently transduced and expressed a hybrid fusion protein consisting of the essential FFV Bet protein and the attached FCV E domains. The stability of the vectors in vitro was inversely correlated to the size of the heterologous insert. The deletion of a part of the FFV U3 sequence in these FFV-FCV vectors did not interfere with replication and titer in cell cultures but increased the genetic stability of the hybrid vectors. Selected chimeric vectors were injected into immunocompetent cats and persisted in the transduced host concomitant with a strong and specific humoral immune response against vector components. In a substantial number of cats, antibodies directed against the FCV E domain were induced by the FFV-FCV vectors, but no FCV-neutralizing activities were detectable in vitro. When the vaccinated cats were challenged with a high-titer FCV dose, sterile immunity was not induced by any of the hybrid FFV-FCV vectors. However, the FFV-FCV vector with a truncated U3 region of the long terminal repeat promoter significantly reduced the duration of FCV shedding after challenge and suppressed the appearance of FCV-specific ulcers. Possible mechanisms contributing to the partial protection will be discussed.
Collapse
Affiliation(s)
- Astrid Schwantes
- Abteilung Retrovirale Genexpression, Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69009 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
28
|
Geiselhart V, Schwantes A, Bastone P, Frech M, Löchelt M. Features of the Env leader protein and the N-terminal Gag domain of feline foamy virus important for virus morphogenesis. Virology 2003; 310:235-44. [PMID: 12781711 DOI: 10.1016/s0042-6822(03)00125-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous studies have shown that foamy virus (FV) particle budding, especially the involvement of the viral env glycoprotein is different from that of other (ortho) retroviruses: the N-terminal Env leader protein Elp is a constituent of released FV particles. A defined sequence in Elp required for particle budding binds to the MA domain of Gag. To extend these findings, we show that feline FV Elp is a membrane-anchored protein with the N-terminus located inside the particle. Thus, the internal/cytoplasmic domain of Elp has the correct topology for interacting with Gag during budding. In addition to Elp, an Elp-related protein of about 9 kDa was shown to be virion associated and is probably generated by cellular signal peptidases. Besides the function of Elp binding, the N-terminal domain of Gag was shown to be required for proper localization of feline FV Gag to the cytoplasm and the perinuclear/nuclear region.
Collapse
Affiliation(s)
- Verena Geiselhart
- Abteilung Retrovirale Genexpression, Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
29
|
Liang XS, Lian JQ, Zhou YX, Nie QH, Hao CQ. A small yeast RNA inhibits HCV IRES mediated translation and inhibits replication of poliovirus in vivo. World J Gastroenterol 2003; 9:1008-13. [PMID: 12717847 PMCID: PMC4611363 DOI: 10.3748/wjg.v9.i5.1008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the anti-virus infection activity of internal ribosome entry site (IRES) specific inhibitor RNA (IRNA).
METHODS: IRNA eukaryotic vector pcRz-IRNA or mIRNA eukaryotic vector pcRz-mIRNA was tansfected into human hepatocarcinoma cells (HHCC), then selected with neomycin G418 for 4 to 8 weeks, and then infected with polio virus vaccinas line. The cytopethogenesis effect was investigated and the cell extract was collected. At last the polio virus titer of different cells was determined by plaque assay.
RESULTS: Constitutive expression of IRNA was not detrimental to cell growth. HCV IRES-mediated cap-independent translation was markedly inhibited in cells constitutively expressing IRNA compared to control hepatoma cells. However, cap-dependent translation was not significantly affected in these cell line. Additionally, HHCC cells constitutively expressing IRNA became refractory to infection of polio virus.
CONCLUSION: IRES specific IRNA can inhibit HCV IRES mediated translation and poliovirus replication.
Collapse
Affiliation(s)
- Xue-Song Liang
- The center of diagnosis and treatment for infectious diseases of Tangdu Hospital of Military Medical University of PLA, Xi'an. 710038, Shaanxi Province, China
| | | | | | | | | |
Collapse
|