1
|
Mastellos DC, Lambris JD. 'Complement-ing' tissue inflammation via granzyme K? Nat Immunol 2025; 26:647-649. [PMID: 40186070 DOI: 10.1038/s41590-025-02120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Affiliation(s)
- Dimitrios C Mastellos
- National Center for Scientific Research 'Demokritos', Agia Paraskevi, Athens, Greece
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Murayama MA. Complement C3 deficient mice show more severe imiquimod-induced psoriasiform dermatitis than wild-type mice regardless of the commensal microbiota. Exp Anim 2024; 73:458-467. [PMID: 38945882 PMCID: PMC11534491 DOI: 10.1538/expanim.24-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024] Open
Abstract
The complement active product, C3a, and the receptor C3aR comprise an axis that exerts various biological functions, such as protection against infection. C3a is highly expressed in the inflamed skin and blood from patients with psoriasiform dermatitis. However, the role of the C3a/C3aR axis in psoriasiform dermatitis remains unclear because conflicting results using C3-/- mice have been published. In this study, to elucidate the contribution of commensal microbiota in C3-/- and wild-type (WT) mice were subjected to imiquimod-induced psoriasiform dermatitis under different housing conditions. C3-/- mice showed increased epidermal thickness and keratinocyte proliferation markers in the inflamed ear compared to WT mice upon treatment with IMQ. These inflamed phenotypes were observed in both cohoused and separately housed conditions, and antibiotic treatment did not abolish the aggravation of IMQ-induced psoriasiform dermatitis in C3-/- mice. These results suggested that the difference of commensal microbiota is not important for the C3-involved psoriasiform dermatitis. Keratinocyte hyperproliferation is a major feature of the inflamed skin in patients with psoriasiform dermatitis. In vitro experiments showed that C3a and C3aR agonists inhibited keratinocyte proliferation, which was abolished by introduction of a C3aR antagonist. Collectively, these results suggest that the C3a/C3aR axis plays a critical role in psoriasiform dermatitis development by inhibiting keratinocyte proliferation, regardless of the regulation of the commensal microbiota.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
3
|
Emtenani S, Lebhar H, Marquis CP, Ludwig RJ, Schmidt E. Granzyme B inhibition reduces autoantibody-induced dermal-epidermal separation in an ex vivo model of epidermolysis bullosa acquisita. Exp Dermatol 2024; 33:e15172. [PMID: 39219105 DOI: 10.1111/exd.15172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
The pemphigoid disease epidermolysis bullosa acquisita (EBA) is an autoimmune blistering skin disease characterized by autoantibodies against type VII collagen (COL7), immune cell infiltrates at the dermal-epidermal junction and subepidermal blistering. Proteases, particularly granzyme B (GzmB), have been established as therapeutic targets for the treatment of EBA and other pemphigoid diseases. We investigated the impact of the novel GzmB inhibitor SNT-6935 on anti-COL7 IgG-induced subepidermal blistering in a well-established EBA ex vivo model. Our findings demonstrate that pharmacological targeting of GzmB with its selective inhibitor SNT-6935 significantly reduced autoantibody-induced dermal-epidermal separation in human skin cryosections. Interestingly, treatment of skin cryosections with recombinant human GzmB alone did not cause dermal-epidermal separation, suggesting that additional mechanisms alongside GzmB are required for tissue damage in EBA. In conclusion, our study highlights the significant contribution of GzmB to the pathogenesis of EBA and supports the notion of GzmB as a therapeutic target in EBA and other pemphigoid diseases.
Collapse
Affiliation(s)
- Shirin Emtenani
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Hélène Lebhar
- Recombinant Products Facility, MWAC, UNSW, Sydney, Australia
| | | | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Zhang Y, Cai X, Wang B, Zhang B, Xu Y. Exploring the molecular mechanisms of the involvement of GZMB-Caspase-3-GSDME pathway in the progression of rheumatoid arthritis. Mol Immunol 2023; 161:82-90. [PMID: 37531918 DOI: 10.1016/j.molimm.2023.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with an unclear pathogenesis. Granzyme B (GZMB) has been reported as a potential therapeutic target for RA treatment, but its mechanism remains unclear. This study aimed to explore the molecular mechanism of the GZMB-Caspase-3-GSDME pathway in the progression of RA. An SD rat model of RA was constructed, and Western blot analysis was used to verify the high expression of the GZMB gene in RA rats. Functional validation was then performed on two common RA cells, HFLS-RA cells and MH7A cells, by inhibiting the GZMB gene with the GZMB siRNA virus. Cell proliferation function was measured by CCK8 and EDU assays; cell pyroptosis markers were detected by the LDH assay; inflammation factor levels were measured by ELISA; and the expression of GZMB and pathway-related genes and proteins was measured by Western blot. After GZMB silencing, cell proliferation was decreased compared to the control group, and the inflammation factors IL-1b and IL-18, as well as the pyroptosis markers LDH, IL-1b, and IL-18, were all reduced. The GZMB-related proteins GZMB, caspase-3, and Gasdermin E (GSDME) were also decreased. Therefore, GZMB silencing reduces pyroptosis by inhibiting caspase-3 and Gasdermin E decomposition. In summary, GZMB silencing inhibits the activation of caspase-3 and Gasdermin E, thereby delaying inflammation in RA. The GZMB gene may be a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Yue Zhang
- Kunming Medical University, No.1168, Chunrong West Road, Yuhua Street,Chenggong District, Kunming 650500, China; Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Kunming 650032, China
| | - Xingbo Cai
- Kunming Medical University, No.1168, Chunrong West Road, Yuhua Street,Chenggong District, Kunming 650500, China; Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Kunming 650032, China
| | - Bin Wang
- Kunming Medical University, No.1168, Chunrong West Road, Yuhua Street,Chenggong District, Kunming 650500, China; Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Kunming 650032, China
| | - Bihuan Zhang
- Kunming Medical University, No.1168, Chunrong West Road, Yuhua Street,Chenggong District, Kunming 650500, China; Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Kunming 650032, China
| | - Yongqing Xu
- Department of Orthopaedics, 920th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Kunming 650032, China.
| |
Collapse
|
5
|
Aubert A, Lane M, Jung K, Granville DJ. Granzyme B as a therapeutic target: an update in 2022. Expert Opin Ther Targets 2022; 26:979-993. [PMID: 36542784 DOI: 10.1080/14728222.2022.2161890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Granzyme B is a serine protease extensively studied for its implication in cytotoxic lymphocyte-mediated apoptosis. In recent years, the paradigm that the role of granzyme B is restricted to immune cell-mediated killing has been challenged as extracellular roles for the protease have emerged. While mostly absent from healthy tissues, granzyme B levels are elevated in several autoimmune and/or chronic inflammatory conditions. In the skin, its accumulation significantly impairs proper wound healing. AREAS COVERED After an overview of the current knowledge on granzyme B, a description of newly identified functions will be presented, focussing on granzyme B ability to promote cell-cell and dermal-epidermal junction disruption, extracellular matrix degradation, vascular permeabilization, and epithelial barrier dysfunction. Progress in granzyme B inhibition, as well as the use of granzyme B inhibitors for the treatment of tissue damage, will be discussed. EXPERT OPINION The absence of endogenous extracellular inhibitors renders extracellular granzyme B accumulation deleterious for the proper healing of chronic wounds due to sustained proteolytic activity. Consequently, specific granzyme B inhibitors have been developed as new therapeutic approaches. Beyond applications in wound healing, other autoimmune and/or chronic inflammatory conditions related to exacerbated granzyme B activity may also benefit from the development of these inhibitors.
Collapse
Affiliation(s)
- Alexandre Aubert
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Michael Lane
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| |
Collapse
|
6
|
Richardson KC, Jung K, Pardo J, Turner CT, Granville DJ. Noncytotoxic Roles of Granzymes in Health and Disease. Physiology (Bethesda) 2022; 37:323-348. [PMID: 35820180 DOI: 10.1152/physiol.00011.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Granzymes are serine proteases previously believed to play exclusive and somewhat redundant roles in lymphocyte-mediated target cell death. However, recent studies have challenged this paradigm. Distinct substrate profiles and functions have since emerged for each granzyme while their dysregulated proteolytic activities have been linked to diverse pathologies.
Collapse
Affiliation(s)
- Katlyn C Richardson
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain.,Department of Microbiology, Radiology, Pediatrics and Public Health, University of Zaragoza, Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Zaragoza, Spain
| | - Christopher T Turner
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Sequential Increase in Complement Factor I, iC3b, and Cells Expressing CD11b or CD14 in Cutaneous Vasculitis. Anal Cell Pathol 2022; 2022:3888734. [PMID: 35747245 PMCID: PMC9213176 DOI: 10.1155/2022/3888734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/28/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
Mast cells contribute to the pathogenesis of cutaneous vasculitis through complement C3 that is cleaved to C3b and then to iC3b by complement factor I. The receptor of iC3b, CD11b, is expressed on neutrophils and monocytes and CD14 on monocytes. Their role in vasculitis is obscure. In this study, frozen skin biopsies from the nonlesional skin, initial petechial lesion, and palpable purpura lesion from 10 patients with immunocomplex-mediated small vessel vasculitis were studied immunohistochemically for complement factor I, iC3b, CD11b, and CD14. Peripheral blood mononuclear cells from 5 healthy subjects were used to study cell migration and cytokine secretion. Already, the nonlesional skin revealed marked immunostaining of complement factor I, iC3b, CD11b, and CD14, and their expression increased sequentially in initial petechial and palpable purpura lesions. Mast cell C3c correlated to iC3b, and both of them correlated to CD11b+ and CD14+ cells, in the nonlesional skin. The stimulation of mononuclear cells with 0.01-0.1 μg/ml iC3b induced cell migration in the transwell assay. C3a stimulated slightly interleukin-8 secretion, whereas 1 μg/ml iC3b inhibited it slightly, in 4/5 subjects. In conclusion, the C3-C3b-iC3b axis is activated already in the early vasculitis lesion leading to progressive accumulation of CD11b+ and CD14+ cells.
Collapse
|
8
|
Pączek S, Łukaszewicz-Zając M, Mroczko B. Granzymes-Their Role in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23095277. [PMID: 35563668 PMCID: PMC9104098 DOI: 10.3390/ijms23095277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the most common malignancies worldwide. CRC is considered a heterogeneous disease due to various clinical symptoms, biological behaviours, and a variety of mutations. A number of studies demonstrate that as many as 50% of CRC patients have distant metastases at the time of diagnosis. However, despite the fact that social and medical awareness of CRC has increased in recent years and screening programmes have expanded, there is still an urgent need to find new diagnostic tools for early detection of CRC. The effectiveness of the currently used classical tumour markers in CRC diagnostics is very limited. Therefore, new proteins that play an important role in the formation and progression of CRC are being sought. A number of recent studies show the potential significance of granzymes (GZMs) in carcinogenesis. These proteins are released by cytotoxic lymphocytes, which protect the body against viral infection as well specific signalling pathways that ultimately lead to cell death. Some studies suggest a link between GZMs, particularly the expression of Granzyme A, and inflammation. This paper summarises the role of GZMs in CRC pathogenesis through their involvement in the inflammatory process. Therefore, it seems that GZMs could become the focus of research into new CRC biomarkers.
Collapse
Affiliation(s)
- Sara Pączek
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
- Correspondence: ; Tel.: +48-85-831-8587
| | - Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland; (M.Ł.-Z.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University in Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
9
|
Ehrnthaller C, Braumüller S, Kellermann S, Gebhard F, Perl M, Huber-Lang M. Complement Factor C5a Inhibits Apoptosis of Neutrophils-A Mechanism in Polytrauma? J Clin Med 2021; 10:jcm10143157. [PMID: 34300323 PMCID: PMC8303460 DOI: 10.3390/jcm10143157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 01/03/2023] Open
Abstract
Life-threatening polytrauma results in early activation of the complement and apoptotic system, as well as leukocytes, ultimately leading to the clearance of damaged cells. However, little is known about interactions between the complement and apoptotic systems in PMN (polymorphonuclear neutrophils) after multiple injuries. PMN from polytrauma patients and healthy volunteers were obtained and assessed for apoptotic events along the post-traumatic time course. In vitro studies simulated complement activation by the exposure of PMN to C3a or C5a and addressed both the intrinsic and extrinsic apoptotic pathway. Specific blockade of the C5a-receptor 1 (C5aR1) on PMN was evaluated for efficacy to reverse complement-driven alterations. PMN from polytrauma patients exhibited significantly reduced apoptotic rates up to 10 days post trauma compared to healthy controls. Polytrauma-induced resistance was associated with significantly reduced Fas-ligand (FasL) and Fas-receptor (FasR) on PMN and in contrast, significantly enhanced FasL and FasR in serum. Simulation of systemic complement activation revealed for C5a, but not for C3a, a dose-dependent abrogation of PMN apoptosis in both intrinsic and extrinsic pathways. Furthermore, specific blockade of the C5aR1 reversed C5a-induced PMN resistance to apoptosis. The data suggest an important regulatory and putative mechanistic and therapeutic role of the C5a/C5aR1 interaction on PMN apoptosis after polytrauma.
Collapse
Affiliation(s)
- Christian Ehrnthaller
- Institute of Clinical and Experimental Trauma-Immunology (ITI), University of Ulm, 89081 Ulm, Germany; (S.B.); (S.K.)
- Department of Orthopedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 81377 Munich, Germany
- Correspondence: (C.E.); (M.H.-L.)
| | - Sonja Braumüller
- Institute of Clinical and Experimental Trauma-Immunology (ITI), University of Ulm, 89081 Ulm, Germany; (S.B.); (S.K.)
| | - Stephanie Kellermann
- Institute of Clinical and Experimental Trauma-Immunology (ITI), University of Ulm, 89081 Ulm, Germany; (S.B.); (S.K.)
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 89081 Ulm, Germany; (F.G.); (M.P.)
| | - Mario Perl
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, 89081 Ulm, Germany; (F.G.); (M.P.)
- Department of Traumatology and Orthopaedic Surgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology (ITI), University of Ulm, 89081 Ulm, Germany; (S.B.); (S.K.)
- Correspondence: (C.E.); (M.H.-L.)
| |
Collapse
|
10
|
Mannes M, Schmidt CQ, Nilsson B, Ekdahl KN, Huber-Lang M. Complement as driver of systemic inflammation and organ failure in trauma, burn, and sepsis. Semin Immunopathol 2021; 43:773-788. [PMID: 34191093 PMCID: PMC8243057 DOI: 10.1007/s00281-021-00872-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/23/2021] [Indexed: 02/08/2023]
Abstract
Complement is one of the most ancient defense systems. It gets strongly activated immediately after acute injuries like trauma, burn, or sepsis and helps to initiate regeneration. However, uncontrolled complement activation contributes to disease progression instead of supporting healing. Such effects are perceptible not only at the site of injury but also systemically, leading to systemic activation of other intravascular cascade systems eventually causing dysfunction of several vital organs. Understanding the complement pathomechanism and its interplay with other systems is a strict requirement for exploring novel therapeutic intervention routes. Ex vivo models exploring the cross-talk with other systems are rather limited, which complicates the determination of the exact pathophysiological roles that complement has in trauma, burn, and sepsis. Literature reporting on these three conditions is often controversial regarding the importance, distribution, and temporal occurrence of complement activation products further hampering the deduction of defined pathophysiological pathways driven by complement. Nevertheless, many in vitro experiments and animal models have shown beneficial effects of complement inhibition at different levels of the cascade. In the future, not only inhibition but also a complement reconstitution therapy should be considered in prospective studies to expedite how meaningful complement-targeted interventions need to be tailored to prevent complement augmented multi-organ failure after trauma, burn, and sepsis. This review summarizes clinically relevant studies investigating the role of complement in the acute diseases trauma, burn, and sepsis with important implications for clinical translation.
Collapse
Affiliation(s)
- Marco Mannes
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Helmholtzstr. 8/2, 89081, Ulm, Germany
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.,Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Helmholtzstr. 8/2, 89081, Ulm, Germany.
| |
Collapse
|
11
|
Wang F, Huang L, Yu J, Zang D, Ye L, Zhu Q. Altered levels of complement components associated with non-immediate drug hypersensitivity reactions. J Immunotoxicol 2021; 17:1-9. [PMID: 31795786 DOI: 10.1080/1547691x.2019.1695985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nonimmediate drug hypersensitivity reactions (niDHRs) range from mild-type maculopapular exanthema (MPE) to severe type Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) with unentirely clarified pathogenesis. This study sought to explore whether complement components participated in niDHRs. The participants comprised of three groups as follows: MPE (n = 65), SJS/TEN (n = 13, contains 7 SJS, 2 SJS-TEN overlap and 4 TEN), and equal healthy controls (n = 78). Skin pathological changes were confirmed by hematoxylin and eosin staining. The mRNA and protein levels of complement components were assessed. In the MPE group, there were no alterations in complement components at the protein and mRNA levels found except for a decrease in factor H mRNA. In the SJS/TEN group, up-regulated levels of C3aR and C5aR mRNA and down-regulated factor H mRNA levels in blood were noted. A lower plasma protein level of C3, Factor H and a higher level of C3a, C5, C5a, C5b-9, Factor B (p < 0.05) were found in the SJS/TEN group compared with in the control (p < 0.05). In SJS/TEN skin lesions, indirect immunofluorescence assays showed positive specific staining for C5b-9, but not C3. Both C3aR and C5aR were positive staining in the SJS/TEN samples, while staining for C1q, mannose-binding lectin (MBL), Factor B, and Factor H were only weak or negative. The findings reported here are the first to define the expression profiles/extent of the presence of various complement components at the mRNA and protein levels in niDHRs, especially in SJS/TEN. These altered complement components might, at least in part, be integral to the mechanisms underlying the pathogeneses of SJS and TEN.
Collapse
Affiliation(s)
- Feng Wang
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Ministry of Education, Hefei, China
| | - Liping Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Junfeng Yu
- Department of Dermatology, Fifth Affiliated Hospital of Chengdu City, Chengdu, China
| | - Dandan Zang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Liangping Ye
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qixing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Ministry of Education, Hefei, China
| |
Collapse
|
12
|
Role of Heat Shock Proteins in Immune Modulation in Malaria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:169-186. [PMID: 34569025 DOI: 10.1007/978-3-030-78397-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Malaria is one of the major parasitic killer diseases worldwide. Severe cases of malaria are mostly in children under the age of 5 years due to their naïve immune system and in pregnant women with weakened immune responses. Inflammatory immune responses against the parasite involve complement activation as well as the antibody and effector cell-mediated immune system. However, after an infection with Plasmodium falciparum (P. falciparum), the most dangerous malaria species, the host-derived immunity is often insufficient to completely inhibit the infection cycles of the parasite in red blood cells for yet unknown reasons. In the present chapter we aim to elucidate the role of the host's and the parasite's heat shock proteins (HSPs) in the development of a novel anti-malaria therapeutic approach.
Collapse
|
13
|
Qiao J, Zhou M, Li Z, Ren J, Gao G, Zhen J, Cao G, Ding L. Elevated serum granzyme B levels are associated with disease activity and joint damage in patients with rheumatoid arthritis. J Int Med Res 2020; 48:300060520962954. [PMID: 33143503 PMCID: PMC7780569 DOI: 10.1177/0300060520962954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Little is known about the roles of granzyme B in rheumatoid arthritis (RA). We aimed to evaluate the serum level of granzyme B in patients with RA and determine relationships with clinical features and joint destruction of RA. METHODS We enrolled 100 patients with RA, 50 patients with osteoarthritis (OA), and 50 healthy controls (HC). Granzyme B serum concentrations were measured by ELISA; we then analyzed associations between granzyme B levels, clinical features, and joint destruction by calculating Sharp scores and disease activity as measured by Disease Activity Score-28 based on erythrocyte sedimentation rate (DAS28-ESR) in patients with RA. RESULTS Compared with HC and patients with OA, serum granzyme B levels in patients with RA were remarkably elevated. Serum granzyme B levels did not differ between patients with OA and HC. Granzyme B levels correlated with ESR, rheumatoid factor, swollen joint counts, joint erosion scores, total Sharp scores, and DAS28-ESR. Moreover, patients with RA with high disease activity had higher granzyme B levels. CONCLUSIONS Serum granzyme B levels were elevated significantly in patients with RA and correlated positively with disease activity and joint destruction. Serum granzyme B may have potential applications in laboratory evaluation of patients with RA.
Collapse
Affiliation(s)
- Junjie Qiao
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Meng Zhou
- Department of Orthopedics, Beijing Jishuitan Hospital, Fourth Medical College of Peking University, Beijing, China
| | - Zheng Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Ren
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guanghan Gao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jumei Zhen
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Guanglei Cao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lixiang Ding
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Huber-Lang MS, Ignatius A, Köhl J, Mannes M, Braun CK. Complement in trauma-Traumatised complement? Br J Pharmacol 2020; 178:2863-2879. [PMID: 32880897 DOI: 10.1111/bph.15245] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Physical trauma represents a major global burden. The trauma-induced response, including activation of the innate immune system, strives for regeneration but can also lead to post-traumatic complications. The complement cascade is rapidly activated by damaged tissue, hypoxia, exogenous proteases and others. Activated complement can sense, mark and clear both damaged tissue and pathogens. However, excessive and insufficient activation of complement can result in a dysfunctional immune and organ response. Similar to acute coagulopathy, complementopathy can develop with enhanced anaphylatoxin generation and an impairment of complement effector functions. Various remote organ effects are induced or modulated by complement activation. Frequently, established trauma treatments are double-edged. On one hand, they help stabilising haemodynamics and oxygen supply as well as injured organs and on the other hand, they also drive complement activation. Immunomodulatory approaches aim to reset trauma-induced disbalance of complement activation and thus may change surgical trauma management procedures to improve outcome. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Markus S Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Anita Ignatius
- Institue of Orthopaedic Research and Biomechanics, University Hospital of Ulm, Ulm, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammatory Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marco Mannes
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian Karl Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany.,Department of Paediatrics and Adolescent Medicine, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
15
|
Turner CT, Hiroyasu S, Granville DJ. Granzyme B as a therapeutic target for wound healing. Expert Opin Ther Targets 2019; 23:745-754. [PMID: 31461387 DOI: 10.1080/14728222.2019.1661380] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Granzyme B is a serine protease traditionally understood as having a role in immune-mediated cytotoxicity. Over the past decade, this dogma has been challenged, with a new appreciation that granzyme B can exert alternative extracellular roles detrimental to wound closure and remodeling. Granzyme B is elevated in response to tissue injury, chronic inflammation and/or autoimmune skin diseases, resulting in impaired wound healing. Areas covered: This review provides a historical background of granzyme B and a description of how it is regulated. Details are provided on the role of granzyme B in apoptosis as well as newly identified extracellular roles, focusing on those affecting wound healing, including on inflammation, dermal-epidermal junction separation, re-epithelialization, scarring and fibrosis, and autoimmunity. Finally, the use of pharmacological granzyme B inhibitors as potential therapeutic options for wound treatment is discussed. Expert opinion: Endogenous extracellular granzyme B inhibitors have not been identified in human bio-fluids, thus in chronic wound environments granzyme B appears to remain uncontrolled and unregulated. In response, targeted granzyme B inhibitors have been developed for therapeutic applications in wounds. Animal studies trialing inhibitors of granzyme B show improved healing outcomes, and may therefore provide a novel therapeutic approach for wound treatment.
Collapse
Affiliation(s)
- Christopher T Turner
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia , Vancouver , BC , Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia , Vancouver , BC , Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group , Vancouver , BC , Canada
| | - Sho Hiroyasu
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia , Vancouver , BC , Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia , Vancouver , BC , Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group , Vancouver , BC , Canada
| | - David J Granville
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia , Vancouver , BC , Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia , Vancouver , BC , Canada.,British Columbia Professional Firefighters' Burn and Wound Healing Group , Vancouver , BC , Canada
| |
Collapse
|
16
|
Hiroyasu S, Turner CT, Richardson KC, Granville DJ. Proteases in Pemphigoid Diseases. Front Immunol 2019; 10:1454. [PMID: 31297118 PMCID: PMC6607946 DOI: 10.3389/fimmu.2019.01454] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/10/2019] [Indexed: 12/28/2022] Open
Abstract
Pemphigoid diseases are a subgroup of autoimmune skin diseases characterized by widespread tense blisters. Standard of care typically involves immunosuppressive treatments, which may be insufficient and are often associated with significant adverse events. As such, a deeper understanding of the pathomechanism(s) of pemphigoid diseases is necessary in order to identify improved therapeutic approaches. A major initiator of pemphigoid diseases is the accumulation of autoantibodies against proteins at the dermal-epidermal junction (DEJ), followed by protease activation at the lesion. The contribution of proteases to pemphigoid disease pathogenesis has been investigated using a combination of in vitro and in vivo models. These studies suggest proteolytic degradation of anchoring proteins proximal to the DEJ is crucial for dermal-epidermal separation and blister formation. In addition, proteases can also augment inflammation, expose autoantigenic cryptic epitopes, and/or provoke autoantigen spreading, which are all important in pemphigoid disease pathology. The present review summarizes and critically evaluates the current understanding with respect to the role of proteases in pemphigoid diseases.
Collapse
Affiliation(s)
- Sho Hiroyasu
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Christopher T. Turner
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - Katlyn C. Richardson
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| | - David J. Granville
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
17
|
Spolski R, West EE, Li P, Veenbergen S, Yung S, Kazemian M, Oh J, Yu ZX, Freeman AF, Holland SM, Murphy PM, Leonard WJ. IL-21/type I interferon interplay regulates neutrophil-dependent innate immune responses to Staphylococcus aureus. eLife 2019; 8:45501. [PMID: 30969166 PMCID: PMC6504231 DOI: 10.7554/elife.45501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major hospital- and community-acquired pathogen, but the mechanisms underlying host-defense to MRSA remain poorly understood. Here, we investigated the role of IL-21 in this process. When administered intra-tracheally into wild-type mice, IL-21 induced granzymes and augmented clearance of pulmonary MRSA but not when neutrophils were depleted or a granzyme B inhibitor was added. Correspondingly, IL-21 induced MRSA killing by human peripheral blood neutrophils. Unexpectedly, however, basal MRSA clearance was also enhanced when IL-21 signaling was blocked, both in Il21r KO mice and in wild-type mice injected with IL-21R-Fc fusion-protein. This correlated with increased type I interferon and an IFN-related gene signature, and indeed anti-IFNAR1 treatment diminished MRSA clearance in these animals. Moreover, we found that IFNβ induced granzyme B and promoted MRSA clearance in a granzyme B-dependent fashion. These results reveal an interplay between IL-21 and type I IFN in the innate immune response to MRSA.
Collapse
Affiliation(s)
- Rosanne Spolski
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Erin E West
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Peng Li
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Sharon Veenbergen
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Sunny Yung
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Majid Kazemian
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Jangsuk Oh
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Zu-Xi Yu
- The Pathology Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Stephen M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Warren J Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
18
|
Rahkola D, Laitala J, Siiskonen H, Pelkonen J, Harvima IT. Mast Cells Are a Marked Source for Complement C3 Products That Associate with Increased CD11b-Positive Cells in Keratinocyte Skin Carcinomas. Cancer Invest 2019; 37:73-84. [DOI: 10.1080/07357907.2019.1565765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dina Rahkola
- Department of Dermatology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Joel Laitala
- Department of Dermatology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Hanna Siiskonen
- Department of Dermatology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Jukka Pelkonen
- Department of Clinical Microbiology, Eastern Finland Laboratory Centre (ISLAB), University of Eastern Finland, Kuopio, Finland
| | - Ilkka T. Harvima
- Department of Dermatology, Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
19
|
Bao CX, Chen HX, Mou XJ, Zhu XK, Zhao Q, Wang XG. RETRACTED: GZMB gene silencing confers protection against synovial tissue hyperplasia and articular cartilage tissue injury in rheumatoid arthritis through the MAPK signaling pathway. Biomed Pharmacother 2018; 103:346-354. [PMID: 29669300 DOI: 10.1016/j.biopha.2018.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. An Expression of Concern for this article was previously published while an investigation was conducted (see related editorial: https://doi.org/10.1016/j.biopha.2022.113812). This retraction notice supersedes the Expression of Concern published earlier. Concern was raised about the reliability of the Western blot data in Figure 7C, which appear to contain a similar phenotype to those found in other publications, as detailed here: https://pubpeer.com/publications/7DD2DDC979F8CE2B00555332B01F81; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. The journal requested the corresponding author comment on these concerns and provide the associated raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Cui-Xia Bao
- Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai 264000, PR China
| | - Hai-Xia Chen
- Clinical Laboratory, Yeda Hospital, Yantai 264000, PR China
| | - Xue-Jie Mou
- Clinical Laboratory, Yantai Taocun Central Hospital, Yantai 265301, PR China
| | - Xiang-Kui Zhu
- Department of Radiology, Yantai Oral Hospital, Yantai 264000, PR China
| | - Qi Zhao
- Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai 264000, PR China
| | - Xin-Guang Wang
- Department of Blood Transfusion, Yeda Hospital, Yantai 264000, PR China.
| |
Collapse
|
20
|
Abstract
From its discovery in the late nineteenth century, as a 'complement' to the cellular immune response, the complement system has been widely affirmed as a powerful controller of innate and adaptive immune responses. In recent decades however, new roles for complement have been discovered, with multiple complement proteins now known to function in a broad array of non-immune systems. This includes during development, where complement exerts control over stem cell populations from fertilization and implantation throughout embryogenesis and beyond post-natal development. It is involved in processes as diverse as cell localisation, tissue morphogenesis, and the growth and refinement of the brain. Such physiological actions of complement have also been described in adult stem cell populations, with roles in proliferation, differentiation, survival, and regeneration. With such a broad range of complement functions now described, it is likely that current research only describes a fraction of the full reach of complement proteins. Here, we review how complement control of physiological cell processes has been harnessed in stem cell populations throughout both development and in adult physiology.
Collapse
Affiliation(s)
- Owen A Hawksworth
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia
| | - Liam G Coulthard
- School of Clinical Medicine, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia; Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Susanna Mantovani
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia; Wesley Medical Research, Auchenflower, Brisbane, Queensland, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St. Lucia, Queensland, Australia; Wesley Medical Research, Auchenflower, Brisbane, Queensland, Australia.
| |
Collapse
|
21
|
Auxiliary activation of the complement system and its importance for the pathophysiology of clinical conditions. Semin Immunopathol 2017; 40:87-102. [PMID: 28900700 PMCID: PMC5794838 DOI: 10.1007/s00281-017-0646-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 12/26/2022]
Abstract
Activation and regulation of the cascade systems of the blood (the complement system, the coagulation/contact activation/kallikrein system, and the fibrinolytic system) occurs via activation of zymogen molecules to specific active proteolytic enzymes. Despite the fact that the generated proteases are all present together in the blood, under physiological conditions, the activity of the generated proteases is controlled by endogenous protease inhibitors. Consequently, there is remarkable little crosstalk between the different systems in the fluid phase. This concept review article aims at identifying and describing conditions where the strict system-related control is circumvented. These include clinical settings where massive amounts of proteolytic enzymes are released from tissues, e.g., during pancreatitis or post-traumatic tissue damage, resulting in consumption of the natural substrates of the specific proteases and the available protease inhibitor. Another example of cascade system dysregulation is disseminated intravascular coagulation, with canonical activation of all cascade systems of the blood, also leading to specific substrate and protease inhibitor elimination. The present review explains basic concepts in protease biochemistry of importance to understand clinical conditions with extensive protease activation.
Collapse
|
22
|
Freeley S, Kemper C, Le Friec G. The "ins and outs" of complement-driven immune responses. Immunol Rev 2017; 274:16-32. [PMID: 27782335 DOI: 10.1111/imr.12472] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The complement system represents an evolutionary old and critical component of innate immunity where it forms the first line of defense against invading pathogens. Originally described as a heat-labile fraction of the serum responsible for the opsonization and subsequent lytic killing of bacteria, work over the last century firmly established complement as a key mediator of the general inflammatory response but also as an acknowledged vital bridge between innate and adaptive immunity. However, recent studies particularly spanning the last decade have provided new insights into the novel modes and locations of complement activation and highlighted unexpected additional biological functions for this ancient system, for example, in regulating basic processes of the cell. In this review, we will cover the current knowledge about complement's established and novel roles in innate and adaptive immunity with a focus on the functional differences between serum circulating and intracellularly active complement and will describe and discuss the newly discovered cross-talks of complement with other cell effector systems particularly during T-cell induction and contraction.
Collapse
Affiliation(s)
- Simon Freeley
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | - Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK. .,Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Gaëlle Le Friec
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
23
|
Controlling the anaphylatoxin C5a in diseases requires a specifically targeted inhibition. Clin Immunol 2017; 180:25-32. [PMID: 28366510 DOI: 10.1016/j.clim.2017.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 11/23/2022]
Abstract
The terminal complement split product C5a has been described as an important mediator in inflammatory diseases. C5a is generated upon cleavage of C5 and earlier research suggests that, besides the known C5 convertases formed upon activation of the complement pathways, various enzymes could activate C5 directly. We demonstrate that eculizumab effectively blocks C5 activation when mediated by C5-convertase formation, but fails to block C5a generation resulting from direct enzymatic cleavage by trypsin and thrombin. C5a generated by these enzymes is shown to be fully biologically functional and can be blocked by IFX-1, a specific monoclonal anti-human C5a antibody. We further report clinical cases of atypical hemolytic uremic syndrome (aHUS) and C3 Glomerulonephritis (C3GN) patients under treatment with eculizumab presenting substantially elevated C5a levels. Thus, blocking the C5 convertase mediated activation of C5 may not be efficient to control C5a-mediated effects in human disease and that a targeted approach is warranted.
Collapse
|
24
|
Bettac L, Denk S, Seufferlein T, Huber-Lang M. Complement in Pancreatic Disease-Perpetrator or Savior? Front Immunol 2017; 8:15. [PMID: 28144242 PMCID: PMC5239781 DOI: 10.3389/fimmu.2017.00015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
The complement system is a major pillar of the humoral innate immune system. As a first line of defense against pathogens, it mediates early inflammatory response and links different branches of humoral and cellular immunity. Disorders affecting the exocrine pancreas, such as acute pancreatitis, potentially lead to a life-threatening systemic inflammatory response with aberrant activation of complement and coagulation cascades. Pancreatic proteases can activate key effectors of the complement system, which in turn drive local and systemic inflammation. Beyond that, the extent of pancreas–complement interaction covers complex pro- and anti-inflammatory mechanisms, which to this day remain to be fully elucidated. This review provides a comprehensive overview of the pathophysiological role of complement in diseases of the exocrine pancreas, based on existing experimental and clinical data. Participation of complement in acute and chronic pancreatitis is addressed, as well as its role in tumor immunology. Therapeutic strategies targeting complement in these diseases have long been proposed but have not yet arrived in the clinical setting.
Collapse
Affiliation(s)
- Lucas Bettac
- Department of Internal Medicine I, University Hospital of Ulm , Ulm , Germany
| | - Stephanie Denk
- Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm , Ulm , Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, University Hospital of Ulm , Ulm , Germany
| | - Markus Huber-Lang
- Department of Orthopedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm , Ulm , Germany
| |
Collapse
|
25
|
Hawksworth OA, Coulthard LG, Woodruff TM. Complement in the fundamental processes of the cell. Mol Immunol 2016; 84:17-25. [PMID: 27894513 DOI: 10.1016/j.molimm.2016.11.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/18/2016] [Indexed: 11/30/2022]
Abstract
Once regarded solely as an activator of innate immunity, it is now clear that the complement system acts in an assortment of cells and tissues, with immunity only one facet of a diverse array of functions under the influence of the complement proteins. Throughout development, complement activity has now been demonstrated from early sperm-egg interactions in fertilisation, to regulation of epiboly and organogenesis, and later in refinement of cerebral synapses. Complement has also been shown to regulate homeostasis of adult tissues, controlling cell processes such as migration, survival, repair, and regeneration. Given the continuing emergence of such novel actions of complement, the existing research likely represents only a fraction of the myriad of functions of this complex family of proteins. This review is focussed on outlining the current knowledge of complement family members in the regulation of cell processes in non-immune systems. It is hoped this will spur research directed towards revealing more about the role of complement in these fundamental cell processes.
Collapse
Affiliation(s)
- Owen A Hawksworth
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Australia
| | - Liam G Coulthard
- School of Medicine, University of Queensland, Herston, Australia; Royal Brisbane and Women's Hospital, Herston, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia.
| |
Collapse
|
26
|
Shi J, Zhu X, Xie M, Wang J, He Y, Xu Y, Liu X. MBL2 polymorphisms and the risk of asthma: A meta-analysis. Ann Allergy Asthma Immunol 2016; 117:417-422.e1. [PMID: 27590640 DOI: 10.1016/j.anai.2016.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/20/2016] [Accepted: 08/01/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND The association between MBL2 gene polymorphisms and the risk of asthma has been evaluated in multiple studies; however, the results are inconsistent. OBJECTIVE To perform a meta-analysis to explore whether MBL2 gene polymorphisms were associated with the risk of asthma. METHODS We searched PubMed, Web of Science, and Cochrane Library to find relevant articles published up to March 2016. Nine studies, including 2066 cases and 2183 controls, were included in the meta-analysis. The strength of association was evaluated by odds ratio (OR) with 95% confidence interval (CI). RESULTS The results reveal that MBL2 gene polymorphisms (codon 54 A/B, -550 H/L or -221 X/Y) were not associated with the risk of asthma (codon 54 A/B: BB+AB vs AA: OR, 1.02; 95% CI, 0.85-1.23; -550 H/L: LL+HL vs HH: OR, 0.81; 95% CI, 0.63-1.03; -221 X/Y: XX+YX vs YY: OR, 0.85; 95% CI, 0.69-1.04). Subgroup analysis by ethnicity implied that the MBL2 codon 54 A/B polymorphism was not significantly associated with the risk of asthma in Asians (BB+AB vs AA: OR, 0.95; 95% CI, 0.70-1.29) or whites (BB+AB vs AA: OR, 1.07; 95% CI, 0.84-1.35). CONCLUSION The results indicated that MBL2 gene polymorphisms (codon 54 A/B, -550 H/L or -221 X/Y) may be not associated with the risk of asthma.
Collapse
Affiliation(s)
- Jing Shi
- Department of Respiration and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianying Zhu
- Department of Respiration and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Xie
- Department of Respiration and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianmiao Wang
- Department of Respiration and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanzhou He
- Department of Respiration and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjian Xu
- Department of Respiration and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiansheng Liu
- Department of Respiration and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
27
|
Complement C3 is expressed by mast cells in cutaneous vasculitis and is degraded by chymase. Arch Dermatol Res 2016; 308:575-84. [PMID: 27465068 DOI: 10.1007/s00403-016-1677-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/16/2016] [Accepted: 07/13/2016] [Indexed: 02/04/2023]
Abstract
The complement factor C3 and chymase released from tryptase(+), chymase(+) mast cells may be involved in the pathogenesis of cutaneous leukocytoclastic vasculitis. To study whether mast cells contain C3 in vasculitis and whether chymase interacts with C3, cryosections from vasculitis biopsies were double-stained histochemically for C3c in tryptase(+) mast cells, as well as for chymase and vessel wall C3c, or they were treated with 5 µg/ml rh-chymase for 24 h followed by immunofluorescence (IF) analysis of C3c, IgG, IgM and IgA. The effect of rh-chymase on purified human C3, C3a and IgG was studied using SDS-PAGE electrophoresis and LAD2 mast cell cultures. The results show that 34.2 ± 17.9, 37.4 ± 15.5 and 43.4 ± 18.6 % (mean ± SD) of the mast cells express C3c immunoreactivity in the healthy skin, initial petechial (IP) and palpable purpura (PP) lesions, respectively. About 9.4-12.1 % of the chymase(+) mast cells were in apparent contact with C3c(+) vessels in IP and PP. The treatment of cryosections with rh-chymase decreased the IF staining of C3c, but not that of immunoglobulins. In SDS-PAGE, 1-10 µg/ml rh-chymase degraded the alpha- and beta-chains of C3, but did not degrade IgG. Unexpectedly, the rh-chymase treatment of C3 produced fragments that resulted in the release of tryptase and histamine from LAD2 cells. However, rh-chymase degraded C3a and consequently inhibited C3a activity on LAD2. In conclusion, mast cells can be one source for C3 in the early and late phases of vasculitis pathogenesis. However, rh-chymase degraded native C3, vessel wall C3c, and biologically active C3a. Therefore, chymase may control C3-related pathology.
Collapse
|
28
|
Evans MK, Sauer SJ, Nath S, Robinson TJ, Morse MA, Devi GR. X-linked inhibitor of apoptosis protein mediates tumor cell resistance to antibody-dependent cellular cytotoxicity. Cell Death Dis 2016; 7:e2073. [PMID: 26821068 PMCID: PMC4816185 DOI: 10.1038/cddis.2015.412] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 01/29/2023]
Abstract
Inflammatory breast cancer (IBC) is the deadliest, distinct subtype of breast cancer. High expression of epidermal growth factor receptors [EGFR or human epidermal growth factor receptor 2 (HER2)] in IBC tumors has prompted trials of anti-EGFR/HER2 monoclonal antibodies to inhibit oncogenic signaling; however, de novo and acquired therapeutic resistance is common. Another critical function of these antibodies is to mediate antibody-dependent cellular cytotoxicity (ADCC), which enables immune effector cells to engage tumors and deliver granzymes, activating executioner caspases. We hypothesized that high expression of anti-apoptotic molecules in tumors would render them resistant to ADCC. Herein, we demonstrate that the most potent caspase inhibitor, X-linked inhibitor of apoptosis protein (XIAP), overexpressed in IBC, drives resistance to ADCC mediated by cetuximab (anti-EGFR) and trastuzumab (anti-HER2). Overexpression of XIAP in parental IBC cell lines enhances resistance to ADCC; conversely, targeted downregulation of XIAP in ADCC-resistant IBC cells renders them sensitive. As hypothesized, this ADCC resistance is in part a result of the ability of XIAP to inhibit caspase activity; however, we also unexpectedly found that resistance was dependent on XIAP-mediated, caspase-independent suppression of reactive oxygen species (ROS) accumulation, which otherwise occurs during ADCC. Transcriptome analysis supported these observations by revealing modulation of genes involved in immunosuppression and oxidative stress response in XIAP-overexpressing, ADCC-resistant cells. We conclude that XIAP is a critical modulator of ADCC responsiveness, operating through both caspase-dependent and -independent mechanisms. These results suggest that strategies targeting the effects of XIAP on caspase activation and ROS suppression have the potential to enhance the activity of monoclonal antibody-based immunotherapy.
Collapse
Affiliation(s)
- M K Evans
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - S J Sauer
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - S Nath
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - T J Robinson
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - M A Morse
- Department of Medicine, Duke University Medical Center, Durham, NC, USA.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - G R Devi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, USA.,Department of Pathology, Duke University Medical Center, Durham, NC, USA.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
29
|
T-cell development of resistance to apoptosis is driven by a metabolic shift in carbon source and altered activation of death pathways. Cell Death Differ 2015; 23:889-902. [PMID: 26658018 DOI: 10.1038/cdd.2015.156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 11/08/2022] Open
Abstract
We developed a model system to investigate apoptotic resistance in T cells using osmotic stress (OS) to drive selection of death-resistant cells. Exposure of S49 (Neo) T cells to multiple rounds of OS followed by recovery of surviving cells resulted in the selection of a population of T cells (S49 (OS 4-25)) that failed to die in response to a variety of intrinsic apoptotic stimuli including acute OS, but remained sensitive to extrinsic apoptotic initiators. Genome-wide microarray analysis comparing the S49 (OS 4-25) with the parent S49 (Neo) cells revealed over 8500 differentially regulated genes, with almost 90% of those identified being repressed. Surprisingly, our data revealed that apoptotic resistance is not associated with expected changes in pro- or antiapoptotic Bcl-2 family member genes. Rather, these cells lack several characteristics associated with the initial signaling or activation of the intrinsic apoptosis pathway, including failure to increase mitochondrial-derived reactive oxygen species, failure to increase intracellular calcium, failure to deplete glutathione, failure to release cytochrome c from the mitochondria, along with a lack of induced caspase activity. The S49 (OS 4-25) cells exhibit metabolic characteristics indicative of the Warburg effect, and, despite numerous changes in mitochondria gene expression, the mitochondria have a normal metabolic capacity. Interestingly, the S49 (OS 4-25) cells have developed a complete dependence on glucose for survival, and glucose withdrawal results in cell death with many of the essential characteristics of apoptosis. Furthermore, we show that other dietary sugars such as galactose support the viability of the S49 (OS 4-25) cells in the absence of glucose; however, this carbon source sensitizes these cells to die. Our findings suggest that carbon substrate reprogramming for energy production in the S49 (OS 4-25) cells results in stimulus-specific recognition defects in the activation of intrinsic apoptotic pathways.
Collapse
|
30
|
Abstract
Complement is traditionally known to be a system of serum proteins that provide protection against pathogens through direct cell lysis and the mobilization of innate and adaptive immunity. However, recent work indicates that the complement system has additional physiological roles beyond those in host defence. In this Opinion article, we describe the new modes and locations of complement activation that enable it to interact with other cell effector systems, such as growth factor receptors, inflammasomes and metabolic pathways. We propose that the location of complement activation dictates its function.
Collapse
|
31
|
Schmitz V, Almeida LN, Svensjö E, Monteiro AC, Köhl J, Scharfstein J. C5a and Bradykinin Receptor Cross-Talk Regulates Innate and Adaptive Immunity inTrypanosoma cruziInfection. THE JOURNAL OF IMMUNOLOGY 2014; 193:3613-23. [DOI: 10.4049/jimmunol.1302417] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Mielczarek-Palacz A, Sikora J, Kondera-Anasz Z, Bednarek I. Cytotoxic reaction mediators: granzymes A and B in women with ovarian cancer. ACTA ACUST UNITED AC 2014; 83:409-13. [PMID: 24673566 DOI: 10.1111/tan.12347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 02/18/2014] [Accepted: 03/03/2014] [Indexed: 12/12/2022]
Abstract
The purpose of this work was the assessment of cytotoxic reaction mediators - granzymes A and B in the serum of women with ovarian tumors. The study included 120 women with proven ovarian tumors. The control group consisted of 60 healthy women in whom no pathological changes within the reproductive system were detected. Concentrations of granzymes A and B were measured by enzyme-linked immunosorbent (ELISA) assay. The highest concentrations of the studied parameters were observed in serum of women with ovarian cancer. Moreover, the concentrations of granzymes A and B in patients with ovarian cancer were substantially increased in comparison to concentrations in patients with ovarian cystadenomas (P < 0.0001) or ovarian teratomas (P < 0.0001).
Collapse
Affiliation(s)
- A Mielczarek-Palacz
- Department of Immunology and Serology, Medical University of Silesia, Katowice, Poland
| | | | | | | |
Collapse
|
33
|
Fukuoka Y, Hite MR, Dellinger AL, Schwartz LB. Human skin mast cells express complement factors C3 and C5. THE JOURNAL OF IMMUNOLOGY 2013; 191:1827-34. [PMID: 23833239 DOI: 10.4049/jimmunol.1202889] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We examine whether complement factor C3 or C5 is synthesized by human skin-derived mast cells and whether their synthesis is regulated by cytokines. C3 and C5 mRNAs were assessed by RT-PCR, and proteins by flow cytometry, confocal microscopy, Western blotting, and ELISA. C3 and C5 mRNAs were each expressed, and baseline protein levels/10(6) cultured mast cells were 0.9 and 0.8 ng, respectively, and located in the cytoplasm outside of secretory granules. C3 accumulated in mast cell culture medium over time and by 3 d reached a concentration of 9.4 ± 8.0 ng/ml, whereas C5 levels were not detectable (<0.15 ng/ml). Three-day incubations of mast cells with IL-1α, IL-1β, IL-17, IFN-γ, IL-6, or anti-FcεRI did not affect C3 protein levels in culture medium, whereas incubations with PMA, TNF-α, IL-13, or IL-4 enhanced levels of C3 1.7- to 3.3-fold. In contrast with C3, levels of C5 remained undetectable. Importantly, treatment with TNF-α together with either IL-4 or IL-13 synergistically enhanced C3 (but not C5) production in culture medium by 9.8- or 7.1-fold, respectively. This synergy was blocked by attenuating the TNF-α pathway with neutralizing anti-TNF-α Ab, soluble TNFR, or an inhibitor of NF-κB, or by attenuating the IL-4/13 pathway with Jak family or Erk antagonists. Inhibitors of PI3K, Jnk, and p38 MAPK did not affect this synergy. Thus, human mast cells can produce and secrete C3, whereas β-tryptase can act on C3 to generate C3a and C3b, raising the likelihood that mast cells engage complement to modulate immunity and inflammation in vivo.
Collapse
Affiliation(s)
- Yoshihiro Fukuoka
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|
34
|
The role of complement in trauma and fracture healing. Semin Immunol 2013; 25:73-8. [PMID: 23768898 DOI: 10.1016/j.smim.2013.05.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 12/21/2022]
Abstract
The complement system, as part of innate immunity, is activated immediately after trauma in response to various pathogen- and danger-associated molecular patterns (PAMPs and DAMPs), and helps to eliminate microorganisms and damaged cells. However, recent data indicate an extended role of complement far beyond pure "killing", which includes regulation of the cytokine/chemokine network, influencing physiological barriers, interaction with the coagulation cascade, and even involvement with bone metabolism and repair. Complement-induced hyper-activation and dysfunction reveal the dark side of this system, leading to complications such as sepsis, multiple-organ dysfunction, delayed fracture healing, and unfavorable outcome. Thus, the present review focuses on less known regulatory roles of the complement system after trauma and during fracture healing, rather than on its bacterial and cellular "killing functions". In particular, various complement crosstalks after trauma, including the coagulation cascade and apoptosis system, appear to be crucially involved early after trauma. Long-term effects of complement on tissue regeneration after fracture and bone turnover are also considered, providing new insights into innate immunity in local and systemic complement-driven effects after trauma.
Collapse
|
35
|
Schmudde I, Laumonnier Y, Köhl J. Anaphylatoxins coordinate innate and adaptive immune responses in allergic asthma. Semin Immunol 2013; 25:2-11. [PMID: 23694705 DOI: 10.1016/j.smim.2013.04.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/22/2013] [Indexed: 12/28/2022]
Abstract
Allergic asthma is a chronic disease of the airways in which maladaptive Th2 and Th17 immune responses drive airway hyperresponsiveness (AHR), eosinophilic and neutrophilic airway inflammation and mucus overproduction. Airway epithelial and pulmonary vascular endothelial cells in concert with different resident and monocyte-derived dendritic cells (DC) play critical roles in allergen sensing and consecutive activation of TH cells and their differentiation toward TH2 and TH17 effector or regulatory T cells (Treg). Further, myeloid-derived regulatory cells (MDRC) act on TH cells and either suppress or enhance their activation. The complement-derived anaphylatoxins (AT) C3a and C5a are generated during initial antigen encounter and regulate the development of maladaptive immunity at allergen sensitization. Here, we will review the complex role of ATs in activation and modulation of different DC populations, MDRCs and CD4⁺ TH cells. We will also discuss the potential impact of ATs on the regulation of the pulmonary stromal compartment as an important means to regulate DC functions.
Collapse
Affiliation(s)
- Inken Schmudde
- Institute for Systemic Inflammation Research, University of Lübeck, Germany
| | | | | |
Collapse
|
36
|
Barratt-Due A, Pischke SE, Brekke OL, Thorgersen EB, Nielsen EW, Espevik T, Huber-Lang M, Mollnes TE. Bride and groom in systemic inflammation--the bells ring for complement and Toll in cooperation. Immunobiology 2013; 217:1047-56. [PMID: 22964230 DOI: 10.1016/j.imbio.2012.07.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 07/19/2012] [Accepted: 07/19/2012] [Indexed: 01/08/2023]
Abstract
Attenuating the sepsis-induced systemic inflammatory response, with subsequent homeostatic imbalance, has for years been one of the main tasks in sepsis related research. Complement and the TLR family constitute two important upstream sensor and effector-systems of innate immunity. Although they act as partly independent branches of pattern recognition, recent evidence indicate a considerable cross-talk implying that they can either compensate, synergize or antagonize each other. Combined inhibition of these pathways is therefore a particularly interesting approach with a profound anti-inflammatory potential. In previous preclinical studies, we demonstrated that targeting the key molecules C3 or C5 of complement and CD14 of the TLR family had a vast anti-inflammatory effect on Gram-negative bacteria-induced inflammation and sepsis. In this review, we elucidate the significance of these key molecules as important targets for intervention in sepsis and systemic inflammatory response syndrome. Finally, we argue that a combined inhibition of complement and CD14 represent a potential general treatment regimen, beyond the limit of sepsis, including non-infectious systemic inflammation and ischemia reperfusion injury.
Collapse
Affiliation(s)
- Andreas Barratt-Due
- Department of Immunology, Oslo University Hospital Rikshospitalet, University of Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Klos A, Wende E, Wareham KJ, Monk PN. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol Rev 2013; 65:500-43. [PMID: 23383423 DOI: 10.1124/pr.111.005223] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The activation of the complement cascade, a cornerstone of the innate immune response, produces a number of small (74-77 amino acid) fragments, originally termed anaphylatoxins, that are potent chemoattractants and secretagogues that act on a wide variety of cell types. These fragments, C5a, C4a, and C3a, participate at all levels of the immune response and are also involved in other processes such as neural development and organ regeneration. Their primary function, however, is in inflammation, so they are important targets for the development of antiinflammatory therapies. Only three receptors for complement peptides have been found, but there are no satisfactory antagonists as yet, despite intensive investigation. In humans, there is a single receptor for C3a (C3a receptor), no known receptor for C4a, and two receptors for C5a (C5a₁ receptor and C5a₂ receptor). The most recently characterized receptor, the C5a₂ receptor (previously known as C5L2 or GPR77), has been regarded as a passive binding protein, but signaling activities are now ascribed to it, so we propose that it be formally identified as a receptor and be given a name to reflect this. Here, we describe the complex biology of the complement peptides, introduce a new suggested nomenclature, and review our current knowledge of receptor pharmacology.
Collapse
Affiliation(s)
- Andreas Klos
- Department for Medical Microbiology, Medical School Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
38
|
Brennan FH, Anderson AJ, Taylor SM, Woodruff TM, Ruitenberg MJ. Complement activation in the injured central nervous system: another dual-edged sword? J Neuroinflammation 2012; 9:137. [PMID: 22721265 PMCID: PMC3464784 DOI: 10.1186/1742-2094-9-137] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/21/2012] [Indexed: 11/28/2022] Open
Abstract
The complement system, a major component of the innate immune system, is becoming increasingly recognised as a key participant in physiology and disease. The awareness that immunological mediators support various aspects of both normal central nervous system (CNS) function and pathology has led to a renaissance of complement research in neuroscience. Various studies have revealed particularly novel findings on the wide-ranging involvement of complement in neural development, synapse elimination and maturation of neural networks, as well as the progression of pathology in a range of chronic neurodegenerative disorders, and more recently, neurotraumatic events, where rapid disruption of neuronal homeostasis potently triggers complement activation. The purpose of this review is to summarise recent findings on complement activation and acquired brain or spinal cord injury, i.e. ischaemic-reperfusion injury or stroke, traumatic brain injury (TBI) and spinal cord injury (SCI), highlighting the potential for complement-targeted therapeutics to alleviate the devastating consequences of these neurological conditions.
Collapse
Affiliation(s)
- Faith H Brennan
- The University of Queensland, School of Biomedical Sciences, St Lucia, Brisbane, QLD 4072, Australia
| | | | | | | | | |
Collapse
|
39
|
Denk S, Perl M, Huber-Lang M. Damage- and Pathogen-Associated Molecular Patterns and Alarmins: Keys to Sepsis? Eur Surg Res 2012; 48:171-9. [DOI: 10.1159/000338194] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 12/19/2022]
|
40
|
Wickman G, Julian L, Olson MF. How apoptotic cells aid in the removal of their own cold dead bodies. Cell Death Differ 2012; 19:735-42. [PMID: 22421963 PMCID: PMC3321633 DOI: 10.1038/cdd.2012.25] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Apoptotic cell clearance facilitates the removal of aged, damaged, infected or dangerous cells although minimizing perturbation of surrounding tissues, and is a vital process in the development and homeostasis of multicellular organisms. Importantly, failure to correctly execute programmed cell death and subsequent corpse clearance is broadly associated with chronic inflammatory and/or autoimmune diseases such as systemic lupus erythematosus. Apoptotic cells develop dramatic morphological changes including contraction, membrane blebbing and apoptotic body formation, which were among the first and most readily identifiable features of cellular suicide. However, understanding the purpose of apoptotic cell morphological changes has proven to be elusive, and recent studies have made somewhat surprising, and occasionally opposing, conclusions about the contribution of blebbing to phagocytic clearance and prevention of inflammatory/autoimmune disease. We review the evidence indicating how apoptotic blebs actively promote corpse recognition, uptake, and generation of auto-reactive antibodies.
Collapse
Affiliation(s)
- G Wickman
- Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | | | | |
Collapse
|
41
|
Cathepsin D is released after severe tissue trauma in vivo and is capable of generating C5a in vitro. Mol Immunol 2012; 50:60-5. [PMID: 22244896 DOI: 10.1016/j.molimm.2011.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/09/2011] [Accepted: 12/11/2011] [Indexed: 11/20/2022]
Abstract
In response to severe tissue trauma several danger sensing and signalling cascades are activated, including the complement and the apoptosis systems. In polytrauma patients, both the early activation of the complement cascade with an excessive generation of the potent anaphylatoxin C5a and the induction of apoptosis have been shown to modulate the post-traumatic immune response. However, little is known about a direct interaction between the complement and apoptosis systems after severe tissue trauma. Therefore the focus of the present study was to elucidate the interplay between the central complement component C5 and the pro-apoptotic aspartic protease cathepsin D. In vivo, the cathepsin D plasma concentration of multiple injured patients was markedly increased when compared to healthy volunteers. In vitro incubation of C5 with cathepsin D resulted in a concentration- and time-dependent generation of C5a, which was inhibited by the aspartate protease inhibitor pepstatin A. Immunoblotting and sequencing analysis indicated that the C5 cleavage product represents the native form of human C5a, also exhibiting chemotactic activity for human neutrophils. In conclusion, these data show for the first time that cathepsin D is increased in plasma early after severe tissue injury. Furthermore, the results provide in vitro evidence of cleavage of C5 by an aspartic protease with subsequent generation of functional C5a, which represents a new path of complement activation.
Collapse
|
42
|
The influence of coagulation and inflammation research on the improvement of polytrauma care. Eur J Trauma Emerg Surg 2011; 38:231-9. [DOI: 10.1007/s00068-011-0159-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 10/16/2011] [Indexed: 10/15/2022]
|