1
|
Lai S, Wu X, Liu Y, Liu B, Wu H, Ma K. Interaction between Th17 and central nervous system in multiple sclerosis. Brain Behav Immun Health 2025; 43:100928. [PMID: 39845807 PMCID: PMC11751430 DOI: 10.1016/j.bbih.2024.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/24/2025] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Shixin Lai
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xiaomin Wu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yue Liu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Bo Liu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Haiqi Wu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Kongyang Ma
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
2
|
Fan G, Li G, Li L, Da Y. Pin1 maintains the effector program of pathogenic Th17 cells in autoimmune neuroinflammation. J Autoimmun 2024; 147:103262. [PMID: 38833897 DOI: 10.1016/j.jaut.2024.103262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/25/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Th17 cells mediated immune response is the basis of a variety of autoimmune diseases, including multiple sclerosis and its mouse model of immune aspects, experimental autoimmune encephalomyelitis (EAE). The gene network that drives both the development of Th17 and the expression of its effector program is dependent on the transcription factor RORγt. In this report, we showed that Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 (Pin1) formed a complex with RORγt, and enhanced its transactivation activity, thus sustained the expression of the effector genes as well as RORγt in the EAE-pathogenic Th17 cells. We first found out that PIN1 was highly expressed in the samples from patients of multiple sclerosis, and the expression of Pin1 by the infiltrating lymphocytes in the central nerve system of EAE mice was elevated as well. An array of experiments with transgenic mouse models, cellular and molecular assays was included in the study to elucidate the role of Pin1 in the pathology of EAE. It turned out that Pin1 promoted the activation and maintained the effector program of EAE-pathogenic Th17 cells in the inflammation foci, but had little effect on the priming of Th17 cells in the draining lymph nodes. Mechanistically, Pin1 stabilized the phosphorylation of STAT3 induced by proinflammatory stimuli, and interacted with STAT3 in the nucleus of Th17 cells, which resulted in the increased expression of Rorc. Moreover, Pin1 formed a complex with RORγt, and enhanced the transactivation of RORγt to the +11 kb enhancer of Rorc, which enforced and maintained the expression of both Rorc and the effector program of pathogenic Th17 cells in EAE. Finally, the inhibition of Pin1, by genetic knockdown or by small molecule inhibitor, deceased the population of Th17 cells and the neuroinflammation, and alleviated the symptoms of EAE. These findings suggest that Pin1 is a potential therapeutic target for MS and other autoimmune inflammatory diseases.
Collapse
MESH Headings
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Animals
- NIMA-Interacting Peptidylprolyl Isomerase/metabolism
- NIMA-Interacting Peptidylprolyl Isomerase/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Mice
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Humans
- Multiple Sclerosis/immunology
- STAT3 Transcription Factor/metabolism
- Disease Models, Animal
- Mice, Transgenic
- Mice, Inbred C57BL
- Female
Collapse
Affiliation(s)
- Guangyue Fan
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China; Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300070, China
| | - Guangliang Li
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Long Li
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China; Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300070, China.
| | - Yurong Da
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
3
|
Sultana R, Butterfield DA. Protein Oxidation in Aging and Alzheimer's Disease Brain. Antioxidants (Basel) 2024; 13:574. [PMID: 38790679 PMCID: PMC11117785 DOI: 10.3390/antiox13050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Proteins are essential molecules that play crucial roles in maintaining cellular homeostasis and carrying out biological functions such as catalyzing biochemical reactions, structural proteins, immune response, etc. However, proteins also are highly susceptible to damage by reactive oxygen species (ROS) and reactive nitrogen species (RNS). In this review, we summarize the role of protein oxidation in normal aging and Alzheimer's disease (AD). The major emphasis of this review article is on the carbonylation and nitration of proteins in AD and mild cognitive impairment (MCI). The oxidatively modified proteins showed a strong correlation with the reported changes in brain structure, carbohydrate metabolism, synaptic transmission, cellular energetics, etc., of both MCI and AD brains compared to the controls. Some proteins were found to be common targets of oxidation and were observed during the early stages of AD, suggesting that those changes might be critical in the onset of symptoms and/or formation of the pathological hallmarks of AD. Further studies are required to fully elucidate the role of protein oxidation and nitration in the progression and pathogenesis of AD.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080, USA;
| | - D. Allan Butterfield
- Department of Chemistry, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
4
|
Ferreon JC, Ta HM, Yun H, Choi KJ, Quan MD, Tsoi PS, Kim C, Lee CW, Ferreon ACM. Stereospecific NANOG PEST Stabilization by Pin1. Biochemistry 2024; 63:1067-1074. [PMID: 38619104 PMCID: PMC12022813 DOI: 10.1021/acs.biochem.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
NANOG protein levels correlate with stem cell pluripotency. NANOG concentrations fluctuate constantly with low NANOG levels leading to spontaneous cell differentiation. Previous literature implicated Pin1, a phosphorylation-dependent prolyl isomerase, as a key player in NANOG stabilization. Here, using NMR spectroscopy, we investigate the molecular interactions of Pin1 with the NANOG unstructured N-terminal domain that contains a PEST sequence with two phosphorylation sites. Phosphorylation of NANOG PEST peptides increases affinity to Pin1. By systematically increasing the amount of cis PEST conformers, we show that the peptides bind tighter to the prolyl isomerase domain (PPIase) of Pin1. Phosphorylation and cis Pro enhancement at both PEST sites lead to a 5-10-fold increase in NANOG binding to the Pin1 WW domain and PPIase domain, respectively. The cis-populated NANOG PEST peptides can be potential inhibitors for disrupting Pin1-dependent NANOG stabilization in cancer stem cells.
Collapse
Affiliation(s)
- Josephine C. Ferreon
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Hai Minh Ta
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyoung-Jae Choi
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - My Diem Quan
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Phoebe S. Tsoi
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Choel Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Allan Chris M. Ferreon
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
5
|
Kanna M, Nakatsu Y, Yamamotoya T, Kushiyama A, Fujishiro M, Sakoda H, Ono H, Arihiro K, Asano T. Hepatic Pin1 Expression, Particularly in Nuclei, Is Increased in NASH Patients in Accordance with Evidence of the Role of Pin1 in Lipid Accumulation Shown in Hepatoma Cell Lines. Int J Mol Sci 2023; 24:ijms24108847. [PMID: 37240193 DOI: 10.3390/ijms24108847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Our previous studies using rodent models have suggested an essential role for Pin1 in the pathogenesis of non-alcoholic steatohepatitis (NASH). In addition, interestingly, serum Pin1 elevation has been reported in NASH patients. However, no studies have as yet examined the Pin1 expression level in human NASH livers. To clarify this issue, we investigated the expression level and subcellular distribution of Pin1 in liver specimens obtained using needle-biopsy samples from patients with NASH and healthy liver donors. Immunostaining using anti-Pin1 antibody revealed the Pin1 expression level to be significantly higher, particularly in nuclei, in the livers of NASH patients than those of healthy donors. In the samples from patients with NASH, the amount of nuclear Pin1 was revealed to be negatively related to serum alanine aminotransferase (ALT), while tendencies to be associated with other serum parameters such as aspartate aminotransferase (AST) and platelet number were noted but did not reach statistical significance. Such unclear results and the lack of a significant relationship might well be attributable to our small number of NASH liver samples (n = 8). Moreover, in vitro, it was shown that addition of free fatty acids to medium induced lipid accumulation in human hepatoma HepG2 and Huh7 cells, accompanied with marked increases in nuclear Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1), in accordance with the aforementioned observations in human NASH livers. In contrast, suppression of Pin1 gene expression using siRNAs attenuated the free fatty acid-induced lipid accumulation in Huh7 cells. Taken together, these observations strongly suggest that increased expression of Pin1, particularly in hepatic nuclei, contributes to the pathogenesis of NASH with lipid accumulation.
Collapse
Affiliation(s)
- Machi Kanna
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yusuke Nakatsu
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima 734-8551, Japan
| | - Takeshi Yamamotoya
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima 734-8551, Japan
| | - Akifumi Kushiyama
- Department of Pharmacotherapy, Meiji Pharmaceutical University, 2-522-1, Kiyose 204-8588, Japan
| | - Midori Fujishiro
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hideyuki Sakoda
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Hiraku Ono
- Department of Clinical Cell Biology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Tomoichiro Asano
- Department of Medical Science, Graduate School of Medicine, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
6
|
Chen J. A Specific pSer/Thr-Pro Motif Generates Interdomain Communication Bifurcations of Two Modes of Pin1 in Solution Nuclear Magnetic Resonance. Biochemistry 2022; 61:1167-1180. [PMID: 35648841 DOI: 10.1021/acs.biochem.2c00255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peptides mediate the interdomain communication of Pin1 (peptidyl-prolyl cis-trans isomerase) and can regulate its conformation and biochemical functions, providing an idea for drug design using Pin1. Two template peptide sequences have been widely used in the extended or compact state of Pin1 (Cdc25C, E-Q-P-L-pT-P-V-T-D-L; Pintide, W-F-Y-pS-P-R). The way in which specific pSer/Thr-Pro peptides regulate interdomain communication to achieve the opposite state is not clear. In this study, we subdivided the sequence composition of eight types of modified peptides and investigated the interaction with Pin1 by solution nuclear magnetic resonance and molecular dynamics. Demonstrating sequence dependence on the pSer-Pro or pThr-Pro motif and different residues in anchoring the WW domain, the Pin peptide (Pintide, PintideT, Pin25C, and Pin25CT) transmits this concentration accumulation to the PPIase domain, thus exhibiting two anchoring tendencies. However, the Cdc peptide (Cdc25C, Cdc25CS, Cdctide, and CdctideS) has a low binding energy that makes it difficult for the conformation to reach a steady state. In addition, Pin1 is influenced by both compact and extended states, regulated precisely by the sequence as well as by threonine or serine. These results provide new insight into the interdomain communication of Pin1 via pSer/Thr-Pro peptide binding.
Collapse
Affiliation(s)
- Jingqiu Chen
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| |
Collapse
|
7
|
Dong R, Xue Z, Fan G, Zhang N, Wang C, Li G, Da Y. Pin1 Promotes NLRP3 Inflammasome Activation by Phosphorylation of p38 MAPK Pathway in Septic Shock. Front Immunol 2021; 12:620238. [PMID: 33717117 PMCID: PMC7947244 DOI: 10.3389/fimmu.2021.620238] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Pin1 is the only known peptidyl-prolyl cis-trans isomerase (PPIase) that can specifically recognize and isomerize the phosphorylated Serine/Threonine-Proline (pSer/Thr-Pro) motif, change the conformation of proteins through protein phosphorylation, thus regulate various cellular processes in the body. Pin1 plays an important role in cancer, Alzheimer’s disease, and autoimmune diseases. However, the specific mechanism of Pin1 regulation in LPS-induced septic shock is unclear. Here, we found that lack of Pin1 reduced shock mortality and organ damage in mice, and NLRP3 inflammasome activation also was reduced in this process. We further confirmed that Pin1 can affect the expression of NLRP3, ASC, Caspase1, and this process can be regulated through the p38 MAPK pathway. We analyzed that p38 MAPK signaling pathway was highly expressed in septic shock and showed a positive correlation with Pin1 in the Gene Expression Omnibus database. We found that Pin1 could affect the phosphorylation of p38 MAPK, have no obvious difference in extracellular signal-regulated kinases (ERK) and Jun-amino-terminal kinase (JNK) signaling. We further found that Pin1 and p-p38 MAPK interacted, but not directly. In addition, Pin1 deficiency inhibited the cleavage of gasdermin D (GSDMD) and promoted the death of macrophages with LPS treatment, and reduced secretion of inflammatory cytokines including IL-1β and IL-18. In general, our results suggest that Pin1 regulates the NLRP3 inflammasome activation by p38 MAPK signaling pathway in macrophages. Thus, Pin1 may be a potential target for the treatment of inflammatory diseases such as septic shock.
Collapse
Affiliation(s)
- Ruijie Dong
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Zhenyi Xue
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Guangyue Fan
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Na Zhang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chengzhi Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Guangliang Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Yurong Da
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
8
|
Makinwa Y, Cartwright BM, Musich PR, Li Z, Biswas H, Zou Y. PP2A Regulates Phosphorylation-Dependent Isomerization of Cytoplasmic and Mitochondrial-Associated ATR by Pin1 in DNA Damage Responses. Front Cell Dev Biol 2020; 8:813. [PMID: 32984322 PMCID: PMC7484947 DOI: 10.3389/fcell.2020.00813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/31/2020] [Indexed: 11/13/2022] Open
Abstract
Ataxia telangiectasia and Rad3-related protein (ATR) is a serine/threonine-protein kinase of the PI3K family and is well known for its key role in regulating DNA damage responses in the nucleus. In addition to its nuclear functions, ATR also was found to be a substrate of the prolyl isomerase Pin1 in the cytoplasm where Pin1 isomerizes cis ATR at the Ser428-Pro429 motif, leading to formation of trans ATR. Cis ATR is an antiapoptotic protein at mitochondria upon UV damage. Here we report that Pin1’s activity on cis ATR requires the phosphorylation of the S428 residue of ATR and describe the molecular mechanism by which Pin1-mediated ATR isomerization in the cytoplasm is regulated. We identified protein phosphatase 2A (PP2A) as the phosphatase that dephosphorylates Ser428 following DNA damage. The dephosphorylation led to an increased level of the antiapoptotic cis ATR (ATR-H) in the cytoplasm and, thus, its accumulation at mitochondria via binding with tBid. Inhibition or depletion of PP2A promoted the isomerization by Pin1, resulting in a reduction of cis ATR with an increased level of trans ATR. We conclude that PP2A plays an important role in regulating ATR’s anti-apoptotic activity at mitochondria in response to DNA damage. Our results also imply a potential strategy in enhancing cancer therapies via selective moderation of cis ATR levels.
Collapse
Affiliation(s)
- Yetunde Makinwa
- Department of Cancer Biology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Brian M Cartwright
- Department of Biomedical Sciences, JH Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Phillip R Musich
- Department of Biomedical Sciences, JH Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Zhengke Li
- Department of Biomedical Sciences, JH Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Himadri Biswas
- Department of Cancer Biology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Yue Zou
- Department of Cancer Biology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States.,Department of Biomedical Sciences, JH Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
9
|
Makinwa Y, Musich PR, Zou Y. Phosphorylation-Dependent Pin1 Isomerization of ATR: Its Role in Regulating ATR's Anti-apoptotic Function at Mitochondria, and the Implications in Cancer. Front Cell Dev Biol 2020; 8:281. [PMID: 32426354 PMCID: PMC7203486 DOI: 10.3389/fcell.2020.00281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Peptidyl-prolyl isomerization is an important post-translational modification of protein because proline is the only amino acid that can stably exist as cis and trans, while other amino acids are in the trans conformation in protein backbones. This makes prolyl isomerization a unique mechanism for cells to control many cellular processes. Isomerization is a rate-limiting process that requires a peptidyl-prolyl cis/trans isomerase (PPIase) to overcome the energy barrier between cis and trans isomeric forms. Pin1, a key PPIase in the cell, recognizes a phosphorylated Ser/Thr-Pro motif to catalyze peptidyl-prolyl isomerization in proteins. The significance of the phosphorylation-dependent Pin1 activity was recently highlighted for isomerization of ATR (ataxia telangiectasia- and Rad3-related). ATR, a PIKK protein kinase, plays a crucial role in DNA damage responses (DDR) by phosphorylating hundreds of proteins. ATR can form cis or trans isomers in the cytoplasm depending on Pin1 which isomerizes cis-ATR to trans-ATR. Trans-ATR functions primarily in the nucleus. The cis-ATR, containing an exposed BH3 domain, is anti-apoptotic at mitochondria by binding to tBid, preventing activation of pro-apoptotic Bax. Given the roles of apoptosis in many human diseases, particularly cancer, we propose that cytoplasmic cis-ATR enables cells to evade apoptosis, thus addicting cancer cells to cis-ATR formation for survival. But in normal DDR, a predominance of trans-ATR in the nucleus coordinates with a minimal level of cytoplasmic cis-ATR to promote DNA repair while preventing cell death; however, cells can die when DNA repair fails. Therefore, a delicate balance/equilibrium of the levels of cis- and trans-ATR is required to ensure the cellular homeostasis. In this review, we make a case that this anti-apoptotic role of cis-ATR supports oncogenesis, while Pin1 that drives the formation of trans-ATR suppresses tumor growth. We offer a potential, novel target that can be specifically targeted in cancer cells, without killing normal cells, to significantly reduce the adverse effects usually seen in cancer treatment. We also raise important issues regarding the roles of phosphorylation-dependent Pin1 isomerization of ATR in diseases and propose areas of future studies that would shed more understanding on this important cellular mechanism.
Collapse
Affiliation(s)
- Yetunde Makinwa
- Department of Cancer Biology, University of Toledo College of Medicine, Toledo, OH, United States
| | - Phillip R Musich
- Department of Biomedical Sciences, JH Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Yue Zou
- Department of Cancer Biology, University of Toledo College of Medicine, Toledo, OH, United States.,Department of Biomedical Sciences, JH Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
10
|
Vallri KK, Nagaraju PVVS, Viswanath IVK, Singh RV. Novel N-Alkyl-4-(6-fluoro-1H-indol-3-yl)benzamide Derivatives as Anticancer Agents: Design, Synthesis,
Biological Evaluation, and Molecular Docking Study. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020030252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Cheng CW, Tse E. Targeting PIN1 as a Therapeutic Approach for Hepatocellular Carcinoma. Front Cell Dev Biol 2020; 7:369. [PMID: 32010690 PMCID: PMC6974617 DOI: 10.3389/fcell.2019.00369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022] Open
Abstract
PIN1 is a peptidyl-prolyl cis/trans isomerase that specifically binds and catalyzes the cis/trans isomerization of the phosphorylated serine or threonine residue preceding a proline (pSer/Thr-Pro) motif of its interacting proteins. Through this phosphorylation-dependent prolyl isomerization, PIN1 is involved in the regulation of various important cellular processes including cell cycle progression, cell proliferation, apoptosis and microRNAs biogenesis; hence its dysregulation contributes to malignant transformation. PIN1 is highly expressed in hepatocellular carcinoma (HCC). By fine-tuning the functions of its interacting proteins such as cyclin D1, x-protein of hepatitis B virus and exportin 5, PIN1 plays an important role in hepatocarcinogenesis. Growing evidence supports that targeting PIN1 is a potential therapeutic approach for HCC by inhibiting cell proliferation, inducing cellular apoptosis, and restoring microRNAs biogenesis. Novel formulation of PIN1 inhibitors that increases in vivo bioavailability of PIN1 inhibitors represents a promising future direction for the therapeutic strategy of HCC treatment. In this review, the mechanisms underlying PIN1 over-expression in HCC are explored. Furthermore, we also discuss the roles of PIN1 in HCC tumorigenesis and metastasis through its interaction with various phosphoproteins. Finally, recent progress in the therapeutic options targeting PIN1 for HCC treatment is examined and summarized.
Collapse
Affiliation(s)
- Chi-Wai Cheng
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Eric Tse
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
12
|
Computational Molecular Modeling of Pin1 Inhibition Activity of Quinazoline, Benzophenone, and Pyrimidine Derivatives. J CHEM-NY 2019. [DOI: 10.1155/2019/2954250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pin1 (peptidyl-prolyl cis-trans isomerase NIMA-interacting 1) is directly involved in cancer cell-cycle regulation because it catalyses the cis-trans isomerization of prolyl amide bonds in proteins. In this sense, a modeling evaluation of the inhibition of Pin1 using quinazoline, benzophenone, and pyrimidine derivatives was performed by using multilinear, random forest, SMOreg, and IBK regression algorithms on a dataset of 51 molecules, which was divided randomly in 78% for the training and 22% for the test set. Topological descriptors were used as independent variables and the biological activity (pIC50) as a dependent variable. The most robust individual model contained 9 features, and its predictive capability was statistically validated by the correlation coefficient for adjusting, 10-fold cross validation, test set, and bootstrapping with values of 0.910, 0.819, 0.841, and 0.803, respectively. In order to improve the prediction of the pIC50 values, the aggregation of the individual models was performed through the construction of an ensemble, and the most robust one was constructed by two individual models (LR3 and RF1) by applying the IBK algorithm, and a substantial improvement in predictive performance is reflected in the values of R2ADJ = 0.982, Q2CV = 0.962, and Q2EXT = 0.918. Mean square errors <0.165 and good fitting between calculated and experimental pIC50 values suggest a robustness on the prediction of pIC50. Regarding the docking simulation, a binding affinity between the molecules and the active site for the Pin1 inhibition into the protein (3jyj) was estimated through the calculation of the binding free energy (BE), with values in the range of −5.55 to −8.00 kcal/mol, implying a stabilizing interaction molecule receptor. The ligand interaction diagrams between the drugs and amino acid in the binding site for the three most active compounds denoted a good wrapper of these organic compounds into the protein mainly by polar amino acids.
Collapse
|
13
|
Abstract
Cell cycle progression is tightly controlled by many cell cycle-regulatory proteins that are in turn regulated by a family of cyclin-dependent kinases (CDKs) through protein phosphorylation. The peptidyl-prolyl cis/trans isomerase PIN1 provides a further post-phosphorylation modification and functional regulation of these CDK-phosphorylated proteins. PIN1 specifically binds the phosphorylated serine or threonine residue preceding a proline (pSer/Thr-Pro) motif of its target proteins and catalyzes the cis/trans isomerization on the pSer/Thr-Pro peptide bonds. Through this phosphorylation-dependent prolyl isomerization, PIN1 fine-tunes the functions of various cell cycle-regulatory proteins including retinoblastoma protein (Rb), cyclin D1, cyclin E, p27, Cdc25C, and Wee1. In this review, we discussed the essential roles of PIN1 in regulating cell cycle progression through modulating the functions of these cell cycle-regulatory proteins. Furthermore, the mechanisms underlying PIN1 overexpression in cancers were also explored. Finally, we examined and summarized the therapeutic potential of PIN1 inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Chi-Wai Cheng
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Eric Tse
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
14
|
Lee YM, Liou YC. Gears-In-Motion: The Interplay of WW and PPIase Domains in Pin1. Front Oncol 2018; 8:469. [PMID: 30460195 PMCID: PMC6232885 DOI: 10.3389/fonc.2018.00469] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/04/2018] [Indexed: 01/22/2023] Open
Abstract
Pin1 belongs to the family of the peptidyl-prolyl cis-trans isomerase (PPIase), which is a class of enzymes that catalyze the cis/trans isomerization of the Proline residue. Pin1 is unique and only catalyzes the phosphorylated Serine/Threonine-Proline (S/T-P) motifs of a subset of proteins. Since the discovery of Pin1 as a key protein in cell cycle regulation, it has been implicated in numerous diseases, ranging from cancer to neurodegenerative diseases. The main features of Pin1 lies in its two main domains: the WW (two conserved tryptophan) domain and the PPIase domain. Despite extensive studies trying to understand the mechanisms of Pin1 functions, how these two domains contribute to the biological roles of Pin1 in cellular signaling requires more investigations. The WW domain of Pin1 is known to have a higher affinity to its substrate than that of the PPIase domain. Yet, the WW domain seems to prefer the trans configuration of phosphorylated S/T-P motif, while the PPIase catalyzes the cis to trans isomerasion. Such contradicting information has generated much confusion as to the actual mechanism of Pin1 function. In addition, dynamic allostery has been suggested to be important for Pin1 function. Henceforth, in this review, we will be looking at the progress made in understanding the function of Pin1, and how these understandings can aid us in overcoming the diseases implicated by Pin1 such as cancer during drug development.
Collapse
Affiliation(s)
- Yew Mun Lee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Schumann M, Malešević M, Hinze E, Mathea S, Meleshin M, Schutkowski M, Haehnel W, Schiene-Fischer C. Regulation of the Minichromosome Maintenance Protein 3 (MCM3) Chromatin Binding by the Prolyl Isomerase Pin1. J Mol Biol 2018; 430:5169-5181. [PMID: 30316783 DOI: 10.1016/j.jmb.2018.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 01/16/2023]
Abstract
Human Pin1 is a peptidyl prolyl cis/trans isomerase with a unique preference for phosphorylated Ser/Thr-Pro substrate motifs. Here we report that MCM3 (minichromosome maintenance complex component 3) is a novel target of Pin1. MCM3 interacts directly with the WW domain of Pin1. Proline-directed phosphorylation of MCM3 at S112 and T722 are crucial for the interaction with Pin1. MCM3 as a subunit of the minichromosome maintenance heterocomplex MCM2-7 is part of the pre-replication complex responsible for replication licensing and is implicated in the formation of the replicative helicase during progression of replication. Our data suggest that Pin1 coordinates phosphorylation-dependently MCM3 loading onto chromatin and its unloading from chromatin, thereby mediating S phase control.
Collapse
Affiliation(s)
- Michael Schumann
- Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, D-06120 Halle/Saale, Germany
| | - Miroslav Malešević
- Max Planck Research Unit for Enzymology of Protein Folding Halle, Weinbergweg 22, D-06120 Halle/Saale, Germany
| | - Erik Hinze
- Max Planck Research Unit for Enzymology of Protein Folding Halle, Weinbergweg 22, D-06120 Halle/Saale, Germany
| | - Sebastian Mathea
- Max Planck Research Unit for Enzymology of Protein Folding Halle, Weinbergweg 22, D-06120 Halle/Saale, Germany
| | - Marat Meleshin
- Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, D-06120 Halle/Saale, Germany
| | - Mike Schutkowski
- Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, D-06120 Halle/Saale, Germany
| | - Wolfgang Haehnel
- Institute of Biology II / Biochemistry, Albert-Ludwigs-Universität Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | - Cordelia Schiene-Fischer
- Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Center, Kurt-Mothes-Str. 3a, D-06120 Halle/Saale, Germany.
| |
Collapse
|
16
|
Islam R, Yoon WJ, Ryoo HM. Pin1, the Master Orchestrator of Bone Cell Differentiation. J Cell Physiol 2017; 232:2339-2347. [PMID: 27225727 DOI: 10.1002/jcp.25442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 12/25/2022]
Abstract
Pin1 is an enzyme that specifically recognizes the peptide bond between phosphorylated serine or threonine (pS/pT-P) and proline. This recognition causes a conformational change of its substrate, which further regulates downstream signaling. Pin1-/- mice show developmental bone defects and reduced mineralization. Pin1 targets RUNX2 (Runt-Related Transcription Factor 2), SMAD1/5, and β-catenin in the FGF, BMP, and WNT pathways, respectively. Pin1 has multiple roles in the crosstalk between different anabolic bone signaling pathways. For example, it controls different aspects of osteoblastogenesis and increases the transcriptional activity of Runx2, both directly and indirectly. Pin1 also influences osteoclastogenesis at different stages by targeting PU.1 (Purine-rich nucleic acid binding protein 1), C-FOS, and DC-STAMP. The phenotype of Pin1-/- mice has led to the recent identification of multiple roles of Pin1 in different molecular pathways in bone cells. These roles suggest that Pin1 can be utilized as an efficient drug target in congenital and acquired bone diseases. J. Cell. Physiol. 232: 2339-2347, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rabia Islam
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Won-Joon Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Pin1: Intimate involvement with the regulatory protein kinase networks in the global phosphorylation landscape. Biochim Biophys Acta Gen Subj 2015; 1850:2077-86. [PMID: 25766872 DOI: 10.1016/j.bbagen.2015.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Protein phosphorylation is a universal regulatory mechanism that involves an extensive network of protein kinases. The discovery of the phosphorylation-dependent peptidyl-prolyl isomerase Pin1 added an additional layer of complexity to these regulatory networks. SCOPE OF REVIEW We have evaluated interactions between Pin1 and the regulatory kinome and proline-dependent phosphoproteome taking into consideration findings from targeted studies as well as data that has emerged from systematic phosphoproteomic workflows and from curated protein interaction databases. MAJOR CONCLUSIONS The relationship between Pin1 and the regulatory protein kinase networks is not restricted simply to the recognition of proteins that are substrates for proline-directed kinases. In this respect, Pin1 itself is phosphorylated in cells by protein kinases that modulate its functional properties. Furthermore, the phosphorylation-dependent targets of Pin1 include a number of protein kinases as well as other enzymes such as phosphatases and regulatory subunits of kinases that modulate the actions of protein kinases. GENERAL SIGNIFICANCE As a result of its interactions with numerous protein kinases and their substrates, as well as itself being a target for phosphorylation, Pin1 has an intricate relationship with the regulatory protein kinase and phosphoproteomic networks that orchestrate complex cellular processes and respond to environmental cues. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
|
18
|
Hanes SD. Prolyl isomerases in gene transcription. Biochim Biophys Acta Gen Subj 2014; 1850:2017-34. [PMID: 25450176 DOI: 10.1016/j.bbagen.2014.10.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Peptidyl-prolyl isomerases (PPIases) are enzymes that assist in the folding of newly-synthesized proteins and regulate the stability, localization, and activity of mature proteins. They do so by catalyzing reversible (cis-trans) rotation about the peptide bond that precedes proline, inducing conformational changes in target proteins. SCOPE OF REVIEW This review will discuss how PPIases regulate gene transcription by controlling the activity of (1) DNA-binding transcription regulatory proteins, (2) RNA polymerase II, and (3) chromatin and histone modifying enzymes. MAJOR CONCLUSIONS Members of each family of PPIase (cyclophilins, FKBPs, and parvulins) regulate gene transcription at multiple levels. In all but a few cases, the exact mechanisms remain elusive. Structure studies, development of specific inhibitors, and new methodologies for studying cis/trans isomerization in vivo represent some of the challenges in this new frontier that merges two important fields. GENERAL SIGNIFICANCE Prolyl isomerases have been found to play key regulatory roles in all phases of the transcription process. Moreover, PPIases control upstream signaling pathways that regulate gene-specific transcription during development, hormone response and environmental stress. Although transcription is often rate-limiting in the production of enzymes and structural proteins, post-transcriptional modifications are also critical, and PPIases play key roles here as well (see other reviews in this issue). This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Steven D Hanes
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E Adams St., Syracuse, NY 13210 USA.
| |
Collapse
|
19
|
Guo C, Hou X, Dong L, Marakovits J, Greasley S, Dagostino E, Ferre R, Johnson MC, Humphries PS, Li H, Paderes GD, Piraino J, Kraynov E, Murray BW. Structure-based design of novel human Pin1 inhibitors (III): optimizing affinity beyond the phosphate recognition pocket. Bioorg Med Chem Lett 2014; 24:4187-91. [PMID: 25091930 DOI: 10.1016/j.bmcl.2014.07.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 11/18/2022]
Abstract
The design of potent Pin1 inhibitors has been challenging because its active site specifically recognizes a phospho-protein epitope. The de novo design of phosphate-based Pin1 inhibitors focusing on the phosphate recognition pocket and the successful replacement of the phosphate group with a carboxylate have been previously reported. The potency of the carboxylate series is now further improved through structure-based optimization of ligand-protein interactions in the proline binding site which exploits the H-bond interactions necessary for Pin1 catalytic function. Further optimization using a focused library approach led to the discovery of low nanomolar non-phosphate small molecular Pin1 inhibitors. Structural modifications designed to improve cell permeability resulted in Pin1 inhibitors with low micromolar anti-proliferative activities against cancer cells.
Collapse
Affiliation(s)
- Chuangxing Guo
- Oncology Medicinal Chemistry, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA.
| | - Xinjun Hou
- Oncology Medicinal Chemistry, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Liming Dong
- Oncology Medicinal Chemistry, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Joseph Marakovits
- Oncology Medicinal Chemistry, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Samantha Greasley
- Oncology Medicinal Chemistry, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Eleanor Dagostino
- Oncology Research Unit, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - RoseAnn Ferre
- Oncology Medicinal Chemistry, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - M Catherine Johnson
- Oncology Medicinal Chemistry, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Paul S Humphries
- Oncology Medicinal Chemistry, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Haitao Li
- Oncology Medicinal Chemistry, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Genevieve D Paderes
- Oncology Medicinal Chemistry, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Joseph Piraino
- Oncology Research Unit, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Eugenia Kraynov
- Pharmacokinetics and Drug Metabolism, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA
| | - Brion W Murray
- Oncology Research Unit, Pfizer Worldwide Research & Development, San Diego, CA 92121, USA.
| |
Collapse
|
20
|
Kim K, Kim G, Kim JY, Yun HJ, Lim SC, Choi HS. Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP3K8 activation. Carcinogenesis 2014; 35:1352-1361. [PMID: 24517997 DOI: 10.1093/carcin/bgu044] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Interleukin-22 (IL-22), one of the cytokines secreted by T-helper 17 (Th17) cells, binds to a class II cytokine receptor containing an IL-22 receptor 1 (IL-22R1) and IL-10R2 and influences a variety of immune reactions. IL-22 has also been shown to modulate cell cycle and proliferation mediators such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), but little is known about the underlying molecular mechanisms of IL-22 in tumorigenesis. In this paper, we propose that IL-22 has a crucial role to play in controlling epithelial cell proliferation and tumorigenesis in the breast. IL-22 increased MAP3K8 phosphorylation through IL-22R1, followed by the induction of MEK-ERK, JNK-c-Jun, and STAT3 signaling pathways. Furthermore, IL-22-IL-22R1 signaling pathway activated activator protein-1 and HER2 promoter activity. In addition, Pin1 was identified as a key positive regulator for the phosphorylation-dependent MEK, c-Jun and STAT3 activity induced by IL-22. Pin1(-/-) mouse embryonic fibroblasts (MEF) exhibited significantly a decrease in IL-22-induced MEK1/2, c-Jun, and STAT3 phosphorylation compared with Pin1(+/+) MEF. In addition, a knockdown of Pin1 prevented phosphorylation induced by IL-22. The in vivo chorioallantoic membrane assay also showed that IL-22 increased tumor formation of JB6 Cl41 cells. Moreover, the knockdown of MAP3K8 and Pin1 attenuated tumorigenicity of MCF7 cells. Consistent with these observations, IL-22 levels positively correlate with MAP3K8 and Pin1 expression in human breast cancer. Overall, our findings point to a critical role for the IL-22-induced MAP3K8 signaling pathway in promoting cancer-associated inflammation in the tumor microenvironment.
Collapse
Affiliation(s)
- Karam Kim
- College of Pharmacy, Chosun University and Department of Pathology, School of Medicine, Chosun University, Gwangju 501-759, South Korea
| | - Garam Kim
- College of Pharmacy, Chosun University and Department of Pathology, School of Medicine, Chosun University, Gwangju 501-759, South Korea
| | - Jin-Young Kim
- College of Pharmacy, Chosun University and Department of Pathology, School of Medicine, Chosun University, Gwangju 501-759, South Korea
| | - Hyo Jeong Yun
- College of Pharmacy, Chosun University and Department of Pathology, School of Medicine, Chosun University, Gwangju 501-759, South Korea
| | - Sung-Chul Lim
- Department of Pathology, School of Medicine, Chosun University, Gwangju 501-759, South Korea
| | - Hong Seok Choi
- College of Pharmacy, Chosun University and Department of Pathology, School of Medicine, Chosun University, Gwangju 501-759, South Korea
| |
Collapse
|
21
|
Restelli M, Lopardo T, Lo Iacono N, Garaffo G, Conte D, Rustighi A, Napoli M, Del Sal G, Perez-Morga D, Costanzo A, Merlo GR, Guerrini L. DLX5, FGF8 and the Pin1 isomerase control ΔNp63α protein stability during limb development: a regulatory loop at the basis of the SHFM and EEC congenital malformations. Hum Mol Genet 2014; 23:3830-42. [PMID: 24569166 PMCID: PMC4065156 DOI: 10.1093/hmg/ddu096] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ectrodactyly, or Split-Hand/Foot Malformation (SHFM), is a congenital condition characterized by the loss of central rays of hands and feet. The p63 and the DLX5;DLX6 transcription factors, expressed in the embryonic limb buds and ectoderm, are disease genes for these conditions. Mutations of p63 also cause the ectodermal dysplasia–ectrodactyly–cleft lip/palate (EEC) syndrome, comprising SHFM. Ectrodactyly is linked to defects of the apical ectodermal ridge (AER) of the developing limb buds. FGF8 is the key signaling molecule in this process, able to direct proximo-distal growth and patterning of the skeletal primordial of the limbs. In the limb buds of both p63 and Dlx5;Dlx6 murine models of SHFM, the AER is poorly stratified and FGF8 expression is severely reduced. We show here that the FGF8 locus is a downstream target of DLX5 and that FGF8 counteracts Pin1–ΔNp63α interaction. In vivo, lack of Pin1 leads to accumulation of the p63 protein in the embryonic limbs and ectoderm. We show also that ΔNp63α protein stability is negatively regulated by the interaction with the prolyl-isomerase Pin1, via proteasome-mediated degradation; p63 mutant proteins associated with SHFM or EEC syndromes are resistant to Pin1 action. Thus, DLX5, p63, Pin1 and FGF8 participate to the same time- and location-restricted regulatory loop essential for AER stratification, hence for normal patterning and skeletal morphogenesis of the limb buds. These results shed new light on the molecular mechanisms at the basis of the SHFM and EEC limb malformations.
Collapse
Affiliation(s)
- Michela Restelli
- Department of Biosciences, University of Milano, Milano I-20133, Italy
| | - Teresa Lopardo
- Department of Biosciences, University of Milano, Milano I-20133, Italy
| | - Nadia Lo Iacono
- Department of Biosciences, University of Milano, Milano I-20133, Italy
| | - Giulia Garaffo
- Telethon Laboratory, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino I-10126, Italy
| | - Daniele Conte
- Telethon Laboratory, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino I-10126, Italy
| | | | - Marco Napoli
- Department of Biochemistry and Molecular Biology, Center for Genetics & Genomics, and Center for Stem Cell & Developmental Biology, MD Anderson, Houston, TX, USA
| | - Giannino Del Sal
- Molecular Oncology Unit, LNCIB Area Science Park, Trieste I-34149, Italy
| | - David Perez-Morga
- Laboratoire de Parasitologie Moléculaire, IBMM-DBM, Université Libre de Bruxelles, Gosselies B-6041, Belgium and
| | - Antonio Costanzo
- Department of Dermatology, University of Rome 'Tor Vergata', Rome I-00133, Italy
| | - Giorgio Roberto Merlo
- Telethon Laboratory, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino I-10126, Italy
| | - Luisa Guerrini
- Department of Biosciences, University of Milano, Milano I-20133, Italy
| |
Collapse
|
22
|
Kim JH, Jung JH, Kim SH, Jeong SJ. Decursin exerts anti-cancer activity in MDA-MB-231 breast cancer cells via inhibition of the Pin1 activity and enhancement of the Pin1/p53 association. Phytother Res 2013; 28:238-44. [PMID: 23580332 DOI: 10.1002/ptr.4986] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/25/2013] [Accepted: 03/05/2013] [Indexed: 01/09/2023]
Abstract
The peptidyl-prolyl cis/trans isomerase Pin1 is overexpressed in a wide variety of cancer cells and thus considered as an important target molecule for cancer therapy. This study demonstrates that decursin, a bioactive compound from Angelica gigas, exert the anti-cancer effect against breast cancer cells via regulation of Pin1 and its related signaling molecules. We observed that decursin induced G1 arrest with decrease in cyclin D1 level in Pin1-expressing breast cancer cells MDA-MB-231, but not Pin1-non-expressing breast cancer cells MDA-MB-157. In addition, decursin significantly reduced protein expression and enzymatic activity of Pin1 in MDA-MB-231 cells. Further, we found that decursin treatment enhanced the p53 expression level and failed to down-regulate Pin1 in the cells transfected with p53 siRNA, indicating the importance of p53 in the decursin-mediated Pin1 inhibition in MDA-MB-231 cells. Decursin stimulated association between Pin1 to p53. Moreover, decursin facilitated p53 transcription in MDA-MB-231 cells. Overall, our current study suggests the potential of decursin as an attractive cancer therapeutic agent for breast cancer by targeting Pin1 protein.
Collapse
Affiliation(s)
- Ji-Hyun Kim
- College of Oriental Medicine, Kyung Hee University, Seoul, 130-701, South Korea
| | | | | | | |
Collapse
|
23
|
Toko H, Konstandin MH, Doroudgar S, Ormachea L, Joyo E, Joyo AY, Din S, Gude NA, Collins B, Völkers M, Thuerauf DJ, Glembotski CC, Chen CH, Lu KP, Müller OJ, Uchida T, Sussman MA. Regulation of cardiac hypertrophic signaling by prolyl isomerase Pin1. Circ Res 2013; 112:1244-52. [PMID: 23487407 DOI: 10.1161/circresaha.113.301084] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE Cardiac hypertrophy results from the complex interplay of differentially regulated cascades based on the phosphorylation status of involved signaling molecules. Although numerous critical regulatory kinases and phosphatases have been identified in the myocardium, the intracellular mechanism for temporal regulation of signaling duration and intensity remains obscure. In the nonmyocyte context, control of folding, activity, and stability of proteins is mediated by the prolyl isomerase Pin1, but the role of Pin1 in the heart is unknown. OBJECTIVE To establish the role of Pin1 in the heart. METHODS AND RESULTS Here, we show that either genetic deletion or cardiac overexpression of Pin1 blunts hypertrophic responses induced by transaortic constriction and consequent cardiac failure in vivo. Mechanistically, we find that Pin1 directly binds to Akt, mitogen activated protein kinase (MEK), and Raf-1 in cultured cardiomyocytes after hypertrophic stimulation. Furthermore, loss of Pin1 leads to diminished hypertrophic signaling of Akt and MEK, whereas overexpression of Pin1 increases Raf-1 phosphorylation on the autoinhibitory site Ser259, leading to reduced MEK activation. CONCLUSIONS Collectively, these data support a role for Pin1 as a central modulator of the intensity and duration of 2 major hypertrophic signaling pathways, thereby providing a novel target for regulation and control of cardiac hypertrophy.
Collapse
Affiliation(s)
- Haruhiro Toko
- Department of Biology, San Diego State University Heart Institute, San Diego State University, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Joseph RE, Ginder ND, Hoy JA, Nix JC, Fulton DB, Honzatko RB, Andreotti AH. Structure of the interleukin-2 tyrosine kinase Src homology 2 domain; comparison between X-ray and NMR-derived structures. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:145-53. [PMID: 22297986 PMCID: PMC3274390 DOI: 10.1107/s1744309111049761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/21/2011] [Indexed: 11/10/2022]
Abstract
The crystal structure of the interleukin-2 tyrosine kinase Src homology domain (Itk SH2) is described and it is found that unlike in studies of this domain using NMR spectroscopy, cis-trans-prolyl isomerization is not readily detected in the crystal structure. Based on similarities between the Itk SH2 crystal form and the cis form of the Itk SH2 NMR structure, it is concluded that it is likely that the prolyl imide bond at least in part adopts the cis conformation in the crystal form. However, the lack of high-resolution data and the dynamic nature of the proline-containing loop mean that the precise imide-bond conformation cannot be determined and prolyl cis-trans isomerization in the crystal cannot be ruled out. Given the preponderance of structures that have been solved by X-ray crystallography in the Protein Data Bank, this result supports the notion that prolyl isomerization in folded proteins has been underestimated among known structures. Interestingly, while the precise status of the proline residue is ambiguous, Itk SH2 crystallizes as a domain-swapped dimer. The domain-swapped structure of Itk SH2 is similar to the domain-swapped SH2 domains of Grb2 and Nck, with domain swapping occurring at the β-meander region of all three SH2 domains. Thus, for Itk SH2 structural analysis by NMR spectroscopy and X-ray crystallography revealed very different structural features: proline isomerization versus domain-swapped dimerization, respectively.
Collapse
Affiliation(s)
- Raji E. Joseph
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Nathaniel D. Ginder
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Julie A. Hoy
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jay C. Nix
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - D. Bruce Fulton
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Richard B. Honzatko
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Amy H. Andreotti
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
25
|
Robinson RAS, Joshi G, Huang Q, Sultana R, Baker AS, Cai J, Pierce W, St Clair DK, Markesbery WR, Butterfield DA. Proteomic analysis of brain proteins in APP/PS-1 human double mutant knock-in mice with increasing amyloid β-peptide deposition: insights into the effects of in vivo treatment with N-acetylcysteine as a potential therapeutic intervention in mild cognitive impairment and Alzheimer's disease. Proteomics 2011; 11:4243-56. [PMID: 21954051 DOI: 10.1002/pmic.201000523] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 07/21/2011] [Accepted: 08/18/2011] [Indexed: 12/14/2022]
Abstract
Proteomics analyses were performed on the brains of wild-type (WT) controls and an Alzheimer's disease (AD) mouse model, APP/PS-1 human double mutant knock-in mice. Mice were given either drinking water or water supplemented with N-acetylcysteine (NAC) (2 mg/kg body weight) for a period of five months. The time periods of treatment correspond to ages prior to Aβ deposition (i.e. 4-9 months), resembling human mild cognitive impairment (MCI), and after Aβ deposition (i.e. 7-12 months), more closely resembling advancing stages of AD. Substantial differences exist between the proteomes of WT and APP/PS-1 mice at 9 or 12 months, indicating that Aβ deposition and oxidative stress lead to downstream changes in protein expression. Altered proteins are involved in energy-related pathways, excitotoxicity, cell cycle signaling, synaptic abnormalities, and cellular defense and structure. Overall, the proteomic results support the notion that NAC may be beneficial for increasing cellular stress responses in WT mice and for influencing the levels of energy- and mitochondria-related proteins in APP/PS-1 mice.
Collapse
Affiliation(s)
- Renã A S Robinson
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nagaoka A, Takizawa N, Takeuchi R, Inaba Y, Saito I, Nagashima Y, Saito T, Aoki I. Possible involvement of peptidylprolyl isomerase Pin1 in rheumatoid arthritis. Pathol Int 2010; 61:59-66. [PMID: 21255181 DOI: 10.1111/j.1440-1827.2010.02618.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The peptidylprolyl isomerase Pin1 is over-expressed in some human diseases including malignancies and chronic inflammatory diseases, this suggests that it contributes to the constitutive activation of certain intracellular signaling pathways that promote cell proliferation and cell invasion. Here, we investigate the possible role of Pin1 in rheumatoid arthritis (RA). Pin1 expression was immunohistochemically analyzed in synovial tissue (ST) obtained from patients with RA and osteoarthritis (OA). To investigate the correlation between Pin1 and motility and proliferation of synovial cells, Pin1 localization was immunohistochemically compared with matrix metalloproteinase (MMP)-1, MMP-3, and proliferating cell nuclear antigen (PCNA). Double immunofluorescent staining for Pin1 and p65 was performed to determine whether Pin1 is involved in nuclear factor κB (NF-κB) activation in RA-ST. Results showed Pin1 expression was significantly higher in RA-ST than in OA-ST. The expression of MMP-1, MMP-3, and PCNA was also significantly elevated in RA-ST. Double immunofluorescent staining revealed colocalization of Pin1 and p65 in the nuclei of RA-ST. These results suggest that Pin1 may be involved in the pathogenesis of RA binding with p65 to activate the proteins MMP-1, MMP-3, and PCNA. Therefore, Pin1 may play a pivotal role in the pathogenesis of RA.
Collapse
Affiliation(s)
- Akiko Nagaoka
- Department of Orthopaedic Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Dong L, Marakovits J, Hou X, Guo C, Greasley S, Dagostino E, Ferre R, Johnson MC, Kraynov E, Thomson J, Pathak V, Murray BW. Structure-based design of novel human Pin1 inhibitors (II). Bioorg Med Chem Lett 2010; 20:2210-4. [DOI: 10.1016/j.bmcl.2010.02.033] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 02/08/2010] [Accepted: 02/08/2010] [Indexed: 01/12/2023]
|
28
|
Khanal P, Namgoong GM, Kang BS, Woo ER, Choi HS. The Prolyl Isomerase Pin1 Enhances HER-2 Expression and Cellular Transformation via Its Interaction with Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase Kinase 1. Mol Cancer Ther 2010; 9:606-16. [DOI: 10.1158/1535-7163.mct-09-0560] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Guo C, Hou X, Dong L, Dagostino E, Greasley S, Ferre R, Marakovits J, Johnson MC, Matthews D, Mroczkowski B, Parge H, VanArsdale T, Popoff I, Piraino J, Margosiak S, Thomson J, Los G, Murray BW. Structure-based design of novel human Pin1 inhibitors (I). Bioorg Med Chem Lett 2009; 19:5613-6. [DOI: 10.1016/j.bmcl.2009.08.034] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/07/2009] [Accepted: 08/07/2009] [Indexed: 11/26/2022]
|
30
|
Ding Q, Huo L, Yang JY, Xia W, Wei Y, Liao Y, Chang CJ, Yang Y, Lai CC, Lee DF, Yen CJ, Chen YJR, Hsu JM, Kuo HP, Lin CY, Tsai FJ, Li LY, Tsai CH, Hung MC. Down-regulation of myeloid cell leukemia-1 through inhibiting Erk/Pin 1 pathway by sorafenib facilitates chemosensitization in breast cancer. Cancer Res 2008; 68:6109-17. [PMID: 18676833 PMCID: PMC2676572 DOI: 10.1158/0008-5472.can-08-0579] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Myeloid cell leukemia-1 (Mcl-1), a Bcl-2-like antiapoptotic protein, plays a role in cell immortalization and chemoresistance in a number of human malignancies. A peptidyl-prolyl cis/trans isomerase, Pin1 is involved in many cellular events, such as cell cycle progression, cell proliferation, and differentiation through isomerizing prophosphorylated substrates. It has been reported that down-regulation of Pin1 induces apoptosis, and that Erk phosphorylates and up-regulates Mcl-1; however, the underlying mechanisms for the two phenomena are not clear yet. Here, we showed that Pin 1 stabilizes Mcl-1, which is required for Mcl-1 posphorylation by Erk. First, we found expression of Mcl-1 and Pin1 were positively correlated and associated with poor survival in human breast cancer. We then showed that Erk could phosphorylate Mcl-1 at two consensus residues, Thr 92 and 163, which is required for the association of Mcl-1 and Pin1, resulting in stabilization of Mcl-1. Moreover, Pin1 is also required for the up-regulation of Mcl-1 by Erk activation. Based on this newly identified mechanism of Mcl-1 stabilization, two strategies were used to overcome Mcl-1-mediated chemoresistance: inhibiting Erk by Sorafenib, an approved clinical anticancer drug, or knocking down Pin1 by using a SiRNA technique. In conclusion, the current report not only unravels a novel mechanism to link Erk/Pin1 pathway and Mcl-1-mediated chemoresistance but also provides a plausible combination therapy, Taxol (Paclitaxel) plus Sorafenib, which was shown to be effective in killing breast cancer cells.
Collapse
Affiliation(s)
- Qingqing Ding
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Longfei Huo
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Jer-Yen Yang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas
| | - Weiya Xia
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Yong Liao
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
- Department of Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Chun-Ju Chang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Yan Yang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | | | - Dung-Fang Lee
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas
| | - Chia-Jui Yen
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Yun-Ju Rita Chen
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jung-Mao Hsu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas
| | - Hsu-Ping Kuo
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas
| | - Chun-Yi Lin
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital; Taichung, Taiwan
| | - Fuu-Jen Tsai
- China Medical University and Hospital, Taichung, Taiwan
| | - Long-Yuan Li
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital; Taichung, Taiwan
- Asia University, Taichung, Taiwan
| | - Chang-Hai Tsai
- China Medical University and Hospital, Taichung, Taiwan
- Asia University, Taichung, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital; Taichung, Taiwan
- Asia University, Taichung, Taiwan
| |
Collapse
|
31
|
Ng CA, Kato Y, Tanokura M, Brownlee RTC. Structural characterisation of PinA WW domain and a comparison with other group IV WW domains, Pin1 and Ess1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1208-14. [PMID: 18503784 DOI: 10.1016/j.bbapap.2008.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 04/17/2008] [Accepted: 04/23/2008] [Indexed: 10/22/2022]
Abstract
The NMR solution structure of the PinA WW domain from Aspergillus nidulans is presented. The backbone of the PinA WW domain is composed of a triple-stranded anti-parallel beta-sheet and an alpha-helix similar to Ess1 and Pin1 without the alpha-helix linker. Large RMS deviations in Loop I were observed both from the NMR structures and molecular dynamics simulation suggest that the Loop I of PinA WW domain is flexible and solvent accessible, thus enabling it to bind the pS/pT-P motif. The WW domain in this structure are stabilised by a hydrophobic core. It is shown that the linker flexibility of PinA is restricted because of an alpha-helical structure in the linker region. The combination of NMR structural data and detailed Molecular Dynamics simulations enables a comprehensive structural and dynamic understanding of this protein.
Collapse
Affiliation(s)
- Chai Ann Ng
- Department of Chemistry, La Trobe University, VIC 3086, Australia
| | | | | | | |
Collapse
|
32
|
Sultana R, Butterfield DA. Redox Proteomics Analysis of Oxidative Modified Brain Proteins in Alzheimer's Disease and Mild Cognitive Impairment: Insights into the Progression of This Dementing Disorder. Clin Proteomics 2008. [DOI: 10.1002/9783527622153.ch23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
33
|
Lippens G, Landrieu I, Smet C. Molecular mechanisms of the phospho-dependent prolyl cis/trans isomerase Pin1. FEBS J 2007; 274:5211-22. [PMID: 17892493 DOI: 10.1111/j.1742-4658.2007.06057.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since its discovery 10 years ago, Pin1, a prolyl cis/trans isomerase essential for cell cycle progression, has been implicated in a large number of molecular processes related to human diseases, including cancer and Alzheimer's disease. Pin1 is made up of a WW interaction domain and a C-terminal catalytic subunit, and several high-resolution structures are available that have helped define its function. The enzymatic activity of Pin1 towards short peptides containing the pSer/Thr-Pro motif has been well documented, and we discuss the available evidence for the molecular mechanisms of its isomerase activity. We further focus on those studies that examine its cis/trans isomerase function using full-length protein substrates. The interpretation of this research has been further complicated by the observation that many of its pSer/Thr-Pro substrate motifs are located in natively unstructured regions of polypeptides, and are characterized by minor populations of the cis conformer. Finally, we review the data on the possibility of alternative modes of substrate binding and the complex role that Pin1 plays in the degradation of its substrates. After considering the available work, it seems that further analysis is required to determine whether binding or catalysis is the primary mechanism through which Pin1 affects cell cycle progression.
Collapse
Affiliation(s)
- G Lippens
- CNRS UMR 8576 Unité de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille 1-59655, Villeneuve d'Ascq, France.
| | | | | |
Collapse
|
34
|
Daum S, Lücke C, Wildemann D, Schiene-Fischer C. On the benefit of bivalency in peptide ligand/pin1 interactions. J Mol Biol 2007; 374:147-61. [PMID: 17931657 DOI: 10.1016/j.jmb.2007.09.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 07/31/2007] [Accepted: 09/05/2007] [Indexed: 11/17/2022]
Abstract
The human peptidyl prolyl cis/trans isomerase (PPIase) Pin1 has a key role in developmental processes and cell proliferation. Pin1 consists of an N-terminal WW domain and a C-terminal catalytic PPIase domain both targeted specifically to Ser(PO(3)H(2))/Thr(PO(3)H(2))-Pro sequences. Here, we report the enhanced affinity originating from bivalent binding of ligands toward Pin1 compared to monovalent binding. We developed composite peptides where an N-terminal segment represents a catalytic site-directed motif and a C-terminal segment exhibits a predominant affinity to the WW domain of Pin1 tethered by polyproline linkers of different chain length. We used NMR shift perturbation experiments to obtain information on the specific interaction of a bivalent ligand to both targeted sites of Pin1. The bivalent ligands allowed a considerable range of thermodynamic investigations using isothermal titration calorimetry and PPIase activity assays. They expressed up to 350-fold improved affinity toward Pin1 in the nanomolar range in comparison to the monovalent peptides. The distance between the two binding motifs was highly relevant for affinity. The optimum in affinity manifested by a linker length of five prolyl residues between active site- and WW domain-directed peptide fragments suggests that the corresponding domains in Pin1 are allowed to adopt preferred spatial arrangement upon ligand binding.
Collapse
Affiliation(s)
- Sebastian Daum
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle/Saale, Germany
| | | | | | | |
Collapse
|
35
|
Kato Y, Ng CA, Brownlee RTC, Tanokura M. PinA from Aspergillus nidulans binds to pS/pT-P motifs using the same Loop I and XP groove as mammalian Pin1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1208-12. [PMID: 17693144 DOI: 10.1016/j.bbapap.2007.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 06/19/2007] [Accepted: 06/19/2007] [Indexed: 11/19/2022]
Abstract
Binding of the Cdc25c-T48 ligand to PinA from Aspergillus nidulans has been characterised by the identification of 15N and 1H resonances from 1H-15N HSQC NMR titration experiments using previous backbone assignments. It is shown that the binding site for the Cdc25c-T48 ligand with PinA is the same as in the mammalian protein Pin1, although with a reduced binding affinity. It had previously been proposed that the arginine residue (R17) in the loop I region of the Pin1 WW domain is essential for binding to the pSer/pThr-Pro motifs of phosphorylated ligands such as Cdc25c. In PinA, a fungal homologue of Pin1, the arginine residue (R17) is replaced with an asparagine residue (N17). The effect of substitution of R17 by N17 in Pin1 has been investigated via a computational study, which predicted that changing R17 to N17 in Pin1 lowers the ligand binding affinity as a result of reduced hydrogen bonding between the protein and the phosphate group of the ligand.
Collapse
Affiliation(s)
- Yusuke Kato
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraqi 305-8566, Japan
| | | | | | | |
Collapse
|
36
|
Sultana R, Reed T, Perluigi M, Coccia R, Pierce WM, Butterfield DA. Proteomic identification of nitrated brain proteins in amnestic mild cognitive impairment: a regional study. J Cell Mol Med 2007; 11:839-51. [PMID: 17760844 PMCID: PMC3823261 DOI: 10.1111/j.1582-4934.2007.00065.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 05/17/2007] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is an imbalance between the level of antioxidants and oxidants in a cell. Oxidative stress has been shown in brain of subjects with mild cognitive impairment (MCI) as well Alzheimer's disease (AD). MCI is considered as a transition phase between control and AD. The focus of the current study was to identify nitrated proteins in the hippocampus and inferior parietal lobule (IPL) brain regions of subjects with amnestic MCI using proteomics. The identified nitrated proteins in MCI brain were compared to those previously reported to be nitrated and oxidatively modified in AD brain, a comparison that might provide an invaluable insight into the progression of the disease.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
- Center of Membrane Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Tanea Reed
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
- Center of Membrane Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, University “La Sapienza”, Rome, Italy
| | - Rafaella Coccia
- Department of Biochemical Sciences, University “La Sapienza”, Rome, Italy
| | - William M Pierce
- Department of Pharmacology, University of Louisville School of Medicine and VAMC, Louisville, Kentucky, USA
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
- Center of Membrane Sciences, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
37
|
Zhu JX, Dagostino E, Rejto PA, Mroczkowski B, Murray B. Identification and characterization of a novel and functional murine Pin1 isoform. Biochem Biophys Res Commun 2007; 359:529-35. [PMID: 17548053 DOI: 10.1016/j.bbrc.2007.05.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 05/17/2007] [Indexed: 11/28/2022]
Abstract
Pin1, a phosphorylation-dependent peptidyl-prolyl cis/trans isomerase (PPIase), regulates the activity of a number of cell cycle regulators, transcription factors, and microtubule-associated tau. Aberrant expression of Pin1 is implicated in carcinogenesis and neurodegenerative diseases. Yet, there are discrepancies regarding its biological significance in different organisms. Pin1 was essential in HeLa cells, while Pin1-deficient mice showed no lethal phenotypes. We here identified a novel murine Pin1 isoform (mPin1L) consisting of the WW domain and the PPIase domain. Murine Pin1L shares 92% sequence identity with the wild-type Pin1 and shows wide tissue distribution with highest levels in mouse testis. The recombinant mPin1L is enzymatically active, but is approximately three times less efficient than Pin1 in catalyzing the cis/trans isomerization. These data suggest that mPin1L may serve as a surrogate for Pin1. The finding provides insights into phenotypic consequences for Pin1-null mice and may facilitate future biological study and pharmacological development in mice.
Collapse
Affiliation(s)
- Jeff X Zhu
- Department of Biochemical Pharmacology, Pfizer Global R&D, San Diego, CA 92121, USA.
| | | | | | | | | |
Collapse
|
38
|
Moretto Zita M, Marchionni I, Bottos E, Righi M, Del Sal G, Cherubini E, Zacchi P. Post-phosphorylation prolyl isomerisation of gephyrin represents a mechanism to modulate glycine receptors function. EMBO J 2007; 26:1761-71. [PMID: 17347650 PMCID: PMC1847658 DOI: 10.1038/sj.emboj.7601625] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 01/31/2007] [Indexed: 12/24/2022] Open
Abstract
The microtubule binding protein gephyrin plays a prominent role in establishing and maintaining a high concentration of inhibitory glycine receptors juxtaposed to presynaptic releasing sites. Here, we show that endogenous gephyrin undergoes proline-directed phosphorylation, which is followed by the recruitment of the peptidyl-prolyl isomerase Pin1. The interaction between gephyrin and Pin1 is strictly dependent on gephyrin phosphorylation and requires serine-proline consensus sites encompassing the gephyrin proline-rich domain. Upon binding, Pin1 triggers conformational changes in the gephyrin molecule, thus enhancing its ability to bind the beta subunit of GlyRs. Consistently, a downregulation of GlyR clusters was detected in hippocampal neurons derived from Pin1 knockout mice, which was paralleled by a reduction in the amplitude of glycine-evoked currents. Our results suggest that phosphorylation-dependent prolyl isomerisation of gephyrin represents a mechanism for regulating GlyRs function.
Collapse
Affiliation(s)
- M Moretto Zita
- International School for Advanced Studies, Neuroscience Programme, Area Science Park, Trieste, Italy
| | - Ivan Marchionni
- International School for Advanced Studies, Neuroscience Programme, Area Science Park, Trieste, Italy
| | - Elisa Bottos
- International School for Advanced Studies, Neuroscience Programme, Area Science Park, Trieste, Italy
| | - Massimo Righi
- International School for Advanced Studies, Neuroscience Programme, Area Science Park, Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB, AREA Science Park, Trieste, Italy
- Dipartimento di Biochimica Biofisica Chimica delle Macromolecole, Trieste, Italy
| | - Enrico Cherubini
- International School for Advanced Studies, Neuroscience Programme, Area Science Park, Trieste, Italy
| | - Paola Zacchi
- International School for Advanced Studies, Neuroscience Programme, Area Science Park, Trieste, Italy
- International School for Advanced Studies, Neuroscience Programme, Area Science Park, Basovizza SS14 Km 163.5, 34012 Trieste, Italy. Tel.: +39 403756510; Fax:+39 403756502; E-mail:
| |
Collapse
|
39
|
Sultana R, Perluigi M, Butterfield DA. Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer's disease: insights into mechanism of neurodegeneration from redox proteomics. Antioxid Redox Signal 2006; 8:2021-37. [PMID: 17034347 DOI: 10.1089/ars.2006.8.2021] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Alzheimer's disease (AD), the leading cause of dementia, involves regionalized neuronal death, synaptic loss, and an accumulation of intraneuronal, neurofibrillary tangles and extracellular senile plaques. Although the initiating causes leading to AD are unknown, a number of previous studies reported the role of oxidative stress in AD brain. Postmortem analysis of AD brain showed elevated markers of oxidative stress including protein nitrotyrosine, carbonyls in proteins, lipid oxidation products, and oxidized DNA bases. In this review, we focus our attention on the role of protein oxidation and lipid peroxidation in the pathogenesis of AD. Particular attention is given to the current knowledge about the redox proteomics identification of oxidatively modified proteins in AD brain.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | | | | |
Collapse
|
40
|
Abstract
In proteins and peptides, the vast majority of peptide bonds occurs in trans conformation, but a considerable fraction (about 5%) of X-Pro bonds adopts the cis conformation. Here we study the conservation of cis prolyl residues in evolutionary related proteins. We find that overall, in contrast to local, protein sequence similarity is a clear indicator for the conformation of prolyl residues. We observe that cis prolyl residues are more often conserved than trans prolyl residues, and both are more conserved than the surrounding amino acids, which show the same extent of conservation as the whole protein. The pattern of amino acid exchanges differs between cis and trans prolyl residues. Also, the cis prolyl bond is maintained in proteins with sequence identity as low as 20%. This finding emphasizes the importance of cis peptide bonds in protein structure and function.
Collapse
|
41
|
Sasaki T, Ryo A, Uemura H, Ishiguro H, Inayama Y, Yamanaka S, Kubota Y, Nagashima Y, Harada M, Aoki I. An immunohistochemical scoring system of prolyl isomerase Pin1 for predicting relapse of prostate carcinoma after radical prostatectomy. Pathol Res Pract 2006; 202:357-64. [PMID: 16516405 DOI: 10.1016/j.prp.2005.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 12/23/2005] [Indexed: 11/20/2022]
Abstract
A major challenge for the management of prostate cancer (PCa) patients is to predict the clinical course of the disease after radical prostatectomy. A previous comprehensive immunohistochemical analysis using an automated image analyzer suggested that prolyl isomerase Pin1 (hence Pin1) may be a potent predictor of recurrence in PCa patients. However, a detailed pathological standard for evaluating the Pin1 immunohistochemistry in PCa has not been established yet. We here introduce a practical scoring system for Pin1 immunostaining in PCa. Using this method, the immunoreactivity of tumor cell cytoplasm and nucleus was evaluated separately and then scored for four grades (Grade=0-3). We defined the Pin1 score as the sum of both nuclear and cytoplasmic grades (Score=0-6), and the cases were then divided into either a low Pin1 score group (2) or a high Pin1 score group (3). We examined the correlation between this scoring system and postoperative PSA recurrence for 78 PCa patients. PCa patients assigned to the high Pin1 score group demonstrated PSA relapse more frequently than those assigned to the low Pin1 score group (p<0.0001). This suggests that, at the common laboratory level, our Pin1 scoring system could be a useful tool for predicting the prognosis of PCa patients after surgery.
Collapse
Affiliation(s)
- Takeshi Sasaki
- Division of Surgical Pathology, Yokohama City University Medical Center, Urafunecho, Minami-ku, Yokohama, Kanagawa 232-0024, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Olsten MEK, Weber JE, Litchfield DW. CK2 interacting proteins: emerging paradigms for CK2 regulation? Mol Cell Biochem 2006; 274:115-24. [PMID: 16335533 DOI: 10.1007/s11010-005-3072-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein kinase CK2 represents a small family of highly conserved protein kinases involved in a complex series of cellular events. Furthermore, CK2 has been localised to many discrete cellular sites and has an extensive and diverse array of substrates and interaction partners in cells. Despite considerable investigation, the precise mechanism(s) of regulation of CK2 in cells remains poorly understood. In consideration of the prospect that cells contain many distinct sub-populations of CK2 that are distinguished on the basis of localisation and/or interactions with other cellular components, one possibility is that there may be differential regulation of specific sub-populations of CK2. With this in mind, some of the individual sub-populations of CK2 may be regulated through particular protein-protein interactions that may play a role in recruiting CK2 into the vicinity of its substrates and/or modulating its ability to phosphorylate specific cellular targets. In this respect, here we examine two CK2-interacting proteins, namely Pin1 and CKIP-1 that have been shown to participate in the modulation of CK2 specificity or the subcellular localisation of CK2, respectively. One aspect of this work has been focused on the prospect that Pin1 interacts with CK2 in response to UV stimulation in a manner analogous to the phosphorylation-dependent interactions of CK2 that occur following the mitotic phosphorylation of CK2. A second aspect of this work involves an examination of the structural basis for interactions between CK2 and CKIP-1 with emphasis on a putative HIKE domain in CK2.
Collapse
Affiliation(s)
- Mary Ellen K Olsten
- Department of Biochemistry, Siebens-Drake Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5CI
| | | | | |
Collapse
|
43
|
Jordens J, Janssens V, Longin S, Stevens I, Martens E, Bultynck G, Engelborghs Y, Lescrinier E, Waelkens E, Goris J, Van Hoof C. The protein phosphatase 2A phosphatase activator is a novel peptidyl-prolyl cis/trans-isomerase. J Biol Chem 2006; 281:6349-57. [PMID: 16380387 DOI: 10.1074/jbc.m507760200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein phosphatase 2A (PP2A) phosphatase activator (PTPA) is an essential protein involved in the regulation of PP2A and the PP2A-like enzymes. In this study we demonstrate that PTPA and its yeast homologues Ypa1 and Ypa2 can induce a conformational change in some model substrates. Using these model substrates in different assays with and without helper proteases, this isomerase activity is similar to the isomerase activity of FKBP12, the human cyclophilin A, and one of its yeast homologs Cpr7 but dissimilar to the isomerase activity of Pin1. However, neither FKBP12 nor Cpr7 can reactivate the inactive form of PP2A. Therefore, PTPA belongs to a novel peptidyl-prolyl cis/trans-isomerase (PPIase) family. The PPIase activity of PTPA correlates with its activating activity since both are stimulated by the presence of Mg2+ATP, and a PTPA mutant (Delta208-213) with 400-fold less activity in the activation reaction of PP2A also showed almost no PPIase activity. The point mutant Asp205 --> Gly (in Ypa1) identified this amino acid as essential for both activities. Moreover, PTPA dissociates the inactive form from the complex with the PP2A methylesterase. Finally, Pro190 in the catalytic subunit of PP2A (PP2AC) could be identified as the target Pro isomerized by PTPA/Mg2+ATP since among the 14 Pro residues present in 12 synthesized peptides representing the microenvironments of these prolines in PP2AC, only Pro190 could be isomerized by PTPA/Mg2+ATP. This Pro190 is present in a predicted loop structure near the catalytic center of PP2AC and, if mutated into a Phe, the phosphatase is inactive and can no longer be activated by PTPA/Mg2+ATP.
Collapse
Affiliation(s)
- Jan Jordens
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lee TH, Perrem K, Harper JW, Lu KP, Zhou XZ. The F-box protein FBX4 targets PIN2/TRF1 for ubiquitin-mediated degradation and regulates telomere maintenance. J Biol Chem 2005; 281:759-68. [PMID: 16275645 DOI: 10.1074/jbc.m509855200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pin2/TRF1 was identified previously as both a protein (TRF1) that binds to telomeric DNA repeats and as a protein (Pin2) that associates with the kinase NIMA and suppresses its mitosis inducing activity. Pin2/TRF1 negatively regulates telomere length and also plays a critical role in cell cycle checkpoint control. Pin2/TRF1 is down-regulated in many human cancers and may be degraded by the ubiquitin-proteasome pathway, but components of the pathway involved in Pin2/TRF1 turnover have not been elucidated. By using the two-hybrid system, we recently identified Pin2/TRF1-interacting proteins, PinX1-4, and we demonstrated that PinX1 is a conserved telomerase inhibitor and a putative tumor suppressor. Here we report the characterization of PinX3. PinX3 was later found to be identical to Fbx4, a member of the F-box family of proteins, which function as substrate-specific adaptors of Cul1-based ubiquitin ligases. Fbx4 interacts with both Pin2 and TRF1 isoforms and promotes their ubiquitination in vitro and in vivo. Moreover, overexpression of Fbx4 reduces endogenous Pin2/TRF1 protein levels and causes progressive telomere elongation in human cells. In contrast, inhibition of Fbx4 by RNA interference stabilizes Pin2/TRF1 and promotes telomere shortening, thereby impairing cell growth. These results demonstrate that Fbx4 is a central regulator of Pin2/TRF1 protein abundance and that alterations in the stability of Pin2/TRF1 can have a dramatic impact on telomere length. Thus, Fbx4 may play a critical role in telomere maintenance.
Collapse
Affiliation(s)
- Tae Ho Lee
- Cancer Biology Program, Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
45
|
Brondani V, Schefer Q, Hamy F, Klimkait T. The peptidyl-prolyl isomerase Pin1 regulates phospho-Ser77 retinoic acid receptor alpha stability. Biochem Biophys Res Commun 2005; 328:6-13. [PMID: 15670742 DOI: 10.1016/j.bbrc.2004.12.130] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Indexed: 11/25/2022]
Abstract
Peptidyl-prolyl isomerases (PPIase) facilitate the cis-trans interconversion of the peptidyl-prolyl bond and in such way affect protein folding. Pin1 is a PPIase, which specifically recognizes phosphorylated S/T-P bonds. The transcription factor TFIIH mediates phosphorylation of the retinoic acid receptor alpha (RARalpha) at position Ser77. In the presence of retinoic acid ligand (RA), the Ser77 non-phosphorylated receptor is suggested to undergo degradation through the proteasome pathway. Here we provide evidence that Pin1 is able to selectively destabilize RARalpha in a ligand independent-manner. We show that this is caused by RARalpha ubiquitination, which in turn is phosphorylation dependent. The single mutation Ser77>A completely abolishes RARalpha degradation whereas the mutation Ser77>E rescues this effect. In addition, we correlate RARalpha stability to Ser77 phosphorylation required for the ligand independent transcriptional activity on fgf8 promoter. Finally, we show that the ligand-independent Ser77 phosphorylation requires the genuine ligand-binding domain.
Collapse
Affiliation(s)
- Vincent Brondani
- Institute of Medical Microbiology, University of Basel, Peterplatz 10, CH-4003, Basel, Switzerland.
| | | | | | | |
Collapse
|
46
|
Thorpe JR, Mosaheb S, Hashemzadeh-Bonehi L, Cairns NJ, Kay JE, Morley SJ, Rulten SL. Shortfalls in the peptidyl-prolyl cis–trans isomerase protein Pin1 in neurons are associated with frontotemporal dementias. Neurobiol Dis 2004; 17:237-49. [PMID: 15474361 DOI: 10.1016/j.nbd.2004.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 07/09/2004] [Accepted: 07/13/2004] [Indexed: 10/26/2022] Open
Abstract
The peptidyl-prolyl cis-trans isomerase (PPIase) Pin1 modulates the activity of a range of target proteins involved in the cell cycle, transcription, translation, endocytosis, and apoptosis by facilitating dephosphorylation of phosphorylated serine or threonine residue preceding a proline (p-Ser/Thr-Pro) motifs catalyzed by phosphatases specific for the trans conformations. Pin1 targets include the neuronal microtubule-associated protein tau, whose dephosphorylation restores its ability to stabilize microtubules. We, and others, have shown that tau hyperphosphorylation in the neurofibrillary tangles (NFTs) of Alzheimer disease (AD) is associated with redirection of the predominantly nuclear Pin1 to the cytoplasm and with Pin1 shortfalls throughout subcellular compartments. As nuclear Pin1 depletion causes apoptosis, shortfalls in regard to both nuclear and p-tau targets may contribute to neuronal dysfunction. We report here that similar Pin1 redistribution and shortfalls occur in frontotemporal dementias (FTDs) characterized by abnormal protein aggregates of tau and other cytoskeletal proteins. This may be a unifying, contributory factor towards neuronal death in these dementias.
Collapse
Affiliation(s)
- Julian R Thorpe
- Electron Microscope Division, The Sussex Centre for Advanced Microscopy, School of Life Sciences, University of Sussex, Brighton, UK.
| | | | | | | | | | | | | |
Collapse
|
47
|
Li H, Byeon IJL, Ju Y, Tsai MD. Structure of Human Ki67 FHA Domain and its Binding to a Phosphoprotein Fragment from hNIFK Reveal Unique Recognition Sites and New Views to the Structural Basis of FHA Domain Functions. J Mol Biol 2004; 335:371-81. [PMID: 14659764 DOI: 10.1016/j.jmb.2003.10.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent studies by use of short phosphopeptides showed that forkhead-associated (FHA) domains recognize pTXX(D/I/L) motifs. Solution structures and crystal structures of several different FHA domains and their complexes with short phosphopeptides have been reported by several groups. We now report the solution structure of the FHA domain of human Ki67, a large nuclear protein associated with the cell-cycle. Using fragments of its binding partner hNIFK, we show that Ki67-hNIFK binding involves ca 44 residues without a pTXX(D/I/L) motif. The pThr site of hNIFK recognized by Ki67 FHA is pThr234-Pro235, a motif also recognized by the proline isomerase Pin1. Heteronuclear single quantum coherence (HSQC) NMR was then used to map out the binding surface, and structural analyses were used to identify key binding residues of Ki67 FHA. The results represent the first structural characterization of the complex of an FHA domain with a biologically relevant target protein fragment. Detailed analyses of the results led us to propose that three major factors control the interaction of FHA with its target protein: the pT residue, +1 to +3 residues, and an extended binding surface, and that variation in the three factors is the likely cause of the great diversity in the function and specificity of FHA domains from different sources.
Collapse
Affiliation(s)
- Hongyuan Li
- Department of Biochemistry and Chemistry, Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
48
|
Zheng H, You H, Zhou XZ, Murray SA, Uchida T, Wulf G, Gu L, Tang X, Lu KP, Xiao ZXJ. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 2002; 419:849-53. [PMID: 12397361 DOI: 10.1038/nature01116] [Citation(s) in RCA: 309] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2002] [Accepted: 09/12/2002] [Indexed: 12/27/2022]
Abstract
p53 is activated in response to various genotoxic stresses resulting in cell cycle arrest or apoptosis. It is well documented that DNA damage leads to phosphorylation and activation of p53 (refs 1-3), yet how p53 is activated is still not fully understood. Here we report that DNA damage specifically induces p53 phosphorylation on Ser/Thr-Pro motifs, which facilitates its interaction with Pin1, a member of peptidyl-prolyl isomerase. Furthermore, the interaction of Pin1 with p53 is dependent on the phosphorylation that is induced by DNA damage. Consequently, Pin1 stimulates the DNA-binding activity and transactivation function of p53. The Pin1-mediated p53 activation requires the WW domain, a phosphorylated Ser/Thr-Pro motif interaction module, and the isomerase activity of Pin1. Moreover, Pin1-deficient cells are defective in p53 activation and timely accumulation of p53 protein, and exhibit an impaired checkpoint control in response to DNA damage. Together, these data suggest a mechanism for p53 regulation in cellular response to genotoxic stress.
Collapse
Affiliation(s)
- Hongwu Zheng
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Meza-Zepeda LA, Forus A, Lygren B, Dahlberg AB, Godager LH, South AP, Marenholz I, Lioumi M, Flørenes VA, Maelandsmo GM, Serra M, Mischke D, Nizetic D, Ragoussis J, Tarkkanen M, Nesland JM, Knuutila S, Myklebost O. Positional cloning identifies a novel cyclophilin as a candidate amplified oncogene in 1q21. Oncogene 2002; 21:2261-9. [PMID: 11948409 DOI: 10.1038/sj.onc.1205339] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2001] [Revised: 01/16/2002] [Accepted: 01/18/2002] [Indexed: 12/26/2022]
Abstract
Gains of 1q21-q23 have been associated with metastasis and chemotherapy response, particularly in bladder cancer, hepatocellular carcinomas and sarcomas. By positional cloning of amplified genes by yeast artificial chromosome-mediated cDNA capture using magnetic beads, we have identified three candidate genes (COAS1, -2 and -3) in the amplified region in sarcomas. COAS1 and -2 showed higher amplification levels than COAS3. Most notably, amplification was very common in osteosarcomas, where in particular COAS2 was highly expressed. COAS1 has multiple repeats and shows no homology to previously described genes, whereas COAS2 is a novel member of the cyclosporin-binding peptidyl-prolyl isomerase family, very similar to cyclophilin A. COAS2 was overexpressed almost exclusively in aggressive metastatic or chemotherapy resistant tumours. Although COAS2 was generally more amplified than COAS1, it was not expressed in well-differentiated liposarcomas, where amplification of this region is very common. All three genes were found to be amplified and over-expressed also in breast carcinomas. The complex nature of the 1q21-23 amplicons and close proximity of the genes make unequivocal determination of the gene responsible difficult. Quite likely, the different genes may give selective advantages to different subsets of tumours.
Collapse
Affiliation(s)
- Leonardo A Meza-Zepeda
- Department of Tumour Biology, The Norwegian Radium Hospital, Montebello N-0310, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
You H, Zheng H, Murray SA, Yu Q, Uchida T, Fan D, Xiao ZXJ. IGF-1 induces Pin1 expression in promoting cell cycle S-phase entry. J Cell Biochem 2002; 84:211-6. [PMID: 11787050 DOI: 10.1002/jcb.10037] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Insulin-like growth factor I (IGF-1) is a well-established mitogen to many different cell types and is implicated in progression of a number of human cancers, notably breast cancer. The prolyl isomerase Pin1 plays an important role in cell cycle regulation through its specific interaction with proteins that are phosphorylated at Ser/Thr-Pro motifs. Pin1 knockout mice appear to have relatively normal development yet the Pin1(-/-)mouse embryo fibroblast (MEF) cells are defective in re-entering cell cycle in response to serum stimulation after G0 arrest. Here, we report that Pin1(-/-) MEF cells display a delayed cell cycle S-phase entry in response to IGF stimulation and that IGF-1 induces Pin1 protein expression which correlates with the induction of cyclin D1 and RB phosphorylation in human breast cancer cells. The induction of Pin1 by IGF-1 is mediated via the phosphatidylinositol 3-kinase as well as the MAP kinase pathways. Treatment of PI3K inhibitor LY294002 and the MAP kinase inhibitor PD098059, but not p38 inhibitor SB203580, effectively blocks IGF-1-induced upregulation of Pin1, cyclin D1 and RB phosphorylation. Furthermore, we found that Cyclin D1 expression and RB phosphorylation are dramatically decreased in Pin1(-/-) MEF cells. Reintroducing a recombinant adenovirus encoding Pin1 into Pin1(-/-) MEF cells restores the expression of cyclin D1 and RB phosphorylation. Thus, these data suggest that the mitogenic function of IGF-1 is at least partially linked to the induction of Pin1, which in turn stimulates cyclin D1 expression and RB phosphorylation, therefore contributing to G0/G1-S transition.
Collapse
Affiliation(s)
- Han You
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|