1
|
Zeng W, Meng Y, Ma J, Zhang L, Wang W, Pan Y, Zhu X, Chu W. Transcriptome analysis identifies potential molecular mechanisms for growth of fast muscle in Chinese perch juvenile. Gene 2025; 934:149034. [PMID: 39454973 DOI: 10.1016/j.gene.2024.149034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Chinese perch (Siniperca chuatsi) is an important commercial fish species in China. Understanding the molecular mechanisms of growth and development of skeletal muscle is helpful for selection breeding and improving the growth rate of Chinese perch. We analyzed histological and transcriptomic differences in fast muscle of Chinese perch between 30 days post hatching (dph) and 60 dph using histological sections and high-throughput RNA-Seq. The results showed that the diameter of muscle fibers in 30 dph Chinese perch was mainly distributed in range of 30 - 40 μm, and that of 60 dph was primarily in the range of 40 - 50 μm. 34 differentially expressed genes (DEGs) were identified in the fast muscle of Chinese perch between 30 and 60 dph, of which 9 were up-regulated and 25 were down-regulated (60 dph vs 30 dph). The DEGs, including MYH4, ENO3, Bag3, krt13 and krt18, are associated with muscle cell differentiation and fusion in Chinese perch. The analysis of the protein-protein interaction network of DEGs revealed that FOS, junb and EGR1 may involve in the development of fast muscle. KEGG enrichment results showed that the up-regulated genes in the 60 dph were associated with several pathways related to metabolism and protein synthesis, such as glycosphingolipid biosynthesis and aminoacyl-tRNA biosynthesis. The results suggest that the development of fast muscle in Chinese perch from 30 to 60 dph is accompanied by an increase in muscle fiber diameter and changes in gene expression related to muscle cell differentiation and protein synthesis. Abbreviations: DEGs, differentially expressed genes; dph, days post hatching; FC, fold change; FDR, False Discovery Rate; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MyHCs, Myosin heavy chains; qRT-PCR, quantitative real-time PCR.
Collapse
Affiliation(s)
- Wei Zeng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Changsha University, Changsha 410022, China
| | - Yangyang Meng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Changsha University, Changsha 410022, China
| | - Junxin Ma
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Changsha University, Changsha 410022, China
| | - Linxuan Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Changsha University, Changsha 410022, China
| | - Wei Wang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Changsha University, Changsha 410022, China
| | - Yaxiong Pan
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Changsha University, Changsha 410022, China; Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, Changsha University, Changsha 410022, China
| | - Xin Zhu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Changsha University, Changsha 410022, China; Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, Changsha University, Changsha 410022, China.
| | - Wuying Chu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Changsha University, Changsha 410022, China; Hunan Engineering Technology Research Center for Amphibian and Reptile Resource Protection and Product Processing, Changsha University, Changsha 410022, China.
| |
Collapse
|
2
|
Yu G, Sun M, Zhang T, Xu H, Wang J, Ye W, Wang P, Zhang S, Zhang C, Sun Y. Lanhuashen stimulates the positive cross-regulation mediated by the S1P axis to ameliorate the disorder of glucolipid metabolism induced by the high sucrose diet in Drosophila melanogaster. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117248. [PMID: 37804923 DOI: 10.1016/j.jep.2023.117248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herba Wanlenbergiae, named 'Lanhuashen' (LHS) in Chinese, is derived from the dried herba of Wahlenbergia marginata (Thunb.) A.DC. It is an abundant resource that has been used in traditional Chinese medicine (TCM) for over 600 years. LHS has the effects of enriching consumptive disease and relieving deficient heat, consistent with the therapy for type 2 diabetes mellitus (T2DM) in TCM. As the basic remedy of Yulan Jiangtang capsules, a listed Chinese medicine specifically for treating T2DM, LHS is a potential candidate for an anti-T2DM drug. However, due to the lack of pharmacodynamic studies and chemical component analysis, the application and development of LHS as a treatment for T2DM have been hindered. AIM OF THE STUDY To evaluate the regulation of the disorder of glucolipid metabolism using LHS extracts and its therapeutic potential in T2DM. MATERIALS AND METHODS Chemical components in LHS extracts were analysed using UPLC-Q Exactive-Orbitrap-MS. Subsequently, high sucrose diet (HSD)-induced Drosophila melanogaster were used as suitable models for T2DM in vivo. Behavioural and biochemical tests were performed to evaluate the regulation of the disorder of glucolipid metabolism using LHS in T2DM flies. Furthermore, integrative metabolomic and transcriptomic analysis was applied to reveal the specific effects of LHS extracts on metabolites and genes. Meanwhile, bioinformatic analysis was carried out to predict the targeted transcription factors (TFs) and potentially effective components of LHS extracts. RESULTS We redefined the chemical profile of LHS with 76 identified chemical components, including 65 chemical components for the first time. As indicated by decreased trehalose, glucose and triglyceride levels and increased total protein levels, LHS extracts were perceived to alleviate the disorder of glucolipid metabolism in HSD-induced T2DM fruit flies. Integrative metabolomic and transcriptomic analysis revealed that LHS extracts eliminated the accumulation of sphingolipids and subsequently stimulated the positive cross-regulation mediated by the sphingosine 1-phosphate (S1P) axis, resulting in the activation of the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) signalling pathway and inhibition of lysosome-mediated apoptosis. Bioinformatic analysis revealed that the upstream TFs, transcriptional enhancer factor TEF-5 (TEAD3) and peroxisome proliferator-activated receptor alpha (PPARA), were the potential targets of atractylenolide III, dihydrokaempferol and syringaldehyde, the potentially effective components of LHS extracts. Therefore, this TF network was plausibly the basis for the efficacy. CONCLUSIONS LHS extracts broadly modulated TF-dependent gene expression and subsequently stimulated the positive cross-regulation mediated by the S1P axis to ameliorate the disorder of glucolipid metabolism. Our study provides critical evidence considering LHS as a potential drug candidate for T2DM, inspiring the discovery and development of innovative therapeutic agents based on the cross-regulation mediated by the S1P axis for treating T2DM and related complications.
Collapse
Affiliation(s)
- Gengyuan Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Mo Sun
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Tonghua Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Haoran Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jiaqi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Wanting Ye
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Peng Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Shiyun Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Chenning Zhang
- Department of Pharmacy, Xiangyang No. 1 People's Hospital Affiliated to Hubei University of Medicine, Xiangyang 441000, China.
| | - Yikun Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
3
|
Chiang YP, Li Z, He M, Jones Q, Pan M, Han X, Jiang XC. Sphingomyelin synthase-related protein SMSr is a phosphatidylethanolamine phospholipase C that promotes nonalcoholic fatty liver disease. J Biol Chem 2023; 299:105162. [PMID: 37586586 PMCID: PMC10494463 DOI: 10.1016/j.jbc.2023.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Sphingomyelin synthase (SMS)-related protein (SMSr) is a phosphatidylethanolamine phospholipase C (PE-PLC) that is conserved and ubiquitous in mammals. However, its biological function is still not clear. We previously observed that SMS1 deficiency-mediated glucosylceramide accumulation caused nonalcoholic fatty liver diseases (NAFLD), including nonalcoholic steatohepatitis (NASH) and liver fibrosis. Here, first, we evaluated high-fat diet/fructose-induced NAFLD in Smsr KO and WT mice. Second, we evaluated whether SMSr deficiency can reverse SMS1 deficiency-mediated NAFLD, using Sms1/Sms2 double and Sms1/Sms2/Smsr triple KO mice. We found that SMSr/PE-PLC deficiency attenuated high-fat diet/fructose-induced fatty liver and NASH, and attenuated glucosylceramide accumulation-induced NASH, fibrosis, and tumor formation. Further, we found that SMSr/PE-PLC deficiency reduced the expression of many inflammatory cytokines and fibrosis-related factors, and PE supplementation in vitro or in vivo mimicked the condition of SMSr/PE-PLC deficiency. Furthermore, we demonstrated that SMSr/PE-PLC deficiency or PE supplementation effectively prevented membrane-bound β-catenin transfer to the nucleus, thereby preventing tumor-related gene expression. Finally, we observed that patients with NASH had higher SMSr protein levels in the liver, lower plasma PE levels, and lower plasma PE/phosphatidylcholine ratios, and that human plasma PE levels are negatively associated with tumor necrosis factor-α and transforming growth factor β1 levels. In conclusion, SMSr/PE-PLC deficiency causes PE accumulation, which can attenuate fatty liver, NASH, and fibrosis. These results suggest that SMSr/PE-PLC inhibition therapy may mitigate NAFLD.
Collapse
Affiliation(s)
- Yeun-Po Chiang
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Zhiqiang Li
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Mulin He
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Quiana Jones
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Meixia Pan
- Lipidomics Core, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Xianlin Han
- Lipidomics Core, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Xian-Cheng Jiang
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA; Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, Brooklyn, New York, USA.
| |
Collapse
|
4
|
Wang D, Tang Y, Wang Z. Role of sphingolipid metabolites in the homeostasis of steroid hormones and the maintenance of testicular functions. Front Endocrinol (Lausanne) 2023; 14:1170023. [PMID: 37008929 PMCID: PMC10065405 DOI: 10.3389/fendo.2023.1170023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
With the acceleration of life pace and the increase of work pressure, the problem of male infertility has become a social problem of general concern. Sphingolipids are important regulators of many cellular processes like cell differentiation and apoptosis, which are ubiquitously expressed in all mammalian cells. Various sphingolipid catabolic enzymes can generate multiple sphingolipids like sphingosine-1-phosphate and sphingomyelin. Present studies have already demonstrated the role of steroid hormones in the physiological processes of reproduction and development through hypothalamus-pituitary-gonad axis, while recent researches also found not only sphingolipids can modulate steroid hormone secretion, but also steroid hormones can control sphingolipid metabolites, indicating the role of sphingolipid metabolites in the homeostasis of steroid hormones. Furthermore, sphingolipid metabolites not only contribute to the regulation of gametogenesis, but also mediate damage-induced germ apoptosis, implying the role of sphingolipid metabolites in the maintenance of testicular functions. Together, sphingolipid metabolites are involved in impaired gonadal function and infertility in males, and further understanding of these bioactive sphingolipids will help us develop new therapeutics for male infertility in the future.
Collapse
Affiliation(s)
- Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Yedong Tang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhengchao Wang
- Fujian Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
5
|
Rosenbloom BE, Cappellini MD, Weinreb NJ, Dragosky M, Revel‐Vilk S, Batista JL, Sekulic D, Mistry PK. Cancer risk and gammopathies in 2123 adults with Gaucher disease type 1 in the International Gaucher Group Gaucher Registry. Am J Hematol 2022; 97:1337-1347. [PMID: 36054609 PMCID: PMC9541044 DOI: 10.1002/ajh.26675] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/24/2023]
Abstract
There are numerous reports of cancers in Gaucher disease (GD) from mostly small single-center studies; however, precise risk estimates and cancer types involved have not been delineated. We conducted a study involving 2123 patients with GD type 1 (GD1) to assess the incidence of hematological malignancies, gammopathies, and solid tumors in an international observational study, the International Cooperative Gaucher Group Gaucher Registry (Clinicaltrials.gov: NCT00358943). Risk for cancer overall and for each type of malignancy was compared to the United States (US) population using the Surveillance, Epidemiology, and End Results database. Natural history of gammopathy was determined through assessing the progression from a diagnosis of monoclonal gammopathy of unknown significance (MGUS) to multiple myeloma (MM). Risk for hematological malignancies was more than four times higher than expected compared to the general population: non-Hodgkin lymphoma was approximately three times higher; MM was approximately nine times higher. Age-specific incidence rates of MGUS were unexpectedly high among younger patients. The 10-year cumulative incidence of MM after diagnosis of MGUS was 7.9%, comparable to the general population. Compared to the general US population, GD1 patients were at higher risk for solid malignancies of liver (2.9 times), kidney (2.8 times), melanoma (2.5 times), and breast (1.4 times). Colorectal, prostate, and lung cancer risks were lower than expected. These findings help advance care of patients with GD1 by supporting recommendations for individualized monitoring for malignancies and antecedents such as MGUS for MM and provoke important questions of the role of glucosylceramide and related sphingolipids in cancer biology.
Collapse
Affiliation(s)
| | - Maria Domenica Cappellini
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico MilanoMilanItaly
- Department of Internal MedicineUniversity of MilanMilanItaly
| | - Neal J. Weinreb
- Division of Hematology, Department of Internal MedicineUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Division of Clinical Genetics, Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Marta Dragosky
- Department of HematologyHenry Moore InstituteBuenos AiresArgentina
| | - Shoshana Revel‐Vilk
- Department of Pediatric Hematology, School of MedicineHebrew UniversityJerusalemIsrael
- Gaucher Unit, Shaare Zedek Medical CenterJerusalemIsrael
| | - Julie L. Batista
- Department of Epidemiology and BiostatisticsSanofiCambridgeMassachusettsUSA
| | - Davorka Sekulic
- Global Medical Affairs Hematology, Sanofi, CambridgeMassachusettsUSA
| | - Pramod K. Mistry
- Department of Internal MedicineYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
6
|
Sphingolipids and Cholesterol. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:1-14. [DOI: 10.1007/978-981-19-0394-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Li Z, Chiang YP, He M, Worgall TS, Zhou H, Jiang XC. Liver sphingomyelin synthase 1 deficiency causes steatosis, steatohepatitis, fibrosis, and tumorigenesis: An effect of glucosylceramide accumulation. iScience 2021; 24:103449. [PMID: 34927020 PMCID: PMC8649732 DOI: 10.1016/j.isci.2021.103449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/21/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022] Open
Abstract
Glucosylceramide (GluCer) was accumulated in sphingomyelin synthase 1 (SMS1) but not SMS2 deficient mouse tissues. In current study, we studied GluCer accumulation-mediated metabolic consequences. Livers from liver-specific Sms1/global Sms2 double-knockout (dKO) exhibited severe steatosis under a high-fat diet. Moreover, chow diet-fed ≥6-month-old dKO mice had liver impairment, inflammation, and fibrosis, compared with wild type and Sms2 KO mice. RNA sequencing showed 3- to 12-fold increases in various genes which are involved in lipogenesis, inflammation, and fibrosis. Further, we found that direct GluCer treatment (in vitro and in vivo) promoted hepatocyte to secrete more activated TGFβ1, which stimulated more collagen 1α1 production in hepatic stellate cells. Additionally, GluCer promoted more β-catenin translocation into the nucleus, thus promoting tumorigenesis. Importantly, human NASH patients had higher liver GluCer synthase and higher plasma GluCer. These findings implicated that GluCer accumulation is one of triggers promoting the development of NAFLD into NASH, then, fibrosis, and tumorigenesis.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Yeun-po Chiang
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Mulin He
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | | | - Xian-Cheng Jiang
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, New York, USA
| |
Collapse
|
8
|
Multi-Omics Analysis of Key microRNA-mRNA Metabolic Regulatory Networks in Skeletal Muscle of Obese Rabbits. Int J Mol Sci 2021; 22:ijms22084204. [PMID: 33921578 PMCID: PMC8072691 DOI: 10.3390/ijms22084204] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
microRNAs (miRNAs), small non-coding RNA with a length of about 22 nucleotides, are involved in the energy metabolism of skeletal muscle cells. However, their molecular mechanism of metabolism in rabbit skeletal muscle is still unclear. In this study, 16 rabbits, 8 in the control group (CON-G) and 8 in the experimental group (HFD-G), were chosen to construct an obese model induced by a high-fat diet fed from 35 to 70 days of age. Subsequently, 54 differentially expressed miRNAs, 248 differentially expressed mRNAs, and 108 differentially expressed proteins related to the metabolism of skeletal muscle were detected and analyzed with three sequencing techniques (small RNA sequencing, transcriptome sequencing, and tandem mass tab (TMT) protein technology). It was found that 12 miRNAs and 12 core genes (e.g., CRYL1, VDAC3 and APIP) were significantly different in skeletal muscle from rabbits in the two groups. The network analysis showed that seven miRNA-mRNA pairs were involved in metabolism. Importantly, two miRNAs (miR-92a-3p and miR-30a/c/d-5p) regulated three transcription factors (MYBL2, STAT1 and IKZF1) that may be essential for lipid metabolism. These results enhance our understanding of molecular mechanisms associated with rabbit skeletal muscle metabolism and provide a basis for future studies in the metabolic diseases of human obesity.
Collapse
|
9
|
Nascimbeni F, Lugari S, Cassinerio E, Motta I, Cavicchioli A, Dalla Salda A, Bursi S, Donatiello S, Spina V, Cappellini MD, Andreone P, Carubbi F. Liver steatosis is highly prevalent and is associated with metabolic risk factors and liver fibrosis in adult patients with type 1 Gaucher disease. Liver Int 2020; 40:3061-3070. [PMID: 32810900 DOI: 10.1111/liv.14640] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/24/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Gaucher disease (GD) is associated with peculiar metabolic abnormalities (ie hypermetabolic state, peripheral insulin resistance, dyslipidaemia), partially reverted by enzyme replacement therapy (ERT) at the expense of weight gain. Such metabolic alterations together with an unhealthy lifestyle acquired by an ageing GD population may favour the development of liver steatosis. We aimed at evaluating the prevalence of significant liver steatosis and at identifying the factors associated with liver steatosis in a cohort of patients with type 1 GD. METHODS Twenty adult type 1 GD patients from an Italian academic referral centre were prospectively submitted to vibration-controlled transient elastography (Fibroscan®) with controlled attenuation parameter (CAP); significant steatosis was defined as CAP values ≥250 dB/min. RESULTS Median CAP values were 234 [165-358] dB/min and 8 patients (40%) had significant steatosis. Significant steatosis was associated with indices of adiposity (weight, BMI and waist circumference), high blood pressure, insulin resistance and metabolic syndrome. GD-related variables and dose and duration of ERT were not associated with significant steatosis. In the subgroup of 16 patients on stable ERT for at least 24 months, CAP resulted significantly and positively associated with liver stiffness (rho 0.559, P = .024). CONCLUSIONS Significant steatosis is highly prevalent in adult type 1 GD patients and is strongly associated with a worse metabolic profile, featuring metabolic dysfunction-associated fatty liver disease (MAFLD). MAFLD may determine liver fibrosis progression in GD patients on stable ERT and may be a risk factor for long-term liver-related complications.
Collapse
Affiliation(s)
- Fabio Nascimbeni
- Regional Referral Centre for Lysosomal Storage Diseases, Division of Internal Medicine and Metabolism, Civil Hospital, AOU of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Simonetta Lugari
- Regional Referral Centre for Lysosomal Storage Diseases, Division of Internal Medicine and Metabolism, Civil Hospital, AOU of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Cassinerio
- Rare Diseases Centre, Department of Medicine and Medical Specialities, "Ca' Granda" Foundation IRCCS, Milan, Italy
| | - Irene Motta
- Rare Diseases Centre, Department of Medicine and Medical Specialities, "Ca' Granda" Foundation IRCCS, Milan, Italy
| | - Alessia Cavicchioli
- Regional Referral Centre for Lysosomal Storage Diseases, Division of Internal Medicine and Metabolism, Civil Hospital, AOU of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Annalisa Dalla Salda
- Regional Referral Centre for Lysosomal Storage Diseases, Division of Internal Medicine and Metabolism, Civil Hospital, AOU of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Serena Bursi
- Regional Referral Centre for Lysosomal Storage Diseases, Division of Internal Medicine and Metabolism, Civil Hospital, AOU of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Vincenzo Spina
- Radiology Division, Civil Hospital, AOU of Modena, Modena, Italy
| | - Maria Domenica Cappellini
- Rare Diseases Centre, Department of Medicine and Medical Specialities, "Ca' Granda" Foundation IRCCS, Milan, Italy
| | - Pietro Andreone
- Regional Referral Centre for Lysosomal Storage Diseases, Division of Internal Medicine and Metabolism, Civil Hospital, AOU of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Carubbi
- Regional Referral Centre for Lysosomal Storage Diseases, Division of Internal Medicine and Metabolism, Civil Hospital, AOU of Modena, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
10
|
Klatt‐Schreiner K, Valek L, Kang J, Khlebtovsky A, Trautmann S, Hahnefeld L, Schreiber Y, Gurke R, Thomas D, Wilken‐Schmitz A, Wicker S, Auburger G, Geisslinger G, Lötsch J, Pfeilschifter W, Djaldetti R, Tegeder I. High Glucosylceramides and Low Anandamide Contribute to Sensory Loss and Pain in Parkinson's Disease. Mov Disord 2020; 35:1822-1833. [DOI: 10.1002/mds.28186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
| | - Lucie Valek
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| | - Jun‐Suk Kang
- Department of Neurology Goethe‐University Hospital Frankfurt Germany
| | - Alexander Khlebtovsky
- Department of Neurology Rabin Medical Center Petach Tiqva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Sandra Trautmann
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| | | | - Robert Gurke
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| | - Annett Wilken‐Schmitz
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| | - Sabine Wicker
- Occupational Health Service Goethe‐University Hospital Frankfurt Germany
| | - Georg Auburger
- Department of Neurology Goethe‐University Hospital Frankfurt Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology Branch Translational Medicine Frankfurt Germany
- Fraunhofer Cluster of Excellence for immune mediated diseases (CIMD)
| | - Jörn Lötsch
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology Branch Translational Medicine Frankfurt Germany
- Fraunhofer Cluster of Excellence for immune mediated diseases (CIMD)
| | | | - Ruth Djaldetti
- Department of Neurology Rabin Medical Center Petach Tiqva Israel
- Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology Goethe‐University, Medical Faculty Frankfurt Germany
| |
Collapse
|
11
|
Herrera Moro Chao D, Wang Y, Foppen E, Ottenhoff R, van Roomen C, Parlevliet ET, van Eijk M, Verhoek M, Boot R, Marques AR, Scheij S, Mirzaian M, Kooijman S, Jansen K, Wang D, Mergen C, Seeley RJ, Tschöp MH, Overkleeft H, Rensen PCN, Kalsbeek A, Aerts JMFG, Yi CX. The Iminosugar AMP-DNM Improves Satiety and Activates Brown Adipose Tissue Through GLP1. Diabetes 2019; 68:2223-2234. [PMID: 31578192 DOI: 10.2337/db19-0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/21/2019] [Indexed: 12/28/2022]
Abstract
Obesity is taking on worldwide epidemic proportions, yet effective pharmacological agents with long-term efficacy remain unavailable. Previously, we designed the iminosugar N-adamantine-methyloxypentyl-deoxynojirimycin (AMP-DNM), which potently improves glucose homeostasis by lowering excessive glycosphingolipids. Here we show that AMP-DNM promotes satiety and activates brown adipose tissue (BAT) in obese rodents. Moreover, we demonstrate that the mechanism mediating these favorable actions depends on oral, but not central, administration of AMP-DNM, which ultimately stimulates systemic glucagon-like peptide 1 (GLP1) secretion. We evidence an essential role of brain GLP1 receptors (GLP1r), as AMP-DNM fails to promote satiety and activate BAT in mice lacking the brain GLP1r as well as in mice treated intracerebroventricularly with GLP1r antagonist exendin-9. In conclusion, AMP-DNM markedly ameliorates metabolic abnormalities in obese rodents by restoring satiety and activating BAT through central GLP1r, while improving glucose homeostasis by mechanisms independent of central GLP1r.
Collapse
Affiliation(s)
- Daniela Herrera Moro Chao
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Endocrinology, Department of Endocrinology and Metabolism, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Yanan Wang
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ewout Foppen
- Laboratory of Endocrinology, Department of Endocrinology and Metabolism, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Cindy van Roomen
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Edwin T Parlevliet
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Marco van Eijk
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden, the Netherlands
| | - Marri Verhoek
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden, the Netherlands
| | - Rolf Boot
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden, the Netherlands
| | - Andre R Marques
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden, the Netherlands
| | - Saskia Scheij
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Mina Mirzaian
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden, the Netherlands
| | - Sander Kooijman
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Kirstin Jansen
- Laboratory of Endocrinology, Department of Endocrinology and Metabolism, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Dawei Wang
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Clarita Mergen
- Helmholtz Diabetes Center and German Center for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany, and Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | | | - Matthias H Tschöp
- Helmholtz Diabetes Center and German Center for Diabetes Research, Helmholtz Zentrum München, Neuherberg, Germany, and Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Herman Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, the Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Andries Kalsbeek
- Laboratory of Endocrinology, Department of Endocrinology and Metabolism, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden, the Netherlands
| | - Chun-Xia Yi
- Laboratory of Endocrinology, Department of Endocrinology and Metabolism, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Chen Y, Huang L, Qi X, Chen C. Insulin Receptor Trafficking: Consequences for Insulin Sensitivity and Diabetes. Int J Mol Sci 2019; 20:ijms20205007. [PMID: 31658625 PMCID: PMC6834171 DOI: 10.3390/ijms20205007] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Insulin receptor (INSR) has been extensively studied in the area of cell proliferation and energy metabolism. Impaired INSR activities lead to insulin resistance, the key factor in the pathology of metabolic disorders including type 2 diabetes mellitus (T2DM). The mainstream opinion is that insulin resistance begins at a post-receptor level. The role of INSR activities and trafficking in insulin resistance pathogenesis has been largely ignored. Ligand-activated INSR is internalized and trafficked to early endosome (EE), where INSR is dephosphorylated and sorted. INSR can be subsequently conducted to lysosome for degradation or recycled back to the plasma membrane. The metabolic fate of INSR in cellular events implies the profound influence of INSR on insulin signaling pathways. Disruption of INSR-coupled activities has been identified in a wide range of insulin resistance-related diseases such as T2DM. Accumulating evidence suggests that alterations in INSR trafficking may lead to severe insulin resistance. However, there is very little understanding of how altered INSR activities undermine complex signaling pathways to the development of insulin resistance and T2DM. Here, we focus this review on summarizing previous findings on the molecular pathways of INSR trafficking in normal and diseased states. Through this review, we provide insights into the mechanistic role of INSR intracellular processes and activities in the development of insulin resistance and diabetes.
Collapse
Affiliation(s)
- Yang Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| | - Lili Huang
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| | - Xinzhou Qi
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| | - Chen Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
13
|
Lee S, Kim S, Kim Y, Oh B, Hwang H, Park T. Pathway analysis of rare variants for the clustered phenotypes by using hierarchical structured components analysis. BMC Med Genomics 2019; 12:100. [PMID: 31296220 PMCID: PMC6624181 DOI: 10.1186/s12920-019-0517-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUNDS Recent large-scale genetic studies often involve clustered phenotypes such as repeated measurements. Compared to a series of univariate analyses of single phenotypes, an analysis of clustered phenotypes can be useful for substantially increasing statistical power to detect more genetic associations. Moreover, for the analysis of rare variants, incorporation of biological information can boost weak effects of the rare variants. RESULTS Through simulation studies, we showed that the proposed method outperforms other method currently available for pathway-level analysis of clustered phenotypes. Moreover, a real data analysis using a large-scale whole exome sequencing dataset of 995 samples with metabolic syndrome-related phenotypes successfully identified the glyoxylate and dicarboxylate metabolism pathway that could not be identified by the univariate analyses of single phenotypes and other existing method. CONCLUSION In this paper, we introduced a novel pathway-level association test by combining hierarchical structured components analysis and penalized generalized estimating equations. The proposed method analyzes all pathways in a single unified model while considering their correlations. C/C++ implementation of PHARAOH-GEE is publicly available at http://statgen.snu.ac.kr/software/pharaoh-gee/ .
Collapse
Affiliation(s)
- Sungyoung Lee
- Center for Precision Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sunmee Kim
- Department of Psychology, McGill University, Montreal, Canada
| | - Yongkang Kim
- Department of Statistics, Seoul National University, Seoul, Korea
| | - Bermseok Oh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Heungsun Hwang
- Department of Psychology, McGill University, Montreal, Canada
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul, Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea.
| |
Collapse
|
14
|
Haynes VR, Keenan SN, Bayliss J, Lloyd EM, Meikle PJ, Grounds MD, Watt MJ. Dysferlin deficiency alters lipid metabolism and remodels the skeletal muscle lipidome in mice. J Lipid Res 2019; 60:1350-1364. [PMID: 31203232 DOI: 10.1194/jlr.m090845] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/14/2019] [Indexed: 12/15/2022] Open
Abstract
Defects in the gene coding for dysferlin, a membrane-associated protein, affect many tissues, including skeletal muscles, with a resultant myopathy called dysferlinopathy. Dysferlinopathy manifests postgrowth with a progressive loss of skeletal muscle function, early intramyocellular lipid accumulation, and a striking later replacement of selective muscles by adipocytes. To better understand the changes underpinning this disease, we assessed whole-body energy homeostasis, skeletal muscle fatty acid metabolism, lipolysis in adipose tissue, and the skeletal muscle lipidome using young adult dysferlin-deficient male BLAJ mice and age-matched C57Bl/6J WT mice. BLAJ mice had increased lean mass and reduced fat mass associated with increased physical activity and increased adipose tissue lipolysis. Skeletal muscle fatty acid metabolism was remodeled in BLAJ mice, characterized by a partitioning of fatty acids toward storage rather than oxidation. Lipidomic analysis identified marked changes in almost all lipid classes examined in the skeletal muscle of BLAJ mice, including sphingolipids, phospholipids, cholesterol, and most glycerolipids but, surprisingly, not triacylglycerol. These observations indicate that an early manifestation of dysferlin deficiency is the reprogramming of skeletal muscle and adipose tissue lipid metabolism, which is likely to contribute to the progressive adverse histopathology in dysferlinopathies.
Collapse
Affiliation(s)
- Vanessa R Haynes
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Stacey N Keenan
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Jackie Bayliss
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Erin M Lloyd
- School of Human Sciences University of Western Australia, Perth, Australia
| | - Peter J Meikle
- Metabolomics Laboratory Baker Heart Institute, Melbourne, Australia
| | - Miranda D Grounds
- School of Human Sciences University of Western Australia, Perth, Australia
| | - Matthew J Watt
- Department of Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
15
|
Chew WS, Torta F, Ji S, Choi H, Begum H, Sim X, Khoo CM, Khoo EYH, Ong WY, Van Dam RM, Wenk MR, Tai ES, Herr DR. Large-scale lipidomics identifies associations between plasma sphingolipids and T2DM incidence. JCI Insight 2019; 5:126925. [PMID: 31162145 PMCID: PMC6629294 DOI: 10.1172/jci.insight.126925] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Sphingolipids (SPs) are ubiquitous, structurally diverse molecules that include ceramides, sphingomyelins, and sphingosines. They are involved in various pathologies including obesity and type 2 diabetes mellitus (T2DM). Therefore, it is likely that perturbations in plasma concentrations of SPs are associated with disease. Identifying these associations may reveal useful biomarkers or provide insight into disease processes. METHODS We performed a lipidomics evaluation of molecularly-distinct SPs in the plasma of 2,302 ethnically-Chinese Singaporeans using electrospray ionization mass spectrometry coupled with liquid chromatography. SP profiles were compared to clinical and biochemical characteristics, and subjects were evaluated by follow-up visits for 11 years. RESULTS We found that ceramides correlate positively but hexosylceramides correlate negatively with body mass index (BMI) and homeostatic model assessment of insulin resistance (HOMA-IR). Furthermore, SPs with a d16:1 sphingoid backbone correlate more positively with BMI and HOMA-IR, while d18:2 SPs correlate less positively, relative to canonical d18:1 SPs. We also found that higher concentrations of two distinct sphingomyelins were associated with a higher risk of T2DM (HR 1.45, 95% CI 1.18-1.78 for SM d16:1/C18:0; and HR 1.40, 95% CI 1.17-1.68 for SM d18:1/C18:0). CONCLUSION We identified significant associations between SPs and obesity/T2DM characteristics, specifically, that of hexosylceramides, d16:1 SPs, and d18:2 SPs. This suggests that the balance of SP metabolism, rather than ceramide accumulation, is associated with the pathology of obesity. We further identified two specific SPs that may represent prognostic biomarkers for T2DM. FUNDING Funding sources are listed in the Acknowledgements section.
Collapse
Affiliation(s)
| | - Federico Torta
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Shanshan Ji
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Hyungwon Choi
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National Health System, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore
| | - Husna Begum
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National Health System, Singapore
| | - Eric Yin Hao Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National Health System, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rob M. Van Dam
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National Health System, Singapore
| | - Markus R. Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore
| | - E. Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National Health System, Singapore
- Duke-NUS Graduate Medical School, Singapore
| | - Deron R. Herr
- Department of Pharmacology and
- Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
16
|
Brunkhorst-Kanaan N, Klatt-Schreiner K, Hackel J, Schröter K, Trautmann S, Hahnefeld L, Wicker S, Reif A, Thomas D, Geisslinger G, Kittel-Schneider S, Tegeder I. Targeted lipidomics reveal derangement of ceramides in major depression and bipolar disorder. Metabolism 2019; 95:65-76. [PMID: 30954559 DOI: 10.1016/j.metabol.2019.04.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 01/06/2023]
Abstract
UNLABELLED Changes of sphingolipid metabolism were suggested to contribute to the patho-etiology of major depression (MD) and bipolar disorder (BD). In a pilot study we assessed if lipid allostasis manifested in pathological plasma concentrations of bioactive lipids i.e. endocannabinoids, sphingolipids, ceramides, and lysophosphatidic acids. METHODS Targeted and untargeted lipidomic analyses were performed according to GLP guidelines in 67 patients with unipolar or bipolar disorders (20-67 years, 36 male, 31 female) and 405 healthy controls (18-79 years, 142 m, 263 f), who were matched according to gender, age and body mass index. Multivariate analyses were used to identify major components, which accounted for the variance between groups and were able to predict group membership. RESULTS Differences between MD and BP patients versus controls mainly originated from ceramides and their hexosyl-metabolites (C16Cer, C18Cer, C20Cer, C22Cer, C24Cer and C24:1Cer; C24:1GluCer, C24LacCer), which were strongly increased, particularly in male patients. Ceramide levels were neither associated with the current episode, nor with the therapeutic improvement of the Montgomery Åsberg Depression Rating Scale (MARDS). However, long-chain ceramides were linearly associated with age, stronger in patients than controls, and with high plasma levels of diacyl- and triacylglycerols. Patients receiving antidepressants had higher ceramide levels than patients not taking these drugs. There was no such association with lithium or antipsychotics except for olanzapine. CONCLUSION Our data suggest that high plasma ceramides in patients with major depression and bipolar disorder are indicative of a high metabolic burden, likely aggravated by certain medications.
Collapse
Affiliation(s)
- Nathalie Brunkhorst-Kanaan
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | | | - Juliane Hackel
- Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Germany
| | - Katrin Schröter
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Germany
| | - Sabine Wicker
- Occupational Health Service, Goethe-University Hospital Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch Translational Medicine, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Germany.
| |
Collapse
|
17
|
Alderete TL, Jin R, Walker DI, Valvi D, Chen Z, Jones DP, Peng C, Gilliland FD, Berhane K, Conti DV, Goran MI, Chatzi L. Perfluoroalkyl substances, metabolomic profiling, and alterations in glucose homeostasis among overweight and obese Hispanic children: A proof-of-concept analysis. ENVIRONMENT INTERNATIONAL 2019; 126:445-453. [PMID: 30844580 PMCID: PMC6555482 DOI: 10.1016/j.envint.2019.02.047] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/23/2019] [Accepted: 02/18/2019] [Indexed: 05/21/2023]
Abstract
OBJECTIVE To examine the prospective associations between exposure to perfluoroalkyl substances (PFASs) and longitudinal measurements of glucose metabolism in high-risk overweight and obese Hispanic children. METHODS Forty overweight and obese Hispanic children (8-14 years) from urban Los Angeles underwent clinical measures and 2-hour oral glucose tolerance tests (OGTT) at baseline and a follow-up visit (range: 1-3 years after enrollment). Baseline plasma perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonic acid (PFHxS), and the plasma metabolome were measured by liquid-chromatography with high-resolution mass spectrometry. Multiple linear regression models were used to assess the association between baseline PFASs and changes in glucose homeostasis over follow-up. A metabolome-wide association study coupled with pathway enrichment analysis was performed to evaluate metabolic dysregulation associated with plasma PFASs concentrations. We performed a structural integrated analysis aiming to characterize the joint impact of all factors and to identify latent clusters of children with alterations in glucose homeostasis, based on their exposure and metabolomics profile. RESULTS Each ln (ng/ml) increase in PFOA and PFHxS concentrations was associated with a 30.6 mg/dL (95% CI: 8.8-52.4) and 10.2 mg/dL (95% CI: 2.7-17.7) increase in 2-hour glucose levels, respectively. A ln (ng/ml) increase in PFHxS concentrations was also associated with 17.8 mg/dL increase in the glucose area under the curve (95% CI: 1.5-34.1). Pathway enrichment analysis showed significant alterations of lipids (e.g., glycosphingolipids, linoleic acid, and de novo lipogenesis), and amino acids (e.g., aspartate and asparagine, tyrosine, arginine and proline) in association to PFASs exposure. The integrated analysis identified a cluster of children with increased 2-h glucose levels over follow up, characterized by increased PFAS levels and altered metabolite patterns. CONCLUSIONS This proof-of-concept analysis shows that higher PFAS exposure was associated with dysregulation of several lipid and amino acid pathways and longitudinal alterations in glucose homeostasis in Hispanic youth. Larger studies are needed to confirm these findings and fully elucidate the underlying biological mechanisms.
Collapse
Affiliation(s)
- Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States.
| | - Ran Jin
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Damaskini Valvi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| | - Zhanghua Chen
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.
| | - Cheng Peng
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Frank D Gilliland
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Kiros Berhane
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States.
| | - David V Conti
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Michael I Goran
- Department of Pediatrics, Children's Hospital of Los Angeles, The Saban Research Institute, United States.
| | - Lida Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
18
|
Rakhshandehroo M, van Eijkeren RJ, Gabriel TL, de Haar C, Gijzel SMW, Hamers N, Ferraz MJ, Aerts JMFG, Schipper HS, van Eijk M, Boes M, Kalkhoven E. Adipocytes harbor a glucosylceramide biosynthesis pathway involved in iNKT cell activation. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1157-1167. [PMID: 31051284 DOI: 10.1016/j.bbalip.2019.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Natural killer T (NKT) cells in adipose tissue (AT) contribute to whole body energy homeostasis. RESULTS Inhibition of the glucosylceramide synthesis in adipocytes impairs iNKT cell activity. CONCLUSION Glucosylceramide biosynthesis pathway is important for endogenous lipid antigen activation of iNKT cells in adipocytes. SIGNIFICANCE Unraveling adipocyte-iNKT cell communication may help to fight obesity-induced AT dysfunction. Overproduction and/or accumulation of ceramide and ceramide metabolites, including glucosylceramides, can lead to insulin resistance. However, glucosylceramides also fulfill important physiological functions. They are presented by antigen presenting cells (APC) as endogenous lipid antigens via CD1d to activate a unique lymphocyte subspecies, the CD1d-restricted invariant (i) natural killer T (NKT) cells. Recently, adipocytes have emerged as lipid APC that can activate adipose tissue-resident iNKT cells and thereby contribute to whole body energy homeostasis. Here we investigate the role of the glucosylceramide biosynthesis pathway in the activation of iNKT cells by adipocytes. UDP-glucose ceramide glucosyltransferase (Ugcg), the first rate limiting step in the glucosylceramide biosynthesis pathway, was inhibited via chemical compounds and shRNA knockdown in vivo and in vitro. β-1,4-Galactosyltransferase (B4Galt) 5 and 6, enzymes that convert glucosylceramides into potentially inactive lactosylceramides, were subjected to shRNA knock down. Subsequently, (pre)adipocyte cell lines were tested in co-culture experiments with iNKT cells (IFNγ and IL4 secretion). Inhibition of Ugcg activity shows that it regulates presentation of a considerable fraction of lipid self-antigens in adipocytes. Furthermore, reduced expression levels of either B4Galt5 or -6, indicate that B4Galt5 is dominant in the production of cellular lactosylceramides, but that inhibition of either enzyme results in increased iNKT cell activation. Additionally, in vivo inhibition of Ugcg by the aminosugar AMP-DNM results in decreased iNKT cell effector function in adipose tissue. Inhibition of endogenous glucosylceramide production results in decreased iNKT cells activity and cytokine production, underscoring the role of this biosynthetic pathway in lipid self-antigen presentation by adipocytes.
Collapse
Affiliation(s)
- Maryam Rakhshandehroo
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robert J van Eijkeren
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tanit L Gabriel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Colin de Haar
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Sanne M W Gijzel
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nicole Hamers
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maria J Ferraz
- Leiden Institute of Chemistry, Department of Biochemistry, Leiden University, Leiden, the Netherlands
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, Department of Biochemistry, Leiden University, Leiden, the Netherlands
| | - Henk S Schipper
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands; Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands
| | - Marco van Eijk
- Leiden Institute of Chemistry, Department of Biochemistry, Leiden University, Leiden, the Netherlands
| | - Marianne Boes
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands; Department of Paediatric Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eric Kalkhoven
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
19
|
Marques ARA, Saftig P. Lysosomal storage disorders - challenges, concepts and avenues for therapy: beyond rare diseases. J Cell Sci 2019; 132:jcs221739. [PMID: 30651381 DOI: 10.1242/jcs.221739] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The pivotal role of lysosomes in cellular processes is increasingly appreciated. An understanding of the balanced interplay between the activity of acidic hydrolases, lysosomal membrane proteins and cytosolic proteins is required. Lysosomal storage diseases (LSDs) are characterized by disturbances in this network and by intralysosomal accumulation of substrates, often only in certain cell types. Even though our knowledge of these diseases has increased and therapies have been established, many aspects of the molecular pathology of LSDs remain obscure. This Review aims to discuss how lysosomal storage affects functions linked to lysosomes, such as membrane repair, autophagy, exocytosis, lipid homeostasis, signalling cascades and cell viability. Therapies must aim to correct lysosomal storage not only morphologically, but reverse its (patho)biochemical consequences. As different LSDs have different molecular causes, this requires custom tailoring of therapies. We will discuss the major advantages and drawbacks of current and possible future therapies for LSDs. Study of the pathological molecular mechanisms underlying these 'experiments of nature' often yields information that is relevant for other conditions found in the general population. Therefore, more common diseases may profit from a correction of impaired lysosomal function.
Collapse
Affiliation(s)
- André R A Marques
- Biochemisches Institut, Christian Albrechts-Universität Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Biochemisches Institut, Christian Albrechts-Universität Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| |
Collapse
|
20
|
Wang W, Toran PT, Sabol R, Brown TJ, Barth BM. Epigenetics and Sphingolipid Metabolism in Health and Disease. ACTA ACUST UNITED AC 2019; 1. [PMID: 30637412 DOI: 10.31021/ijbs.20181105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sphingolipids represent one of the major classes of bioactive lipids. Studies of sphingolipids have intensified in the past several years, revealing their roles in nearly all cell biological processes. In addition, epigenetic regulation has gained substantial interest due to its role in controlling gene expression and activity without changing the genetic code. In this review, we first introduce a brief background on sphingolipid biology, highlighting its role in pathophysiology. We then illustrate the concept of epigenetic regulation, focusing on how it affects the metabolism of sphingolipids. We further discuss the roles of bioactive sphingolipids as epigenetic regulators themselves. Overall, a better understanding of the relationship between epigenetics and sphingolipid metabolism may help to improve the development of sphingolipid-targeted therapeutics.
Collapse
Affiliation(s)
- Weiyuan Wang
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| | - Paul T Toran
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| | - Rachel Sabol
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| | - Timothy J Brown
- Department of Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Brian M Barth
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| |
Collapse
|
21
|
Ben Bdira F, Artola M, Overkleeft HS, Ubbink M, Aerts JMFG. Distinguishing the differences in β-glycosylceramidase folds, dynamics, and actions informs therapeutic uses. J Lipid Res 2018; 59:2262-2276. [PMID: 30279220 PMCID: PMC6277158 DOI: 10.1194/jlr.r086629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Glycosyl hydrolases (GHs) are carbohydrate-active enzymes that hydrolyze a specific β-glycosidic bond in glycoconjugate substrates; β-glucosidases degrade glucosylceramide, a ubiquitous glycosphingolipid. GHs are grouped into structurally similar families that themselves can be grouped into clans. GH1, GH5, and GH30 glycosidases belong to clan A hydrolases with a catalytic (β/α)8 TIM barrel domain, whereas GH116 belongs to clan O with a catalytic (α/α)6 domain. In humans, GH abnormalities underlie metabolic diseases. The lysosomal enzyme glucocerebrosidase (family GH30), deficient in Gaucher disease and implicated in Parkinson disease etiology, and the cytosol-facing membrane-bound glucosylceramidase (family GH116) remove the terminal glucose from the ceramide lipid moiety. Here, we compare enzyme differences in fold, action, dynamics, and catalytic domain stabilization by binding site occupancy. We also explore other glycosidases with reported glycosylceramidase activity, including human cytosolic β-glucosidase, intestinal lactase-phlorizin hydrolase, and lysosomal galactosylceramidase. Last, we describe the successful translation of research to practice: recombinant glycosidases and glucosylceramide metabolism modulators are approved drug products (enzyme replacement therapies). Activity-based probes now facilitate the diagnosis of enzyme deficiency and screening for compounds that interact with the catalytic pocket of glycosidases. Future research may deepen the understanding of the functional variety of these enzymes and their therapeutic potential.
Collapse
Affiliation(s)
- Fredj Ben Bdira
- Departments of Macromolecular Biochemistry,Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Marta Artola
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Herman S Overkleeft
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Marcellus Ubbink
- Departments of Macromolecular Biochemistry,Leiden Institute of Chemistry, Leiden, The Netherlands
| | | |
Collapse
|
22
|
Adar T, Ilan Y, Elstein D, Zimran A. Liver involvement in Gaucher disease – Review and clinical approach. Blood Cells Mol Dis 2018; 68:66-73. [DOI: 10.1016/j.bcmd.2016.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
|
23
|
Moskot M, Bocheńska K, Jakóbkiewicz-Banecka J, Banecki B, Gabig-Cimińska M. Abnormal Sphingolipid World in Inflammation Specific for Lysosomal Storage Diseases and Skin Disorders. Int J Mol Sci 2018; 19:E247. [PMID: 29342918 PMCID: PMC5796195 DOI: 10.3390/ijms19010247] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/20/2017] [Accepted: 01/11/2018] [Indexed: 02/06/2023] Open
Abstract
Research in recent years has shown that sphingolipids are essential signalling molecules for the proper biological and structural functioning of cells. Long-term studies on the metabolism of sphingolipids have provided evidence for their role in the pathogenesis of a number of diseases. As many inflammatory diseases, such as lysosomal storage disorders and some dermatologic diseases, including psoriasis, atopic dermatitis and ichthyoses, are associated with the altered composition and metabolism of sphingolipids, more studies precisely determining the responsibilities of these compounds for disease states are required to develop novel pharmacological treatment opportunities. It is worth emphasizing that knowledge from the study of inflammatory metabolic diseases and especially the possibility of their treatment may lead to insight into related metabolic pathways, including those involved in the formation of the epidermal barrier and providing new approaches towards workable therapies.
Collapse
Affiliation(s)
- Marta Moskot
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kadki 24, 80-822 Gdańsk, Poland.
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | - Katarzyna Bocheńska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| | | | - Bogdan Banecki
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdańsk, Poland.
| | - Magdalena Gabig-Cimińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kadki 24, 80-822 Gdańsk, Poland.
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
24
|
van Eijkeren RJ, Krabbe O, Boes M, Schipper HS, Kalkhoven E. Endogenous lipid antigens for invariant natural killer T cells hold the reins in adipose tissue homeostasis. Immunology 2017; 153:179-189. [PMID: 28898395 DOI: 10.1111/imm.12839] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022] Open
Abstract
The global obesity epidemic and its associated co-morbidities, including type 2 diabetes, cardiovascular disease and certain types of cancers, have drawn attention to the pivotal role of adipocytes in health and disease. Besides their 'classical' function in energy storage and release, adipocytes interact with adipose-tissue-resident immune cells, among which are lipid-responsive invariant natural killer T (iNKT) cells. The iNKT cells are activated by lipid antigens presented by antigen-presenting cells as CD1d/lipid complexes. Upon activation, iNKT cells can rapidly secrete soluble mediators that either promote or oppose inflammation. In lean adipose tissue, iNKT cells elicit a predominantly anti-inflammatory immune response, whereas obesity is associated with declining iNKT cell numbers. Recent work showed that adipocytes act as non-professional antigen-presenting cells for lipid antigens. Here, we discuss endogenous lipid antigen processing and presentation by adipocytes, and speculate on how these lipid antigens, together with 'environmental factors' such as tissue/organ environment and co-stimulatory signals, are able to influence the fate of adipose-tissue-resident iNKT cells, and thereby the role of these cells in obesity and its associated pathologies.
Collapse
Affiliation(s)
- Robert J van Eijkeren
- Department of Molecular Cancer Research and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Olga Krabbe
- Department of Molecular Cancer Research and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marianne Boes
- Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Henk S Schipper
- Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Laboratory for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eric Kalkhoven
- Department of Molecular Cancer Research and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
25
|
Meikle PJ, Summers SA. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat Rev Endocrinol 2017; 13:79-91. [PMID: 27767036 DOI: 10.1038/nrendo.2016.169] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Obesity, insulin resistance, type 2 diabetes mellitus and cardiovascular disease form a metabolic disease continuum that has seen a dramatic increase in prevalence in developed and developing countries over the past two decades. Dyslipidaemia resulting from hypercaloric diets is a major contributor to the pathogenesis of metabolic disease, and lipid-lowering therapies are the main therapeutic option for this group of disorders. However, the fact that dysfunctional lipid metabolism extends far beyond cholesterol and triglycerides is becoming increasingly clear. Lipidomic studies and mouse models are helping to explain the complex interactions between diet, lipid metabolism and metabolic disease. These studies are not only improving our understanding of this complex biology, but are also identifying potential therapeutic avenues to combat this growing epidemic. This Review examines what is currently known about phospholipid and sphingolipid metabolism in the setting of obesity and how metabolic pathways are being modulated for therapeutic effect.
Collapse
Affiliation(s)
- Peter J Meikle
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004, Australia
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, 201 Presidents Circle, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
26
|
Ilan Y. Compounds of the sphingomyelin-ceramide-glycosphingolipid pathways as secondary messenger molecules: new targets for novel therapies for fatty liver disease and insulin resistance. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1102-17. [PMID: 27173510 DOI: 10.1152/ajpgi.00095.2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/04/2016] [Indexed: 01/31/2023]
Abstract
The compounds of sphingomyelin-ceramide-glycosphingolipid pathways have been studied as potential secondary messenger molecules in various systems, along with liver function and insulin resistance. Secondary messenger molecules act directly or indirectly to affect cell organelles and intercellular interactions. Their potential role in the pathogenesis of steatohepatitis and diabetes has been suggested. Data samples collected from patients with Gaucher's disease, who had high levels of glucocerebroside, support a role for compounds from these pathways as a messenger molecules in the pathogenesis of fatty liver disease and diabetes. The present review summarizes some of the recent data on the role of glycosphingolipid molecules as messenger molecules in various physiological and pathological conditions, more specifically including insulin resistance and fatty liver disease.
Collapse
Affiliation(s)
- Yaron Ilan
- Gastroenterology and Liver Units, Department of Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
27
|
Utz J, Whitley CB, van Giersbergen PLM, Kolb SA. Comorbidities and pharmacotherapies in patients with Gaucher disease type 1: The potential for drug-drug interactions. Mol Genet Metab 2016; 117:172-8. [PMID: 26674302 DOI: 10.1016/j.ymgme.2015.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 11/18/2022]
Abstract
PURPOSE Clinical care for patients with rare diseases may be complicated by comorbidities. Administration of medications to treat comorbidities may elicit potentially harmful drug-drug interactions (DDIs). Genetic background may also influence DDI occurrence. We investigated the range of comorbid conditions in patients with Gaucher disease type I (GD1), the pharmacotherapies prescribed and the potential for DDI with enzyme replacement and substrate reduction therapies and additional medications, specifically cytochrome P450 (CYP) metabolizing medications. METHODS A literature review examined comorbid conditions and pharmacotherapies reported in GD1. Analysis of two national databases reported real-world prescription practices in patients with GD1 (Germany, N=87; US, N=374). Prescribed drugs were assessed for known interactions with isoenzymes from the hepatic CYP enzyme family. RESULTS The literature reported GD1 symptomatology and comorbid conditions in broad agreement with the known clinical picture. German patients received 86 different medications whereas US patients received 329 different medications. An average of 3.2 medications (Germany) and 7 medications (US) per patient were prescribed. Moderate/strong inhibitors of CYP isoenzymes were prescribed to 20% and 57% of patients in the US and Germany, respectively. CONCLUSION This study describes the extensive number of comorbid conditions and drugs prescribed to patients with GD1, and the importance of determining CYP isoenzyme interaction to reduce DDI risk.
Collapse
Affiliation(s)
- Jeanine Utz
- University of Minnesota Medical Center, Fairview, Minneapolis, MN, USA.
| | | | | | - Stefan A Kolb
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
| |
Collapse
|
28
|
van den Berg RJBHN, van Rijssel ER, Ferraz MJ, Houben J, Strijland A, Donker-Koopman WE, Wennekes T, Bonger KM, Ghisaidoobe ABT, Hoogendoorn S, van der Marel GA, Codée JDC, Overkleeft HS, Aerts JMFG. Synthesis and Evaluation of Hybrid Structures Composed of Two Glucosylceramide Synthase Inhibitors. ChemMedChem 2015; 10:2042-62. [DOI: 10.1002/cmdc.201500407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Indexed: 01/08/2023]
Affiliation(s)
| | - Erwin R. van Rijssel
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Maria Joao Ferraz
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Judith Houben
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Anneke Strijland
- Department of Medical Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 9 1105 AZ Amsterdam The Netherlands
| | - Wilma E. Donker-Koopman
- Department of Medical Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 9 1105 AZ Amsterdam The Netherlands
| | - Tom Wennekes
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
- Laboratory of Organic Chemistry; Wageningen University; Dreijenplein 8 6703 HB Wageningen The Netherlands
| | - Kimberly M. Bonger
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Amar B. T. Ghisaidoobe
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Sascha Hoogendoorn
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Gijsbert A. van der Marel
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Herman S. Overkleeft
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Johannes M. F. G. Aerts
- Leiden Institute of Chemistry; Leiden University; Gorlaeus Laboratories; Einsteinweg 55 2300 RA Leiden The Netherlands
- Department of Medical Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 9 1105 AZ Amsterdam The Netherlands
| |
Collapse
|
29
|
Ganglioside GM3 as a gatekeeper of obesity-associated insulin resistance: Evidence and mechanisms. FEBS Lett 2015; 589:3221-7. [PMID: 26434718 DOI: 10.1016/j.febslet.2015.09.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/01/2015] [Accepted: 09/20/2015] [Indexed: 12/29/2022]
Abstract
Gangliosides constitute a large family of sialic acid-containing glycosphingolipids which play a key regulatory role in a diverse array of cellular processes, including receptor-associated signalling. Accordingly, the aberrant production of the ganglioside GM3 has been linked to pathophysiological changes associated with obesity, which in turn can lead to metabolic disorders such as insulin resistance and type 2 diabetes mellitus. This review examines the role of GM3 in mediating obesity-induced perturbations in metabolic function, including impaired insulin action. By doing so, we highlight the potential use of therapies targeting GM3 biosynthesis in order to counteract obesity-related metabolic disorders.
Collapse
|
30
|
Doneda D, Lopes AL, Teixeira BC, Mittelstadt SD, Moulin CC, Schwartz IV. Ghrelin, leptin and adiponectin levels in Gaucher disease type I patients on enzyme replacement therapy. Clin Nutr 2015; 34:727-31. [DOI: 10.1016/j.clnu.2014.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/16/2014] [Accepted: 08/20/2014] [Indexed: 02/08/2023]
|
31
|
Canela N, Herrero P, Mariné S, Nadal P, Ras MR, Rodríguez MÁ, Arola L. Analytical methods in sphingolipidomics: Quantitative and profiling approaches in food analysis. J Chromatogr A 2015; 1428:16-38. [PMID: 26275862 DOI: 10.1016/j.chroma.2015.07.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/27/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
In recent years, sphingolipidomics has emerged as an interesting omic science that encompasses the study of the full sphingolipidome characterization, content, structure and activity in cells, tissues or organisms. Like other omics, it has the potential to impact biomarker discovery, drug development and systems biology knowledge. Concretely, dietary food sphingolipids have gained considerable importance due to their extensively reported bioactivity. Because of the complexity of this lipid family and their diversity among foods, powerful analytical methodologies are needed for their study. The analytical tools developed in the past have been improved with the enormous advances made in recent years in mass spectrometry (MS) and chromatography, which allow the convenient and sensitive identification and quantitation of sphingolipid classes and form the basis of current sphingolipidomics methodologies. In addition, novel hyphenated nuclear magnetic resonance (NMR) strategies, new ionization strategies, and MS imaging are outlined as promising technologies to shape the future of sphingolipid analyses. This review traces the analytical methods of sphingolipidomics in food analysis concerning sample extraction, chromatographic separation, the identification and quantification of sphingolipids by MS and their structural elucidation by NMR.
Collapse
Affiliation(s)
- Núria Canela
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Pol Herrero
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Sílvia Mariné
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Pedro Nadal
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | - Maria Rosa Ras
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain
| | | | - Lluís Arola
- Centre for Omic Sciences, Universitat Rovira i Virgili (COS-URV), Spain.
| |
Collapse
|
32
|
Rodriguez-Cuenca S, Barbarroja N, Vidal-Puig A. Dihydroceramide desaturase 1, the gatekeeper of ceramide induced lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:40-50. [DOI: 10.1016/j.bbalip.2014.09.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 12/25/2022]
|
33
|
Hollak CEM, Wijburg FA. Treatment of lysosomal storage disorders: successes and challenges. J Inherit Metab Dis 2014; 37:587-98. [PMID: 24820227 DOI: 10.1007/s10545-014-9718-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/04/2014] [Accepted: 04/15/2014] [Indexed: 01/29/2023]
Abstract
Treatment options for a number of lysosomal storage disorders have rapidly expanded and currently include enzyme replacement therapy, substrate reduction, chaperone treatment, hematopoietic stem cell transplantation, and gene-therapy. Combination treatments are also explored. Most therapies are not curative but change the phenotypic expression of the disease. The effectiveness of treatment varies considerably between the different diseases, but also between sub-groups of patients with a specific lysosomal storage disorder. The heterogeneity of the patient populations complicates the prediction of benefits of therapy, specifically in patients with milder disease manifestations. In addition, there is a lack of data on the natural history of diseases and disease phenotypes. Initial trial data show benefits on relevant short-term endpoints, but the real world situation may reveal different outcomes. Collaborative international studies are much needed to study the long-term clinical efficacy of treatments, and to detect new complications or associated conditions of the diseases. This review summarizes the available treatment modalities for lysosomal storage disorders and the challenges associated with long term clinical care for these patients.
Collapse
Affiliation(s)
- Carla E M Hollak
- Department of Internal Medicine, Division of Endocrinology and Metabolism, SPHINX, Amsterdam Lysosome Center, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands,
| | | |
Collapse
|
34
|
Ferraz MJ, Kallemeijn WW, Mirzaian M, Herrera Moro D, Marques A, Wisse P, Boot RG, Willems LI, Overkleeft H, Aerts J. Gaucher disease and Fabry disease: New markers and insights in pathophysiology for two distinct glycosphingolipidoses. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:811-25. [DOI: 10.1016/j.bbalip.2013.11.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/25/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
|
35
|
Torretta E, Vasso M, Fania C, Capitanio D, Bergante S, Piccoli M, Tettamanti G, Anastasia L, Gelfi C. Application of direct HPTLC-MALDI for the qualitative and quantitative profiling of neutral and acidic glycosphingolipids: The case of NEU3 overexpressing C2C12 murine myoblasts. Electrophoresis 2014; 35:1319-28. [DOI: 10.1002/elps.201300474] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/22/2013] [Accepted: 12/09/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Enrica Torretta
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
| | - Michele Vasso
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR; Cefalù (Palermo) Segrate Milan Italy
| | - Chiara Fania
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
| | - Sonia Bergante
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
- Laboratory of Stem Cells for Tissue Engineering; IRCCS Policlinico San Donato Milan Italy
| | - Marco Piccoli
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
- Laboratory of Stem Cells for Tissue Engineering; IRCCS Policlinico San Donato Milan Italy
| | - Guido Tettamanti
- Laboratory of Stem Cells for Tissue Engineering; IRCCS Policlinico San Donato Milan Italy
| | - Luigi Anastasia
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
- Laboratory of Stem Cells for Tissue Engineering; IRCCS Policlinico San Donato Milan Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health; University of Milan; Segrate Milan Italy
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR; Cefalù (Palermo) Segrate Milan Italy
| |
Collapse
|
36
|
Park H, Zhou Y, Costello CE. Direct analysis of sialylated or sulfated glycosphingolipids and other polar and neutral lipids using TLC-MS interfaces. J Lipid Res 2014; 55:773-81. [PMID: 24482490 DOI: 10.1194/jlr.d046128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gangliosides and sulfatides (STs) are acidic glycosphingolipids (GSLs) that have one or more sialic acids or sulfate substituents, in addition to neutral sugars, attached to the C-1 hydroxyl group of the ceramide long chain base. TLC is a widely employed and convenient technique for separation and characterization of GSLs. When TLC is directly coupled to MS, it provides both the molecular mass and structural information without further purification. Here, after development of the TLC plates, the structural analyses of acidic GSLs, including gangliosides and STs, were investigated using the liquid extraction surface analysis (LESA™) and CAMAG TLC-MS interfaces coupled to an ESI QSTAR Pulsar i quadrupole orthogonal TOF mass spectrometer. Coupling TLC with ESI-MS allowed the acquisition of high resolution mass spectra of the acidic GSLs with high sensitivity and mass accuracy, without the loss of sialic acid residues that frequently occurs during low-pressure MALDI MS. These systems were then applied to the analysis of total lipid extracts from bovine brain. This allowed profiling of many different lipid classes, not only gangliosides and STs, but also SMs, neutral GSLs, and phospholipids.
Collapse
Affiliation(s)
- Hyejung Park
- Mass Spectrometry Resource and Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | | | | |
Collapse
|
37
|
|
38
|
Mikłosz A, Łukaszuk B, Baranowski M, Górski J, Chabowski A. Effects of inhibition of serine palmitoyltransferase (SPT) and sphingosine kinase 1 (SphK1) on palmitate induced insulin resistance in L6 myotubes. PLoS One 2013; 8:e85547. [PMID: 24376889 PMCID: PMC3871603 DOI: 10.1371/journal.pone.0085547] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/04/2013] [Indexed: 11/18/2022] Open
Abstract
Background The objective of this study was to examine the effects of short (2 h) and prolonged (18 h) inhibition of serine palmitoyltransferase (SPT) and sphingosine kinase 1 (SphK1) on palmitate (PA) induced insulin resistance in L6 myotubes. Methods L6 myotubes were treated simultaneously with either PA and myriocin (SPT inhibitor) or PA and Ski II (SphK1inhibitor) for different time periods (2 h and 18 h). Insulin stimulated glucose uptake was measured using radioactive isotope. Expression of insulin signaling proteins was determined using Western blot analyses. Intracellular sphingolipids content [sphinganine (SFA), ceramide (CER), sphingosine (SFO), sphingosine-1-phosphate (S1P)] were estimated by HPLC. Results Our results revealed that both short and prolonged time of inhibition of SPT by myriocin was sufficient to prevent ceramide accumulation and simultaneously reverse palmitate induced inhibition of insulin-stimulated glucose transport. In contrast, prolonged inhibition of SphK1 intensified the effect of PA on insulin-stimulated glucose uptake and attenuated further the activity of insulin signaling proteins (pGSK3β/GSK3β ratio) in L6 myotubes. These effects were related to the accumulation of sphingosine in palmitate treated myotubes. Conclusion Myriocin is more effective in restoration of palmitate induced insulin resistance in L6 myocytes, despite of the time of SPT inhibition, comparing to SKII (a specific SphK1 inhibitor). Observed changes in insulin signaling proteins were related to the content of specific sphingolipids, namely to the reduction of ceramide. Interestingly, inactivation of SphK1 augmented the effect of PA induced insulin resistance in L6 myotubes, which was associated with further inhibition of insulin stimulated PKB and GSK3β phosphorylation, glucose uptake and the accumulation of sphingosine.
Collapse
Affiliation(s)
- Agnieszka Mikłosz
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
- * E-mail:
| | - Bartłomiej Łukaszuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Baranowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Jan Górski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
39
|
Chavez JA, Siddique MM, Wang ST, Ching J, Shayman JA, Summers SA. Ceramides and glucosylceramides are independent antagonists of insulin signaling. J Biol Chem 2013; 289:723-34. [PMID: 24214972 DOI: 10.1074/jbc.m113.522847] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inhibitors of sphingolipid synthesis protect mice from diet induced-insulin resistance, and sphingolipids such as ceramides and glucosylated-ceramides (e.g., GM3) are putative nutritional intermediates linking obesity to diabetes risk. Herein we investigated the role of each of these sphingolipids in muscle and adipose tissue and conclude that they are independent and separable antagonists of insulin signaling. Of particular note, ceramides antagonize insulin signaling in both myotubes and adipocytes, whereas glucosyceramides are only efficacious in adipocytes: 1) In myotubes exposed to saturated fats, inhibitors of enzymes required for ceramide synthesis enhance insulin signaling, but those targeting glucosylceramide synthase have no effect. 2) Exogenous ceramides antagonize insulin signaling in myotubes, whereas ganglioside precursors do not. 3) Overexpression of glucosylceramide synthase in myotubes induces glucosylceramide but enhances insulin signaling. In contrast, glucosylated ceramides have profound effects in adipocytes. For example, either ganglioside addition or human glucosylceramide synthase overexpression suppresses insulin signaling in adipocytes. These data have important mechanistic implications for understanding how these sphingolipids contribute to energy sensing and the disruption of anabolism under conditions of nutrient oversupply.
Collapse
Affiliation(s)
- Jose A Chavez
- From the Stedman Center for Nutrition and Metabolism Research, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | | | | |
Collapse
|
40
|
Zeng Z, Liao R, Yao Z, Zhou W, Ye P, Zheng X, Li X, Huang Y, Chen S, Chen Q. Three single nucleotide variants of the HDAC gene are associated with type 2 diabetes mellitus in a Chinese population: a community-based case-control study. Gene 2013; 533:427-33. [PMID: 24120624 DOI: 10.1016/j.gene.2013.09.123] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 09/12/2013] [Accepted: 09/29/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVES There are no data regarding the possible role of the single nucleotide polymorphism (SNP) of class I histone deacetylases (HDACs) in type 2 diabetes mellitus (DM). We designed this study to examine whether polymorphisms of HDACs can be implicated in that disease. METHODS A community-based, case-control study was conducted, with a total of 568 subjects (284 patients and 284 controls) enrolled. Four polymorphisms of HDAC1 (rs1741981) and HDAC3 (rs11741808, rs2547547, rs2530223) were examined by the use of TaqMan technology. RESULTS We found a significant association with risk of type 2 DM for three SNPs of HDAC3, including rs11741808 [odds ratio (OR)=0.53, 95% confidence interval (CI): 0.35-0.81], rs2547547 [OR=1.72, 95% CI: 1.13-2.64], and rs2530223 [OR=1.39; 95% CI: 1.01-1.91]. Subgroup analysis showed that BMI≥23kg/m(2), high triglyceride and high blood pressure, together with the rs11741808AG genotype, were associated with a significantly decreased risk for type 2 DM, with ORs of 0.50 (95% CI: 0.27-0.91), 0.38 (95% CI: 0.20-0.71) and 0.43 (95% CI: 0.24-0.76) compared with the AA genotype, respectively. In a population with normal total cholesterol, the AG genotype yielded a significantly decreased risk of type 2 DM risk, with an OR of 0.42 (95% CI: 0.25-0.70) when compared with the persons of the AA genotype. For rs2547547, in a population with normal total cholesterol and triglyceride, the AG genotype was associated with a significantly increased risk of type 2 DM, with ORs of 1.92 (95% CI: 1.17-3.15) and 2.24 (95% CI: 1.28-3.94) when compared with the population carrying the AA genotype. CONCLUSIONS The results suggest that variants of HDAC3 contribute to an increased prevalence of type 2 DM in the Chinese Han population.
Collapse
Affiliation(s)
- Zhuanping Zeng
- Department of Epidemiology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China; School of Public Health, Guangdong Key Laboratory of Molecular Epidemiology, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
A current update on the rule of alternative and complementary medicine in the treatment of liver diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:321234. [PMID: 24109491 PMCID: PMC3784269 DOI: 10.1155/2013/321234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 08/02/2013] [Indexed: 02/05/2023]
Abstract
There is a vast body of knowledge which is ever-increasing about the treatment of liver disease with alternative and complementary medicine for which hundreds of thousands of literatures have been documented. Liver disease is a general term. This term covers all the potential problems that cause the liver to fail to perform its specified operations. Liver disease has a variety of presentations and causes a great public health problem worldwide which threatens the wellness of billions of people. Incidences of many types of liver disease are currently rising. Although there is still a debate about the entity of alternative and complementary medicine, it is now widely used and it is improving. And it covers the shortages and compensates for the weaknesses of conventional methods in the treatment of liver diseases. Alternative and complementary medicine for liver diseases provides benefits by regulating immunity, controlling disease progression, improving quality of life, and prolonging survival. This paper reviews the increasing interest and growing research into alternative and complementary medicine for liver diseases, with a look at the rough classification, principle of management, evidence-based applications, and issues for prescription and perspectives.
Collapse
|
42
|
Ridley CM, Thur KE, Shanahan J, Thillaiappan NB, Shen A, Uhl K, Walden CM, Rahim AA, Waddington SN, Platt FM, van der Spoel AC. β-Glucosidase 2 (GBA2) activity and imino sugar pharmacology. J Biol Chem 2013; 288:26052-26066. [PMID: 23880767 DOI: 10.1074/jbc.m113.463562] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
β-Glucosidase 2 (GBA2) is an enzyme that cleaves the membrane lipid glucosylceramide into glucose and ceramide. The GBA2 gene is mutated in genetic neurological diseases (hereditary spastic paraplegia and cerebellar ataxia). Pharmacologically, GBA2 is reversibly inhibited by alkylated imino sugars that are in clinical use or are being developed for this purpose. We have addressed the ambiguity surrounding one of the defining characteristics of GBA2, which is its sensitivity to inhibition by conduritol B epoxide (CBE). We found that CBE inhibited GBA2, in vitro and in live cells, in a time-dependent fashion, which is typical for mechanism-based enzyme inactivators. Compared with the well characterized impact of CBE on the lysosomal glucosylceramide-degrading enzyme (glucocerebrosidase, GBA), CBE inactivated GBA2 less efficiently, due to a lower affinity for this enzyme (higher KI) and a lower rate of enzyme inactivation (k(inact)). In contrast to CBE, N-butyldeoxygalactonojirimycin exclusively inhibited GBA2. Accordingly, we propose to redefine GBA2 activity as the β-glucosidase that is sensitive to inhibition by N-butyldeoxygalactonojirimycin. Revised as such, GBA2 activity 1) was optimal at pH 5.5-6.0; 2) accounted for a much higher proportion of detergent-independent membrane-associated β-glucosidase activity; 3) was more variable among mouse tissues and neuroblastoma and monocyte cell lines; and 4) was more sensitive to inhibition by N-butyldeoxynojirimycin (miglustat, Zavesca®), in comparison with earlier studies. Our evaluation of GBA2 makes it possible to assess its activity more accurately, which will be helpful in analyzing its physiological roles and involvement in disease and in the pharmacological profiling of monosaccharide mimetics.
Collapse
Affiliation(s)
- Christina M Ridley
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Karen E Thur
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jessica Shanahan
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | | - Ann Shen
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Karly Uhl
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Charlotte M Walden
- the Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom, and
| | - Ahad A Rahim
- the Gene Transfer Technology Group, Institute of Women's Health, University College London, London WC1E 6HX, United Kingdom
| | - Simon N Waddington
- the Gene Transfer Technology Group, Institute of Women's Health, University College London, London WC1E 6HX, United Kingdom
| | - Frances M Platt
- the Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| | - Aarnoud C van der Spoel
- From the Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada,.
| |
Collapse
|
43
|
Lauria I, van Üüm J, Mjumjunov-Crncevic E, Walrafen D, Spitta L, Thiele C, Lang T. GLTP mediated non-vesicular GM1 transport between native membranes. PLoS One 2013; 8:e59871. [PMID: 23555818 PMCID: PMC3610762 DOI: 10.1371/journal.pone.0059871] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/19/2013] [Indexed: 11/24/2022] Open
Abstract
Lipid transfer proteins (LTPs) are emerging as key players in lipid homeostasis by mediating non-vesicular transport steps between two membrane surfaces. Little is known about the driving force that governs the direction of transport in cells. Using the soluble LTP glycolipid transfer protein (GLTP), we examined GM1 (monosialotetrahexosyl-ganglioside) transfer to native membrane surfaces. With artificial GM1 donor liposomes, GLTP can be used to increase glycolipid levels over natural levels in either side of the membrane leaflet, i.e., external or cytosolic. In a system with native donor- and acceptor-membranes, we find that GLTP balances highly variable GM1 concentrations in a population of membranes from one cell type, and in addition, transfers lipids between membranes from different cell types. Glycolipid transport is highly efficient, independent of cofactors, solely driven by the chemical potential of GM1 and not discriminating between the extra- and intracellular membrane leaflet. We conclude that GLTP mediated non-vesicular lipid trafficking between native membranes is driven by simple thermodynamic principles and that for intracellular transport less than 1 µM GLTP would be required in the cytosol. Furthermore, the data demonstrates the suitability of GLTP as a tool for artificially increasing glycolipid levels in cellular membranes.
Collapse
Affiliation(s)
- Ines Lauria
- Department of Membrane Biochemistry, LIMES (Life and Medical Sciences) Institute, University of Bonn, Bonn, Germany
| | - Jan van Üüm
- Department of Membrane Biochemistry, LIMES (Life and Medical Sciences) Institute, University of Bonn, Bonn, Germany
| | - Esmina Mjumjunov-Crncevic
- Department of Membrane Biochemistry, LIMES (Life and Medical Sciences) Institute, University of Bonn, Bonn, Germany
| | - David Walrafen
- Department of Membrane Biochemistry, LIMES (Life and Medical Sciences) Institute, University of Bonn, Bonn, Germany
| | - Luis Spitta
- Department of Membrane Biochemistry, LIMES (Life and Medical Sciences) Institute, University of Bonn, Bonn, Germany
| | - Christoph Thiele
- Department of Biochemistry and Cell Biology of Lipids, LIMES Institute, University of Bonn, Bonn, Germany
| | - Thorsten Lang
- Department of Membrane Biochemistry, LIMES (Life and Medical Sciences) Institute, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
44
|
Schuchman EH, Simonaro CM. The genetics of sphingolipid hydrolases and sphingolipid storage diseases. Handb Exp Pharmacol 2013:3-32. [PMID: 23579447 DOI: 10.1007/978-3-7091-1368-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The relationship of sphingolipids with human disease first arose from the study of sphingolipid storage diseases over 50 years ago. Most of these disorders are due to inherited deficiencies of specific sphingolipid hydrolases, although a small number also result from defects in sphingolipid transport or activator proteins. Due to the primary protein deficiencies sphingolipids and other macromolecules accumulate in cells and tissues of affected patients, leading to a diverse presentation of clinical abnormalities. Over 25 sphingolipid storage diseases have been described to date. Most of the genes have been isolated, disease-causing mutations have been identified, the recombinant proteins have been produced and characterized, and animal models exist for most of the human diseases. Since most sphingolipid hydrolases are enriched within the endosomal/lysosomal system, macromolecules first accumulate within these compartments. However, these abnormalities rapidly spread to other compartments and cause a wide range of cellular dysfunction. This review focuses on the genetics of sphingolipid storage diseases and related hydrolytic enzymes with an emphasis on the relationship between genetic mutations and human disease.
Collapse
Affiliation(s)
- Edward H Schuchman
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
45
|
Véret J, Coant N, Gorshkova IA, Giussani P, Fradet M, Riccitelli E, Skobeleva A, Goya J, Kassis N, Natarajan V, Portha B, Berdyshev EV, Le Stunff H. Role of palmitate-induced sphingoid base-1-phosphate biosynthesis in INS-1 β-cell survival. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:251-62. [PMID: 23085009 DOI: 10.1016/j.bbalip.2012.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/19/2012] [Accepted: 10/10/2012] [Indexed: 01/09/2023]
Abstract
Sphingoid base-1-phosphates represent a very low portion of the sphingolipid pool but are potent bioactive lipids in mammals. This study was undertaken to determine whether these lipids are produced in palmitate-treated pancreatic β cells and what role they play in palmitate-induced β cell apoptosis. Our lipidomic analysis revealed that palmitate at low and high glucose supplementation increased (dihydro)sphingosine-1-phosphate levels in INS-1 β cells. This increase was associated with an increase in sphingosine kinase 1 (SphK1) mRNA and protein levels. Over-expression of SphK1 in INS-1 cells potentiated palmitate-induced accumulation of dihydrosphingosine-1-phosphate. N,N-dimethyl-sphingosine, a potent inhibitor of SphK, potentiated β-cell apoptosis induced by palmitate whereas over-expression of SphK1 significantly reduced apoptosis induced by palmitate with high glucose. Endoplasmic reticulum (ER)-targeted SphK1 also partially inhibited apoptosis induced by palmitate. Inhibition of INS-1 apoptosis by over-expressed SphK1 was independent of sphingosine-1-phosphate receptors but was associated with a decreased formation of pro-apoptotic ceramides induced by gluco-lipotoxicity. Moreover, over-expression of SphK1 counteracted the defect in the ER-to-Golgi transport of proteins that contribute to the ceramide-dependent ER stress observed during gluco-lipotoxicity. In conclusion, our results suggest that activation of palmitate-induced SphK1-mediated sphingoid base-1-phosphate formation in the ER of β cells plays a protective role against palmitate-induced ceramide-dependent apoptotic β cell death.
Collapse
Affiliation(s)
- Julien Véret
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire de Biologie et Pathologie du Pancréas Endocrine, Unité BFA, CNRS EAC 4413, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hla T, Dannenberg AJ. Sphingolipid signaling in metabolic disorders. Cell Metab 2012; 16:420-34. [PMID: 22982021 PMCID: PMC3466368 DOI: 10.1016/j.cmet.2012.06.017] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/29/2012] [Accepted: 06/20/2012] [Indexed: 01/01/2023]
Abstract
Sphingolipids, ubiquitous membrane lipids in eukaryotes, carry out a myriad of critical cellular functions. The past two decades have seen significant advances in sphingolipid research, and in 2010 a first sphingolipid receptor modulator was employed as a human therapeutic. Furthermore, cellular signaling mechanisms regulated by sphingolipids are being recognized as critical players in metabolic diseases. This review focuses on recent advances in cellular and physiological mechanisms of sphingolipid regulation and how sphingolipid signaling influences metabolic diseases. Progress in this area may contribute to new understanding and therapeutic options in complex diseases such as atherosclerosis, diabetes, metabolic syndromes, and cancer.
Collapse
Affiliation(s)
- Timothy Hla
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| | | |
Collapse
|
47
|
Khan A, Hangartner T, Weinreb NJ, Taylor JS, Mistry PK. Risk factors for fractures and avascular osteonecrosis in type 1 Gaucher disease: a study from the International Collaborative Gaucher Group (ICGG) Gaucher Registry. J Bone Miner Res 2012; 27:1839-48. [PMID: 22692814 DOI: 10.1002/jbmr.1680] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We hypothesized that overall disease activity or the severity of involvement of individual disease compartments, as measured by clinical and surrogate markers, predict the risk of avascular osteonecrosis (AVN) or fractures in type 1 Gaucher disease (GD1). We applied our risk-set matched case-control method to identify four patient groups within the International Collaborative Gaucher Group (ICGG) Gaucher Registry based on the presence and absence of AVN and fractures. Characteristics of GD1 were examined by comparing the distributions of each risk factor in cases versus matched controls using conditional logistic regression to calculate adjusted odds ratios (OR). Potential risk factors included hematological and visceral parameters, GD1 biomarkers, white blood cells, GBA1 genotype, and spine and femur dual-energy X-ray absorptiometry (DXA) Z-scores. In the total population of 5894 ICGG Gaucher Registry patients, 544 experienced at least one episode of AVN; 2008 reported no history of AVN. Clinical and surrogate markers of disease activity were similar in patients with and without AVN; patients with AVN were 1.6 times more likely to be anemic compared to matched controls (OR = 1.59; 95% confidence interval [CI], 1.06-2.38, p < 0.05). For fractures, 319 patients suffered fractures and 1233 had no prior history of fractures. Clinical and surrogate markers of disease in patients with and without fractures were similar, except for mean lumbar spine DXA Z-scores. Among patients with fractures, 49.3% had DXA Z-scores ≤ -1 compared to 31.0% in the control group. Compared to controls with Z-scores > -1.0, GD1 patients exhibiting Z-scores ≤ -1 had an OR of 5.55 (95% CI, 1.81-17.02, p < 0.01) for fracture. In GD1, after controlling for gender, year of birth, treatment status, and splenectomy status, we identified new risk factors for AVN and fractures. Concurrent anemia was associated with an increased risk for AVN. Low bone mineral density of the lumbar spine was a strong risk factor for fractures of the spine and femur in GD1.
Collapse
Affiliation(s)
- Aneal Khan
- Metabolic Diseases Clinic, University of Calgary, Alberta Children's Hospital, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|