1
|
Quaye JA, Moni BM, Kugblenu JE, Gadda G. Oxidation of α-hydroxy acids by D-2-hydroxyglutarate dehydrogenase enzymes. Arch Biochem Biophys 2025; 768:110355. [PMID: 39993590 DOI: 10.1016/j.abb.2025.110355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
α-Hydroxy acids are naturally occurring organic molecules with various medical and industrial applications. However, some α-hydroxy acids, like D-2-hydroxyglutarate (D2HG), have been implicated in cancers and neurometabolic disorders such as D2HG aciduria. Several studies on the D2HG oxidizing enzyme D-2-hydroxyglutarate dehydrogenase (D2HGDH) from various eukaryotic and prokaryotic sources focus on the use and application of the enzyme as biosensors for detecting D2HG. A recent gene knockout study on the bacterial D2HGDH homologs from Pseudomonas stutzeri and Pseudomonas aeruginosa identified the D2HGDH to be essential for bacterial survival by driving l-serine biosynthesis. Thus, D2HGDH is a good candidate for a therapeutic target against the multidrug-resistant P. aeruginosa. However, there is no consensus on the D2HGDH catalytic mechanism, and several D2HGDH homologs have not been characterized in their structural properties, which are two crucial features for therapeutic design. P. aeruginosa D2HGDH, the most extensively studied D2HGDH homolog, is emerging as a paradigm for D2HGDH and flavoproteins with metal ions in their active site. In this review, we have explored the structures of all published D2HGDH homologs from 12 species using AlphaFold 3 and highlighted the fully conserved structure and active site topologies of all D2HGDH homologs. Additionally, evolutionary and functional studies coupled with analyses of enzymatic activities reveal that prokaryotic and eukaryotic D2HGDH homologs, diverging from two distinct ancestors, may have differentially evolved to specialize in their α-hydroxy acid catalysis. Additionally, this review identifies all D2HGDH homologs as metal and FAD-dependent enzymes that employ a metal-triggered FAD reduction in their catalysis. Elucidation of the D2HGDH mechanism will allow designing antibiotics that target these enzymes as potential therapeutics against pathogenic bacteria like P. aeruginosa in addition to the application of D2HGDH homologs as biosensors.
Collapse
Affiliation(s)
- Joanna Afokai Quaye
- Departments of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA
| | - Bilkis Mehrin Moni
- Departments of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA; The Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302-3965, USA
| | | | - Giovanni Gadda
- Departments of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA; Departments of Biology, Georgia State University, Atlanta, GA, 30302-3965, USA; The Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302-3965, USA.
| |
Collapse
|
2
|
Chen W, Li Z, Liu T, Lyu Q, Liu W. Discovery and Characterization of CcrSult1: A Novel Flavonoid Sulfotransferase from the Red Alga Chondrus crispus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40405366 DOI: 10.1021/acs.jafc.5c02656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Sulfated flavonoids, prevalent in various plants, possess enhanced bioavailability due to the introduction of sulfonate groups, a process catalyzed by flavonoid sulfotransferases (SULTs). These enzymes serve as invaluable tools for exploring the structure-function relationships of sulfated flavonoids and for the preparation of biologically active derivatives. Despite their significance, flavonoid SULTs remain largely unexplored especially for those from marine environment. In this study, we report the discovery of CcrSULT1, the first flavonoid SULT from the red algaChondrus crispus. Substrate specificity tests revealed that CcrSULT1 exhibits a pronounced chemical selectivity preference for phenolic compounds, particularly flavonoids. More importantly, we discovered that CcrSULT1 may have unique regional selectivity toward mono phenolic hydroxyl groups (e.g., the 4'-OH of kaempferol, a flavonoid aglycone widely distributed in algae and various plants) in substrates, potentially leading to the specific production of monosulfated products. This hypothesis is further supported by the construction of a complex structural model. This study paves the way for the discovery of unknown algal sulfotransferases and provides a biological basis for understanding algal sulfation metabolism and biomass conversion.
Collapse
Affiliation(s)
- Wencui Chen
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhijian Li
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Tao Liu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, and State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China
| | - Qianqian Lyu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Weizhi Liu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
3
|
Liu JL, Bayacal GC, Alvarez JAE, Shriver-Lake LC, Goldman ER, Dean SN. Generative Deep Learning Design of Single-Domain Antibodies Against Venezuelan Equine Encephalitis Virus. Antibodies (Basel) 2025; 14:41. [PMID: 40407693 PMCID: PMC12101358 DOI: 10.3390/antib14020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/06/2025] [Accepted: 05/13/2025] [Indexed: 05/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Venezuelan equine encephalitis virus (VEEV) represents a significant biothreat with no FDA-approved vaccine currently available, highlighting the need for alternative therapeutic strategies. Single-domain antibodies (sdAbs) present a potential alternative to conventional antibodies, due to their small size and ability to recognize cryptic epitopes. METHODS This research describes the development and preliminary evaluation of VEEV-binding sdAbs generated using a generative artificial intelligence (AI) platform. Using a dataset of known alphavirus-binding sdAbs, the AI model produced sequences with predicted affinity for the E2 glycoprotein of VEEV. These candidate sdAbs were expressed in a bacterial periplasmic system and purified for initial assessment. RESULTS Enzyme-linked immunosorbent assays (ELISAs) indicated binding activity of the sdAbs to VEEV antigens. In vitro neutralization tests suggested inhibition of VEEV infection in cultured cells for some of the candidates. CONCLUSIONS This study demonstrates how generative AI can expedite antiviral therapeutic development and establishes a framework for quick responses to emerging viral threats when extensive example databases are unavailable. Additional refinement and validation of AI-generated sdAbs could establish effective VEEV therapeutics.
Collapse
Affiliation(s)
- Jinny L. Liu
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, DC 20375, USA; (J.L.L.); (J.A.E.A.); (L.C.S.-L.); (E.R.G.)
| | - Gabrielle C. Bayacal
- Naval Research Enterprise Internship Program, US Naval Research Laboratory, Washington, DC 20375, USA;
| | - Jerome Anthony E. Alvarez
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, DC 20375, USA; (J.L.L.); (J.A.E.A.); (L.C.S.-L.); (E.R.G.)
| | - Lisa C. Shriver-Lake
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, DC 20375, USA; (J.L.L.); (J.A.E.A.); (L.C.S.-L.); (E.R.G.)
| | - Ellen R. Goldman
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, DC 20375, USA; (J.L.L.); (J.A.E.A.); (L.C.S.-L.); (E.R.G.)
| | - Scott N. Dean
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, DC 20375, USA; (J.L.L.); (J.A.E.A.); (L.C.S.-L.); (E.R.G.)
| |
Collapse
|
4
|
Sharma S, Bishnoi R, Jain R, Singla D. LSDVvac: An immunoinformatics database for vaccine design against lumpy skin disease virus. Comput Biol Med 2025; 190:110077. [PMID: 40164028 DOI: 10.1016/j.compbiomed.2025.110077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 02/12/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Development of an effective vaccine against Lumpy Skin Disease Virus (LSDV) is crucial for protecting livestock. The current study outlines a web-based platform developed to aid the scientific community in designing effective peptide-based vaccines against LSDV. First, we generated all possible overlapping (K-mer value 9 and 15) peptides from the proteins of 73 LSDV strains. Second, after removing redundancy, the obtained peptides were utilized for predicting B-cell and T-cell epitopes. Third, the predicted B-cell and T-cell epitopes were screened for immunogenicity, allergenicity, and toxicity. Finally, the LSDV candidate vaccine database was developed utilizing 3913 unique B-cell (Linear 3344 and conformational 569) and 6473 unique T-cell (MHC-I 3200 and MHC-II 3273) epitopes. The three-dimensional structure of 156 LSDV proteins from reference (AF325528.1) LSDV genome was predicted using I-TASSER software and implemented in the database. Additionally, tools for genome analysis like DotPlot, Gblocks, BLAST, and gRNA designing were incorporated into the database. In summary, LSDVvac has been developed, which integrates information about predicted potential vaccine candidates along with useful computational tools. LSDVvac database is available at http://45.248.163.59/bic/lsdb/.
Collapse
Affiliation(s)
- Sumit Sharma
- Bioinformatics Centre, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Ritika Bishnoi
- Bioinformatics Centre, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Riya Jain
- Bioinformatics Centre, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Deepak Singla
- Bioinformatics Centre, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India.
| |
Collapse
|
5
|
Zhai J, Qi X, Cai L, Liu Y, Tang H, Xie L, Wang J. NNKcat: deep neural network to predict catalytic constants (Kcat) by integrating protein sequence and substrate structure with enhanced data imbalance handling. Brief Bioinform 2025; 26:bbaf212. [PMID: 40370097 PMCID: PMC12078937 DOI: 10.1093/bib/bbaf212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 05/16/2025] Open
Abstract
Catalytic constant (Kcat) is to describe the efficiency of catalyzing reactions. The Kcat value of an enzyme-substrate pair indicates the rate an enzyme converts saturated substrates into product during the catalytic process. However, it is challenging to construct robust prediction models for this important property. Most of the existing models, including the one recently published by Nature Catalysis (Li et al.), are suffering from the overfitting issue. In this study, we proposed a novel protocol to construct Kcat prediction models, introducing an intermedia step to separately develop substrate and protein processors. The substrate processor leverages analyzing Simplified Molecular Input Line Entry System (SMILES) strings using a graph neural network model, attentive FP, while the protein processor abstracts protein sequence information utilizing long short-term memory architecture. This protocol not only mitigates the impact of data imbalance in the original dataset but also provides greater flexibility in customizing the general-purpose Kcat prediction model to enhance the prediction accuracy for specific enzyme classes. Our general-purpose Kcat prediction model demonstrates significantly enhanced stability and slightly better accuracy (R2 value of 0.54 versus 0.50) in comparison with Li et al.'s model using the same dataset. Additionally, our modeling protocol enables personalization of fine-tuning the general-purpose Kcat model for specific enzyme categories through focused learning. Using Cytochrome P450 (CYP450) enzymes as a case study, we achieved the best R2 value of 0.64 for the focused model. The high-quality performance and expandability of the model guarantee its broad applications in enzyme engineering and drug research & development.
Collapse
Affiliation(s)
- Jingchen Zhai
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
| | - Xiguang Qi
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
| | - Lianjin Cai
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
| | - Yue Liu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
| | - Haocheng Tang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
| | - Lei Xie
- Department of Computer Science, Hunter College, The City University of New York, 695 Park Ave, New York, NY 10065, United States
- Helen & Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, Cornell University, 413 E 69th St, New York, NY 10021, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261, United States
| |
Collapse
|
6
|
Senevirathne GI, Gendall AR, Johnson KL, Welling MT. Understanding the role of oxylipins in Cannabis to enhance cannabinoid production. FRONTIERS IN PLANT SCIENCE 2025; 16:1568548. [PMID: 40343123 PMCID: PMC12058684 DOI: 10.3389/fpls.2025.1568548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/28/2025] [Indexed: 05/11/2025]
Abstract
Phytocannabinoids are medically important specialized defense compounds that are sparsely distributed among plants, yet Cannabis sativa can synthesize unprecedented amounts of these compounds within highly specialized surface cell factories known as glandular trichomes. The control mechanisms that allow for this high level of productivity are poorly understood at the molecular level, although increasing evidence supports the role of oxylipin metabolism in phytocannabinoid production. Oxylipins are a large class of lipid-based oxygenated biological signaling molecules. Although some oxylipins are known to participate in plant defense, roles for the majority of the ca. 600 plant oxylipins are largely unknown. In this review, we examine oxylipin gene expression within glandular trichomes and identify key oxylipin genes that determine the fate of common lipid precursors. Mechanisms by which oxylipins may be interacting with phytocannabinoid metabolism, as well as specialized plant metabolism more broadly, are discussed and a model summarizing these contributions proposed.
Collapse
Affiliation(s)
- Gayathree I. Senevirathne
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Ecological Plant and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- La Trobe Institute of Sustainable Agriculture and Food, Department of Ecological Plant
and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Anthony R. Gendall
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Ecological Plant and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- La Trobe Institute of Sustainable Agriculture and Food, Department of Ecological Plant
and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Australian Research Council Research Hub for Protected Cropping, Department of Ecological Plant and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, Department of Ecological Plant and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Kim L. Johnson
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Ecological Plant and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- La Trobe Institute of Sustainable Agriculture and Food, Department of Ecological Plant
and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Australian Research Council Research Hub for Protected Cropping, Department of Ecological Plant and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Matthew T. Welling
- Australian Research Council Research Hub for Medicinal Agriculture, Department of Ecological Plant and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- La Trobe Institute of Sustainable Agriculture and Food, Department of Ecological Plant
and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Australian Research Council Research Hub for Protected Cropping, Department of Ecological Plant and Animal Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
7
|
Paniagua A, Agustín-García C, Pardo-Palacios FJ, Brown T, De Maria M, Denslow ND, Mazzoni CJ, Conesa A. Evaluation of strategies for evidence-driven genome annotation using long-read RNA-seq. Genome Res 2025; 35:1053-1064. [PMID: 39715684 PMCID: PMC12047274 DOI: 10.1101/gr.279864.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
While the production of a draft genome has become more accessible due to long-read sequencing, the annotation of these new genomes has not been developed at the same pace. Long-read RNA sequencing offers a promising solution for enhancing gene annotation. In this study, we explore how sequencing platforms, Oxford Nanopore R9.4.1 chemistry or Pacific Biosciences (PacBio) Sequel II CCS, and data processing methods influence evidence-driven genome annotation using long reads. Incorporating PacBio transcripts into our annotation pipeline significantly outperformed traditional methods, such as ab initio predictions and short-read-based annotations. We applied this strategy to a nonmodel species, the Florida manatee, and compared our results to existing short-read-based annotation. At the loci level, both annotations were highly concordant, with 90% agreement. However, at the transcript level, the agreement was only 35%. We identified 4906 novel loci, represented by 5707 isoforms, with 64% of these isoforms matching known sequences in other mammalian species. Overall, our findings underscore the importance of using high-quality curated transcript models in combination with ab initio methods for effective genome annotation.
Collapse
Affiliation(s)
- Alejandro Paniagua
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna 46980, Spain
- Department of Computer Science, Universitat de València, Valencia 46100, Spain
| | - Cristina Agustín-García
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna 46980, Spain
| | | | - Thomas Brown
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, 14195 Berlin, Germany
| | - Maite De Maria
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611, USA
| | - Nancy D Denslow
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611, USA
| | - Camila J Mazzoni
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, 14195 Berlin, Germany
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna 46980, Spain;
| |
Collapse
|
8
|
Kim J, Kong M. Isolation and Characterization of a Bacillus amyloliquefaciens Bacteriophage JBA6 and Its Endolysin PlyJBA6. J Microbiol Biotechnol 2025; 35:e2502026. [PMID: 40174924 PMCID: PMC11985411 DOI: 10.4014/jmb.2502.02026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Bacillus amyloliquefaciens is a Gram-positive, aerobic, spore-forming bacteria usually found in soil. Despite its probiotic potential, B. amyloliquefaciens has been identified as a cause of food spoilage, including the development of off-odors, rope formation, and the production of viscous substances in a wide range of foods. To control B. amyloliquefaciens, we isolated three B. amyloliquefaciens bacteriophages TBA3, JBA3, JBA6, and characterized one representative JBA6 endolysin, PlyJBA6. Transmission electron microscopy and genomic analysis demonstrated that all three phages belong to the Salasmaviridae family, characterized by short, non-contractile tails with linear dsDNA genomes ranging from 18.7 to 19.1 kb. PlyJBA6 contains a glycoside hydrolase family 24 domain (PF00959) at the N-terminus and two LysM domains (PF04176) at the C-terminus. While JBA6 has a narrow host range, infecting only 7 out of 9 tested strains of B. amyloliquefaciens, PlyJBA6 exhibits extended lytic range beyond the Bacillus genus. Interestingly, PlyJBA6 lyses Gram-negative bacteria such as Escherichia coli, Yersinia enterocolitica and Cronobacter sakazakii without other additives to destabilize bacterial outer membrane. We assume that JBA6 might be a useful component for a phage cocktail to control B. amyloliquefaciens and that PlyJBA6 can provide insights into the development of novel biocontrol agents against various food-borne pathogens.
Collapse
Affiliation(s)
- Jena Kim
- Department of Food Science and Biotechnology, Research Institute of Food and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Minsuk Kong
- Department of Food Science and Biotechnology, Research Institute of Food and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
9
|
Tran NT, Teo AC, McTaggart AR, Campbell PR, Persley DM, Thomas JE, Geering ADW. Origins and Distribution of Panicum Mosaic Virus and Sugarcane Mosaic Virus on Stenotaphrum secundatum in Australia. PHYTOPATHOLOGY 2025; 115:431-440. [PMID: 39853298 DOI: 10.1094/phyto-11-24-0363-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Stenotaphrum secundatum is a premium turf grass in warm temperate and subtropical regions of the world and is the most important turf species in Australia based on the value of its production. A new disease called buffalo grass yellows (BGY) has become a problem on turf farms in Australia. We surveyed turf farms in New South Wales, Queensland, and Western Australia to determine whether panicum mosaic virus (PMV) and sugarcane mosaic virus (SCMV) were associated with BGY. PMV was only found on three farms, two located in the Hawkesbury Valley near Sydney and a third at Echuca, about 800 km to the southwest of the former location. SCMV was more prevalent, present in all major cultivars and states surveyed. We analyzed phylogenetic relationships for SCMV and found that isolates infecting S. secundatum in Australia belonged to three clades. The first included Australian isolates typical of the population of viruses circulating in Digitaria didactyla. The second included a single New South Wales isolate from S. secundatum 'SS100' that grouped with otherwise American isolates of SCMV recorded in S. secundatum and Saccharum officinale from Florida and Zea mays from Ohio. Finally, an isolate of SCMV from S. secundatum originating from a turf farm in South East Queensland grouped with viruses mostly infecting maize; this record is potentially the first maize-adapted strain of SCMV in Australia. Our study sheds light on the etiology of the BGY disease syndrome and invasion history of PMV and SCMV in Australia.
Collapse
Affiliation(s)
- Nga T Tran
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - Ai Chin Teo
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - Alistair R McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - Paul R Campbell
- Department of Primary Industries, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - Denis M Persley
- Department of Primary Industries, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - John E Thomas
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - Andrew D W Geering
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| |
Collapse
|
10
|
Thalhofer V, Doktor C, Philipp L, Betat H, Mörl M. An alternative adaptation strategy of the CCA-adding enzyme to accept noncanonical tRNA substrates in Ascaris suum. J Biol Chem 2025; 301:108414. [PMID: 40107618 PMCID: PMC12013499 DOI: 10.1016/j.jbc.2025.108414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Playing a central role in translation, tRNAs act as an essential adapter linking the correct amino acid to the corresponding mRNA codon in translation. Due to this function, all tRNAs exhibit a typical secondary and tertiary structure to be recognized by the tRNA maturation enzymes as well as many components of the translation machinery. Yet, there is growing evidence for structurally deviating tRNAs in metazoan mitochondria, requiring a coevolution and adaptation of these enzymes to the unusual structures of their substrates. Here, it is shown that the CCA-adding enzyme of Ascaris suum carries such a specific adaptation in form of a C-terminal extension. The corresponding enzymes of other nematodes also carry such extensions, and many of them have an additional adaptation in a small region of their N-terminal catalytic core. Thus, the presented data indicate that these enzymes evolved two distinct strategies to tolerate noncanonical tRNAs as substrates for CCA incorporation. The identified C-terminal extension represents a surprising case of convergent evolution in tRNA substrate adaptation, as the nematode mitochondrial translation factor EF-Tu1 carries a similar extension that is essential for efficient binding to such structurally deviating tRNAs.
Collapse
Affiliation(s)
| | - Claudius Doktor
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Lena Philipp
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Leipzig, Germany.
| |
Collapse
|
11
|
Patra M, Pandey AK, Dubey SK. Sludge amended soil induced multidrug and heavy metal resistance in endophytic Exiguobacterium sp. E21L: genomics evidences. World J Microbiol Biotechnol 2025; 41:114. [PMID: 40148599 DOI: 10.1007/s11274-025-04323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
The emergence of multidrug-resistant bacteria in agro-environments poses serious risks to public health and ecological balance. In this study, Exiguobacterium sp. E21L, an endophytic strain, was isolated from carrot leaves cultivated in soil amended with sewage treatment plant-derived sludge. The strain exhibited resistance to clinically relevant antibiotics, including beta-lactams, fluoroquinolones, aminoglycosides, and macrolides, with a high Multi-Antibiotic Resistance Index of 0.88. Whole-genome sequencing revealed a genome of 3.06 Mb, encoding 3894 protein-coding genes, including antimicrobial resistance genes (ARGs) such as blaNDM, ermF, tetW, and sul1, along with heavy metal resistance genes (HMRGs) like czcD, copB, and nikA. Genomic islands carrying ARGs and stress-related genes suggested potential horizontal gene transfer. The strain demonstrated robust biofilm formation, high cell hydrophobicity (> 80%), and significant auto-aggregation (90% at 48 h), correlating with genes associated with motility, quorum sensing, and stress adaptation. Notably, phenotypic assays confirmed survival under simulated gastrointestinal conditions, emphasizing its resilience in host-associated environments. Comparative genomics positioned Exiguobacterium sp. E21L near Exiguobacterium chiriqhucha RW-2, with a core genome of 2716 conserved genes. Functional annotations revealed genes involved in xenobiotic degradation, multidrug efflux pumps, and ABC-type transporters, indicating versatile resistance mechanisms and metabolic capabilities. The presence of ARGs, HMRGs, and MGEs (mobile genetic elements) highlights the potential role of Exiguobacterium sp. E21L as a reservoir for resistance determinants in agricultural ecosystems. These findings emphasized the need for stringent regulations on sludge-based fertilizers and advanced sludge treatment strategies to mitigate AMR risks in agro-environments.
Collapse
Affiliation(s)
- Mrinmoy Patra
- Molecular Ecology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, 284128, India
| | - Suresh Kumar Dubey
- Molecular Ecology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
12
|
Hussain N, Mohiuddin F, Muccee F, Bunny SM, Al Haddad AH. Isolation, Molecular, and Metabolic Profiling of Benzene-Remediating Bacteria Inhabiting the Tannery Industry Soil. Pol J Microbiol 2025; 74:33-47. [PMID: 40146793 PMCID: PMC11949388 DOI: 10.33073/pjm-2025-003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/27/2024] [Indexed: 03/29/2025] Open
Abstract
Benzene is a pervasive contaminant and human carcinogen. Its remediation from environmental resources using conventional procedures has always been challenging due to high cost and incomplete benzene degradation. The present study was designed to explore highly efficient bacteria with benzene degrading potential from tannery industry soil, which might be used as an alternative to these conventional benzene removal remedies. Bacterial isolation was performed using benzene (80 μl/1,000 ml) supplemented with minimal salt media (MSM). Characterization of isolates was carried out by performing growth curve analysis, Gram staining, biochemical characterization via Remel RapID™ NF PLUS System (Thermo Scientific™, Thermo Fisher Scientific, Inc., USA), antibiotic sensitivity profiling, 16S rRNA gene sequencing, benzene removal efficiency estimation assay, FTIR, and GC-MS profiling. Five bacteria isolated in the present study were identified as Paracoccus aestuarii PUB1, Bacillus tropicus PUB2, Bacillus albus PUB3, Bacillus subtilis PUB4, and Bacillus cereus PUB6. All of these fast-growing bacteria were Gram-positive except P. aestuarii PUB1. Maximum benzene removal efficiency (30 mg/l per 25 h) was found in B. tropicus PUB2. Comparing the FTIR spectra of bacterial culture supernatant versus control revealed the peaks shifting corresponding to benzene ring bonds breaking. GC-MS analysis identified the metabolic intermediates from benzoate methylation and benzaldehyde pathways. These bacteria can be employed for benzene degradation via enzyme-based nanoparticle synthesis or cloning of relevant genes in eco-friendly expression systems.
Collapse
Affiliation(s)
- Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Al Ain Campus, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi Campus, Abu Dhabi, United Arab Emirates
| | - Farhan Mohiuddin
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Fatima Muccee
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Saboor Muarij Bunny
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Amal H.I. Al Haddad
- Chief Operations Office, Sheikh Shakhbout Medical City (SSMC), PureHealth, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Kim E, Cai Y, Yang SM, Lee W, Kim HY. Psychrobacter saeujeotis sp. nov., a novel halophilic bacterium isolated from salted shrimp jeotgal. Int J Syst Evol Microbiol 2025; 75. [PMID: 40131329 DOI: 10.1099/ijsem.0.006734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
A novel bacterial species, designated FBL11T, was isolated from salted shrimp jeotgal, a traditional Korean fermented food sampled in the Republic of Korea. This strain showed the highest 16S rRNA gene sequence similarity to Psychrobacter halodurans strain F2608T (NR_181578.1) at 98.3%. The genome size of strain FBL11T was 3,294,493 bp with a G+C content of 42.5 mol%. Computation of relatedness indicates that strain FBL11T shares the highest relatedness of 78.5% with Psychrobacter fulvigenes strain KC-40T (NZ_CAJGZP01) and 25.2% with Psychrobacter piechaudii strain CIP110854T (NZ_FUGE01), with values clearly below the cut-offs for species distinction. Polyphasic characterization using biochemical tests and matrix-assisted laser desorption/ionization time-of-flight MS analysis confirmed these findings. Strain FBL11T grew at 10-30 °C (optimum, 20-30 °C) with 0-15% NaCl (w/v; optimum, 3-6%). Analysis of biosynthetic gene clusters responsible for secondary metabolite production revealed that strain FBL11T generates unique products such as beta-lactone and redox-cofactors within this genus. Based on the genomic and phenotypic data obtained, we propose that strain FBL11T represents a novel species, for which we propose the name Psychrobacter saeujeotis sp. nov. (type strain FBL11T=KACC 23745T=KCTC 8655T=JCM 37231T).
Collapse
Affiliation(s)
- Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Yinhua Cai
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seung-Min Yang
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Woojung Lee
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
14
|
Joyce MG, Bu W, Chen WH, Gillespie RA, Andrews SF, Wheatley AK, Tsybovsky Y, Jensen JL, Stephens T, Prabhakaran M, Fisher BE, Narpala SR, Bagchi M, McDermott AB, Nabel GJ, Kwong PD, Mascola JR, Cohen JI, Kanekiyo M. Structural basis for complement receptor engagement and virus neutralization through Epstein-Barr virus gp350. Immunity 2025; 58:295-308.e5. [PMID: 39909035 DOI: 10.1016/j.immuni.2025.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/11/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025]
Abstract
Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with malignancies in humans. Viral infection of B cells is initiated by the viral glycoprotein 350 (gp350) binding to complement receptor 2 (CR2). Despite decades of effort, no vaccines or curative agents have been developed, partly due to lack of atomic-level understanding of the virus-host interface. Here, we determined the 1.7 Å structure of gp350 in complex with CR2. CR2 binding of gp350 utilized the same set of Arg residues required for recognition of its natural ligand, complement C3d. We further determined the structures of gp350 in complex with three potently neutralizing antibodies (nAbs) obtained from vaccinated macaques and EBV-infected individuals. Like the CR2 interaction, these nAbs targeted the acidic pocket within the CR2-binding site on gp350 using Arg residues. Our results illustrate two axes of molecular mimicry-gp350 versus C3d and CR2 versus EBV nAbs-offering insights for EBV vaccines and therapeutics development.
Collapse
Affiliation(s)
- M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD 20817, USA; Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | - Wei Bu
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei-Hung Chen
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD 20817, USA; Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam K Wheatley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jaime L Jensen
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD 20817, USA; Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep R Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meghna Bagchi
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gary J Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Schilling CM, Zdanowicz R, Rabl J, Müller AU, Boehringer D, Glockshuber R, Weber-Ban E. Single-stranded DNA binding to the transcription factor PafBC triggers the mycobacterial DNA damage response. SCIENCE ADVANCES 2025; 11:eadq9054. [PMID: 39919186 PMCID: PMC11804915 DOI: 10.1126/sciadv.adq9054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025]
Abstract
The DNA damage response in mycobacteria is controlled by the heterodimeric transcription factor PafBC, a member of the WYL domain-containing protein family. It has been shown that PafBC induces transcription of its regulon by reprogramming the housekeeping RNA polymerase holoenzyme to recognize PafBC-dependent promoters through sigma adaptation. However, the mechanism by which DNA damage is sensed and translated into PafBC activation has remained unclear. Here, we demonstrate that the binding of single-stranded DNA (ssDNA) to the WYL domains of PafBC activates the transcription factor. Our cryo-electron microscopy structure of full-length PafBC in its active conformation, bound to the transcription initiation complex, reveals a previously unknown mode of interaction between the ssDNA and the WYL domains. Using biochemical experiments, we show that short ssDNA fragments bind to PafBC dynamically, resulting in deactivation as ssDNA levels decrease postrepair. Our findings shed light on the mechanism linking DNA damage to PafBC activation and expand our understanding of WYL domain-containing proteins.
Collapse
Affiliation(s)
| | - Rafal Zdanowicz
- ETH Zurich, Institute of Molecular Biology and Biophysics, 8093 Zurich, Switzerland
| | - Julius Rabl
- ETH Zurich, Cryo-EM Knowledge Hub, 8093 Zurich, Switzerland
| | - Andreas U. Müller
- ETH Zurich, Institute of Molecular Biology and Biophysics, 8093 Zurich, Switzerland
| | | | - Rudi Glockshuber
- ETH Zurich, Institute of Molecular Biology and Biophysics, 8093 Zurich, Switzerland
| | - Eilika Weber-Ban
- ETH Zurich, Institute of Molecular Biology and Biophysics, 8093 Zurich, Switzerland
| |
Collapse
|
16
|
Hartmann FE, Rodríguez de la Vega RC, Demené A, Badet T, Vernadet JP, Rougemont Q, Labat A, Snirc A, Stauber L, Croll D, Prospero S, Dutech C, Giraud T. An Inversion Polymorphism Under Balancing Selection, Involving Giant Mobile Elements, in an Invasive Fungal Pathogen. Mol Biol Evol 2025; 42:msaf026. [PMID: 39907064 PMCID: PMC11848846 DOI: 10.1093/molbev/msaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
Recombination suppression can evolve in sex or mating-type chromosomes, or in autosomal supergenes, with different haplotypes being maintained by balancing selection. In the invasive chestnut blight fungus Cryphonectria parasitica, a genomic region was suggested to lack recombination and to be partially physically linked to the mating-type (MAT) locus based on segregation analyses. Using hundreds of available C. parasitica genomes and generating new high-quality genome assemblies, we show that a ca. 1.2 Mb genomic region proximal to the mating-type locus lacks recombination, with the segregation of two highly differentiated haplotypes in balanced proportions in invasive populations. High-quality genome assemblies further revealed an inversion in one of the haplotypes in the invaded range. The two haplotypes were estimated to have diverged 1.5 million years ago, and each harboured specific genes, some of which likely belonging to Starships. These are large transposable elements, mobilized by tyrosine recombinases, able to move accessory genes, and involved in adaptation in multiple fungi. The MAT-proximal region carried genes upregulated under virus infection or vegetative incompatibility reaction. In the native range, the MAT-proximal region also appeared to have a different evolutionary history than the rest of the genome. In all continents, the MAT-Proximal region was enriched in nonsynonymous substitutions, in gene presence/absence polymorphism, in tyrosine recombinases and in transposable elements. This study thus sheds light on a case of a large nonrecombining region partially linked to a mating compatibility locus, likely maintained by balancing selection on differentiated haplotypes, possibly involved in adaptation in a devastating tree pathogen.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette F-91190, France
| | | | - Arthur Demené
- Biodiversité Gènes & Communautés, INRAE, Univ. Bordeaux, Cestas F-33610, France
| | - Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Jean-Philippe Vernadet
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette F-91190, France
| | - Quentin Rougemont
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette F-91190, France
| | - Amandine Labat
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette F-91190, France
| | - Alodie Snirc
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette F-91190, France
| | - Lea Stauber
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Simone Prospero
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Cyril Dutech
- Biodiversité Gènes & Communautés, INRAE, Univ. Bordeaux, Cestas F-33610, France
| | - Tatiana Giraud
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette F-91190, France
| |
Collapse
|
17
|
Sargent DJ, Buti M, Martens S, Pugliesi C, Aaby K, Røen D, Yadav CB, Fernández Fernández F, Alsheikh M, Davik J, Price RJ. A CACTA-like transposon in the Anthocyanidin synthase 1 (Ans-1) gene is responsible for apricot fruit colour in the raspberry (Rubus idaeus) cultivar 'Varnes'. PLoS One 2025; 20:e0318692. [PMID: 39899506 PMCID: PMC11790086 DOI: 10.1371/journal.pone.0318692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
Cultivated raspberries (Rubus idaeus L.) most commonly bear small, red, highly aromatic fruits. Their colour is derived predominantly from anthocyanins, water soluble polyphenolic pigments, but as well as red forms, there exist cultivars that display yellow- and apricot-coloured fruits. In this investigation, we used a multi-omics approach to elucidate the genetic basis of the apricot fruit colour in raspberry. Using metabolomics, we quantified anthocyanins in red and apricot raspberry fruits and demonstrated that, in contrast to red-fruited raspberries, fruits of the apricot cultivar 'Varnes' contain low concentrations of only a small number of anthocyanin compounds. By performing RNASeq, we revealed differential expression patterns in the apricot-fruited 'Varnes' for genes in the anthocyanin biosynthesis pathway and following whole genome sequencing using long-read Oxford Nanopore Technologies sequencing, we identified a CACTA-like transposable element (TE) in the second exon of the Anthocyanidin synthase (Ans) gene that caused a truncated predicted ANS protein. PCR confirmed the presence in heterozygous form of the transposon in an unrelated, red-fruited cultivar 'Veten', indicating apricot fruit colour is recessive to red and that it may be widespread in raspberry germplasm, potentially explaining why apricot forms appear at regular intervals in modern raspberry breeding populations.
Collapse
Affiliation(s)
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Stefan Martens
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Centro Ricerca e Innovazione, San Michele all’Adige, Trentino, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Pisa, Italy
| | - Kjersti Aaby
- NOFIMA AS, Norwegian Institute of Food Fisheries and Aquaculture Research, Ås, Norway
| | - Dag Røen
- Njos Fruit and Berry Centre, Leikanger, Norway
| | | | | | - Muath Alsheikh
- Graminor Breeding Ltd., Ridabu, Norway
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jahn Davik
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | |
Collapse
|
18
|
Nabi B, Kumawat M, Yadav PK, Ahlawat N, Mir MA, Kumar V, Kumar M, Ahlawat S. Molecular Prediction and Correlation of the Structure and Function of Universal Stress Protein A (UspA) from Salmonella Typhimurium. Biochem Genet 2025; 63:197-209. [PMID: 38427123 DOI: 10.1007/s10528-024-10699-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/13/2024] [Indexed: 03/02/2024]
Abstract
Salmonella Typhimurium (ST) is a zoonotic pathogen that can cause gastroenteritis in humans when they consume contaminated food or water. When exposed to various stressors, both from living organisms (biotic) and the environment (abiotic), Salmonella Typhimurium produces Universal Stress Proteins (USPs). These proteins are gaining recognition for their crucial role in bacterial stress resistance and the ability to enter a prolonged state of growth arrest. Additionally, USPs exhibit diverse structures due to the fusion of the USP domain with different catalytic motifs, enabling them to participate in various reactions and cellular activities during stressful conditions. In this particular study, researchers cloned and analyzed the uspA gene obtained from poultry-derived strains of Salmonella Typhimurium. The gene comprises 435 base pairs, encoding a USP family protein consisting of 144 amino acids. Phylogenetic analysis demonstrated a close relationship between the uspA genes of Salmonella Typhimurium and those found in other bacterial species. We used molecular dynamics simulations and 3D structure prediction to ensure that the USPA protein was stable. Furthermore, we also carried out motif search and network analysis of protein-protein interactions. The findings from this study offer valuable insights for the development of inhibitors targeted against Salmonella Typhimurium.
Collapse
Affiliation(s)
- Bilkees Nabi
- Department of Biochemistry & Biochemical Engineering, SHUATS, Prayagraj, 211007, India
| | - Manoj Kumawat
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Pramod Kumar Yadav
- Department of Computational Biology & Bioinformatics, SHUATS, Prayagraj, 211007, India
| | - Neeraj Ahlawat
- Department of Animal Husbandry and Dairying, SHUATS, Prayagraj, 211007, India
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Vivek Kumar
- Department of Computational Biology & Bioinformatics, SHUATS, Prayagraj, 211007, India
| | - Manoj Kumar
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India.
| | - Sushma Ahlawat
- Department of Biochemistry & Biochemical Engineering, SHUATS, Prayagraj, 211007, India.
| |
Collapse
|
19
|
Chacón JL, Chacón RD, Hagemann HL, Astolfi-Ferreira CS, Nunes C, Sesti L, Alva B, Ferreira AJP. Molecular Characterization of the Infectious Laryngotracheitis Virus (ILTV) Involved in Poultry Outbreaks Reveals the Virus Origin and Estimated Spreading Route. Viruses 2025; 17:213. [PMID: 40006968 PMCID: PMC11860664 DOI: 10.3390/v17020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Infectious laryngotracheitis outbreaks have been observed in a short period of time in broiler, layer, and broiler breeder flocks, resulting in clinical signs and high mortality. The affected farms are located in the same geographical area, which is a high-density poultry region of Brazil. To estimate the potential origin of the virus or viruses that caused the outbreaks, the ILTVs detected at six companies were molecularly characterized by sequencing two fragments of the ICP4 gene and then compared with previous field and vaccine viruses detected in the country. The sequencing results revealed that all farms investigated were infected with a nonvaccine-origin virus. Phylogenetic analysis revealed that all farms were infected by the same virus classified as genotype VI. In addition, the ILTV detected in the present study was compared with that of viruses previously detected in egg-layer poultry regions in the country. The viruses detected in the recent outbreaks were indistinguishable, with one of them (VI-4) suggesting a possible route of transmission. This study describes for the first time severe ILT outbreaks in meat-type poultry in Brazil that spread quickly, and the phylogenetic analysis suggests the potential origin of the virus and route of transmission.
Collapse
Affiliation(s)
- Jorge Luis Chacón
- CEVA Animal Health, Rua Manoel Joaquim Filho, 303, São Paulo 13148-115, Brazil; (J.L.C.); (C.N.); (L.S.); (B.A.)
| | - Ruy D. Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (H.L.H.); (C.S.A.-F.)
| | - Henrique Lage Hagemann
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (H.L.H.); (C.S.A.-F.)
| | - Claudete S. Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (H.L.H.); (C.S.A.-F.)
| | - Cesar Nunes
- CEVA Animal Health, Rua Manoel Joaquim Filho, 303, São Paulo 13148-115, Brazil; (J.L.C.); (C.N.); (L.S.); (B.A.)
| | - Luiz Sesti
- CEVA Animal Health, Rua Manoel Joaquim Filho, 303, São Paulo 13148-115, Brazil; (J.L.C.); (C.N.); (L.S.); (B.A.)
| | - Branko Alva
- CEVA Animal Health, Rua Manoel Joaquim Filho, 303, São Paulo 13148-115, Brazil; (J.L.C.); (C.N.); (L.S.); (B.A.)
| | - Antonio J. Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Orlando Marques de Paiva, 87, São Paulo 05508-900, Brazil; (R.D.C.); (H.L.H.); (C.S.A.-F.)
| |
Collapse
|
20
|
Serrat J, Torres-Valle M, De Marco Verissimo C, Siles-Lucas M, González-Miguel J. Binding and cleavage of pro-urokinase by a tegument extract of Fasciola hepatica newly excysted juveniles activate the host fibrinolytic system. Vet Res 2025; 56:20. [PMID: 39856784 PMCID: PMC11762853 DOI: 10.1186/s13567-025-01449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/26/2024] [Indexed: 01/27/2025] Open
Abstract
Plasmin, the final product of fibrinolysis, is a broad-spectrum serine protease that degrades extracellular matrix (ECM) components, a function exploited by multiple pathogens for dissemination purposes. The trematode Fasciola hepatica is the leading cause of fasciolosis, a major disease of livestock and an emerging zoonosis in humans. Infection success depends on the ability of F. hepatica newly excysted juveniles (FhNEJ) to penetrate the host intestinal wall, a process that remains incompletely understood. We have previously shown that FhNEJ are capable of binding plasminogen (PLG), the zymogen of plasmin, on their tegument surface, which leads to plasmin generation in the presence of host-derived PLG activators and subsequent degradation of laminin, a major component of the intestinal ECM. Here, we describe the interaction between a tegument extract of FhNEJ and the precursor of the urokinase-type PLG activator (pro-u-PA). We found that F. hepatica cathepsins B3, L3, enolase and glutathione S-transferase mediate this interaction, suggesting a multifactorial or moonlighting role for these proteins. Additionally, our results revealed that the tegument of FhNEJ contains a protease that is capable of cleaving and activating pro-u-PA into its catalytically active form, which positively impacts the capacity of the parasites to generate plasmin from the host PLG. Collectively, our findings indicate that FhNEJ interact with the host fibrinolytic system at multiple levels, reinforcing the potential of targeting this interaction as a strategy to prevent FhNEJ trans-intestinal migration and infection success.
Collapse
Affiliation(s)
- Judit Serrat
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - María Torres-Valle
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | | | - Mar Siles-Lucas
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Javier González-Miguel
- Laboratory of Helminth Parasites of Zoonotic Importance (ATENEA), Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain.
| |
Collapse
|
21
|
Rolfs LA, Falat EJ, Gutzman JH. myh9b is a critical non-muscle myosin II encoding gene that interacts with myh9a and myh10 during zebrafish development in both compensatory and redundant pathways. G3 (BETHESDA, MD.) 2025; 15:jkae260. [PMID: 39503257 PMCID: PMC11708221 DOI: 10.1093/g3journal/jkae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Non-muscle myosin (NMII) motor proteins have diverse developmental functions due to their roles in cell shape changes, cell migration, and cell adhesion. Zebrafish are an ideal vertebrate model system to study the NMII encoding myh genes and proteins due to high sequence homology, established gene editing tools, and rapid ex utero development. In humans, mutations in the NMII encoding MYH genes can lead to abnormal developmental processes and disease. This study utilized zebrafish myh9a, myh9b, and myh10 null mutants to examine potential genetic interactions and roles for each gene in development. It was determined that the myh9b gene is the most critical NMII encoding gene, as myh9b mutants develop pericardial edema and have a partially penetrant lethal phenotype, which was not observed in the other myh mutants. This study also established that genetic interactions occur between the zebrafish myh9a, myh9b, and myh10 genes where myh9b is required for the expression of both myh9a and myh10, and myh10 is required for the expression of myh9b. Additionally, protein analyses suggested that enhanced NMII protein stability in some mutant backgrounds may play a role in compensation. Finally, double mutant studies revealed different and more severe phenotypes at earlier time points than single mutants, suggesting roles for tissue specific genetic redundancy, and in some genotypes, haploinsufficiency. These mutants are the first in vivo models allowing for the study of complete loss of the NMIIA and NMIIB proteins, establishing them as valuable tools to elucidate the role of NMII encoding myh genes in development and disease.
Collapse
Affiliation(s)
- Laura A Rolfs
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Elizabeth J Falat
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Jennifer H Gutzman
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
22
|
Liang C, Wang J, Liu J, Wang Z, Cao J, Yu X, Zhang L, Fang J. Phylogenetic analysis, metabolic profiling, and environmental adaptation of strain LCG007: a novel Rhodobacteraceae isolated from the East China Sea intertidal zone. Front Microbiol 2025; 15:1533195. [PMID: 39839119 PMCID: PMC11747546 DOI: 10.3389/fmicb.2024.1533195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Strain LCG007, isolated from Lu Chao Harbor's intertidal water, phylogenetically represents a novel genus within the family Rhodobacteraceae. Metabolically, it possesses a wide array of amino acid metabolic genes that enable it to thrive on both amino acids or peptides. Also, it could hydrolyze peptides containing D-amino acids, highlighting its potential role in the cycling of refractory organic matter. Moreover, strain LCG007 could utilize various carbohydrates, including mannopine and D-apiose-compounds primarily derived from terrestrial plants-demonstrating its capacity to degrade terrestrial organic matter. It could assimilate ammonia, nitrate and nitrite, and utilizes organic nitrogen sources such as polyamines, along with diverse organic and inorganic phosphorus and sulfur sources. Importantly, unlike very limited Sulfitobacter species that possess photosynthetic genes, the genomes of strain LCG007-affiliated genus and all Roseobacter species harbor photosynthetic gene clusters. This conservation was further supported by the significant impact of light on the growth and cell aggregation of strain LCG007, suggesting that acquirement of photosynthetic genes could play a crucial role in the speciation of their common ancestor. In terms of environmental adaptability, the genes that encode for DNA photolyase, heat and cold shock proteins, and enzymes responsible for scavenging reactive oxygen species, along with those involved in the uptake and biosynthesis of osmoprotectants such as betaine, γ-aminobutyric acid (GABA), and trehalose collectively enable strain LCG007 to survive in the dynamic and complex intertidal zone environment. Besides, the capacity in biofilm formation is crucial for its survival under conditions of oligotrophy or high salinity. This study enhances our comprehension of the microbial taxonomy within the Roseobacter clade affiliated cluster, their survival strategies in intertidal ecosystems, and underscores the significance of their role in nutrient cycling. It also highlights the crucial importance of photosynthetic metabolism for the speciation of marine bacteria and their ecological resilience.
Collapse
Affiliation(s)
- Cuizhu Liang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Jiahua Wang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Jie Liu
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Zekai Wang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Junwei Cao
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Xi Yu
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Li Zhang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- Shanghai Engineering Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
23
|
Zhao R, Zhu XY, Zhang J, Xie ZY, Hu WS, Han QH, Fan JY, Yang YN, Feng BY, Cao JM, Zhou X, Wang DP. Crystal structure of F10 core protein from Mpox virus reveals its potential inhibitors. Int J Biol Macromol 2025; 284:138079. [PMID: 39603287 DOI: 10.1016/j.ijbiomac.2024.138079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/23/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Mpox virus (MPXV), a member of Poxviridae family, causes a rare zoonotic disease. According to the most recent data, over 15,600 cases and 537 deaths of human mpox have been reported. The MPXV complete RNA polymerase (RNAP), which is responsible for the entire early transcriptional cycle, comprises the RNAP core enzyme and essential factors including viral early transcription factor (VETF), nucleoside triphosphate phosphohydrolase I (NPH-I), RNA polymerase-associated protein (Rap94), and F10 core protein. The dimeric F10 core protein stabilizes the N-terminal region of Rap94, and the C-terminal domain of NPH-I, functioning as a structural clamp that enhances the stability of the RNAP complex. Here, we determined the crystal structure of the F10 core protein at a high resolution of 1.5 Å, and identified a cavity between the F10 core protein and NPH-I through superimposition of the MPXV F10 core protein and the vaccinia virus (VACV) RNAP. We further conducted a virtual screening based on this cavity, and identified 28 compounds as potential MPXV inhibitors. To the best of our knowledge, this is the first study to screen for inhibitors targeting MPXV RNAP. Our study may facilitate the development of novel ways for the discovery of anti-MPXV compounds against emerging pathogens.
Collapse
Affiliation(s)
- Rong Zhao
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China; Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiang-Yue Zhu
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jie Zhang
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Zhi-Yan Xie
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Wen-Shu Hu
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Qing-Hua Han
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jiao-Yan Fan
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Yan-Ni Yang
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Bao-Ying Feng
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ji-Min Cao
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China.
| | - Xin Zhou
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China.
| | - De-Ping Wang
- Department of Cardiology, the First hospital of Shanxi Medical University, and Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China; Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
24
|
Ripoll L, Iserte J, Cerrudo CS, Presti D, Serrat JH, Poma R, Mangione FAJ, Micheloud GA, Gioria VV, Berrón CI, Zago MP, Borio C, Bilen M. Insect-specific RNA viruses detection in Field-Caught Aedes aegypti mosquitoes from Argentina using NGS technology. PLoS Negl Trop Dis 2025; 19:e0012792. [PMID: 39792957 PMCID: PMC11756794 DOI: 10.1371/journal.pntd.0012792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/23/2025] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks. In this study, we address the implementation of a sequencing and analysis pipeline based on the Oxford Nanopore Technologies MinION Mk1b system, for arboviral detection in field-caught mosquitoes from Argentina. Full genome of Humaita Tubiacanga Virus (HTV), Phasi Charoen-like Phasivirus (PCLV), Aedes aegypti totivirus (AaeTV) has been sequenced in three distinct regions of Argentina comprising Buenos Aires province, Santa Fe province and the northern province of Salta. Viral sequences enriched by SISPA and coupled with Nanopore sequencing can be a useful tool for viral surveillance, not only for detecting viruses that have a high impact on human and animal health, but also for detecting insect-specific viruses that could promote the transmission of arboviruses.
Collapse
Affiliation(s)
- Lucas Ripoll
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular—Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina
| | - Javier Iserte
- Laboratorio de Bioinformática Estructural, Fundación Instituto Leloir, Ciudad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Susana Cerrudo
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular—Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina
| | - Damian Presti
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular—Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina
| | - José Humberto Serrat
- Programa de Zoonosis, Dirección General de Coordinación Epidemiológica-Ministerio de Salud Pública de Salta, Salta, Salta, Argentina
| | - Ramiro Poma
- Unidad de Conocimiento Traslacional Hospitalaria, Hospital Público Materno Infantil de Salta (UCT-HPMI)-CONICET, Salta, Salta, Argentina
| | | | - Gabriela Analía Micheloud
- Laboratorio de Virología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Santa Fe, Argentina
| | - Verónica Viviana Gioria
- Laboratorio de Virología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Santa Fe, Argentina
| | - Clara Inés Berrón
- Laboratorio de Virología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Santa Fe, Argentina
| | - M. Paola Zago
- Unidad de Conocimiento Traslacional Hospitalaria, Hospital Público Materno Infantil de Salta (UCT-HPMI)-CONICET, Salta, Salta, Argentina
| | - Cristina Borio
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular—Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina
| | - Marcos Bilen
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular—Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina
| |
Collapse
|
25
|
Ma Y, Huang Y, Zhang W, Dong J, Zhang X, Zhu Y, Wang Y, Liu L, Xu L. RsNRAMP5, a major metal transporter, promotes cadmium influx and ROS accumulation in radish (Raphanus sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109323. [PMID: 39603032 DOI: 10.1016/j.plaphy.2024.109323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/28/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Arable soil contamination with heavy metals (HMs) poses a great potential threat to vegetable crops and human health. Radish (Raphanus sativus L.), an economical and popular root vegetable crop, is easily absorbed HMs by its taproot. Although the Natural Resistance-Associated Macrophage Proteins (NRAMPs) were participated in transporting a number of HMs in plants, whether and how the NRAMP genes involved in cadmium (Cd) uptake and transport remains elusive in radish. In this study, a total of nine RsNRAMP gene members were identified, which were classified into three subgroups and dispersed on six radish chromosomes. Three RsNRAMPs (RsNRAMP3, RsNRAMP4 and RsNRAMP5) displayed high expression in the vascular cambium, and they exhibited obviously Cd-induced expression, among which the expression of RsNRAMP4 and RsNRAMP5 reached to the highest level at 24h. Moreover, the RsNRAMP5 was localized to the plasma membrane and its promoter activity was dramatically induced by Cd exposure. Heterologous expression analysis indicated that over-expression of RsNRAMP5 significantly promoted the uptake of Cd, lead (Pb), iron (Fe) and manganese (Mn) in yeast cells. In addition, the transient over-expression of RsNRAMP5 promoted Cd uptake and enhanced ROS (reactive oxygen species) accumulation in radish cotyledons. These findings would expedite unraveling the molecular mechanism underlying RsNRAMP5-mediated Cd uptake and transport in radish.
Collapse
Affiliation(s)
- Yingfei Ma
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yudi Huang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weilan Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaheng Dong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoli Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuelin Zhu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
26
|
Crespo-Bellido A, Martin DP, Duffy S. Recombination Analysis of Geminiviruses Using Recombination Detection Program (RDP). Methods Mol Biol 2025; 2912:125-143. [PMID: 40064777 DOI: 10.1007/978-1-0716-4454-6_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Geminiviruses are recombination-prone, and characterizing this evolutionary process within their genomes is a frequent goal of researchers. RDP is a stand-alone Windows program combining many algorithms that detect and characterize recombination. It has been widely used by the geminivirus community (and beyond). Here we describe the use of RDP4 and RDP5 for analysis of geminiviral nucleotide sequences including: (i) obtaining a reasonable dataset for analysis, (ii) making a credible multiple sequence alignment and (iii) analyzing an alignment with RDP on that alignment. RDP to both characterize recombination events and to produce statistically recombination-free datasets for other molecular evolution analyses.
Collapse
Affiliation(s)
- Alvin Crespo-Bellido
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Darren Patrick Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
27
|
Gao S, Zhang Y, Bush SJ, Wang B, Yang X, Ye K. Centromere Landscapes Resolved from Hundreds of Human Genomes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae071. [PMID: 39423139 DOI: 10.1093/gpbjnl/qzae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
High-fidelity (HiFi) sequencing has facilitated the assembly and analysis of the most repetitive region of the genome, the centromere. Nevertheless, our current understanding of human centromeres is based on a relatively small number of telomere-to-telomere assemblies, which have not yet captured its full diversity. In this study, we investigated the genomic diversity of human centromere higher order repeats (HORs) via both HiFi reads and haplotype-resolved assemblies from hundreds of samples drawn from ongoing pangenome-sequencing projects and reprocessed them via a novel HOR annotation pipeline, HiCAT-human. We used this wealth of data to provide a global survey of the centromeric HOR landscape; in particular, we found that 23 HORs presented significant copy number variability between populations. We detected three centromere genotypes with unbalanced population frequencies on chromosomes 5, 8, and 17. An inter-assembly comparison of HOR loci further revealed that while HOR array structures are diverse, they nevertheless tend to form a number of specific landscapes, each exhibiting different levels of HOR subunit expansion and possibly reflecting a cyclical evolutionary transition from homogeneous to nested structures and back.
Collapse
Affiliation(s)
- Shenghan Gao
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yimeng Zhang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Stephen J Bush
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaofei Yang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kai Ye
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Center for Mathematical Medical, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Faculty of Science, Leiden University, Leiden 2311 EZ, The Netherlands
| |
Collapse
|
28
|
Sieber A, Parr M, von Ehr J, Dhamotharan K, Kielkowski P, Brewer T, Schäpers A, Krafczyk R, Qi F, Schlundt A, Frishman D, Lassak J. EF-P and its paralog EfpL (YeiP) differentially control translation of proline-containing sequences. Nat Commun 2024; 15:10465. [PMID: 39622818 PMCID: PMC11611912 DOI: 10.1038/s41467-024-54556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/13/2024] [Indexed: 12/06/2024] Open
Abstract
Polyproline sequences are deleterious to cells because they stall ribosomes. In bacteria, EF-P plays an important role in overcoming such polyproline sequence-induced ribosome stalling. Additionally, numerous bacteria possess an EF-P paralog called EfpL (also known as YeiP) of unknown function. Here, we functionally and structurally characterize EfpL from Escherichia coli and demonstrate its role in the translational stress response. Through ribosome profiling, we analyze the EfpL arrest motif spectrum and find additional sequences beyond the canonical polyproline motifs that both EF-P and EfpL can resolve. Notably, the two factors can also induce pauses. We further report that EfpL can sense the metabolic state of the cell via lysine acylation. Overall, our work characterizes the role of EfpL in ribosome rescue at proline-containing sequences, and provides evidence that co-occurrence of EF-P and EfpL is an evolutionary driver for higher bacterial growth rates.
Collapse
Affiliation(s)
- Alina Sieber
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Marina Parr
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Julian von Ehr
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
- IMPRS on Cellular Biophysics, Frankfurt, Germany
| | - Karthikeyan Dhamotharan
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
| | - Pavel Kielkowski
- Department of Chemistry, Institut für Chemische Epigenetik (ICEM), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tess Brewer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anna Schäpers
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ralph Krafczyk
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Fei Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Jürgen Lassak
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
29
|
Rossi CAM, Patel DN, Castroverde CDM. Distinct profiles of plant immune resilience revealed by natural variation in warm temperature-modulated disease resistance among Arabidopsis accessions. PLANT, CELL & ENVIRONMENT 2024; 47:5115-5125. [PMID: 39165012 DOI: 10.1111/pce.15098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/22/2024]
Abstract
Elevated temperature suppresses the plant defence hormone salicylic acid (SA) by downregulating the expression of master immune regulatory genes CALMODULIN BINDING PROTEIN 60-LIKE G (CBP60g) and SYSTEMIC ACQUIRED RESISTANCE DEFICIENT1 (SARD1). However, previous studies in Arabidopsis thaliana plants have primarily focused on the accession Columbia-0 (Col-0), while the genetic determinants of intraspecific variation in Arabidopsis immunity under elevated temperature remain unknown. Here we show that BASIC HELIX LOOP HELIX 059 (bHLH059), a thermosensitive SA regulator at nonstress temperatures, does not regulate immune suppression under warmer temperatures. In agreement, temperature-resilient and -sensitive Arabidopsis accessions based on disease resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 did not correlate with bHLH059 polymorphisms. Instead, we found that temperature-resilient accessions exhibit varying CBP60g and SARD1 expression profiles, potentially revealing CBP60g/SARD1-dependent and independent mechanisms of immune resilience to warming temperature. We identified thermoresilient accessions that exhibited either temperature-sensitive or -insensitive induction of the SA biosynthetic gene ICS1 (direct target gene of CBP60g and SARD1) and SA hormone levels. Collectively, this study has unveiled the intraspecific diversity of Arabidopsis immune responses under warm temperatures, which could aid in predicting plant responses to climate change and provide foundational knowledge for climate-resilient crop engineering.
Collapse
Affiliation(s)
- Christina A M Rossi
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Dhrashti N Patel
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | | |
Collapse
|
30
|
Margets A, Foster J, Kumar A, Maier TR, Masonbrink R, Mejias J, Baum TJ, Innes RW. The Soybean Cyst Nematode Effector Cysteine Protease 1 (CPR1) Targets a Mitochondrial Soybean Branched-Chain Amino Acid Aminotransferase (GmBCAT1). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024:MPMI06240068R. [PMID: 39158991 DOI: 10.1094/mpmi-06-24-0068-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The soybean cyst nematode (SCN; Heterodera glycines) facilitates infection by secreting a repertoire of effector proteins into host cells to establish a permanent feeding site composed of a syncytium of root cells. Among the diverse proteins secreted by the nematode, we were specifically interested in identifying proteases to pursue our goal of engineering decoy substrates that elicit an immune response when cleaved by an SCN protease. We identified a cysteine protease that we named Cysteine Protease 1 (CPR1), which was predicted to be a secreted effector based on transcriptomic data obtained from SCN esophageal gland cells, the presence of a signal peptide, and the lack of transmembrane domains. CPR1 is conserved in all isolates of SCN sequenced to date, suggesting it is critical for virulence. Transient expression of CPR1 in Nicotiana benthamiana leaves suppressed cell death induced by a constitutively active nucleotide binding leucine-rich repeat protein, RPS5, indicating that CPR1 inhibits effector-triggered immunity. CPR1 localizes in part to the mitochondria when expressed in planta. Proximity-based labeling in transgenic soybean roots, co-immunoprecipitation, and cleavage assays identified a branched-chain amino acid aminotransferase from soybean (GmBCAT1) as a substrate of CPR1. Consistent with this, GmBCAT1 also localizes to mitochondria. Silencing of the CPR1 transcript in the nematode reduced penetration frequency in soybean roots, while the expression of CPR1 in soybean roots enhanced susceptibility. Our data demonstrates that CPR1 is a conserved effector protease with a direct target in soybean roots, highlighting it as a promising candidate for decoy engineering. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Alexandra Margets
- Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A
| | - Jessica Foster
- Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A
| | - Anil Kumar
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Tom R Maier
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Rick Masonbrink
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Joffrey Mejias
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Thomas J Baum
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, IN 47405, U.S.A
| |
Collapse
|
31
|
Wang Z, Wang J, Yu X, Zhang H, Liu J, Cao J, Fang J, Song Z, Zhang L. The metabolic characteristics and environmental adaptations of the intertidal bacterium Palleronia sp. LCG004. Front Microbiol 2024; 15:1469112. [PMID: 39678919 PMCID: PMC11638410 DOI: 10.3389/fmicb.2024.1469112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
The intertidal zone, a dynamic interface of marine, atmospheric, and terrestrial ecosystems, exposes microorganisms to rapid shifts in temperature, salinity, and oxidative stress. Strain LCG004, representing a novel Palleronia species, was isolated from the Lu Chao Harbor's intertidal seawater in the Western Pacific Ocean. The genome of the organism reveals its metabolic versatility, enabling the utilization of various organic substrates-ranging from organic acids, amino acids, to sugars, and encompassing complex carbohydrates-as well as adept handling of inorganic nutrients, thereby highlighting its significant role in the cycling of nutrients. The strain is equipped with multiple osmoprotectant transporters, deoxyribodipyrimidine photo-lyase, and a comprehensive antioxidant defense system, featuring with multiple catalases, peroxidases, and superoxide dismutases, enabling it to withstand ever-changing environmental conditions, UV radiation, and oxidative challenges. Notably, LCG004 exhibited enhanced growth and cell aggregation under oligotrophic conditions, promoted by light exposure, underscoring the significant influence of light on its morphological and physiological attributes. This study elucidates strain LCG004's metabolic characteristics and ecological potential, and offers insights into its contributions to biogeochemical cycles and survival strategies in one of nature's most fluctuating environments.
Collapse
Affiliation(s)
- Zekai Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Jiahua Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Xi Yu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Hongcai Zhang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Jie Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Junwei Cao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zengfu Song
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Shanghai), Shanghai Ocean University, Shanghai, China
| | - Li Zhang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
32
|
Kolenc Ž, Kovač Viršek M, Klančnik A, Janecko N. Microbial communities on microplastics from seawater and mussels: Insights from the northern Adriatic Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175130. [PMID: 39084364 DOI: 10.1016/j.scitotenv.2024.175130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microplastics, synthetic solid particles of different sizes (< 5 mm), pose a major challenge to marine ecosystems. Introducing microplastics into the marine environment leads to the formation of complex microbial communities, a topic of growing interest in environmental research. For this study, we selected an area in the northern Adriatic Sea, less affected by human activities, to understand how pristine environmental conditions influence microbial colonization of microplastics. Samples of coastal seawater and Mediterranean mussels (Mytilus galloprovincialis) were collected in a mussel farm near Debeli rtič of the Slovenian coast. Microplastics were isolated, visually and chemically analyzed and DNA was extracted for metagenomics. In the marine water column, 12.7 microplastics per m3 water column and 0.58 microplastics per individual mussel were found. Sufficient DNA was available to analyze six particles, five originating from seawater, and one from a mussel. This was the first-ever sequenced microplastic particle from a mussel. Genera of Pseudomonas and Serratia were identified in all samples. In one of the samples, the most abundant was a marine genus Pseudoalteromonas, while in another sample Campylobacter was present with >30 % abundance. The microbiomes of the mussel- and seawater-isolated particles were similar, suggesting a common microbial colonization pattern, which may have implications for the transfer of microplastic-associated microbes, including potential pathogens, through the food web to the consumers. Microplastic pollution is a complex issue requiring further research, especially regarding microbial biofilms, pathogen colonization and the potential of pathogen transmission via microplastic particles. Our findings enhance the understanding of microplastic pollution in the Adriatic Sea and stress the necessity for comprehensive strategies to mitigate the impact on marine ecosystems.
Collapse
Affiliation(s)
- Živa Kolenc
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Manca Kovač Viršek
- Institute for Water of the Republic of Slovenia, Einspielerjeva ulica 6, 1000 Ljubljana, Slovenia; Geological Survey of Slovenia, Dimičeva ulica 14, 1000 Ljubljana, Slovenia
| | - Anja Klančnik
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Nicol Janecko
- Quadram Institute Bioscience, Rosalind Franklin Rd, Norwich Research Park, Norwich NR4 7UQ, UK
| |
Collapse
|
33
|
Wijerathna HMSM, Shanaka KASN, Raguvaran SS, Jayamali BPMV, Kim SH, Kim MJ, Jung S, Lee J. CRISPR/Cas9-Mediated fech Knockout Zebrafish: Unraveling the Pathogenesis of Erythropoietic Protoporphyria and Facilitating Drug Screening. Int J Mol Sci 2024; 25:10819. [PMID: 39409147 PMCID: PMC11476521 DOI: 10.3390/ijms251910819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Erythropoietic protoporphyria (EPP1) results in painful photosensitivity and severe liver damage in humans due to the accumulation of fluorescent protoporphyrin IX (PPIX). While zebrafish (Danio rerio) models for porphyria exist, the utility of ferrochelatase (fech) knockout zebrafish, which exhibit EPP, for therapeutic screening and biological studies remains unexplored. This study investigated the use of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated fech-knockout zebrafish larvae as a model of EPP1 for drug screening. CRISPR/Cas9 was employed to generate fech-knockout zebrafish larvae exhibiting morphological defects without lethality prior to 9 days post-fertilization (dpf). To assess the suitability of this model for drug screening, ursodeoxycholic acid (UDCA), a common treatment for cholestatic liver disease, was employed. This treatment significantly reduced PPIX fluorescence and enhanced bile-secretion-related gene expression (abcb11a and abcc2), indicating the release of PPIX. Acridine orange staining and quantitative reverse transcription polymerase chain reaction analysis of the bax/bcl2 ratio revealed apoptosis in fech-/- larvae, and this was reduced by UDCA treatment, indicating suppression of the intrinsic apoptosis pathway. Neutral red and Sudan black staining revealed increased macrophage and neutrophil production, potentially in response to PPIX-induced cell damage. UDCA treatment effectively reduced macrophage and neutrophil production, suggesting its potential to alleviate cell damage and liver injury in EPP1. In conclusion, CRISPR/Cas9-mediated fech-/- zebrafish larvae represent a promising model for screening drugs against EPP1.
Collapse
Affiliation(s)
- Hitihami M. S. M. Wijerathna
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Department of Aquaculture and Seafood Technology, Faculty of Fisheries and Ocean Sciences, Ocean University of Sri Lanka, Colombo 01500, Sri Lanka
| | - Kateepe A. S. N. Shanaka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
| | - Sarithaa S. Raguvaran
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
| | - Bulumulle P. M. V. Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
| | - Seok-Hyung Kim
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
| | - Myoung-Jin Kim
- Nakdonggang National Institute of Biological Resources, Sangju-si 37242, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
- Marine Molecular Genetics Lab, Jeju National University, 102 Jejudaehakno, Jeju 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju 63243, Republic of Korea; (H.M.S.M.W.)
- Marine Life Research Institute, Jeju National University, Jeju 63333, Republic of Korea
- Marine Molecular Genetics Lab, Jeju National University, 102 Jejudaehakno, Jeju 63243, Republic of Korea
| |
Collapse
|
34
|
Lattanzi R, Fullone MR, De Biase A, Maftei D, Vincenzi M, Miele R. Biochemical characterization of Prokineticin 2 binding to Prokineticin receptor 1 in zebrafish. Neuropeptides 2024; 107:102456. [PMID: 39089191 DOI: 10.1016/j.npep.2024.102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
Prokineticin 2 (PK2) binds to prokineticin receptor 1 and prokineticin receptor 2 (PKR1 and PKR2, respectively), two G protein-coupled receptors (GPCRs) that can mediate multiple signalling pathways by promoting the elevation of intracellular calcium and cAMP levels, phosphorylation of Akt and activation of ERK and STAT3. This work aims to evidence the conservation of protein sequence and the mechanism of PK2 binding to PKR1 to use the zebrafish model for the identification of new drugs as targets of prokineticin receptors. To this end, we first demonstrated that the zebrafish genes pk2 and pkr1 are phylogenetically related to orthologous mammalian genes by constructing evolutionary trees and performing syntenic analyses. Subsequently, by comparing the amino acid sequences, we showed that the interaction sites with PK2 are conserved in the zPKR1. Using GST pull-down and cross-linking experiments, we demonstrated the crucial role of the N-terminal region of zPKR1 for binding to the PK2. Finally, by expressing zPKR1 in CHO cells, we demonstrated the ability of zPKR1 to induce the activation of ERK and STAT3.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Maria Rosaria Fullone
- Department of Biochemical Sciences "Alessandro Rossi Fanelli" Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Alessio De Biase
- Department of Biology and Biotechnologies "Charles Darwin" Sapienza University of Rome, Viale dell'Università 32, I-00185 Rome, Italy
| | - Daniela Maftei
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Martina Vincenzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Rossella Miele
- Department of Biochemical Sciences "Alessandro Rossi Fanelli" Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
35
|
Syryn H, Van de Velde J, De Clercq G, Verdin H, Dheedene A, Peelman F, Sinclair A, Ayers KL, Bathgate RAD, Cools M, De Baere E. Biallelic RXFP2 variants lead to congenital bilateral cryptorchidism and male infertility, supporting a role of RXFP2 in spermatogenesis. Hum Reprod 2024; 39:2353-2363. [PMID: 39222519 DOI: 10.1093/humrep/deae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
STUDY QUESTION Does RXFP2 disruption impair male fertility? SUMMARY ANSWER We identified biallelic variants in RXFP2 in patients with male infertility due to spermatogenic arrest at the spermatid stage, supporting a role of RXFP2 in human spermatogenesis, specifically in germ cell maturation. WHAT IS KNOWN ALREADY Since RXFP2, the receptor for INSL3, plays a crucial role in testicular descent during prenatal development, biallelic variants lead to bilateral cryptorchidism, as described in four families to date. While animal models have also suggested a function in spermatogenesis, the postnatal functions of RXFP2 and its ligand INSL3, produced in large amounts by the testes from puberty throughout adulthood, are largely unknown. STUDY DESIGN, SIZE, DURATION A family with two male members affected by impaired fertility due to spermatogenic maturation arrest and a history of bilateral cryptorchidism underwent clinical, endocrinological, histological, genomic, in vitro cellular, and in silico investigations. PARTICIPANTS/MATERIALS, SETTING, METHODS The endocrinological and histological findings were correlated with publicly available single-cell RNA sequencing (scRNA-seq) data. The genomic defects have been characterized using long-read sequencing and validated with in silico modeling and an in vitro cyclic AMP reporter gene assay. MAIN RESULTS AND THE ROLE OF CHANCE An intragenic deletion of exon 1-5 of RXFP2 (NM_130806.5) was detected in trans with a hemizygous missense variant c.229G>A, p.(Glu77Lys). The p.(Glu77Lys) variant caused no clear change in cell surface expression or ability to bind INSL3, but displayed absence of a cAMP signal in response to INSL3, indicating a loss-of-function. Testicular biopsy in the proband showed a maturation arrest at the spermatid stage, corresponding to the highest level of RXFP2 expression in scRNA-seq data, thereby providing a potential explanation for the impaired fertility. LIMITATIONS, REASONS FOR CAUTION Although this is so far the only study of human cases that supports the role of RXFP2 in spermatogenic maturation, this is corroborated by several animal studies that have already demonstrated a postnatal function of INSL3 and RXFP2 in spermatogenesis. WIDER IMPLICATIONS OF THE FINDINGS This study corroborates RXFP2 as gene implicated in autosomal recessive congenital bilateral cryptorchidism due to biallelic variants, rather than autosomal-dominant cryptorchidism due to monoallelic RXFP2 variants. Our findings also support that RXFP2 is essential in human spermatogenesis, specifically in germ cell maturation, and that biallelic disruption can cause male infertility through spermatogenic arrest at the spermatid stage. STUDY FUNDING/COMPETING INTEREST(S) Funding was provided by the Bellux Society for Pediatric Endocrinology and Diabetology (BELSPEED) and supported by a Research Foundation Flanders (FWO) senior clinical investigator grant (E.D.B., 1802220N) and a Ghent University Hospital Special Research Fund grant (M.C., FIKO-IV institutional fund). The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Hannes Syryn
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Julie Van de Velde
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Pediatric Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Griet De Clercq
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Hannah Verdin
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Frank Peelman
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Andrew Sinclair
- Royal Children's Hospital & Department of Paediatrics, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Australia
| | - Katie L Ayers
- Royal Children's Hospital & Department of Paediatrics, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Australia
| | - Ross A D Bathgate
- The Florey Institute and Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia
| | - Martine Cools
- Department of Pediatric Endocrinology, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
36
|
Tang Y, Zhang J, Guan J, Liang W, Petassi M, Zhang Y, Jiang X, Wang M, Wu W, Ou HY, Peters J. Transposition with Tn3-family elements occurs through interaction with the host β-sliding clamp processivity factor. Nucleic Acids Res 2024; 52:10416-10430. [PMID: 39119921 PMCID: PMC11417375 DOI: 10.1093/nar/gkae674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Tn3 family transposons are a widespread group of replicative transposons, notorious for contributing to the dissemination of antibiotic resistance, particularly the global prevalence of carbapenem resistance. The transposase (TnpA) of these elements catalyzes DNA breakage and rejoining reactions required for transposition. However, the molecular mechanism for target site selection with these elements remains unclear. Here, we identify a QLxxLR motif in N-terminal of Tn3 TnpAs and demonstrate that this motif allows interaction between TnpA of Tn3 family transposon Tn1721 and the host β-sliding clamp (DnaN), the major processivity factor of the DNA replication machinery. The TnpA-DnaN interaction is essential for Tn1721 transposition. Our work unveils a mechanism whereby Tn3 family transposons can bias transposition into certain replisomes through an interaction with the host replication machinery. This study further expands the diversity of mobile elements that use interaction with the host replication machinery to bias integration.
Collapse
Affiliation(s)
- Yu Tang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Jianfeng Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahao Guan
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Liang
- Department of Laboratory Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Michael T Petassi
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Yumeng Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofei Jiang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Hong-Yu Ou
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
37
|
Khan RH, Salamat N, Baig AQ, Shaikh ZA, Yousef A. Graph-based analysis of DNA sequence comparison in closed cotton species: A generalized method to unveil genetic connections. PLoS One 2024; 19:e0306608. [PMID: 39288143 DOI: 10.1371/journal.pone.0306608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/21/2024] [Indexed: 09/19/2024] Open
Abstract
Graph theory provides a systematic method for modeling and analysing complicated biological data as an effective bioinformatics tool. Based on current trends, the number of DNA sequences in the DNA database is growing quickly. To determine the origin of a species and identify homologous sequences, it is crucial to detect similarities in DNA sequences. Alignment-free techniques are required for accurate measures of sequence similarity, which has been one of the main issues facing computational biologists. The current study provides a mathematical technique for comparing DNA sequences that are constructed in graph theory. The sequences of each DNA were divided into pairs of nucleotides, from which weighted loop digraphs and corresponding weighted vectors were computed. To check the sequence similarity, distance measures like Cosine, Correlation, and Jaccard were employed. To verify the method, DNA segments from the genomes of ten species of cotton were tested. Furthermore, to evaluate the efficacy of the proposed methodology, a K-means clustering method was performed. This study proposes a proof-of-model that utilises a distance matrix approach that promises impressive outcomes with future optimisations to be made to the suggested solution to get the hundred percent accurate result. In the realm of bioinformatics, this paper highlights the use of graph theory as an effective tool for biological data study and sequence comparison. It's expected that further optimization in the proposed solution can bring remarkable results, as this paper presents a proof-of-concept implementation for a given set of data using the proposed distance matrix technique.
Collapse
Affiliation(s)
- Riaz Hussain Khan
- Institute of Mathematics, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Nadeem Salamat
- Institute of Mathematics, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - A Q Baig
- Deportment of Mathematics and Statistics, Institute of Southern Punjab, Multan, Punjab, Pakistan
- School of New Energy and Intelligent Networked Automobiles, University of Sanya, Sanya, China
| | - Zaffar Ahmed Shaikh
- Department of Computer Science and Information Technology, Benazir Bhutto Shaheed University Lyari, Karachi, Pakistan
- School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amr Yousef
- Electrical Engineering Department, College of Engineering, University of Business and Technology, Jeddah, Saudi Arabia
- Engineering Mathematics Department, Alexandria University, Alexandria, Egypt
| |
Collapse
|
38
|
Willet AH, Park JS, Snider CE, Huang JJ, Chen JS, Gould KL. Fission yeast Duc1 links to ER-PM contact sites and influences PM lipid composition and cytokinetic ring anchoring. J Cell Sci 2024; 137:jcs262347. [PMID: 39239853 PMCID: PMC11449445 DOI: 10.1242/jcs.262347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Cytokinesis is the final stage of the cell cycle that results in the physical separation of daughter cells. To accomplish cytokinesis, many organisms build an actin- and myosin-based cytokinetic ring (CR) that is anchored to the plasma membrane (PM). Defects in CR-PM anchoring can arise when the PM lipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] is depleted. In Schizosaccharomyces pombe, reduced PM PI(4,5)P2 results in a CR that cannot maintain a medial position and slides toward one cell end, resulting in two differently sized daughter cells. S. pombe PM PI(4,5)P2 is synthesized by the phosphatidylinositol 4-phosphate 5-kinase (PI5-kinase) Its3, but what regulates this enzyme to maintain appropriate PM PI(4,5)P2 levels in S. pombe is not known. To identify Its3 regulators, we used proximity-based biotinylation, and the uncharacterized protein Duc1 was specifically detected. We discovered that Duc1 decorates the PM except at the cell division site and that its unique localization pattern is dictated by binding to the endoplasmic reticulum (ER)-PM contact site proteins Scs2 and Scs22. Our evidence suggests that Duc1 also binds PI(4,5)P2 and helps enrich Its3 at the lateral PM, thereby promoting PM PI(4,5)P2 synthesis and robust CR-PM anchoring.
Collapse
Affiliation(s)
- Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Joshua S. Park
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Chloe E. Snider
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Jingdian Jamie Huang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
39
|
Shylo NA, Trainor PA. Decrypting the phylogenetics history of EGF-CFC proteins Cripto and Cryptic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610562. [PMID: 39257814 PMCID: PMC11383694 DOI: 10.1101/2024.08.30.610562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
EGF-CFC proteins are obligate coreceptors for Nodal signaling and are thus required for gastrulation and left-right patterning. Species with multiple family members show evidence of specialization. For example, mouse Cripto is required for gastrulation, whereas Cryptic is involved in left-right patterning. However, the members of the family across model organisms have little sequence conservation beyond the EGF-CFC domain, posing challenges for determining their evolutionary history and functional conservation. In this study we outline the evolutionary history of the EGF-CFC family of proteins. We traced the EGF-CFC gene family from a single gene in the deuterostome ancestor through its expansion and functional specialization in tetrapods, and subsequent gene loss and translocation in eutherian mammals. Mouse Cripto and Cryptic, zebrafish Tdgf1, and all three Xenopus EGF-CFC genes (Tdgf1, Tdgf1.2 and Cripto.3) and are all descendants of the ancestral Tdgf1 gene. We propose that subsequent to the family expansion in tetrapods, Tdgf1B (Xenopus Tdgf1.2) acquired specialization in the left-right patterning cascade, and after its translocation in eutherians to a different chromosomal location, Cfc1/Cryptic has maintained that specialization.
Collapse
Affiliation(s)
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Missouri, USA
| |
Collapse
|
40
|
Thuy DTN, Sasaki M, Orba Y, Thammahakin P, Maezono K, Kobayashi S, Kariwa H. Molecular evolution of Hokkaido virus, a genotype of Orthohantavirus puumalaense, among Myodes rodents. Virology 2024; 597:110168. [PMID: 38991257 DOI: 10.1016/j.virol.2024.110168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Viruses in the genus Orthohantavirus within the family Hantaviridae cause human hantavirus infections and represent a threat to public health. Hokkaido virus (HOKV), a genotype of Orthohantavirus puumalaense (Puumala virus; PUUV), was first identified in Tobetsu, Hokkaido, Japan. Although it is genetically related to the prototype of PUUV, the evolutionary pathway of HOKV is unclear. We conducted a field survey in a forest in Tobetsu in 2022 and captured 44 rodents. Complete coding genome sequences of HOKVs were obtained from five viral-RNA-positive rodents (four Myodes rufocanus bedfordiae and one Apodemus speciosus). Phylogenetic analysis revealed a close relationship between the phylogenies and geographical origins of M. rufocanus-related orthohantaviruses. Comparison of the phylogenetic trees of the S segments of orthohantaviruses and the cytochrome b genes of Myodes species suggested that Myodes-related orthohantaviruses evolved in Myodes rodent species as a result of genetic isolation and host switching.
Collapse
Affiliation(s)
- Duong Thi Ngoc Thuy
- Laboratory of Public Health, Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Microbiology and Immunology, Tay Nguyen Institute of Hygiene and Epidemiology, Buon Ma Thuot, Viet Nam
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Passawat Thammahakin
- Laboratory of Public Health, Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Keisuke Maezono
- Laboratory of Public Health, Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shintaro Kobayashi
- Laboratory of Public Health, Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan; Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
41
|
Caetano da Silva C, Macias Trevino C, Mitchell J, Murali H, Tsimbal C, Dalessandro E, Carroll SH, Kochhar S, Curtis SW, Cheng CHE, Wang F, Kutschera E, Carstens RP, Xing Y, Wang K, Leslie EJ, Liao EC. Functional analysis of ESRP1/2 gene variants and CTNND1 isoforms in orofacial cleft pathogenesis. Commun Biol 2024; 7:1040. [PMID: 39179789 PMCID: PMC11344038 DOI: 10.1038/s42003-024-06715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Orofacial cleft (OFC) is a common human congenital anomaly. Epithelial-specific RNA splicing regulators ESRP1 and ESRP2 regulate craniofacial morphogenesis and their disruption result in OFC in zebrafish, mouse and humans. Using esrp1/2 mutant zebrafish and murine Py2T cell line models, we functionally tested the pathogenicity of human ESRP1/2 gene variants. We found that many variants predicted by in silico methods to be pathogenic were functionally benign. Esrp1 also regulates the alternative splicing of Ctnnd1 and these genes are co-expressed in the embryonic and oral epithelium. In fact, over-expression of ctnnd1 is sufficient to rescue morphogenesis of epithelial-derived structures in esrp1/2 zebrafish mutants. Additionally, we identified 13 CTNND1 variants from genome sequencing of OFC cohorts, confirming CTNND1 as a key gene in human OFC. This work highlights the importance of functional assessment of human gene variants and demonstrates the critical requirement of Esrp-Ctnnd1 acting in the embryonic epithelium to regulate palatogenesis.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Hemma Murali
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Casey Tsimbal
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Eileen Dalessandro
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shannon H Carroll
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Shriners Hospital for Children, Tampa, FL, USA
| | - Simren Kochhar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ching Hsun Eric Cheng
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Feng Wang
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric Kutschera
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russ P Carstens
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yi Xing
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Center for Genomic Medicine, Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Elizabeth J Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric C Liao
- Center for Craniofacial Innovation, Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Harvard Medical School, Boston, MA, USA.
- Shriners Hospital for Children, Tampa, FL, USA.
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
42
|
Tsujii M, Tanudjaja E, Zhang H, Shimizukawa H, Konishi A, Furuta T, Ishimaru Y, Uozumi N. Dissecting structure and function of the monovalent cation/H + antiporters Mdm38 and Ylh47 in Saccharomyces cerevisiae. J Bacteriol 2024; 206:e0018224. [PMID: 39082862 PMCID: PMC11340316 DOI: 10.1128/jb.00182-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024] Open
Abstract
Saccharomyces cerevisiae Mdm38 and Ylh47 are homologs of the Ca2+/H+ antiporter Letm1, a candidate gene for seizures associated with Wolf-Hirschhorn syndrome in humans. Mdm38 is important for K+/H+ exchange across the inner mitochondrial membrane and contributes to membrane potential formation and mitochondrial protein translation. Ylh47 also localizes to the inner mitochondrial membrane. However, knowledge of the structures and detailed transport activities of Mdm38 and Ylh47 is limited. In this study, we conducted characterization of the ion transport activities and related structural properties of Mdm38 and Ylh47. Growth tests using Na+/H+ antiporter-deficient Escherichia coli strain TO114 showed that Mdm38 and Ylh47 had Na+ efflux activity. Measurement of transport activity across E. coli-inverted membranes showed that Mdm38 and Ylh47 had K+/H+, Na+/H+, and Li+/H+ antiport activity, but unlike Letm1, they lacked Ca2+/H+ antiport activity. Deletion of the ribosome-binding domain resulted in decreased Na+ efflux activity in Mdm38. Structural models of Mdm38 and Ylh47 identified a highly conserved glutamic acid in the pore-forming membrane-spanning region. Replacement of this glutamic acid with alanine, a non-polar amino acid, significantly impaired the ability of Mdm38 and Ylh47 to complement the salt sensitivity of E. coli TO114. These findings not only provide important insights into the structure and function of the Letm1-Mdm38-Ylh47 antiporter family but by revealing their distinctive properties also shed light on the physiological roles of these transporters in yeast and animals. IMPORTANCE The inner membrane of mitochondria contains numerous ion transporters, including those facilitating H+ transport by the electron transport chain and ATP synthase to maintain membrane potential. Letm1 in the inner membrane of mitochondria in animals functions as a Ca2+/H+ antiporter. However, this study reveals that homologous antiporters in mitochondria of yeast, Mdm38 and Ylh47, do not transport Ca2+ but instead are selective for K+ and Na+. Additionally, the identification of conserved amino acids crucial for antiporter activity further expanded our understanding of the structure and function of the Letm1-Mdm38-Ylh47 antiporter family.
Collapse
Affiliation(s)
- Masaru Tsujii
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| | - Ellen Tanudjaja
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| | - Haoyu Zhang
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| | - Haruto Shimizukawa
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| | - Ayumi Konishi
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Japan
| | - Yasuhiro Ishimaru
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| | - Nobuyuki Uozumi
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| |
Collapse
|
43
|
Cao J, Shao B, Lin J, Liu J, Cui Y, Wang J, Fang J. Genomic and physiological properties of Anoxybacterium hadale gen. nov. sp. nov. reveal the important role of dissolved organic sulfur in microbial metabolism in hadal ecosystems. Front Microbiol 2024; 15:1423245. [PMID: 39220043 PMCID: PMC11362086 DOI: 10.3389/fmicb.2024.1423245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Hadal zones account for the deepest 45% of the oceanic depth range and play an important role in ocean biogeochemical cycles. As the least-explored aquatic habitat on earth, hadal ecosystems contain a vast diversity of so far uncultured microorganisms that cannot be grown on conventional laboratory culture media. Therefore, it has been difficult to gain a true understanding of the detailed metabolic characteristics and ecological functions of those difficult-to-culture microorganisms in hadal environments. In this study, a novel anaerobic bacterial strain, MT110T, was isolated from a hadal sediment-water interface sample of the Mariana Trench at 10,890 m. The level of 16S rRNA gene sequence similarity and percentage of conserved proteins between strain MT110T and the closest relatives, Anaerovorax odorimutans DSM 5092T (94.9 and 46.6%) and Aminipila butyrica DSM 103574T (94.4 and 46.7%), indicated that strain MT110T exhibits sufficient molecular differences for genus-level delineation. Phylogenetic analyses based on both 16S rRNA gene and genome sequences showed that strain MT110T formed an independent monophyletic branch within the family Anaerovoracaceae. The combined evidence showed that strain MT110T represents a novel species of a novel genus, proposed as Anoxybacterium hadale gen. nov. sp. nov. (type strain MT110T = KCTC 15922T = MCCC 1K04061T), which represents a previously uncultured lineage of the class Clostridia. Physiologically, no tested organic matter could be used as sole carbon source by strain MT110T. Genomic analysis showed that MT110T had the potential capacity of utilizing various carbon sources, but the pathways of sulfur reduction were largely incomplete. Our experiments further revealed that cysteine is one of the essential nutrients for the survival of strain MT110T, and cannot be replaced by sulfite, leucine, or taurine. This result suggests that organic sulfur compounds might play an important role in metabolism and growth of the family Anaerovoracaceae and could be one of the key factors affecting the cultivation of the uncultured microbes. Our study brings a new perspective to the role of dissolved organic sulfur in hadal ecosystems and also provides valuable information for optimizing the conditions of isolating related microbial taxa from the hadal environment.
Collapse
Affiliation(s)
- Junwei Cao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Baoying Shao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jing Lin
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jie Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Yiran Cui
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jiahua Wang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
44
|
Shempela DM, Muleya W, Mudenda S, Daka V, Sikalima J, Kamayani M, Sandala D, Chipango C, Muzala K, Musonda K, Chizimu JY, Mulenga C, Kapona O, Kwenda G, Kasanga M, Njuguna M, Cham F, Simwaka B, Morrison L, Muma JB, Saasa N, Sichinga K, Simulundu E, Chilengi R. Wastewater Surveillance of SARS-CoV-2 in Zambia: An Early Warning Tool. Int J Mol Sci 2024; 25:8839. [PMID: 39201525 PMCID: PMC11354861 DOI: 10.3390/ijms25168839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Wastewater-based surveillance has emerged as an important method for monitoring the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This study investigated the presence of SARS-CoV-2 in wastewater in Zambia. We conducted a longitudinal study in the Copperbelt and Eastern provinces of Zambia from October 2023 to December 2023 during which 155 wastewater samples were collected. The samples were subjected to three different concentration methods, namely bag-mediated filtration, skimmed milk flocculation, and polythene glycol-based concentration assays. Molecular detection of SARS-CoV-2 nucleic acid was conducted using real-time Polymerase Chain Reaction (PCR). Whole genome sequencing was conducted using Illumina COVIDSEQ assay. Of the 155 wastewater samples, 62 (40%) tested positive for SARS-CoV-2. Of these, 13 sequences of sufficient length to determine SARS-CoV-2 lineages were obtained and 2 sequences were phylogenetically analyzed. Various Omicron subvariants were detected in wastewater including BA.5, XBB.1.45, BA.2.86, and JN.1. Some of these subvariants have been detected in clinical cases in Zambia. Interestingly, phylogenetic analysis positioned a sequence from the Copperbelt Province in the B.1.1.529 clade, suggesting that earlier Omicron variants detected in late 2021 could still be circulating and may not have been wholly replaced by newer subvariants. This study stresses the need for integrating wastewater surveillance of SARS-CoV-2 into mainstream strategies for monitoring SARS-CoV-2 circulation in Zambia.
Collapse
Affiliation(s)
- Doreen Mainza Shempela
- Churches Health Association of Zambia, Lusaka 10101, Zambia; (J.S.); (M.K.); (D.S.); (C.C.); (K.S.)
| | - Walter Muleya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia;
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia;
| | - Victor Daka
- Public Health Department, Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola 21692, Zambia;
| | - Jay Sikalima
- Churches Health Association of Zambia, Lusaka 10101, Zambia; (J.S.); (M.K.); (D.S.); (C.C.); (K.S.)
| | - Mapeesho Kamayani
- Churches Health Association of Zambia, Lusaka 10101, Zambia; (J.S.); (M.K.); (D.S.); (C.C.); (K.S.)
| | - Dickson Sandala
- Churches Health Association of Zambia, Lusaka 10101, Zambia; (J.S.); (M.K.); (D.S.); (C.C.); (K.S.)
| | - Chilufya Chipango
- Churches Health Association of Zambia, Lusaka 10101, Zambia; (J.S.); (M.K.); (D.S.); (C.C.); (K.S.)
| | - Kapina Muzala
- Zambia National Public Health Institute, Ministry of Health, Lusaka 10101, Zambia; (K.M.); (K.M.); (J.Y.C.); (C.M.); (O.K.); (R.C.)
| | - Kunda Musonda
- Zambia National Public Health Institute, Ministry of Health, Lusaka 10101, Zambia; (K.M.); (K.M.); (J.Y.C.); (C.M.); (O.K.); (R.C.)
| | - Joseph Yamweka Chizimu
- Zambia National Public Health Institute, Ministry of Health, Lusaka 10101, Zambia; (K.M.); (K.M.); (J.Y.C.); (C.M.); (O.K.); (R.C.)
| | - Chilufya Mulenga
- Zambia National Public Health Institute, Ministry of Health, Lusaka 10101, Zambia; (K.M.); (K.M.); (J.Y.C.); (C.M.); (O.K.); (R.C.)
| | - Otridah Kapona
- Zambia National Public Health Institute, Ministry of Health, Lusaka 10101, Zambia; (K.M.); (K.M.); (J.Y.C.); (C.M.); (O.K.); (R.C.)
| | - Geoffrey Kwenda
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia;
| | - Maisa Kasanga
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou 450001, China;
| | - Michael Njuguna
- Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM), 1201 Geneva, Switzerland; (M.N.); (F.C.); (B.S.); (L.M.)
| | - Fatim Cham
- Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM), 1201 Geneva, Switzerland; (M.N.); (F.C.); (B.S.); (L.M.)
| | - Bertha Simwaka
- Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM), 1201 Geneva, Switzerland; (M.N.); (F.C.); (B.S.); (L.M.)
| | - Linden Morrison
- Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM), 1201 Geneva, Switzerland; (M.N.); (F.C.); (B.S.); (L.M.)
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (J.B.M.); (N.S.)
| | - Ngonda Saasa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia; (J.B.M.); (N.S.)
| | - Karen Sichinga
- Churches Health Association of Zambia, Lusaka 10101, Zambia; (J.S.); (M.K.); (D.S.); (C.C.); (K.S.)
| | | | - Roma Chilengi
- Zambia National Public Health Institute, Ministry of Health, Lusaka 10101, Zambia; (K.M.); (K.M.); (J.Y.C.); (C.M.); (O.K.); (R.C.)
| |
Collapse
|
45
|
Dutkiewicz Z, Varrot A, Breese KJ, Stubbs KA, Nuschy L, Adduci I, Paschinger K, Wilson IBH. Bioinformatic, Enzymatic, and Structural Characterization of Trichuris suis Hexosaminidase HEX-2. Biochemistry 2024; 63:1941-1954. [PMID: 39058279 PMCID: PMC11308363 DOI: 10.1021/acs.biochem.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Hexosaminidases are key enzymes in glycoconjugate metabolism and occur in all kingdoms of life. Here, we have investigated the phylogeny of the GH20 glycosyl hydrolase family in nematodes and identified a β-hexosaminidase subclade present only in the Dorylaimia. We have expressed one of these, HEX-2 from Trichuris suis, a porcine parasite, and shown that it prefers an aryl β-N-acetylgalactosaminide in vitro. HEX-2 has an almost neutral pH optimum and is best inhibited by GalNAc-isofagomine. Toward N-glycan substrates, it displays a preference for the removal of GalNAc residues from LacdiNAc motifs as well as the GlcNAc attached to the α1,3-linked core mannose. Therefore, it has a broader specificity than insect fused lobe (FDL) hexosaminidases but one narrower than distant homologues from plants. Its X-ray crystal structure, the first of any subfamily 1 GH20 hexosaminidase to be determined, is closest to Streptococcus pneumoniae GH20C and the active site is predicted to be compatible with accommodating both GalNAc and GlcNAc. The new structure extends our knowledge about this large enzyme family, particularly as T. suis HEX-2 also possesses the key glutamate residue found in human hexosaminidases of either GH20 subfamily, including HEXD whose biological function remains elusive.
Collapse
Affiliation(s)
- Zuzanna Dutkiewicz
- Institut
für Biochemie, Department für Chemie, Universität für Bodenkultur, Muthgasse 18, Wien 1190, Austria
| | | | - Karen J. Breese
- School
of Molecular Sciences, University of Western
Australia, Crawley, WA 6009, Australia
| | - Keith A. Stubbs
- School
of Molecular Sciences, University of Western
Australia, Crawley, WA 6009, Australia
- ARC
Training Centre for Next-Gen Technologies in Biomedical Analysis,
School of Molecular Sciences, University
of Western Australia, Crawley, WA 6009, Australia
| | - Lena Nuschy
- Institut
für Biochemie, Department für Chemie, Universität für Bodenkultur, Muthgasse 18, Wien 1190, Austria
| | - Isabella Adduci
- Institut
für Parasitologie, Department für Pathobiologie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Wien A-1210, Austria
| | - Katharina Paschinger
- Institut
für Biochemie, Department für Chemie, Universität für Bodenkultur, Muthgasse 18, Wien 1190, Austria
| | - Iain B. H. Wilson
- Institut
für Biochemie, Department für Chemie, Universität für Bodenkultur, Muthgasse 18, Wien 1190, Austria
| |
Collapse
|
46
|
Williams G, Couchman L, Taylor DR, Sandhu JK, Slingsby OC, Ng LL, Moniz CF, Jones DJL, Maxwell CB. Use of Nonhuman Sera as a Highly Cost-Effective Internal Standard for Quantitation of Multiple Human Proteins Using Species-Specific Tryptic Peptides: Applicability in Clinical LC-MS Analyses. J Proteome Res 2024; 23:3052-3063. [PMID: 38533909 PMCID: PMC11301776 DOI: 10.1021/acs.jproteome.3c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Quantitation of proteins using liquid chromatography-tandem mass spectrometry (LC-MS/MS) is complex, with a multiplicity of options ranging from label-free techniques to chemically and metabolically labeling proteins. Increasingly, for clinically relevant analyses, stable isotope-labeled (SIL) internal standards (ISs) represent the "gold standard" for quantitation due to their similar physiochemical properties to the analyte, wide availability, and ability to multiplex to several peptides. However, the purchase of SIL-ISs is a resource-intensive step in terms of cost and time, particularly for screening putative biomarker panels of hundreds of proteins. We demonstrate an alternative strategy utilizing nonhuman sera as the IS for quantitation of multiple human proteins. We demonstrate the effectiveness of this strategy using two high abundance clinically relevant analytes, vitamin D binding protein [Gc globulin] (DBP) and albumin (ALB). We extend this to three putative risk markers for cardiovascular disease: plasma protease C1 inhibitor (SERPING1), annexin A1 (ANXA1), and protein kinase, DNA-activated catalytic subunit (PRKDC). The results show highly specific, reproducible, and linear measurement of the proteins of interest with comparable precision and accuracy to the gold standard SIL-IS technique. This approach may not be applicable to every protein, but for many proteins it can offer a cost-effective solution to LC-MS/MS protein quantitation.
Collapse
Affiliation(s)
- Geraldine Williams
- Leicester
van Geest MS-OMICS Facility, Hodgkin Building, University of Leicester, Leicester LE1 9HN, United
Kingdom
- Department
of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical
Research Unit, Glenfield Hospital, Leicester LE3 9QP, United Kingdom
| | - Lewis Couchman
- Leicester
Cancer Research Centre, RKCSB, University
of Leicester, Leicester LE2 7LX, United Kingdom
- Viapath
Analytics, King’s College Hospital, Denmark Hill, London SE5 9RS, United Kingdom
- Department
of Clinical Biochemistry, King’s
College Hospital, Denmark
Hill, London SE5 9RS, United Kingdom
| | - David R. Taylor
- Viapath
Analytics, King’s College Hospital, Denmark Hill, London SE5 9RS, United Kingdom
| | - Jatinderpal K. Sandhu
- Leicester
van Geest MS-OMICS Facility, Hodgkin Building, University of Leicester, Leicester LE1 9HN, United
Kingdom
- Department
of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical
Research Unit, Glenfield Hospital, Leicester LE3 9QP, United Kingdom
| | - Oliver C. Slingsby
- Leicester
van Geest MS-OMICS Facility, Hodgkin Building, University of Leicester, Leicester LE1 9HN, United
Kingdom
- Department
of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical
Research Unit, Glenfield Hospital, Leicester LE3 9QP, United Kingdom
| | - Leong L. Ng
- Leicester
van Geest MS-OMICS Facility, Hodgkin Building, University of Leicester, Leicester LE1 9HN, United
Kingdom
- Department
of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical
Research Unit, Glenfield Hospital, Leicester LE3 9QP, United Kingdom
| | - Cajetan F. Moniz
- Department
of Clinical Biochemistry, King’s
College Hospital, Denmark
Hill, London SE5 9RS, United Kingdom
| | - Donald J. L. Jones
- Leicester
van Geest MS-OMICS Facility, Hodgkin Building, University of Leicester, Leicester LE1 9HN, United
Kingdom
- Leicester
Cancer Research Centre, RKCSB, University
of Leicester, Leicester LE2 7LX, United Kingdom
- Department
of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical
Research Unit, Glenfield Hospital, Leicester LE3 9QP, United Kingdom
| | - Colleen B. Maxwell
- Leicester
van Geest MS-OMICS Facility, Hodgkin Building, University of Leicester, Leicester LE1 9HN, United
Kingdom
- Department
of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical
Research Unit, Glenfield Hospital, Leicester LE3 9QP, United Kingdom
| |
Collapse
|
47
|
Chen JS, Igarashi MG, Ren L, Hanna SM, Turner LA, McDonald NA, Beckley JR, Willet AH, Gould KL. The core spindle pole body scaffold Ppc89 links the pericentrin orthologue Pcp1 to the fission yeast spindle pole body via an evolutionarily conserved interface. Mol Biol Cell 2024; 35:ar112. [PMID: 38985524 PMCID: PMC11321043 DOI: 10.1091/mbc.e24-05-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Centrosomes and spindle pole bodies (SPBs) are important for mitotic spindle formation and serve as cellular signaling platforms. Although centrosomes and SPBs differ in morphology, many mechanistic insights into centrosome function have been gleaned from SPB studies. In the fission yeast Schizosaccharomyces pombe, the α-helical protein Ppc89, identified based on its interaction with the septation initiation network scaffold Sid4, comprises the SPB core. High-resolution imaging has suggested that SPB proteins assemble on the Ppc89 core during SPB duplication, but such interactions are undefined. Here, we define a connection between Ppc89 and the essential pericentrin Pcp1. Specifically, we found that a predicted third helix within Ppc89 binds the Pcp1 pericentrin-AKAP450 centrosomal targeting (PACT) domain complexed with calmodulin. Ppc89 helix 3 contains similarity to present in the N-terminus of Cep57 (PINC) motifs found in the centrosomal proteins fly SAS-6 and human Cep57 and also to the S. cerevisiae SPB protein Spc42. These motifs bind pericentrin-calmodulin complexes and AlphaFold2 models suggest a homologous complex assembles in all four organisms. Mutational analysis of the S. pombe complex supports the importance of Ppc89-Pcp1 binding interface in vivo. Our studies provide insight into the core architecture of the S. pombe SPB and suggest an evolutionarily conserved mechanism of scaffolding pericentrin-calmodulin complexes for mitotic spindle formation.
Collapse
Affiliation(s)
- Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Maya G. Igarashi
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Sarah M. Hanna
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Lesley A. Turner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Nathan A. McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Janel R. Beckley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
48
|
Breidenstein A, Lamy A, Bader CP, Sun WS, Wanrooij PH, Berntsson RPA. PrgE: an OB-fold protein from plasmid pCF10 with striking differences to prototypical bacterial SSBs. Life Sci Alliance 2024; 7:e202402693. [PMID: 38811160 PMCID: PMC11137577 DOI: 10.26508/lsa.202402693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
A major pathway for horizontal gene transfer is the transmission of DNA from donor to recipient cells via plasmid-encoded type IV secretion systems (T4SSs). Many conjugative plasmids encode for a single-stranded DNA-binding protein (SSB) together with their T4SS. Some of these SSBs have been suggested to aid in establishing the plasmid in the recipient cell, but for many, their function remains unclear. Here, we characterize PrgE, a proposed SSB from the Enterococcus faecalis plasmid pCF10. We show that PrgE is not essential for conjugation. Structurally, it has the characteristic OB-fold of SSBs, but it has very unusual DNA-binding properties. Our DNA-bound structure shows that PrgE binds ssDNA like beads on a string supported by its N-terminal tail. In vitro studies highlight the plasticity of PrgE oligomerization and confirm the importance of the N-terminus. Unlike other SSBs, PrgE binds both double- and single-stranded DNA equally well. This shows that PrgE has a quaternary assembly and DNA-binding properties that are very different from the prototypical bacterial SSB, but also different from eukaryotic SSBs.
Collapse
Affiliation(s)
- Annika Breidenstein
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Anaïs Lamy
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Cyrielle Pj Bader
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Wei-Sheng Sun
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Paulina H Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Ronnie P-A Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
49
|
Willet AH, Ren L, Turner LA, Gould KL. Transient PP2A SIP complex localization to mitotic SPBs for SIN inhibition is mediated solely by the Csc1 FHA domain. Mol Biol Cell 2024; 35:br14. [PMID: 38865179 PMCID: PMC11321038 DOI: 10.1091/mbc.e24-04-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Many organisms utilize an actin- and myosin-based cytokinetic ring (CR) to help complete cytokinesis. In Schizosaccharomyces pombe, the Septation Initiation Network (SIN) promotes proper CR function and stability. The SIN is a conserved and essential signaling network consisting of a GTPase and a cascade of kinases assembled at the spindle pole body (SPB). The PP2A SIN inhibitory phosphatase (SIP) complex related to the STRIPAK phosphatase complex is one inhibitor of SIN signaling. The SIP consists of Csc1, Csc2, Csc3, Csc4, Paa1, and the phosphatase subunit Ppa3. Here, we determine that the SIP is anchored at the SPB via the Csc1 FHA domain and that constitutive SPB localization of the SIP is lethal due to persistent SIN inhibition. Disrupting SIP docking at the SPB with a point mutation within the FHA domain or eliminating phosphatase activity by introducing a point mutation within Ppa3 resulted in intact SIP complexes without SIN inhibitory function. Lastly, we defined the unique features of Ppa3 that allow it, but not two other PP2A catalytic subunits, to incorporate into the SIP. Overall, we provide insight into how the SIP complex assembles, localizes, and functions to counteract the SIN with spatiotemporal precision during cytokinesis.
Collapse
Affiliation(s)
- Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Lesley A. Turner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
50
|
Davidson BSA, Arcila-Galvis JE, Trevisan-Herraz M, Mikulasova A, Brackley CA, Russell LJ, Rico D. Evolutionarily conserved enhancer-associated features within the MYEOV locus suggest a regulatory role for this non-coding DNA region in cancer. Front Cell Dev Biol 2024; 12:1294510. [PMID: 39139450 PMCID: PMC11319300 DOI: 10.3389/fcell.2024.1294510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
The myeloma overexpressed gene (MYEOV) has been proposed to be a proto-oncogene due to high RNA transcript levels found in multiple cancers, including myeloma, breast, lung, pancreas and esophageal cancer. The presence of an open reading frame (ORF) in humans and other primates suggests protein-coding potential. Yet, we still lack evidence of a functional MYEOV protein. It remains undetermined how MYEOV overexpression affects cancerous tissues. In this work, we show that MYEOV has likely originated and may still function as an enhancer, regulating CCND1 and LTO1. Firstly, MYEOV 3' enhancer activity was confirmed in humans using publicly available ATAC-STARR-seq data, performed on B-cell-derived GM12878 cells. We detected enhancer histone marks H3K4me1 and H3K27ac overlapping MYEOV in multiple healthy human tissues, which include B cells, liver and lung tissue. The analysis of 3D genome datasets revealed chromatin interactions between a MYEOV-3'-putative enhancer and the proto-oncogene CCND1. BLAST searches and multi-sequence alignment results showed that DNA sequence from this human enhancer element is conserved from the amphibians/amniotes divergence, with a 273 bp conserved region also found in all mammals, and even in chickens, where it is consistently located near the corresponding CCND1 orthologues. Furthermore, we observed conservation of an active enhancer state in the MYEOV orthologues of four non-human primates, dogs, rats, and mice. When studying this homologous region in mice, where the ORF of MYEOV is absent, we not only observed an enhancer chromatin state but also found interactions between the mouse enhancer homolog and Ccnd1 using 3D-genome interaction data. This is similar to the interaction observed in humans and, interestingly, coincides with CTCF binding sites in both species. Taken together, this suggests that MYEOV is a primate-specific gene with a de novo ORF that originated at an evolutionarily older enhancer region. This deeply conserved putative enhancer element could regulate CCND1 in both humans and mice, opening the possibility of studying MYEOV regulatory functions in cancer using non-primate animal models.
Collapse
Affiliation(s)
| | | | | | - Aneta Mikulasova
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Chris A. Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa J. Russell
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daniel Rico
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| |
Collapse
|