1
|
Lokupathirage SMW, Muthusinghe DS, Sarii RS, Akanbi OA, Shimizu K, Tsuda Y, Yoshimatsu K. Characterization of quasispecies of severe fever with thrombocytopenia syndrome virus. J Virol 2025; 99:e0179424. [PMID: 40202315 PMCID: PMC12090785 DOI: 10.1128/jvi.01794-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/06/2025] [Indexed: 04/10/2025] Open
Abstract
Three specific amino acid variations have been identified in the quasispecies of the isolated YG1 strain of severe fever with thrombocytopenia syndrome virus (SFTSV): Gn (Y328H), Gc (R624W), and L (N1891K). The Gn (Y328H) accounted for 26.9% of the viruses in the patient's blood. The other two mutations are less frequent, indicating that these mutations appeared during propagation in Vero E6 cells. To investigate the effects of each mutation on viral properties, we evaluated viruses with one to three mutations. Mutations Y328H and R624W in glycoprotein (GP) resulted in increased plaque size and cell fusion activity. Viruses with the N1891K mutation in L showed a notable cytopathic effect (CPE), which was inhibited by a pan-caspase inhibitor, suggesting that caspase-dependent cell death occurred. Programmed cell death-associated caspases were induced in both CPE-inducing and wild-type virus-infected cells. Furthermore, infection with the wild-type virus suppressed actinomycin D-induced cell death. These results suggest that SFTSV-infected cells initiate programmed cell death, whereas the wild-type virus inhibits cell death. Additionally, the recombinant single mutant virus outcompeted by a 10-fold lower amount of the wild-type virus in Vero E6 cells, indicating that the mutations were not advantageous for viral propagation in Vero E6 cells. These findings suggest that the quasispecies composition of SFTSV is influenced by the propagative environment.IMPORTANCEThis study presents findings on viral pathogenesis by analyzing quasispecies derived from a fatal case of severe fever with thrombocytopenia syndrome virus (SFTSV) infection. Analysis of recombinant SFTSV with mutations in Gn and Gc suggested that combinations of mutations may enhance the viability of mutant viruses, thereby selecting viruses to create a suitable population for propagation. The N1891K mutation in the L protein of SFTSV is associated with promoting cytopathic effects (CPE). Conversely, the wild-type virus, which is the predominant virus in infected patients, suppresses cell death. It has been suggested that SFTSV possesses a mechanism to evade cell death for prolonged viral propagation within the infected cells. Although the precise mechanism remains unknown, RNA virus polymerase may be involved in regulating cell death. This study contributes to our understanding of the mechanisms underlying the adaptation and survival of viruses as quasispecies.
Collapse
Affiliation(s)
- Sithumini M. W. Lokupathirage
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Devinda S. Muthusinghe
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Rakiiya S. Sarii
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - Olusola A. Akanbi
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Center for Disease Control and Prevention, Abuja, Nigeria
| | - Kenta Shimizu
- Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yoshimi Tsuda
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Kumiko Yoshimatsu
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Wang X, Ye X, Li R, Zai X, Hu M, Wang S, Ren H, Jin Y, Xu J, Yue J. Spatio-temporal spread and evolution of Lassa virus in West Africa. BMC Infect Dis 2024; 24:314. [PMID: 38486143 PMCID: PMC10941413 DOI: 10.1186/s12879-024-09200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Lassa fever is a hemorrhagic disease caused by Lassa virus (LASV), which has been classified by the World Health Organization as one of the top infectious diseases requiring prioritized research. Previous studies have provided insights into the classification and geographic characteristics of LASV lineages. However, the factor of the distribution and evolution characteristics and phylodynamics of the virus was still limited. METHODS To enhance comprehensive understanding of LASV, we employed phylogenetic analysis, reassortment and recombination detection, and variation evaluation utilizing publicly available viral genome sequences. RESULTS The results showed the estimated the root of time of the most recent common ancestor (TMRCA) for large (L) segment was approximately 634 (95% HPD: [385879]), whereas the TMRCA for small (S) segment was around 1224 (95% HPD: [10301401]). LASV primarily spread from east to west in West Africa through two routes, and in route 2, the virus independently spread to surrounding countries through Liberia, resulting in a wider spread of LASV. From 1969 to 2018, the effective population size experienced two significant increased, indicating the enhanced genetic diversity of LASV. We also found the evolution rate of L segment was faster than S segment, further results showed zinc-binding protein had the fastest evolution rate. Reassortment events were detected in multiple lineages including sub-lineage IIg, while recombination events were observed within lineage V. Significant amino acid changes in the glycoprotein precursor of LASV were identified, demonstrating sequence diversity among lineages in LASV. CONCLUSION This study comprehensively elucidated the transmission and evolution of LASV in West Africa, providing detailed insights into reassortment events, recombination events, and amino acid variations.
Collapse
Affiliation(s)
- Xia Wang
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
- Medical College of Guizhou University, Guiyang, 550025, China
| | - Xianwei Ye
- Medical College of Guizhou University, Guiyang, 550025, China
- Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Ruihua Li
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaodong Zai
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Mingda Hu
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Shaoyan Wang
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Hongguang Ren
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yuan Jin
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Junjie Xu
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Junjie Yue
- Laboratory of Advanced Biotechnology & State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
3
|
Mammarenavirus Genetic Diversity and Its Biological Implications. Curr Top Microbiol Immunol 2023; 439:265-303. [PMID: 36592249 DOI: 10.1007/978-3-031-15640-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Members of the family Arenaviridae are classified into four genera: Antennavirus, Hartmanivirus, Mammarenavirus, and Reptarenavirus. Reptarenaviruses and hartmaniviruses infect (captive) snakes and have been shown to cause boid inclusion body disease (BIBD). Antennaviruses have genomes consisting of 3, rather than 2, segments, and were discovered in actinopterygian fish by next-generation sequencing but no biological isolate has been reported yet. The hosts of mammarenaviruses are mainly rodents and infections are generally asymptomatic. Current knowledge about the biology of reptarenaviruses, hartmaniviruses, and antennaviruses is very limited and their zoonotic potential is unknown. In contrast, some mammarenaviruses are associated with zoonotic events that pose a threat to human health. This review will focus on mammarenavirus genetic diversity and its biological implications. Some mammarenaviruses including lymphocytic choriomeningitis virus (LCMV) are excellent experimental model systems for the investigation of acute and persistent viral infections, whereas others including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa fever (LF) and Argentine hemorrhagic fever (AHF), respectively, are important human pathogens. Mammarenaviruses were thought to have high degree of intra-and inter-species amino acid sequence identities, but recent evidence has revealed a high degree of mammarenavirus genetic diversity in the field. Moreover, closely related mammarenavirus can display dramatic phenotypic differences in vivo. These findings support a role of genetic variability in mammarenavirus adaptability and pathogenesis. Here, we will review the molecular biology of mammarenaviruses, phylogeny, and evolution, as well as the quasispecies dynamics of mammarenavirus populations and their biological implications.
Collapse
|
4
|
Moreno H, Rastrojo A, Pryce R, Fedeli C, Zimmer G, Bowden TA, Gerold G, Kunz S. A novel circulating tamiami mammarenavirus shows potential for zoonotic spillover. PLoS Negl Trop Dis 2020; 14:e0009004. [PMID: 33370288 PMCID: PMC7794035 DOI: 10.1371/journal.pntd.0009004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/08/2021] [Accepted: 11/23/2020] [Indexed: 11/18/2022] Open
Abstract
A detailed understanding of the mechanisms underlying the capacity of a virus to break the species barrier is crucial for pathogen surveillance and control. New World (NW) mammarenaviruses constitute a diverse group of rodent-borne pathogens that includes several causative agents of severe viral hemorrhagic fever in humans. The ability of the NW mammarenaviral attachment glycoprotein (GP) to utilize human transferrin receptor 1 (hTfR1) as a primary entry receptor plays a key role in dictating zoonotic potential. The recent isolation of Tacaribe and lymphocytic choriominingitis mammarenaviruses from host-seeking ticks provided evidence for the presence of mammarenaviruses in arthropods, which are established vectors for numerous other viral pathogens. Here, using next generation sequencing to search for other mammarenaviruses in ticks, we identified a novel replication-competent strain of the NW mammarenavirus Tamiami (TAMV-FL), which we found capable of utilizing hTfR1 to enter mammalian cells. During isolation through serial passaging in mammalian immunocompetent cells, the quasispecies of TAMV-FL acquired and enriched mutations leading to the amino acid changes N151K and D156N, within GP. Cell entry studies revealed that both substitutions, N151K and D156N, increased dependence of the virus on hTfR1 and binding to heparan sulfate proteoglycans. Moreover, we show that the substituted residues likely map to the sterically constrained trimeric axis of GP, and facilitate viral fusion at a lower pH, resulting in viral egress from later endosomal compartments. In summary, we identify and characterize a naturally occurring TAMV strain (TAMV-FL) within ticks that is able to utilize hTfR1. The TAMV-FL significantly diverged from previous TAMV isolates, demonstrating that TAMV quasispecies exhibit striking genetic plasticity that may facilitate zoonotic spillover and rapid adaptation to new hosts. Mammarenaviruses include emergent pathogens responsible of severe disease in humans in zoonotic events. The ability to use the human Transferrin receptor 1 (hTfR1) strongly correlates with their pathogenicity in humans. We isolated a new infectious Tamiami virus strain (TAMV-FL) from host-seeking ticks, which, contrary to the previous rodent-derived reference strain, can use hTfR1 to enter human cells. Moreover, serial passaging of TAMV-FL in human immunocompetent cells selected for two substitutions in the viral envelope glycoprotein: N151K and D156N. These substitutions increase the ability to highjack hTfR1 and the binding capacity to heparan sulfate proteoglycans and cause delayed endosomal escape. Our findings provide insight into the acquisition of novel traits by currently circulating TAMV that increase its potential to trespass the inter-species barrier.
Collapse
Affiliation(s)
- Hector Moreno
- Institute of Microbiology, Lausanne University Hospital (IMUL-CHUV), Lausanne, Switzerland
- * E-mail:
| | - Alberto Rastrojo
- Department of Virology and Microbiology, Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC), Madrid, Spain
- Genetic Unit, Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rhys Pryce
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Chiara Fedeli
- Institute of Microbiology, Lausanne University Hospital (IMUL-CHUV), Lausanne, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology (IVI), Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Gisa Gerold
- TWINCORE -Center for Experimental and Clinical Infection Research, Institute for Experimental Virology, Hannover, Germany
- Department of Clinical Microbiology, Virology & Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover Germany
| | - Stefan Kunz
- Institute of Microbiology, Lausanne University Hospital (IMUL-CHUV), Lausanne, Switzerland
| |
Collapse
|
5
|
Huang Q, Liu X, Brisse M, Ly H, Liang Y. Effect of Strain Variations on Lassa Virus Z Protein-Mediated Human RIG-I Inhibition. Viruses 2020; 12:E907. [PMID: 32824946 PMCID: PMC7551410 DOI: 10.3390/v12090907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 11/21/2022] Open
Abstract
Mammarenaviruses include several known human pathogens, such as the prototypic lymphocytic choriomeningitis virus (LCMV) that can cause neurological diseases and Lassa virus (LASV) that causes endemic hemorrhagic fever infection. LASV-infected patients show diverse clinical manifestations ranging from asymptomatic infection to hemorrhage, multi-organ failures and death, the mechanisms of which have not been well characterized. We have previously shown that the matrix protein Z of pathogenic arenaviruses, including LASV and LCMV, can strongly inhibit the ability of the innate immune protein RIG-I to suppress type I interferon (IFN-I) expression, which serves as a mechanism of viral immune evasion and virulence. Here, we show that Z proteins of diverse LASV isolates derived from rodents and humans have a high degree of sequence variations at their N- and C-terminal regions and produce variable degrees of inhibition of human RIG-I (hRIG-I) function in an established IFN-β promoter-driven luciferase (LUC) reporter assay. Additionally, we show that Z proteins of four known LCMV strains can also inhibit hRIG-I at variable degrees of efficiency. Collectively, our results confirm that Z proteins of pathogenic LASV and LCMV can inhibit hRIG-I and suggest that strain variations of the Z proteins can influence their efficiency to suppress host innate immunity that might contribute to viral virulence and disease heterogeneity.
Collapse
Affiliation(s)
| | | | | | | | - Yuying Liang
- Correspondence: ; Tel.: +1-612-625-3376; Fax: +1-612-625-0204
| |
Collapse
|
6
|
Comparison of the Innate Immune Responses to Pathogenic and Nonpathogenic Clade B New World Arenaviruses. J Virol 2019; 93:JVI.00148-19. [PMID: 31270228 DOI: 10.1128/jvi.00148-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/28/2019] [Indexed: 12/25/2022] Open
Abstract
The New World (NW) arenaviruses are a diverse group of zoonotic viruses, including several causative agents of severe hemorrhagic fevers in humans. All known human-pathogenic NW arenaviruses belong to clade B, where they group into sublineages with phylogenetically closely related nonpathogenic viruses, e.g., the highly pathogenic Junin (JUNV) and Machupo viruses with the nonpathogenic Tacaribe virus (TCRV). Considering the close genetic relationship of nonpathogenic and pathogenic NW arenaviruses, the identification of molecular determinants of virulence is of great importance. The host cell's innate antiviral defense represents a major barrier for zoonotic infection. Here, we performed a side-by-side comparison of the innate immune responses against JUNV and TCRV in human cells. Despite similar levels of viral replication, infection with TCRV consistently induced a stronger type I interferon (IFN-I) response than JUNV infection did. Transcriptome profiling revealed upregulation of a largely overlapping set of interferon-stimulated genes in cells infected with TCRV and JUNV. Both viruses were relatively insensitive to IFN-I treatment of human cells and induced similar levels of apoptosis in the presence or absence of an IFN-I response. However, in comparison to JUNV, TCRV induced stronger activation of the innate sensor double-strand RNA-dependent protein kinase R (PKR), resulting in phosphorylation of eukaryotic translation initiation factor eIF2α. Confocal microscopy studies revealed similar subcellular colocalizations of the JUNV and TCRV viral replication-transcription complexes with PKR. However, deletion of PKR by CRISPR/Cas9 hardly affected JUNV but promoted TCRV multiplication, providing the first evidence for differential innate recognition and control of pathogenic and nonpathogenic NW arenaviruses by PKR.IMPORTANCE New World (NW) arenaviruses are a diverse family of emerging zoonotic viruses that merit significant attention as important public health problems. The close genetic relationship of nonpathogenic NW arenaviruses with their highly pathogenic cousins suggests that few mutations may be sufficient to enhance virulence. The identification of molecular determinants of virulence of NW arenaviruses is therefore of great importance. Here we undertook a side-by-side comparison of the innate immune responses against the highly pathogenic Junin virus (JUNV) and the related nonpathogenic Tacaribe virus (TCRV) in human cells. We consistently found that TCRV induces a stronger type I interferon (IFN-I) response than JUNV. Transcriptome profiling revealed an overlapping pattern of IFN-induced gene expression and similar low sensitivities to IFN-I treatment. However, the double-stranded RNA (dsRNA)-dependent protein kinase R (PKR) contributed to the control of TCRV, but not JUNV, providing the first evidence for differential innate recognition and control of JUNV and TCRV.
Collapse
|
7
|
Greczmiel U, Oxenius A. The Janus Face of Follicular T Helper Cells in Chronic Viral Infections. Front Immunol 2018; 9:1162. [PMID: 29887868 PMCID: PMC5982684 DOI: 10.3389/fimmu.2018.01162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
Chronic infections with non-cytopathic viruses constitutively expose virus-specific adaptive immune cells to cognate antigen, requiring their numeric and functional adaptation. Virus-specific CD8 T cells are compromised by various means in their effector functions, collectively termed T cell exhaustion. Alike CD8 T cells, virus-specific CD4 Th1 cell responses are gradually downregulated but instead, follicular T helper (TFH) cell differentiation and maintenance is strongly promoted during chronic infection. Thereby, the immune system promotes antibody responses, which bear less immune-pathological risk compared to cytotoxic and pro-inflammatory T cell responses. This emphasis on TFH cells contributes to tolerance of the chronic infection and is pivotal for the continued maturation and adaptation of the antibody response, leading eventually to the emergence of virus-neutralizing antibodies, which possess the potential to control the established chronic infection. However, sustained high levels of TFH cells can also result in a less stringent B cell selection process in active germinal center reactions, leading to the activation of virus-unspecific B cells, including self-reactive B cells, and to hypergammaglobulinemia. This dispersal of B cell help comes at the expense of a stringently selected virus-specific antibody response, thereby contributing to its delayed maturation. Here, we discuss these opposing facets of TFH cells in chronic viral infections.
Collapse
Affiliation(s)
- Ute Greczmiel
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
8
|
Abstract
Hemorrhagic fevers caused by viruses were identified in the late 1950s in South America. These viruses have existed in their hosts, the New World rodents, for millions of years. Their emergence as infectious agents in humans coincided with changes in the environment and farming practices that caused explosions in their host rodent populations. Zoonosis into humans likely occurs because the pathogenic New World arenaviruses use human transferrin receptor 1 to enter cells. The mortality rate after infection with these viruses is high, but the mechanism by which disease is induced is still not clear. Possibilities include direct effects of cellular infection or the induction of high levels of cytokines by infected sentinel cells of the immune system, leading to endothelia and thrombocyte dysfunction and neurological disease. Here we provide a review of the ecology and molecular and cellular biology of New World arenaviruses, as well as a discussion of the current animal models of infection. The development of animal models, coupled with an improved understanding of the infection pathway and host response, should lead to the discovery of new drugs for treating infections.
Collapse
Affiliation(s)
- Nicolás Sarute
- Department of Microbiology and Immunology, University of Illinois College of Medicine at Chicago, Chicago, Illinois 60612; ,
| | - Susan R Ross
- Department of Microbiology and Immunology, University of Illinois College of Medicine at Chicago, Chicago, Illinois 60612; ,
| |
Collapse
|
9
|
Abstract
The family Arenaviridae currently comprises over 20 viral species, each of them associated with a main rodent species as the natural reservoir and in one case possibly phyllostomid bats. Moreover, recent findings have documented a divergent group of arenaviruses in captive alethinophidian snakes. Human infections occur through mucosal exposure to aerosols or by direct contact of abraded skin with infectious materials. Arenaviruses merit interest both as highly tractable experimental model systems to study acute and persistent infections and as clinically important human pathogens including Lassa (LASV) and Junin (JUNV) viruses, the causative agents of Lassa and Argentine hemorrhagic fevers (AHFs), respectively, for which there are no FDA-licensed vaccines, and current therapy is limited to an off-label use of ribavirin (Rib) that has significant limitations. Arenaviruses are enveloped viruses with a bi-segmented negative strand (NS) RNA genome. Each genome segment, L (ca 7.3 kb) and S (ca 3.5 kb), uses an ambisense coding strategy to direct the synthesis of two polypeptides in opposite orientation, separated by a noncoding intergenic region (IGR). The S genomic RNA encodes the virus nucleoprotein (NP) and the precursor (GPC) of the virus surface glycoprotein that mediates virus receptor recognition and cell entry via endocytosis. The L genome RNA encodes the viral RNA-dependent RNA polymerase (RdRp, or L polymerase) and the small (ca 11 kDa) RING finger protein Z that has functions of a bona fide matrix protein including directing virus budding. Arenaviruses were thought to be relatively stable genetically with intra- and interspecies amino acid sequence identities of 90-95 % and 44-63 %, respectively. However, recent evidence has documented extensive arenavirus genetic variability in the field. Moreover, dramatic phenotypic differences have been documented among closely related LCMV isolates. These data provide strong evidence of viral quasispecies involvement in arenavirus adaptability and pathogenesis. Here, we will review several aspects of the molecular biology of arenaviruses, phylogeny and evolution, and quasispecies dynamics of arenavirus populations for a better understanding of arenavirus pathogenesis, as well as for the development of novel antiviral strategies to combat arenavirus infections.
Collapse
Affiliation(s)
- Esteban Domingo
- Campus de Cantoblanco, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Peter Schuster
- The Santa Fe Institute, Santa Fe, NM, USA and Institut f. Theoretische Chemie, Universität Wien, Vienna, Austria
| |
Collapse
|
10
|
Widespread recombination, reassortment, and transmission of unbalanced compound viral genotypes in natural arenavirus infections. PLoS Pathog 2015; 11:e1004900. [PMID: 25993603 PMCID: PMC4438980 DOI: 10.1371/journal.ppat.1004900] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/20/2015] [Indexed: 12/19/2022] Open
Abstract
Arenaviruses are one of the largest families of human hemorrhagic fever viruses and are known to infect both mammals and snakes. Arenaviruses package a large (L) and small (S) genome segment in their virions. For segmented RNA viruses like these, novel genotypes can be generated through mutation, recombination, and reassortment. Although it is believed that an ancient recombination event led to the emergence of a new lineage of mammalian arenaviruses, neither recombination nor reassortment has been definitively documented in natural arenavirus infections. Here, we used metagenomic sequencing to survey the viral diversity present in captive arenavirus-infected snakes. From 48 infected animals, we determined the complete or near complete sequence of 210 genome segments that grouped into 23 L and 11 S genotypes. The majority of snakes were multiply infected, with up to 4 distinct S and 11 distinct L segment genotypes in individual animals. This S/L imbalance was typical: in all cases intrahost L segment genotypes outnumbered S genotypes, and a particular S segment genotype dominated in individual animals and at a population level. We corroborated sequencing results by qRT-PCR and virus isolation, and isolates replicated as ensembles in culture. Numerous instances of recombination and reassortment were detected, including recombinant segments with unusual organizations featuring 2 intergenic regions and superfluous content, which were capable of stable replication and transmission despite their atypical structures. Overall, this represents intrahost diversity of an extent and form that goes well beyond what has been observed for arenaviruses or for viruses in general. This diversity can be plausibly attributed to the captive intermingling of sub-clinically infected wild-caught snakes. Thus, beyond providing a unique opportunity to study arenavirus evolution and adaptation, these findings allow the investigation of unintended anthropogenic impacts on viral ecology, diversity, and disease potential.
Collapse
|
11
|
Zapata JC, Salvato MS. Arenavirus variations due to host-specific adaptation. Viruses 2013; 5:241-78. [PMID: 23344562 PMCID: PMC3564120 DOI: 10.3390/v5010241] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/11/2013] [Accepted: 01/14/2013] [Indexed: 01/08/2023] Open
Abstract
Arenavirus particles are enveloped and contain two single-strand RNA genomic segments with ambisense coding. Genetic plasticity of the arenaviruses comes from transcription errors, segment reassortment, and permissive genomic packaging, and results in their remarkable ability, as a group, to infect a wide variety of hosts. In this review, we discuss some in vitro studies of virus genetic and phenotypic variation after exposure to selective pressures such as high viral dose, mutagens and antivirals. Additionally, we discuss the variation in vivo of selected isolates of Old World arenaviruses, particularly after infection of different animal species. We also discuss the recent emergence of new arenaviruses in the context of our observations of sequence variations that appear to be host-specific.
Collapse
Affiliation(s)
- Juan C Zapata
- Institute of Human Virology-School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | | |
Collapse
|
12
|
Bonhomme CJ, Knopp KA, Bederka LH, Angelini MM, Buchmeier MJ. LCMV glycosylation modulates viral fitness and cell tropism. PLoS One 2013; 8:e53273. [PMID: 23308183 PMCID: PMC3538765 DOI: 10.1371/journal.pone.0053273] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/27/2012] [Indexed: 12/22/2022] Open
Abstract
The glycoprotein (GP) of arenaviruses is glycosylated at 11 conserved N-glycosylation sites. We constructed recombinant lymphocytic choriomeningitis virus (rLCMV) featuring either additions or deletions of these N-glycans to investigate their role in the viral life cycle. N-glycosylation at two sites, T87 and S97, were found to be necessary to rescue rLCMV. Three of nine successfully rescued mutants, S116A, T234A, and S373A, under selective pressures in either epithelial, neuronal, or macrophage cells reverted to WT sequence. Of the seven stable N-glycan deletion mutants, five of these led to altered viral fitness and cell tropism, assessed as growth in either mouse primary cortical neurons or bone marrow derived macrophages. These results demonstrate that the deletion of N-glycans in LCMV GP may confer an advantage to the virus for infection of neurons but a disadvantage in macrophages.
Collapse
Affiliation(s)
- Cyrille J. Bonhomme
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Kristeene A. Knopp
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Lydia H. Bederka
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Megan M. Angelini
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Michael J. Buchmeier
- Departments of Molecular Biology and Biochemistry and Division of Infectious Disease, Department of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Moreno H, Grande-Pérez A, Domingo E, Martín V. Arenaviruses and lethal mutagenesis. Prospects for new ribavirin-based interventions. Viruses 2012; 4:2786-805. [PMID: 23202505 PMCID: PMC3509673 DOI: 10.3390/v4112786] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 10/17/2012] [Accepted: 10/25/2012] [Indexed: 01/05/2023] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) has contributed to unveil some of the molecular mechanisms of lethal mutagenesis, or loss of virus infectivity due to increased mutation rates. Here we review these developments, and provide additional evidence that ribavirin displays a dual mutagenic and inhibitory activity on LCMV that can be relevant to treatment designs. Using 5-fluorouracil as mutagenic agent and ribavirin either as inhibitor or mutagen, we document an advantage of a sequential inhibitor-mutagen administration over the corresponding combination treatment to achieve a low LCMV load in cell culture. This advantage is accentuated in the concentration range in which ribavirin acts mainly as an inhibitor, rather than as mutagen. This observation reinforces previous theoretical and experimental studies in supporting a sequential inhibitor-mutagen administration as a possible antiviral design. Given recent progress in the development of new inhibitors of arenavirus replication, our results suggest new options of ribavirin-based anti-arenavirus treatments.
Collapse
Affiliation(s)
- Héctor Moreno
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco 28049, Madrid, Spain; (H.M.); (E.D.)
| | - Ana Grande-Pérez
- Área de Genética, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071, Málaga, Spain;
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Campus de Cantoblanco 28049, Madrid, Spain; (H.M.); (E.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA), Carretera de Algete a El Casar s/n, 28130 Valdeolmos, Madrid, Spain;
| |
Collapse
|
14
|
Moreno H, Gallego I, Sevilla N, de la Torre JC, Domingo E, Martín V. Ribavirin can be mutagenic for arenaviruses. J Virol 2011; 85:7246-55. [PMID: 21561907 PMCID: PMC3126590 DOI: 10.1128/jvi.00614-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 04/29/2011] [Indexed: 01/11/2023] Open
Abstract
Arenaviruses include several important human pathogens, and there are very limited options of preventive or therapeutic interventions to combat these viruses. An off-label use of the purine nucleoside analogue ribavirin (1-β-d-ribofuranosyl-1-H-1,2,4-triazole-3-carboxamide) is the only antiviral treatment currently available for arenavirus infections. However, the ribavirin antiviral mechanism action against arenaviruses remains unknown. Here we document that ribavirin is mutagenic for the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) in cell culture. The mutagenic activity of ribavirin on LCMV was observed under single- and multiple-passage regimes and could not be accounted for by a decrease of the intracellular GTP pool promoted by ribavirin-mediated inhibition of inosine monophosphate dehydrogenase (IMPDH). Our findings suggest that the antiviral activity of ribavirin on arenaviruses might be exerted, at least partially, by lethal mutagenesis. Implications for antiarenavirus therapy are discussed.
Collapse
Affiliation(s)
- Héctor Moreno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
- Department of Neuropharmacology, The Scripps Research Institute, IMM-6, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Isabel Gallego
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| | - Juan Carlos de la Torre
- Department of Neuropharmacology, The Scripps Research Institute, IMM-6, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Esteban Domingo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Verónica Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria, Valdeolmos, Madrid, Spain
| |
Collapse
|
15
|
Bonhomme CJ, Capul AA, Lauron EJ, Bederka LH, Knopp KA, Buchmeier MJ. Glycosylation modulates arenavirus glycoprotein expression and function. Virology 2011; 409:223-33. [PMID: 21056893 PMCID: PMC3053032 DOI: 10.1016/j.virol.2010.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/17/2010] [Accepted: 10/06/2010] [Indexed: 11/20/2022]
Abstract
The glycoprotein of lymphocytic choriomeningitis virus (LCMV) contains nine potential N-linked glycosylation sites. We investigated the function of these N-glycosylations by using alanine-scanning mutagenesis. All the available sites were occupied on GP1 and two of three on GP2. N-linked glycan mutations at positions 87 and 97 on GP1 resulted in reduction of expression and absence of cleavage and were necessary for downstream functions, as confirmed by the loss of GP-mediated fusion activity with T87A and S97A mutants. In contrast, T234A and E379N/A381T mutants impaired GP-mediated cell fusion without altered expression or processing. Infectivity via virus-like particles required glycans and a cleaved glycoprotein. Glycosylation at the first site within GP2, not normally utilized by LCMV, exhibited increased VLP infectivity. We also confirmed the role of the N-linked glycan at position 173 in the masking of the neutralizing epitope GP-1D. Taken together, our results indicated a strong relationship between fusion and infectivity.
Collapse
Affiliation(s)
- Cyrille J. Bonhomme
- University of California, Irvine, Department of Molecular Biology and Biochemistry, 3205 McGaugh Hall Irvine, CA 92697-3900
| | - Althea A. Capul
- University of California, Irvine, Department of Molecular Biology and Biochemistry, 3205 McGaugh Hall Irvine, CA 92697-3900
| | - Elvin J. Lauron
- University of California, Irvine, Department of Molecular Biology and Biochemistry, 3205 McGaugh Hall Irvine, CA 92697-3900
| | - Lydia H. Bederka
- University of California, Irvine, Department of Molecular Biology and Biochemistry, 3205 McGaugh Hall Irvine, CA 92697-3900
| | - Kristeene A. Knopp
- University of California, Irvine, Department of Molecular Biology and Biochemistry, 3205 McGaugh Hall Irvine, CA 92697-3900
| | - Michael J. Buchmeier
- University of California, Irvine, Departments of Molecular Biology and Biochemistry and Division of Infectious Disease, Dept. of Medicine, 3205 McGaugh Hall Irvine, CA 92697-3900
| |
Collapse
|
16
|
Arenavirus genetic diversity and its biological implications. INFECTION GENETICS AND EVOLUTION 2009; 9:417-29. [PMID: 19460307 PMCID: PMC7106275 DOI: 10.1016/j.meegid.2009.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 03/13/2009] [Accepted: 03/13/2009] [Indexed: 12/15/2022]
Abstract
The Arenaviridae family currently comprises 22 viral species, each of them associated with a rodent species. This viral family is important both as tractable experimental model systems to study acute and persistent infections and as clinically important human pathogens. Arenaviruses are enveloped viruses with a bi-segmented negative-strand RNA genome. The interaction with the cellular receptor and subsequent entry into the host cell differs between Old World and New World arenavirus that use α-dystoglycan or human transferring receptor 1, respectively, as main receptors. The recent development of reverse genetic systems for several arenaviruses has facilitated progress in understanding the molecular biology and cell biology of this viral family, as well as opening new approaches for the development of novel strategies to combat human pathogenic arenaviruses. On the other hand, increased availability of genetic data has allowed more detailed studies on the phylogeny and evolution of arenaviruses. As with other riboviruses, arenaviruses exist as viral quasispecies, which allow virus adaptation to rapidly changing environments. The large number of different arenavirus host reservoirs and great genetic diversity among virus species provide the bases for the emergence of new arenaviruses potentially pathogenic for humans.
Collapse
|
17
|
Chen M, Lan S, Ou R, Price GE, Jiang H, de la Torre JC, Moskophidis D. Genomic and biological characterization of aggressive and docile strains of lymphocytic choriomeningitis virus rescued from a plasmid-based reverse-genetics system. J Gen Virol 2008; 89:1421-1433. [PMID: 18474558 PMCID: PMC2652504 DOI: 10.1099/vir.0.83464-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arenaviruses include several causative agents of haemorrhagic fever disease in humans. In addition, the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a superb model for the study of virus-host interactions, including the basis of viral persistence and associated diseases. There is little understanding about the molecular mechanisms concerning the regulation and specific role of viral proteins in modulating arenavirus-host cell interactions either associated with an acute or persistent infection, and associated disease. Here, we report the genomic and biological characterization of LCMV strains 'Docile' (persistent) and 'Aggressive' (not persistent) recovered from cloned cDNA via reverse genetics. Our results confirmed that the cloned viruses accurately recreated the in vivo phenotypes associated with the corresponding natural Docile and Aggressive viral isolates. In addition, we provide evidence that the ability of the Docile strain to persist is determined by the nature of both S and L RNA segments. Thus, our findings provide the foundation for studies aimed at gaining a detailed understanding of viral determinants of LCMV persistence in its natural host, which may aid in the development of vaccines to prevent or treat the diseases caused by arenaviruses in humans.
Collapse
Affiliation(s)
- Minjie Chen
- Center for Molecular Chaperones/Radiobiology and Cancer Virology, Medical College of Georgia, Augusta, Georgia 30912
| | - Shuiyun Lan
- Center for Molecular Chaperones/Radiobiology and Cancer Virology, Medical College of Georgia, Augusta, Georgia 30912
| | - Rong Ou
- Center for Molecular Chaperones/Radiobiology and Cancer Virology, Medical College of Georgia, Augusta, Georgia 30912
| | - Graeme E. Price
- Center for Molecular Chaperones/Radiobiology and Cancer Virology, Medical College of Georgia, Augusta, Georgia 30912
| | - Hong Jiang
- Center for Molecular Chaperones/Radiobiology and Cancer Virology, Medical College of Georgia, Augusta, Georgia 30912
| | - Juan Carlos de la Torre
- Molecular Integrative Neuroscience Department (MIND), The Scripps Research Institute, La Jolla, California 92037
| | - Demetrius Moskophidis
- Center for Molecular Chaperones/Radiobiology and Cancer Virology, Medical College of Georgia, Augusta, Georgia 30912
| |
Collapse
|