1
|
Puagsopa J, Tongviseskul N, Jaroentomeechai T, Meksiriporn B. Recent Progress in Developing Extracellular Vesicles as Nanovehicles to Deliver Carbohydrate-Based Therapeutics and Vaccines. Vaccines (Basel) 2025; 13:285. [PMID: 40266147 PMCID: PMC11946770 DOI: 10.3390/vaccines13030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 04/24/2025] Open
Abstract
Cell-derived, nanoscale extracellular vesicles (EVs) have emerged as promising tools in diagnostic, therapeutic, and vaccine applications. Their unique properties including the capability to encapsulate diverse molecular cargo as well as the versatility in surface functionalization make them ideal candidates for safe and effective vehicles to deliver a range of biomolecules including gene editing cassettes, therapeutic proteins, glycans, and glycoconjugate vaccines. In this review, we discuss recent advances in the development of EVs derived from mammalian and bacterial cells for use in a delivery of carbohydrate-based protein therapeutics and vaccines. We highlight key innovations in EVs' molecular design, characterization, and deployment for treating diseases including Alzheimer's disease, infectious diseases, and cancers. We discuss challenges for their clinical translation and provide perspectives for future development of EVs within biopharmaceutical research and the clinical translation landscape.
Collapse
Affiliation(s)
- Japigorn Puagsopa
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Niksa Tongviseskul
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Bunyarit Meksiriporn
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| |
Collapse
|
2
|
Protto V, Miteva MT, Iannuzzi F, Marcocci ME, Li Puma DD, Piacentini R, Belli M, Sansone L, Pietrantoni A, Grassi C, Palamara AT, De Chiara G. HSV-1 infection induces phosphorylated tau propagation among neurons via extracellular vesicles. mBio 2024; 15:e0152224. [PMID: 39189744 PMCID: PMC11481531 DOI: 10.1128/mbio.01522-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Extracellular vesicles (EV), key players in cell-to-cell communication, may contribute to disease propagation in several neurodegenerative diseases, including Alzheimer's disease (AD), by favoring the dissemination of neurotoxic proteins within the brain. Interestingly, growing evidence supports the role of herpes simplex virus type 1 (HSV-1) infection in the pathogenesis of AD. Here, we investigated whether HSV-1 infection could promote the spread of phosphorylated tau (ptau) among neurons via EV. We analyzed the ptau species that were secreted via EV following HSV-1 infection in neuroblastoma cells and primary neurons, focusing particularly on T205, T181, and T217, the phosphorylation sites mainly associated with AD. Moreover, by overexpressing human tau tagged with GFP (htauGFP), we found that recipient tau knockout (KO) neurons uptook EV that are loaded with HSV-1-induced phtauGFP. Finally, we exploited an in vivo model of acute infection and assessed that cerebral HSV-1 infection promotes the release of ptau via EV in the brain of infected mice. Overall, our data suggest that, following HSV-1 infection, EV play a role in tau spreading within the brain, thus contributing to neurodegeneration.IMPORTANCEHerpes simplex virus type 1 (HSV-1) infection that reaches the brain has been repeatedly linked with the appearance of the pathognomonic markers of Alzheimer's disease (AD), including accumulation of amyloid beta and hyperphosphorylated tau proteins, and cognitive deficits. AD is a multifactorial neurodegenerative disease representing the most common form of dementia in the elderly, and no cure is currently available, thus prompting additional investigation on potential risk factors and pathological mechanisms. Here, we demonstrate that the virus exploits the extracellular vesicles (EV) to disseminate phosphorylated tau (ptau) among brain cells. Importantly, we provide evidence that the HSV-1-induced EV-bearing ptau can be undertaken by recipient neurons, thus likely contributing to misfolding and aggregation of native tau, as reported for other AD models. Hence, our data highlight a novel mechanism exploited by HSV-1 to propagate tau-related damage in the brain.
Collapse
Affiliation(s)
- V. Protto
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - M. T. Miteva
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - F. Iannuzzi
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - M. E. Marcocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - D. D. Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - R. Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - M. Belli
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
- Laboratory of Molecular, Cellular and Ultrastructural Pathology, IRCCS San Raffaele Roma, Rome, Italy
| | - L. Sansone
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
- Laboratory of Molecular, Cellular and Ultrastructural Pathology, IRCCS San Raffaele Roma, Rome, Italy
| | - A. Pietrantoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - C. Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - A. T. Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - G. De Chiara
- Institute of Translational Pharmacology, CNR, Rome, Italy
| |
Collapse
|
3
|
Pierce C, Suryoraharjo K, Robertson IH, Su X, Hatchett DB, Shin A, Adams KN, Berthier E, Thongpang S, Ogata A, Theberge AB, Sohn LL. CandyCollect: An Open-Microfluidic Device for the Direct Capture and Enumeration of Salivary-Extracellular Vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617508. [PMID: 39463934 PMCID: PMC11507796 DOI: 10.1101/2024.10.09.617508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Extracellular Vesicles (EVs) are membrane-derived vesicles shed by cells into the extracellular space that play key roles in intercellular communication and other biological processes. As membrane-bound cargos of nucleic acids and other proteins that are abundantly found in virtually every biofluid including blood, urine, and saliva, EVs are widely regarded as promising biomarkers for disease detection. While it is an increasingly promising biofluid from which to isolate EVs, saliva poses challenges due its complexity and heterogeneity-cells, debris, and other proteins can inhibit the isolation of EVs by traditional platforms. Here, we employ the CandyCollect, a lollipop-inspired sampling device with open microfluidic channels, as a non-invasive and patient-friendly alternative for the capture of salivary EVs. The CandyCollect simplifies sample preparation by effectively pre-concentrating EVs on the device surface before EVs are eluted off of the CandyCollect, labeled with cholesterol-tagged oligonucleotides, and subsequently detected by qPCR with primers specific for the tagged oligos to enumerate the relative number of EVs. We demonstrate that downstream EV cargo analysis can be performed using Simoa. Overall, the CandyCollect ushers a new method to capture, enumerate, and analyze salivary EVs.
Collapse
|
4
|
Bellini I, Scribano D, Ambrosi C, Chiovoloni C, Rondón S, Pronio A, Palamara AT, Pietrantoni A, Kashkanova A, Sandoghdar V, D'Amelio S, Cavallero S. Anisakis extracellular vesicles elicit immunomodulatory and potentially tumorigenic outcomes on human intestinal organoids. Parasit Vectors 2024; 17:393. [PMID: 39285481 PMCID: PMC11406850 DOI: 10.1186/s13071-024-06471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Anisakis spp. are zoonotic nematodes causing mild to severe acute and chronic gastrointestinal infections. Chronic anisakiasis can lead to erosive mucosal ulcers, granulomas and inflammation, potential tumorigenic triggers. How Anisakis exerts its pathogenic potential through extracellular vesicles (EVs) and whether third-stage infective larvae may favor a tumorigenic microenvironment remain unclear. METHODS Here, we investigated the parasite's tumorigenic and immunomodulatory capabilities using comparative transcriptomics, qRT-PCR and protein analysis with multiplex ELISA on human intestinal organoids exposed to Anisakis EVs. Moreover, EVs were characterized in terms of shape, size and concentration using classic TEM, SEM and NTA analyses and advanced interferometric NTA. RESULTS Anisakis EVs showed classic shape features and a median average diameter of around 100 nm, according to NTA and iNTA. Moreover, a refractive index of 5-20% of non-water content suggested their effective biological cargo. After treatment of human intestinal organoids with Anisakis EVs, an overall parasitic strategy based on mitigation of the immune and inflammatory response was observed. Anisakis EVs impacted gene expression of main cytokines, cell cycle regulation and protein products. Seven key genes related to cell cycle regulation and apoptosis were differentially expressed in organoids exposed to EVs. In particular, the downregulation of EPHB2 and LEFTY1 and upregulation of NUPR1 genes known to be associated with colorectal cancer were observed, suggesting their involvement in tumorigenic microenvironment. A statistically significant reduction in specific mediators of inflammation and cell-cycle regulation from the polarized epithelium as IL-33R, CD40 and CEACAM1 from the apical chambers and IL-1B, GM-CSF, IL-15 and IL-23 from both chambers were observed. CONCLUSIONS The results here obtained unravel intestinal epithelium response to Anisakis EVs, impacting host's anthelminthic strategies and revealing for the first time to our knowledge the host-parasite interactions in the niche environment of an emerging accidental zoonosis. Use of an innovative EV characterization approach may also be useful for study of other helminth EVs, since the knowledge in this field is very limited.
Collapse
Affiliation(s)
- Ilaria Bellini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS, Rome, Italy
- Laboratory of Microbiology of Chronic-Neurodegenerative Diseases, San Raffaele Open University, IRCCS, Rome, Italy
| | - Claudia Chiovoloni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Silvia Rondón
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Annamaria Pronio
- Digestive Endoscopy Unit, Department of General Surgery and Surgical Specialties "Paride Stefanini", Sapienza University of Rome, Azienda Policlinico Umberto I, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | - Anna Kashkanova
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Stefano D'Amelio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Serena Cavallero
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Pasteur Institute, Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
5
|
Kozela E, Meneghetti P, Regev-Rudzki N, Torrecilhas AC, Porat Z. Subcellular particles for characterization of host-parasite interactions. Microbes Infect 2024; 26:105314. [PMID: 38367661 DOI: 10.1016/j.micinf.2024.105314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/14/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Parasitic diseases remain a major global health problem for humans. Parasites employ a variety of strategies to invade and survive within their hosts and to manipulate host defense mechanisms, always in the pathogen's favor. Extracellular vesicles (EVs), membrane-bound nanospheres carrying a variety of bioactive compounds, were shown to be released by the parasites during all stages of the infection, enabling growth and expansion within the host and adaptation to frequently changing environmental stressors. In this review, we discuss how the use of existing nanotechnologies and high-resolution imaging tools assisted in revealing the role of EVs during parasitic infections, enabling the quantitation, visualization, and detailed characterization of EVs. We discuss here the cases of malaria, Chagas disease and leishmaniasis as examples of parasitic neglected tropical diseases (NTDs). Unraveling the EVs' role in the NTD pathogenesis may enormously contribute to their early and reliable diagnostic, effective treatment, and prevention.
Collapse
Affiliation(s)
- Ewa Kozela
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Paula Meneghetti
- Universidade Federal de São Paulo (UNIFESP), Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Farmacêuticas, Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Brazil
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ana Claudia Torrecilhas
- Universidade Federal de São Paulo (UNIFESP), Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Farmacêuticas, Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Brazil.
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, WIS, Rehovot, Israel.
| |
Collapse
|
6
|
Pirouzpanah MB, Babaie S, Pourzeinali S, Valizadeh H, Malekeh S, Şahin F, Farshbaf-Khalili A. Harnessing tumor-derived exosomes: A promising approach for the expansion of clinical diagnosis, prognosis, and therapeutic outcome of prostate cancer. Biofactors 2024; 50:674-692. [PMID: 38205673 DOI: 10.1002/biof.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/12/2023] [Indexed: 01/12/2024]
Abstract
Prostate cancer is the second leading cause of men's death worldwide. Although early diagnosis and therapy for localized prostate cancer have improved, the majority of men with metastatic disease die from prostate cancer annually. Therefore, identification of the cellular-molecular mechanisms underlying the progression of prostate cancer is essential for overcoming controlled proliferation, invasion, and metastasis. Exosomes are small extracellular vesicles that mediate most cells' interactions and contain membrane proteins, cytosolic and nuclear proteins, extracellular matrix proteins, lipids, metabolites, and nucleic acids. Exosomes play an essential role in paracrine pathways, potentially influencing Prostate cancer progression through a wide variety of mechanisms. In the present review, we outline and discuss recent progress in our understanding of the role of exosomes in the Prostate cancer microenvironment, like their involvement in prostate cancer occurrence, progression, angiogenesis, epithelial-mesenchymal transition, metastasis, and drug resistance. We also present the latest findings regarding the function of exosomes as biomarkers, direct therapeutic targets in prostate cancer, and the challenges and advantages associated with using exosomes as natural carriers and in exosome-based immunotherapy. These findings are a promising avenue for the expansion of potential clinical approaches.
Collapse
Affiliation(s)
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Samira Pourzeinali
- Amiralmomenin Hospital of Charoimagh, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Valizadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Malekeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Azizeh Farshbaf-Khalili
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
7
|
Rampam S, Carnino JM, Xiao B, Khan RR, Miyawaki S, Goh GS. Extracellular Vesicles: An Emerging Clinical Opportunity in Musculoskeletal Disease. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:359-370. [PMID: 37930727 DOI: 10.1089/ten.teb.2023.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Extracellular vesicles (EVs) are important mediators of cell-to-cell communication in the extracellular space. These membranous nanoparticles carry various molecules, often referred to as "cargo," which are delivered to nearby target cells. In the past decade, developments in nanotechnology have allowed for various new laboratory techniques for the increased utilization of EVs in cellular and animal studies. Such techniques have evolved for the isolation, characterization, and delivery of EVs to biological tissues. This emerging technology has immense clinical potential for both diagnostic and therapeutic applications. Various EV cargo molecules, including DNA, RNA, and proteins, can act as pathological biomarkers. Furthermore, EVs derived from certain cell sources have shown therapeutic benefit in certain pathologies. In addition to their native therapeutic benefit, EVs can be engineered to carry and selectively deliver therapeutic agents. While EVs have gained increasing interest in various pathologies, few studies have compiled their clinical potential in musculoskeletal pathologies. To bridge this gap, we present an overview of EVs, introduce current laboratory preparation techniques, and outline the most recent literature regarding the potential therapeutic applications of EVs in musculoskeletal pathologies.
Collapse
Affiliation(s)
- Sanjeev Rampam
- Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Jonathan M Carnino
- Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Boyuan Xiao
- Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Rehan R Khan
- Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Steven Miyawaki
- Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Graham S Goh
- Department of Orthopaedic Surgery, Boston University Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Tian Y, Tian D, Peng X, Qiu H. Critical parameters to standardize the size and concentration determination of nanomaterials by nanoparticle tracking analysis. Int J Pharm 2024; 656:124097. [PMID: 38609058 DOI: 10.1016/j.ijpharm.2024.124097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
The size and concentration are critical for the diagnostic and therapeutic applications of nanomaterials but the accurate measurement remains challenging. Nanoparticle tracking analysis (NTA) is widely used for size and concentration determination. However, highly repeatable standard operating procedures (SOPs) are absent. We adopted the "search-evaluate-test" strategy to standardize the measurement by searching the critical parameters. The particles per frame are linearly proportional to the sample concentration and the measured results are more accurate and repeatable when the concentration is 108-109 particles/ml. The optimal detection threshold is around 5. The optimal camera level is such that it allows clear observation of particles without diffractive rings and overexposure. The optimal speed is ≤ 50 in AU and ∼ 10 μl/min in flow rate. We then evaluated the protocol using polydisperse polystyrene particles and we found that NTA could discriminate particles in bimodal mixtures with high size resolution but the performance on multimodal mixtures is not as good as that of resistive pulse sensing (RPS). We further analyzed the polystyrene particles, SiO2 particles, and biological samples by NTA following the SOPs. The size and concentration measured by NTA differentially varies to those determined by RPS and transmission electron microscopy.
Collapse
Affiliation(s)
- Youxi Tian
- School of Pharmacy, Guangdong Medical University, No.1 City Avenue Songshan Lake Sci. &Tech. Industry Park, Dongguan 523808, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
| | - Dong Tian
- Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China
| | - Xinsheng Peng
- School of Pharmacy, Guangdong Medical University, No.1 City Avenue Songshan Lake Sci. &Tech. Industry Park, Dongguan 523808, China.
| | - Hong Qiu
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; Carbohydrate-based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 200031, China.
| |
Collapse
|
9
|
Kolenc A, Maličev E. Current Methods for Analysing Mesenchymal Stem Cell-Derived Extracellular Vesicles. Int J Mol Sci 2024; 25:3439. [PMID: 38542411 PMCID: PMC10970230 DOI: 10.3390/ijms25063439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 11/11/2024] Open
Abstract
The use of extracellular vesicles (EVs) generated by mesenchymal stem cells (MSCs) holds great promise as a novel therapeutic approach. Although their immunomodulatory and regeneration potential has been reported to be similar to that of MSCs, the use of MSC-derived EVs in clinical settings will require several problems to be resolved. It is necessary to develop a standardised and widely accepted isolation technology and to improve methods such as the quantification and characterisation of MSC-derived EVs. In this way, EV studies can be compared, the acquired knowledge can be safely transferred to clinical platforms and the clinical results can be evaluated appropriately. There are many procedures for the collection and analysis of vesicles derived from different cells; however, this review provides an overview of methods for the determination of the total protein amount, specific proteins, particle number, non-protein markers like lipids and RNA, microscopy and other methods focusing on MSC-derived EVs.
Collapse
Affiliation(s)
- Ana Kolenc
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
| | - Elvira Maličev
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Iavarone I, Molitierno R, Fumiento P, Vastarella MG, Napolitano S, Vietri MT, De Franciscis P, Ronsini C. MicroRNA Expression in Endometrial Cancer: Current Knowledge and Therapeutic Implications. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:486. [PMID: 38541212 PMCID: PMC10972089 DOI: 10.3390/medicina60030486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
Background and Objectives: An extracellular vesicle is part of a class of submicron particles derived from cells, mediating cellular crosstalk through microRNA (miRNA). MiRNA is a group of RNA molecules, each of which consists of 15-22 nucleotides and post-transcriptionally modulates gene expression. The complementary mRNAs-onto which the miRNAs hybridize-are involved in processes such as implantation, tumor suppression, proliferation, angiogenesis, and metastasis that define the entire tumor microenvironment. The endometrial biopsy is a standard technique used to recognize cellular atypia, but other non-invasive markers may reduce patient discomfort during the use of invasive methods. The present study aims to examine the distribution and the regulation of the differentially expressed miRNAs (DEMs) and EV-derived substances in women with endometrial cancer. Materials and Methods: We systematically searched the PubMed, EMBASE, Scopus, Cochrane Library, and ScienceDirect databases in April 2023, adopted the string "Endometrial Neoplasms AND Exosomes", and followed the recommendations in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. We selected all the studies that included patients with endometrial cancer and that described the regulation of miRNA molecules in that context. The differences in molecule expression between patients and controls were evaluated as significant when the proteins had a fold change of ±1.5. Results: Seventeen records fulfilled the inclusion criteria: a total of 371 patients and 273 controls were analyzed. The upregulated molecules that had the widest delta between endometrial cancer patients and controls-relative expression ≥ 1 > 3 log2(ratio)-were miR-20b-5p, miR-204-5p, miR-15a-5p, and miR-320a. In particular, miR-20b-5p and miR-204-5p were extracted from both serum and endometrial specimens, whereas miR-15a-5p was only isolated from plasma, and miR-320a was only extracted from the endometrial specimens. In parallel, the most downregulated miRNA in the endometrial cancer patients compared to the healthy subjects was miR-320a, which was found in the endometrial specimens. Conclusions: Although their epigenetic regulation remains unknown, these upregulated molecules derived from EVs are feasible markers for the early detection of endometrial cancer. The modulation of these miRNA molecules should be assessed during different treatments or if recurrence develops in response to a targeted treatment modality.
Collapse
Affiliation(s)
- Irene Iavarone
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| | - Rossella Molitierno
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| | - Pietro Fumiento
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| | - Maria Giovanna Vastarella
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| | - Stefania Napolitano
- Division of Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Pasquale De Franciscis
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| | - Carlo Ronsini
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (I.I.); (R.M.); (P.F.); (M.G.V.); (P.D.F.)
| |
Collapse
|
11
|
Di Santo R, Niccolini B, Romanò S, Vaccaro M, Di Giacinto F, De Spirito M, Ciasca G. Advancements in Mid-Infrared spectroscopy of extracellular vesicles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123346. [PMID: 37774583 DOI: 10.1016/j.saa.2023.123346] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/07/2023] [Accepted: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Extracellular vesicles (EVs) are lipid vesicles secreted by all cells into the extracellular space and act as nanosized biological messengers among cells. They carry a specific molecular cargo, composed of lipids, proteins, nucleic acids, and carbohydrates, which reflects the state of their parent cells. Due to their remarkable structural and compositional heterogeneity, characterizing EVs, particularly from a biochemical perspective, presents complex challenges. In this context, mid-infrared (IR) spectroscopy is emerging as a valuable tool, providing researchers with a comprehensive and label-free spectral fingerprint of EVs in terms of their specific molecular content. This review aims to provide an up-to-date critical overview of the major advancements in mid-IR spectroscopy of extracellular vesicles, encompassing both fundamental and applied research achievements. We also systematically emphasize the new possibilities offered by the integration of emerging cutting-edge IR technologies, such as tip-enhanced and surface-enhanced spectroscopy approaches, along with the growing use of machine learning for data analysis and spectral interpretation. Additionally, to assist researchers in navigating this intricate subject, our manuscript includes a wide and detailed collection of the spectral peaks that have been assigned to EV molecular constituents up to now in the literature.
Collapse
Affiliation(s)
- Riccardo Di Santo
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy.
| | - Benedetta Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sabrina Romanò
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Vaccaro
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Flavio Di Giacinto
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| |
Collapse
|
12
|
Sall IM, Flaviu TA. Plant and mammalian-derived extracellular vesicles: a new therapeutic approach for the future. Front Bioeng Biotechnol 2023; 11:1215650. [PMID: 37781539 PMCID: PMC10534050 DOI: 10.3389/fbioe.2023.1215650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Background: In recent years, extracellular vesicles have been recognized as important mediators of intercellular communication through the transfer of active biomolecules (proteins, lipids, and nucleic acids) across the plant and animal kingdoms and have considerable roles in several physiological and pathological mechanisms, showing great promise as new therapeutic strategies for a variety of pathologies. Methods: In this study, we carefully reviewed the numerous articles published over the last few decades on the general knowledge of extracellular vesicles, their application in the therapy of various pathologies, and their prospects as an approach for the future. Results: The recent discovery and characterization of extracellular vesicles (EVs) of diverse origins and biogenesis have altered the current paradigm of intercellular communication, opening up new diagnostic and therapeutic perspectives. Research into these EVs released by plant and mammalian cells has revealed their involvement in a number of physiological and pathological mechanisms, such as embryonic development, immune response, tissue regeneration, and cancer. They are also being studied as potential biomarkers for disease diagnosis and vectors for drug delivery. Conclusion: Nanovesicles represent powerful tools for intercellular communication and the transfer of bioactive molecules. Their molecular composition and functions can vary according to their origin (plant and mammalian), so their formation, composition, and biological roles open the way to therapeutic applications in a variety of pathologies, which is arousing growing interest in the scientific community. Clinical Trial Registration: ClinicalTrials.gov identifier: NCT03608631.
Collapse
Affiliation(s)
| | - Tabaran Alexandru Flaviu
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
13
|
Ronsini C, Fumiento P, Iavarone I, Greco PF, Cobellis L, De Franciscis P. Liquid Biopsy in Endometriosis: A Systematic Review. Int J Mol Sci 2023; 24:ijms24076116. [PMID: 37047088 PMCID: PMC10094565 DOI: 10.3390/ijms24076116] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Despite laparoscopy being a standardized option to diagnose pelvic endometriotic implants, non-invasive biomarkers are necessary to avoid the discomfort of invasive procedures. Recent evidence suggests a potential role of microRNAs (miRNAs) as feasible biomarkers for the early diagnosis of endometriosis. Following the recommendations in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, we systematically searched PubMed, EMBASE, Scopus, Cochrane Library, and Science Direct in January 2023. We provided no restriction on the country and year of publication, and considered English published articles. We selected studies including patients with endometriosis and describing miRNA regulation in the context of endometriosis. Overall, 45 studies fulfilled the inclusion criteria, and 2045 patients with endometriosis and 1587 controls were screened. Patients were analyzed concerning miRNAs expression and sources, stage of disease, and symptoms, and compared to controls. Among DEMs, the ones with the widest delta between endometriosis patients and controls-Relative Expression ≥ 4 Log2(ratio)-were miR-145, miR-191, miR-195, miR-21-5p, miR-106b-5p, miR-195-5p, miR-451a, miR-200c, miR-20a-5p, and miR-15a-5p. Although the epigenetic regulation is partially unclear, miRNAs are valid biomarkers to diagnose endometriotic lesions in symptomatic and non-symptomatic women. MiRNAs modulation should be clarified, especially during therapies or relapse, to plan targeted management protocols.
Collapse
Affiliation(s)
- Carlo Ronsini
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Pietro Fumiento
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Irene Iavarone
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Pier Francesco Greco
- Unit of Gynecologic Oncology, Department of Woman, Child and Public Health, A. Gemelli, IRCCS, University Hospital Foundation, 00168 Rome, Italy
| | - Luigi Cobellis
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Pasquale De Franciscis
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
14
|
Sympathetic neurons secrete retrogradely transported TrkA on extracellular vesicles. Sci Rep 2023; 13:3657. [PMID: 36871060 PMCID: PMC9985603 DOI: 10.1038/s41598-023-30728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Proper wiring of the peripheral nervous system relies on neurotrophic signaling via nerve growth factor (NGF). NGF secreted by target organs (i.e. eye) binds to the TrkA receptor expressed on the distal axons of postganglionic neurons. Upon binding, TrkA is internalized into a signaling endosome and retrogradely trafficked back to the soma and into the dendrites to promote cell survival and postsynaptic maturation, respectively. Much progress has been made in recent years to define the fate of the retrogradely trafficked TrkA signaling endosome, yet it has not been fully characterized. Here we investigate extracellular vesicles (EVs) as a novel route of neurotrophic signaling. Using the mouse superior cervical ganglion (SCG) as a model, we isolate EVs derived from sympathetic cultures and characterize them using immunoblot assays, nanoparticle tracking analysis, and cryo-electron microscopy. Furthermore, using a compartmentalized culture system, we find that TrkA derived from endosomes originating in the distal axon can be detected on EVs secreted from the somatodendritic domain. In addition, inhibition of classic TrkA downstream pathways, specifically in somatodendritic compartments, greatly decreases TrkA packaging into EVs. Our results suggest a novel trafficking route for TrkA: it can travel long distances to the cell body, be packaged into EVs, and be secreted. Secretion of TrkA via EVs appears to be regulated by its own downstream effector cascades, raising intriguing future questions about novel functionalities associated with TrkA+ EVs.
Collapse
|
15
|
Stem Cell-derived Extracellular Vesicles: A Promising Nano Delivery Platform to the Brain? Stem Cell Rev Rep 2023; 19:285-308. [PMID: 36173500 DOI: 10.1007/s12015-022-10455-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 02/07/2023]
Abstract
A very important cause of the frustration with drug therapy for central nervous system (CNS) diseases is the failure of drug delivery. The blood-brain barrier (BBB) prevents most therapeutic molecules from entering the brain while maintaining CNS homeostasis. Scientists are keen to develop new brain drug delivery systems to solve this dilemma. Extracellular vesicles (EVs), as a class of naturally derived nanoscale vesicles, have been extensively studied in drug delivery due to their superior properties. This review will briefly present current brain drug delivery strategies, including invasive and non-invasive techniques that target the brain, and the application of nanocarriers developed for brain drug delivery in recent years, especially EVs. The cellular origin of EVs affects the surface protein, size, yield, luminal composition, and other properties of EVs, which are also crucial in determining whether EVs are useful as drug carriers. Stem cell-derived EVs, which inherit the properties of parental cells and avoid the drawbacks of cell therapy, have always been favored by researchers. Thus, in this review, we will focus on the application of stem cell-derived EVs for drug delivery in the CNS. Various nucleic acids, proteins, and small-molecule drugs are loaded into EVs with or without modification and undergo targeted delivery to the brain to achieve their therapeutic effects. In addition, the challenges facing the clinical application of EVs as drug carriers will also be discussed. The directions of future efforts may be to improve drug loading efficiency and precise targeting.
Collapse
|
16
|
D'Acunzo P, Ungania JM, Kim Y, Barreto BR, DeRosa S, Pawlik M, Canals-Baker S, Erdjument-Bromage H, Hashim A, Goulbourne CN, Neubert TA, Saito M, Sershen H, Levy E. Cocaine perturbs mitovesicle biology in the brain. J Extracell Vesicles 2023; 12:e12301. [PMID: 36691887 PMCID: PMC9871795 DOI: 10.1002/jev2.12301] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/06/2022] [Accepted: 12/26/2022] [Indexed: 01/25/2023] Open
Abstract
Cocaine, an addictive psychostimulant, has a broad mechanism of action, including the induction of a wide range of alterations in brain metabolism and mitochondrial homeostasis. Our group recently identified a subpopulation of non-microvesicular, non-exosomal extracellular vesicles of mitochondrial origin (mitovesicles) and developed a method to isolate mitovesicles from brain parenchyma. We hypothesised that the generation and secretion of mitovesicles is affected by mitochondrial abnormalities induced by chronic cocaine exposure. Mitovesicles from the brain extracellular space of cocaine-administered mice were enlarged and more numerous when compared to controls, supporting a model in which mitovesicle biogenesis is enhanced in the presence of mitochondrial alterations. This interrelationship was confirmed in vitro. Moreover, cocaine affected mitovesicle protein composition, causing a functional alteration in mitovesicle ATP production capacity. These data suggest that mitovesicles are previously unidentified players in the biology of cocaine addiction and that target therapies to fine-tune brain mitovesicle functionality may be beneficial to mitigate the effects of chronic cocaine exposure.
Collapse
Affiliation(s)
- Pasquale D'Acunzo
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
| | - Jonathan M Ungania
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Yohan Kim
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
| | - Bryana R Barreto
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Steven DeRosa
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Monika Pawlik
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Stefanie Canals-Baker
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, USA
| | - Audrey Hashim
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Thomas A Neubert
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, USA
| | - Mariko Saito
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Henry Sershen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Department of Biochemistry & Molecular Pharmacology, New York University Grossman School of Medicine, New York, New York, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
17
|
The Role of Extracellular Vesicles in Diseases of the Ear, Nose, and Throat. Med Sci (Basel) 2022; 11:medsci11010006. [PMID: 36649043 PMCID: PMC9844415 DOI: 10.3390/medsci11010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Extracellular vesicles (EVs) are membranous nanoparticles produced by most cell types into the extracellular space and play an important role in cell-to-cell communication. Historically, EVs were categorized based on their methods of biogenesis and size into three groups: exosomes, microvesicles, and apoptotic bodies. Most recently, EV nomenclature has evolved to categorize these nanoparticles based on their size, surface markers, and/or the cell type which secreted them. Many techniques have been adopted in recent years which leverage these characteristics to isolate them from cell culture media and biological fluids. EVs carry various "cargo", including DNA, RNA, proteins, and small signaling molecules. After isolation, EVs can be characterized by various methods to analyze their unique cargo profiles which define their role in cell-to-cell communication, normal physiology, and disease progression. The study of EV cargo has become more common recently as we continue to delineate their role in various human diseases. Further understanding these mechanisms may allow for the future use of EVs as novel biomarkers and therapeutic targets in diseases. Furthermore, their unique cargo delivery mechanisms may one day be exploited to selectively deliver therapeutic agents and drugs. Despite the growing research interest in EVs, limited studies have focused on the role of EVs in the diseases of the ear, nose, and throat. In this review, we will introduce EVs and their cargo, discuss methods of isolation and characterization, and summarize the most up-to-date literature thus far into the role of EVs in diseases of the ear, nose, and throat.
Collapse
|
18
|
Mecocci S, Trabalza-Marinucci M, Cappelli K. Extracellular Vesicles from Animal Milk: Great Potentialities and Critical Issues. Animals (Basel) 2022; 12:ani12233231. [PMID: 36496752 PMCID: PMC9740508 DOI: 10.3390/ani12233231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Other than representing the main source of nutrition for newborn mammals, milk delivers a sophisticated signaling system from mother to child that promotes postnatal health. The bioactive components transferred through the milk intake are important for the development of the newborn immune system and include oligosaccharides, lactoferrin, lysozyme, α-La, and immunoglobulins. In the last 15 years, a pivotal role in this mother-to-child exchange has been attributed to extracellular vesicles (EVs). EVs are micro- and nanosized structures enclosed in a phospholipidic double-layer membrane that are produced by all cell types and released in the extracellular environment, reaching both close and distant cells. EVs mediate the intercellular cross-talk from the producing to the receiving cell through the transfer of molecules contained within them such as proteins, antigens, lipids, metabolites, RNAs, and DNA fragments. The complex cargo can induce a wide range of functional modulations in the recipient cell (i.e., anti-inflammatory, immunomodulating, angiogenetic, and pro-regenerative modulations) depending on the type of producing cells and the stimuli that these cells receive. EVs can be recovered from every biological fluid, including blood, urine, bronchoalveolar lavage fluid, saliva, bile, and milk, which is one of the most promising scalable vesicle sources. This review aimed to present the state-of-the-art of animal-milk-derived EV (mEV) studies due to the exponential growth of this field. A focus on the beneficial potentialities for human health and the issues of studying vesicles from milk, particularly for the analytical methodologies applied, is reported.
Collapse
|
19
|
Abstract
Extracellular vesicles (EVs) are membranous nanoparticles secreted by nearly all cell types and play a critical role in cell-to-cell crosstalk. EVs can be categorized based on their size, surface markers, or the cell type from which they originate. EVs carry "cargo," including but not limited to, RNA, DNA, proteins, and small signaling molecules. To date, many methods have been developed to isolate EVs from biological fluids, such as blood plasma, urine, bronchoalveolar lavage fluid, and urine. Once isolated, EVs can be characterized by dynamic light scattering, nanotracking analysis, nanoscale flow cytometry, and transmission electron microscopy. Given the ability of EVs to transport cargo between cells, research has recently focused on understanding their role in various human diseases. As understanding of their significance to disease processes grows, insight into the mechanisms behind the physiological role of their cargo in target cells can facilitate the development of a new type of biomarker and therapeutic target for diseases in future. In addition, their ability to deliver their cargo selectively to target cells within the human body means that they could serve as therapeutic agents or methods of drug delivery. In this review, we will first introduce EVs and the cargo they carry, outline current methods for EV isolation and characterization, and discuss their potential use as biomarkers and therapeutic agents in the near future.
Collapse
Affiliation(s)
- Jonathan M Carnino
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA, United States
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea.
| |
Collapse
|
20
|
Ferguson S, Yang KS, Weissleder R. Single extracellular vesicle analysis for early cancer detection. Trends Mol Med 2022; 28:681-692. [DOI: 10.1016/j.molmed.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022]
|
21
|
Loch-Neckel G, Matos AT, Vaz AR, Brites D. Challenges in the Development of Drug Delivery Systems Based on Small Extracellular Vesicles for Therapy of Brain Diseases. Front Pharmacol 2022; 13:839790. [PMID: 35422699 PMCID: PMC9002061 DOI: 10.3389/fphar.2022.839790] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Small extracellular vesicles (sEVs) have ∼30–200 nm diameter size and may act as carriers of different cargoes, depending on the cell of origin or on the physiological/pathological condition. As endogenous nanovesicles, sEVs are important in intercellular communication and have many of the desirable features of an ideal drug delivery system. sEVs are naturally biocompatible, with superior targeting capability, safety profile, nanometric size, and can be loaded with both lipophilic and hydrophilic agents. Because of their biochemical and physical properties, sEVs are considered a promising strategy over other delivery vehicles in the central nervous system (CNS) since they freely cross the blood-brain barrier and they can be directed to specific nerve cells, potentiating a more precise targeting of their cargo. In addition, sEVs remain stable in the peripheral circulation, making them attractive nanocarrier systems to promote neuroregeneration. This review focuses on the recent progress in methods for manufacturing, isolating, and engineering sEVs that can be used as a therapeutic strategy to overcome neurodegeneration associated with pathologies of the CNS, with particular emphasis on Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis diseases, as well as on brain tumors.
Collapse
Affiliation(s)
- Gecioni Loch-Neckel
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Teresa Matos
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Vaz
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
22
|
Hrkac S, Novak R, Salai G, Grazio S, Vlahovic T, Grgurevic L. Heterotopic ossification vs. fracture healing: Extracellular vesicle cargo proteins shed new light on bone formation. Bone Rep 2022; 16:101177. [PMID: 35252484 PMCID: PMC8892095 DOI: 10.1016/j.bonr.2022.101177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 02/08/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is an extremely rare disease in which bone tissue forms in extraskeletal sites, which is known as heterotopic ossification (HO). Extracellular vesicles (EVs) are small phospholipid-enclosed particles released by various cells which have an emerging, but not completely understood role in various (patho)physiological processes. In order to further study the pathophysiology of FOP we conducted a small observational study comparing the proteomic profiles of EV cargo, derived from pooled plasma of four patient groups: FOP patient (N = 1) during active disease phase (flare-up), FOP patients during remission (N = 2), patients after long bone fracture (N = 20) and healthy controls (N = 10). After isolation of EVs – their protein cargo was determined using liquid chromatography / mass spectrometry, after which a functional gene enrichment analysis was performed. Our results show a sizeable difference of the proteomics profiles in which EVs from the bone fracture group show significant activity of integrin interactions, Wnt, VEGF, IGF-1 and PDGF pathways; conversely, FOP patients' EVs indicate that HO occurs via processes of innate immunity and the Ephrin B signaling pathway. We hypothesize that the Ephrin B signaling (expressed in EVs) contributes to HO by aiding in mesenchymal stem cell recruitment and osteogenic differentiation, as well as by contributing to the inflammatory response, including macrophage chemotaxis and activation. This is, to our knowledge, the first published analysis of EV protein cargo in FOP. Proteomics-based analysis of extracellular vesicles’ protein cargo in FOP patients, bone fracture healing and controls. Marked differences in signaling pathways expressed in extracellular vesicles in FOP vs. patients with bone fractures. Ephrin B signaling pathway expressed in extracellular vesicles identified as a likely cogwheel in heterotopic ossification.
Collapse
|
23
|
Rufino-Ramos D, Lule S, Mahjoum S, Ughetto S, Cristopher Bragg D, Pereira de Almeida L, Breakefield XO, Breyne K. Using genetically modified extracellular vesicles as a non-invasive strategy to evaluate brain-specific cargo. Biomaterials 2022; 281:121366. [PMID: 35033904 PMCID: PMC8886823 DOI: 10.1016/j.biomaterials.2022.121366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/25/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
The lack of techniques to trace brain cell behavior in vivo hampers the ability to monitor status of cells in a living brain. Extracellular vesicles (EVs), nanosized membrane-surrounded vesicles, released by virtually all brain cells might be able to report their status in easily accessible biofluids, such as blood. EVs communicate among tissues using lipids, saccharides, proteins, and nucleic acid cargo that reflect the state and composition of their source cells. Currently, identifying the origin of brain-derived EVs has been challenging, as they consist of a rare population diluted in an overwhelming number of blood and peripheral tissue-derived EVs. Here, we developed a sensitive platform to select out pre-labelled brain-derived EVs in blood as a platform to study the molecular fingerprints of brain cells. This proof-of-principle study used a transducible construct tagging tetraspanin (TSN) CD63, a membrane-spanning hallmark of EVs equipped with affinity, bioluminescent, and fluorescent tags to increase detection sensitivity and robustness in capture of EVs secreted from pre-labelled cells into biofluids. Our platform enables unprecedented efficient isolation of neural EVs from the blood. These EVs derived from pre-labelled mouse brain cells or engrafted human neuronal progenitor cells (hNPCs) were submitted to multiplex analyses, including transcript and protein levels, in compliance with the multibiomolecule EV carriers. Overall, our novel strategy to track brain-derived EVs in a complex biofluid opens up new avenues to study EVs released from pre-labelled cells in near and distal compartments into the biofluid source.
Collapse
Affiliation(s)
- David Rufino-Ramos
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sevda Lule
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Shadi Mahjoum
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Stefano Ughetto
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - D Cristopher Bragg
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA; The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Xandra O Breakefield
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Koen Breyne
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA.
| |
Collapse
|
24
|
Alghamdi M, Alamry SA, Bahlas SM, Uversky VN, Redwan EM. Circulating extracellular vesicles and rheumatoid arthritis: a proteomic analysis. Cell Mol Life Sci 2021; 79:25. [PMID: 34971426 PMCID: PMC11072894 DOI: 10.1007/s00018-021-04020-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Circulating extracellular vesicles (EVs) are membrane-bound nanoparticles secreted by most cells for intracellular communication and transportation of biomolecules. EVs carry proteins, lipids, nucleic acids, and receptors that are involved in human physiology and pathology. EV cargo is variable and highly related to the type and state of the cellular origin. Three subtypes of EVs have been identified: exosomes, microvesicles, and apoptotic bodies. Exosomes are the smallest and the most well-studied class of EVs that regulate different biological processes and participate in several diseases, such as cancers and autoimmune diseases. Proteomic analysis of exosomes succeeded in profiling numerous types of proteins involved in disease development and prognosis. In rheumatoid arthritis (RA), exosomes revealed a potential function in joint inflammation. These EVs possess a unique function, as they can transfer specific autoantigens and mediators between distant cells. Current proteomic data demonstrated that exosomes could provide beneficial effects against autoimmunity and exert an immunosuppressive action, particularly in RA. Based on these observations, effective therapeutic strategies have been developed for arthritis and other inflammatory disorders.
Collapse
Affiliation(s)
- Mohammed Alghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Laboratory Department, University Medical Services Center, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Sultan Abdulmughni Alamry
- Immunology Diagnostic Laboratory Department, King Abdulaziz University Hospital, P.O Box 80215, Jeddah, 21589, Saudi Arabia
| | - Sami M Bahlas
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, P.O. Box 80215, Jeddah, 21589, Saudi Arabia
| | - Vladimir N Uversky
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, 21934, Alexandria, Egypt.
| |
Collapse
|
25
|
Xue K, Jiang Y, Zhang X, Wu J, Qi L, Liu K. Hypoxic ADSCs-derived EVs promote the proliferation and chondrogenic differentiation of cartilage stem/progenitor cells. Adipocyte 2021; 10:322-337. [PMID: 34224296 PMCID: PMC8259721 DOI: 10.1080/21623945.2021.1945210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
Cartilage tissue engineering is a promising option for repairing cartilage defects, although harvesting a large number of seeding cells remains a major challenge. Cartilage stem/progenitor cells (CSPCs) seem to be a promising cell source. Hypoxic extracellular vesicles (EVs) may play a major role in cell-cell and tissue-tissue communication. In the current study, we aimed to evaluate the effect of hypoxic adipose-derived stem cells (ADSCs)-derived EVs on CSPCs proliferation and differentiation. The characteristics of ADSCs-derived EVs were identified, and proliferation, migration, and cartilage-related gene expression of CSPCs were measured with or without the presence of hypoxic ADSCs-derived EVs. SEM, histological staining, biochemical and biomechanical analysis was performed to evaluate the effect of hypoxic ADSCs-derived EVs on CSPCs in alginate hydrogel culture. The results indicated that the majority of ADSC-derived EVs exhibited a round-shaped or cup-shaped morphology with a diameter of 40-1000 nm and expressed CD9, CD63, and CD81. CSPCs migration and proliferation were enhanced by hypoxic ADSCs-derived EVs, which also increased the expression of cartilage-related genes. The hypoxic ADSCs-derived EVs induce CSPCs to produce significantly more cartilage matrix and proteoglycan. In conclusion, hypoxic ADSCs-derived EVs improved the proliferation and chondrogenic differentiation of CSPCs for cartilage tissue engineering.
Collapse
Affiliation(s)
- Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Yongkang Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Xiaodie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| | - Jun Wu
- Department of Orthopedics, The First People’s Hospital of Changzhou, Jiangsu Changzhou, China
| | - Lin Qi
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, PR China
| |
Collapse
|
26
|
Elucidating the Role of Extracellular Vesicles in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13225669. [PMID: 34830825 PMCID: PMC8616095 DOI: 10.3390/cancers13225669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Pancreatic cancer is one of the deadliest cancers worldwide. The chance of surviving more than 5 years after initial diagnosis is less than 10%. This is due to a lack of early diagnostics, where often at the time of initial detection the tumour has already spread to different parts of the body and has developed a propensity to develop drug resistance. Therefore, to tackle this devastating disease, it is necessary to identify the key players responsible for driving pancreatic cancer. Numerous studies have found that small bubble-like packages shed by cancer cells, called extracellular vesicles, play an important role in the progression of the disease. Our knowledge on how extracellular vesicles aid in the progression, spread and chemoresistance of pancreatic cancer is the focus of this review. Of note, these extracellular vesicles may serve as biomarkers for earlier detection of pancreatic cancer and could represent drug targets or drug delivery agents for the treatment of pancreatic cancer. Abstract Pancreatic cancer is one of the deadliest cancers worldwide, with a 5-year survival rate of less than 10%. This dismal survival rate can be attributed to several factors including insufficient diagnostics, rapid metastasis and chemoresistance. To identify new treatment options for improved patient outcomes, it is crucial to investigate the underlying mechanisms that contribute to pancreatic cancer progression. Accumulating evidence suggests that extracellular vesicles, including exosomes and microvesicles, are critical players in pancreatic cancer progression and chemoresistance. In addition, extracellular vesicles also have the potential to serve as promising biomarkers, therapeutic targets and drug delivery tools for the treatment of pancreatic cancer. In this review, we aim to summarise the current knowledge on the role of extracellular vesicles in pancreatic cancer progression, metastasis, immunity, metabolic dysfunction and chemoresistance, and discuss their potential roles as biomarkers for early diagnosis and drug delivery vehicles for treatment of pancreatic cancer.
Collapse
|
27
|
Neyroud AS, Chiechio R, Yefimova M, Lo Faro MJ, Dejucq-Rainsford N, Jaillard S, Even-Hernandez P, Marchi V, Ravel C. Extra-cellular vesicles of the male genital tract: new actors in male fertility? Basic Clin Androl 2021; 31:25. [PMID: 34645388 PMCID: PMC8515699 DOI: 10.1186/s12610-021-00141-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular Vesicles (EVs) are membrane-limited particles containing proteins, lipids, metabolites and nucleic acids that are secreted by healthy and cancerous cells. These vesicles are very heterogeneous in size and content and mediate a variety of biological functions. Three subtypes of EV have been described in the male genital tract: microvesicles, myelinosomes and exosomes. Each type of EVs depends on the location of secretion such as the testis, prostate or epididymis. It has been shown that EVs can fuse together and deliver information to recipient cells, for example spermatozoa in the male genital tract. Cryo-electron microscopy remains the reference technique for determining EV morphology, but quantifying the absolute concentration of these EVs in biological fluids remains a challenge from a clinical point of view. The field of bio detection has considerably increased with the introduction of nanomaterials in biosensors and will provide a better understanding of the impact of these EVs. However, functional modifications of male gametes result from interactions with the components of the intraluminal fluid all along the genital tract and depend on the secretion and absorption of proteins and lipids from the local microenvironment. We cannot therefore exclude the possibility of epigenetic modulation of the information that will be transmitted to the embryo and therefore to the next generation via EVs.
Collapse
Affiliation(s)
- Anne-Sophie Neyroud
- CHU Rennes, Service de Biologie de la Reproduction-CECOS, 35000, Rennes, France
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Régina Chiechio
- Physics and Astronomy Department "E. Majorana", University of Catania, Via S. Sofia 64, 95123, Catania, Italy
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Marina Yefimova
- CHU Rennes, Service de Biologie de la Reproduction-CECOS, 35000, Rennes, France
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, St-Petersburg, 194223, Russia
| | - Maria Josè Lo Faro
- Physics and Astronomy Department "E. Majorana", University of Catania, Via S. Sofia 64, 95123, Catania, Italy
| | - Nathalie Dejucq-Rainsford
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Sylvie Jaillard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Pascale Even-Hernandez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Valérie Marchi
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000, Rennes, France
| | - Célia Ravel
- CHU Rennes, Service de Biologie de la Reproduction-CECOS, 35000, Rennes, France.
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
28
|
Desideri E, Ciccarone F, Ciriolo MR, Fratantonio D. Extracellular vesicles in endothelial cells: from mediators of cell-to-cell communication to cargo delivery tools. Free Radic Biol Med 2021; 172:508-520. [PMID: 34214634 DOI: 10.1016/j.freeradbiomed.2021.06.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles released from most cell types that play a key role in cell-to-cell communication by carrying DNA, non-coding RNAs, proteins and lipids out of cells. The composition of EVs depends on the cell or tissue of origin and changes according to their pathophysiological conditions, making EVs a potential circulating biomarker of disease. Additionally, the natural tropism of EVs for specific organs and cells has raised the interest in their use as delivery vehicles. In this review, we provide an overview of EV biogenesis, isolation and characterization. We also discuss EVs in the context of endothelial pathophysiology, summarizing the current knowledge about their role in cell communication in quiescent and activated endothelial cells. In the last part, we describe the potential use of EVs as delivery vehicles of bioactive compounds and the current strategies to load exogenous cargo and to functionalize EVs to drive them to a specific tissue.
Collapse
Affiliation(s)
- Enrico Desideri
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome
| | - Fabio Ciccarone
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome; IRCCS San Raffaele Pisana, Via della Pisana 235, 00163, Rome, Italy.
| | - Deborah Fratantonio
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy.
| |
Collapse
|
29
|
Paul N, Talluri TR, Nag P, Kumaresan A. Epididymosomes: A potential male fertility influencer. Andrologia 2021; 53:e14155. [PMID: 34213814 DOI: 10.1111/and.14155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/06/2023] Open
Abstract
During transit and storage in epididymis, spermatozoa undergo final maturation, acquire motility, functional competence and the ability to fertilise an oocyte. Epididymal secretions contain a complex biochemical milieu of diverse inorganic ions, proteins, metabolites and other molecules. Since it is believed that spermatozoa are translationally silent, proteins appearing in them are thought to be synthesised elsewhere, including epididymis, and then incorporated to the cells. One of the important mechanisms suggested to be involved in transfer of epididymal secretions to spermatozoa is through exosomes called epididymosomes. Epididymosomes released from the epididymal epithelium contain proteins, noncoding RNAs and distinct set of lipids that are transferred to spermatozoa while they pass through the different epididymal regions. Owing to the importance of these molecules for sperm maturation and fertilising ability, research on epididymosomes has gained increasing attention during the last decade. This review is focused on epididymosomes, with emphasis on recent advances in the understanding of mechanisms of epididymosomal cargo transfer to spermatozoa and potential roles of epididymosomes in sperm function and beyond. Possibilities of utilising the molecular signatures of epididymosomes as a tool for male fertility assessment are also discussed.
Collapse
Affiliation(s)
- Nilendu Paul
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Thirumala Rao Talluri
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| |
Collapse
|
30
|
Buschmann D, Mussack V, Byrd JB. Separation, characterization, and standardization of extracellular vesicles for drug delivery applications. Adv Drug Deliv Rev 2021; 174:348-368. [PMID: 33964356 PMCID: PMC8217305 DOI: 10.1016/j.addr.2021.04.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are membranous nanovesicles secreted from living cells, shuttling macromolecules in intercellular communication and potentially possessing intrinsic therapeutic activity. Due to their stability, low immunogenicity, and inherent interaction with recipient cells, EVs also hold great promise as drug delivery vehicles. Indeed, they have been used to deliver nucleic acids, proteins, and small molecules in preclinical investigations. Furthermore, EV-based drugs have entered early clinical trials for cancer or neurodegenerative diseases. Despite their appeal as delivery vectors, however, EV-based drug delivery progress has been hampered by heterogeneity of sample types and methods as well as a persistent lack of standardization, validation, and comprehensive reporting. This review highlights specific requirements for EVs in drug delivery and describes the most pertinent approaches for separation and characterization. Despite residual uncertainties related to pharmacodynamics, pharmacokinetics, and potential off-target effects, clinical-grade, high-potency EV drugs might be achievable through GMP-compliant workflows in a highly standardized environment.
Collapse
Affiliation(s)
- Dominik Buschmann
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Veronika Mussack
- Department of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - James Brian Byrd
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
31
|
Weng J, Xiang X, Ding L, Wong ALA, Zeng Q, Sethi G, Wang L, Lee SC, Goh BC. Extracellular vesicles, the cornerstone of next-generation cancer diagnosis? Semin Cancer Biol 2021; 74:105-120. [PMID: 33989735 DOI: 10.1016/j.semcancer.2021.05.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Cancer has risen up to be a major cause of mortality worldwide over the past decades. Despite advancements in cancer screening and diagnostics, a significant number of cancers are still diagnosed at a late stage with poor prognosis. Hence, the discovery of reliable and accurate methods to diagnose cancer early would be of great help in reducing cancer mortality. Extracellular vesicles (EVs) are phospholipid vesicles found in many biofluids and are released by almost all types of cells. In recent years, using EVs as cancer biomarkers has garnered attention as a novel technique of cancer diagnosis. Compared with traditional tissue biopsy, there are many advantages that this novel diagnostic tool presents - it is less invasive, detects early-stage asymptomatic cancers, and allows for monitoring of tumour progression. As such, EV biomarkers have great potential in improving the diagnostic accuracy of cancers and guiding subsequent therapeutic decisions. Efficient isolation and accurate characterization of EVs are essential for reliable outcomes of clinical application. However, these are complicated by the size and biomolecular diversity of EVs. In this review, we present an analysis and evaluation of the current techniques of EV isolation and characterization, as well as discuss the potential EV biomarkers for specific types of cancer. Taken together, EV biomarkers have a lot of potential as a novel method in cancer diagnostics and diagnosis. However, more work is still needed to streamline the purification, characterization and biomarker identification process to ensure optimal outcomes for patients.
Collapse
Affiliation(s)
- Jiayi Weng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 20203, China
| | - Lingwen Ding
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea Li-Ann Wong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore.
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
32
|
Røsand Ø, Høydal MA. Cardiac Exosomes in Ischemic Heart Disease- A Narrative Review. Diagnostics (Basel) 2021; 11:diagnostics11020269. [PMID: 33572486 PMCID: PMC7916440 DOI: 10.3390/diagnostics11020269] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic heart disease (IHD) is the primary cause of death globally. IHD is associated with the disruption of blood supply to the heart muscles, which often results in myocardial infarction (MI) that further may progress to heart failure (HF). Exosomes are a subgroup of extracellular vesicles that can be secreted by virtually all types of cells, including cardiomyocytes, cardiac fibroblasts, endothelial cells, and stem and progenitor cells. Exosomes represent an important means of cell–cell communication through the transport of proteins, coding and non-coding RNA, and other bioactive molecules. Several studies show that exosomes play an important role in the progression of IHD, including endothelial dysfunction, the development of arterial atherosclerosis, ischemic reperfusion injury, and HF development. Recently, promising data have been shown that designates exosomes as carriers of cardioprotective molecules that enhance the survival of recipient cells undergoing ischemia. In this review, we summarize the functional involvement of exosomes regarding IHD. We also highlight the cardioprotective effects of native and bioengineered exosomes to IHD, as well as the possibility of using exosomes as natural biomarkers of cardiovascular diseases. Lastly, we discuss the opportunities and challenges that need to be addressed before exosomes can be used in clinical applications.
Collapse
|
33
|
D'Acunzo P, Pérez-González R, Kim Y, Hargash T, Miller C, Alldred MJ, Erdjument-Bromage H, Penikalapati SC, Pawlik M, Saito M, Saito M, Ginsberg SD, Neubert TA, Goulbourne CN, Levy E. Mitovesicles are a novel population of extracellular vesicles of mitochondrial origin altered in Down syndrome. SCIENCE ADVANCES 2021; 7:7/7/eabe5085. [PMID: 33579698 PMCID: PMC7880603 DOI: 10.1126/sciadv.abe5085] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/23/2020] [Indexed: 05/03/2023]
Abstract
Mitochondrial dysfunction is an established hallmark of aging and neurodegenerative disorders such as Down syndrome (DS) and Alzheimer's disease (AD). Using a high-resolution density gradient separation of extracellular vesicles (EVs) isolated from murine and human DS and diploid control brains, we identify and characterize a previously unknown population of double-membraned EVs containing multiple mitochondrial proteins distinct from previously described EV subtypes, including microvesicles and exosomes. We term these newly identified mitochondria-derived EVs "mitovesicles." We demonstrate that brain-derived mitovesicles contain a specific subset of mitochondrial constituents and that their levels and cargo are altered during pathophysiological processes where mitochondrial dysfunction occurs, including in DS. The development of a method for the selective isolation of mitovesicles paves the way for the characterization in vivo of biological processes connecting EV biology and mitochondria dynamics and for innovative therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Pasquale D'Acunzo
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Rocío Pérez-González
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Yohan Kim
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Tal Hargash
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Chelsea Miller
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Sai C Penikalapati
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Monika Pawlik
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Mitsuo Saito
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
- Division of Analytical Psychopharmacology, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Mariko Saito
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | - Thomas A Neubert
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
34
|
Chatterjee V, Yang X, Ma Y, Wu MH, Yuan SY. Extracellular vesicles: new players in regulating vascular barrier function. Am J Physiol Heart Circ Physiol 2020; 319:H1181-H1196. [PMID: 33035434 PMCID: PMC7792704 DOI: 10.1152/ajpheart.00579.2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) have attracted rising interests in the cardiovascular field not only because they serve as serological markers for circulatory disorders but also because they participate in important physiological responses to stress and inflammation. In the circulation, these membranous vesicles are mainly derived from blood or vascular cells, and they carry cargos with distinct molecular signatures reflecting the origin and activation state of parent cells that produce them, thus providing a powerful tool for diagnosis and prognosis of pathological conditions. Functionally, circulating EVs mediate tissue-tissue communication by transporting bioactive cargos to local and distant sites, where they directly interact with target cells to alter their function. Recent evidence points to the critical contributions of EVs to the pathogenesis of vascular endothelial barrier dysfunction during inflammatory response to injury or infection. In this review, we provide a brief summary of the current knowledge on EV biology and advanced techniques in EV isolation and characterization. This is followed by a discussion focusing on the role and mechanisms of EVs in regulating blood-endothelium interactions and vascular permeability during inflammation. We conclude with a translational perspective on the diagnostic and therapeutic potential of EVs in vascular injury or infectious diseases, such as COVID-19.
Collapse
Affiliation(s)
- Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| |
Collapse
|
35
|
Role of Extracellular Vesicles in Epithelial Ovarian Cancer: A Systematic Review. Int J Mol Sci 2020; 21:ijms21228762. [PMID: 33228245 PMCID: PMC7699467 DOI: 10.3390/ijms21228762] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of cell-derived submicron vesicles released under physiological or pathological conditions. EVs mediate the cellular crosstalk, thus contributing to defining the tumor microenvironment, including in epithelial ovarian cancer (EOC). The available literature investigating the role of EVs in EOC has been reviewed following PRISMA guidelines, focusing on the role of EVs in early disease diagnosis, metastatic spread, and the development of chemoresistance in EOC. Data were identified from searches of Medline, Current Contents, PubMed, and from references in relevant articles from 2010 to 1 April 2020. The research yielded 194 results. Of these, a total of 36 papers, 9 reviews, and 27 original types of research were retained and analyzed. The literature findings demonstrate that a panel of EV-derived circulating miRNAs may be useful for early diagnosis of EOC. Furthermore, it appears clear that EVs are involved in mediating two crucial processes for metastatic and chemoresistance development: the epithelial–mesenchymal transition, and tumor escape from the immune system response. Further studies, more focused on in vivo evidence, are urgently needed to clarify the role of EV assessment in the clinical management of EOC patients.
Collapse
|
36
|
Nguyen VV, Witwer KW, Verhaar MC, Strunk D, van Balkom BW. Functional assays to assess the therapeutic potential of extracellular vesicles. J Extracell Vesicles 2020; 10:e12033. [PMID: 33708360 PMCID: PMC7890556 DOI: 10.1002/jev2.12033] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/24/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
An important aspect in the development of extracellular vesicle (EV) therapeutics is identifying and quantifying the key features defining their identity, purity, sterility, potency and stability to ensure batch-to-batch reproducibility of their therapeutic efficacy. Apart from EV-inherent features, therapeutic efficacy depends on a variety of additional parameters, like dosing, frequency of application, and administration route, some of which can be addressed only in clinical trials. Before initiating clinical trials, EV-inherent features should be tested in well-standardized quantitative assays in vitro or in appropriate animal models in vivo. Ideally, such assays would predict if a particular EV preparation has the potential to achieve its intended therapeutic effects, and could be further developed into formal potency assays as published by the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use guidelines. Furthermore, such assays should facilitate the comparison of EV preparations produced in different batches, on different manufacturing platforms or deriving from different cell sources. For now, a wide spectrum of in vitro and in vivo assays has been used to interrogate the therapeutic functions of EVs. However, many cannot accurately predict therapeutic potential. Indeed, several unique challenges make it difficult to set up reliable assays to assess the therapeutic potential of EVs, and to develop such assays into formal potency tests. Here, we discuss challenges and opportunities around in vitro and in vivo testing of EV therapeutic potential, including the need for harmonization, establishment of formal potency assays and novel developments for functional testing.
Collapse
Affiliation(s)
- Vivian V.T. Nguyen
- Department of Nephrology and HypertensionUMC UtrechtUtrechtThe Netherlands
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyDepartment of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - Dirk Strunk
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI‐TReCS)Cell Therapy InstituteParacelsus Medical UniversitySalzburgAustria
| | | |
Collapse
|
37
|
Jurj A, Pop-Bica C, Slaby O, Ştefan CD, Cho WC, Korban SS, Berindan-Neagoe I. Tiny Actors in the Big Cellular World: Extracellular Vesicles Playing Critical Roles in Cancer. Int J Mol Sci 2020; 21:7688. [PMID: 33080788 PMCID: PMC7589964 DOI: 10.3390/ijms21207688] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/04/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Communications among cells can be achieved either via direct interactions or via secretion of soluble factors. The emergence of extracellular vesicles (EVs) as entities that play key roles in cell-to-cell communication offer opportunities in exploring their features for use in therapeutics; i.e., management and treatment of various pathologies, such as those used for cancer. The potential use of EVs as therapeutic agents is attributed not only for their cell membrane-bound components, but also for their cargos, mostly bioactive molecules, wherein the former regulate interactions with a recipient cell while the latter trigger cellular functions/molecular mechanisms of a recipient cell. In this article, we highlight the involvement of EVs in hallmarks of a cancer cell, particularly focusing on those molecular processes that are influenced by EV cargos. Moreover, we explored the roles of RNA species and proteins carried by EVs in eliciting drug resistance phenotypes. Interestingly, engineered EVs have been investigated and proposed as therapeutic agents in various in vivo and in vitro studies, as well as in several clinical trials.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.J.); (C.P.-B.)
| | - Cecilia Pop-Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.J.); (C.P.-B.)
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic;
- Department of Pathology, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Cristina D. Ştefan
- SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore;
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China;
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.J.); (C.P.-B.)
- Department of Functional Genomics and Experimental Pathology, “Prof. Dr. Ion Chiricuta” Oncology Institute, 400015 Cluj-Napoca, Romania
| |
Collapse
|
38
|
Bălașa A, Șerban G, Chinezu R, Hurghiș C, Tămaș F, Manu D. The Involvement of Exosomes in Glioblastoma Development, Diagnosis, Prognosis, and Treatment. Brain Sci 2020; 10:brainsci10080553. [PMID: 32823792 PMCID: PMC7463943 DOI: 10.3390/brainsci10080553] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Brain tumours are a serious concern among both physicians and patients. The most feared brain tumour is glioblastoma (GBM) due to its heterogeneous histology, substantial invasive capacity, and rapid postsurgical recurrence. Even in cases of early management consisting of surgery, chemo-, and radiotherapy, the prognosis is still poor, with an extremely short survival period. Consequently, researchers are trying to better understand the underlying pathways involved in GBM development in order to establish a more personalised approach. The latest focus is on molecular characterisation of the tumour, including analysis of extracellular vesicles (EVs), nanostructures derived from both normal and pathological cells that have an important role in intercellular communication due to the various molecules they carry. There are two types of EV based on their biogenesis, but exosomes are of particular interest in GBM. Recent studies have demonstrated that GBM cells release numerous exosomes whose cargo provides them the capacity to facilitate tumour cell invasion and migration, to stimulate malignant transformation of previously normal cells, to increase immune tolerance towards the tumour, to induce resistance to chemotherapy, and to enhance the GBM vascular supply. As exosomes are specific to their parental cells, their isolation would allow a deeper perspective on GBM pathogenesis. A new era of molecular manipulation has emerged, and exosomes are rapidly proving their value not only as diagnostic and prognostic markers, but also as tools in therapies specifically targeting GBM cells. Nonetheless, further research will be required before exosomes could be used in clinical practice. This review aims to describe the structural and functional characteristics of exosomes and their involvement in GBM development, diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Adrian Bălașa
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania; (A.B.); (R.C.); (C.H.); (F.T.)
- ‘George Emil Palade’ University of Medicine, Pharmacy, Science and Technology, 540139 Târgu Mureș, Romania
| | - Georgiana Șerban
- Department of Neurology, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania
- Correspondence: ; Tel.: +40-724-051-516
| | - Rareş Chinezu
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania; (A.B.); (R.C.); (C.H.); (F.T.)
- ‘George Emil Palade’ University of Medicine, Pharmacy, Science and Technology, 540139 Târgu Mureș, Romania
| | - Corina Hurghiș
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania; (A.B.); (R.C.); (C.H.); (F.T.)
| | - Flaviu Tămaș
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania; (A.B.); (R.C.); (C.H.); (F.T.)
| | - Doina Manu
- Center for Advanced Pharmaceutical and Medical Research, 540139 Târgu Mureș, Romania;
| |
Collapse
|
39
|
Tertel T, Görgens A, Giebel B. Analysis of individual extracellular vesicles by imaging flow cytometry. Methods Enzymol 2020; 645:55-78. [PMID: 33565978 DOI: 10.1016/bs.mie.2020.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Virtually all cells release extracellular vesicles (EVs) into their environment, such as exosomes and microvesicles. EVs can mediate intercellular communication processes in a targeted manner. Representing their cell of origin, EVs contain cell type specific signatures, qualifying them as a novel class of biomarkers. Furthermore, according to their tropism to certain target cells, EVs provide promising aspects to be used as drug delivery vehicles. Depending on their origin, certain EVs contain the potential to modulate physiological and pathophysiological processes. Although the EV field provides many interesting aspects, the methodology in EV research is limited. For now, EVs are mainly analyzed by nanoparticle tracking analysis and bulk molecular analysis, regularly Western Blot. These technologies cannot dissect the heterogeneity of EVs observed by electron microscopy (EM). Although EM technologies help to demonstrate the heterogeneity within EV samples, EM technologies are not appropriate to perform more complex and quantitative EV analyses. Flow cytometry (FCM) is a traditional method for dissecting the heterogeneity of given cell populations in a quantitative and complex manner. However, classical FCM regularly fails to detect objects in the size range of small EVs (sEVs) that typically is in the range between 70 and 150nm. Recently, we and others demonstrated the potential of imaging FCM for the analyses of small EVs at the single vesicle level. Here, at the example of sEVs harvested from supernatants of human mesenchymal stromal cells (MSCs), we share a protocol for studying the expression of the tetraspanins CD9, CD63 and CD81 on single EVs.
Collapse
Affiliation(s)
- Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
40
|
Abstract
Extracellular vesicles (EVs) play an important role in intercellular communication in normal cellular process and pathological conditions by facilitating the transport of cellular content from one cell to another. EVs as conveyors of various biological molecules with their ability to redirect effects on a target cell physiological function in cell type-specific manner makes EVs an excellent candidate for drug delivery vehicle in disease therapy. Moreover, unique characteristics and contents of EVs which differ depends on cellular origin and physiological state make them a valuable source of diagnostic biomarker. Herein, we review the current progress in extracellular vesicle (EV) analysis, its transition from biomedical research to advancing therapy, and recent pioneered approaches to characterize and quantify EVs' subclasses with an emphasis on the integration of advanced technologies for both qualitative and quantitative analysis of EVs in different clinical tissue/body fluid samples.
Collapse
Affiliation(s)
- Arada Vinaiphat
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
41
|
Extracellular Vesicles as Signaling Mediators and Disease Biomarkers across Biological Barriers. Int J Mol Sci 2020; 21:ijms21072514. [PMID: 32260425 PMCID: PMC7178048 DOI: 10.3390/ijms21072514] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles act as shuttle vectors or signal transducers that can deliver specific biological information and have progressively emerged as key regulators of organized communities of cells within multicellular organisms in health and disease. Here, we survey the evolutionary origin, general characteristics, and biological significance of extracellular vesicles as mediators of intercellular signaling, discuss the various subtypes of extracellular vesicles thus far described and the principal methodological approaches to their study, and review the role of extracellular vesicles in tumorigenesis, immunity, non-synaptic neural communication, vascular-neural communication through the blood-brain barrier, renal pathophysiology, and embryo-fetal/maternal communication through the placenta.
Collapse
|
42
|
Vucetic A, Filho ADSL, Dong G, Olivier M. Isolation of Extracellular Vesicles from Leishmania spp. Methods Mol Biol 2020; 2116:555-574. [PMID: 32221942 DOI: 10.1007/978-1-0716-0294-2_33] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exosomes, a class of extracellular vesicles, are released by eukaryotes, bacteria, and archaea, as evident from both in vitro and in vivo studies. These nano-sized double-membraned vesicles play an important role in cell-to-cell communication, dysregulation of the immune system, and pathogenesis in a number of diseases, including leishmaniasis. Leishmania is a genus of obligate intracellular parasites, which infect host macrophages, are transmitted through the bite of a sandfly, and are shown to secrete exosomes with immunomodulatory activities. Given the importance of these vesicles in Leishmania spp. virulence, it is necessary to perform appropriate isolation and characterization in order to further study their relevance in the parasite's infectious life cycle. In this chapter, we describe four methods for the isolation of extracellular vesicles derived from Leishmania species including ultracentrifugation, polyethylene glycol-based precipitation, size-exclusion chromatography, and sucrose-gradient fractionation. Further, we describe the preparation of isolated samples for characterization by nanoparticle tracking analysis, transmission electron microscopy, and proteomic profiling.
Collapse
Affiliation(s)
- Andrea Vucetic
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Alonso Da Silva Lira Filho
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - George Dong
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Martin Olivier
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
43
|
Isolation and characterization of extracellular vesicles from Broncho-alveolar lavage fluid: a review and comparison of different methods. Respir Res 2019; 20:240. [PMID: 31666080 PMCID: PMC6822481 DOI: 10.1186/s12931-019-1210-z] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membranous vesicles secreted by cells into the extracellular space, which play a role in cell to cell communication. EVs are categorized into 3 groups depending on their size, surface marker, and method of release from the host cell. Recently, EVs have become of interest in the study of multiple disease etiologies and are believed to be potential biomarkers for many diseases. Multiple different methods have been developed to isolate EVs from different samples such as cell culture medium, serum, blood, and urine. Once isolated, EVs can be characterized by technology such as nanotracking analysis, dynamic light scattering, and nanoscale flow cytometry. In this review, we summarize the current methods of EV isolation, provide details into the three methods of EV characterization, and provide insight into which isolation approaches are most suitable for EV isolation from bronchoalveolar lavage fluid (BALF).
Collapse
|
44
|
Eleuteri S, Fierabracci A. Insights into the Secretome of Mesenchymal Stem Cells and Its Potential Applications. Int J Mol Sci 2019; 20:4597. [PMID: 31533317 PMCID: PMC6770239 DOI: 10.3390/ijms20184597] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have regenerative, immunoregulatory properties and can be easily isolated and expanded in vitro. Despite being a powerful tool for clinical applications, they present limitations in terms of delivery, safety, and variability of therapeutic response. Interestingly, the MSC secretome composed by cytokines, chemokines, growth factors, proteins, and extracellular vesicles, could represent a valid alternative to their use. It is noteworthy that MSC-derived extracellular vesicles (MSC-EVs) have the same effect and could be advantageous compared to the parental cells because of their specific miRNAs load. MiRNAs could be useful both in diagnostic procedures such as "liquid biopsy" to identify early pathologies and in the therapeutic field. Not only are MSC-EVs' preservation, transfer, and production easier, but their administration is also safer, hence some clinical trials are ongoing. However, much effort is required to improve the characterization of EVs to avoid artifacts and guarantee reproducibility of the studies.
Collapse
Affiliation(s)
- Sharon Eleuteri
- Infectivology and Clinical Trials Area, Children's Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy.
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Area, Children's Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy.
| |
Collapse
|
45
|
Vechetti IJ. Emerging role of extracellular vesicles in the regulation of skeletal muscle adaptation. J Appl Physiol (1985) 2019; 127:645-653. [PMID: 31194602 DOI: 10.1152/japplphysiol.00914.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Extracellular vesicles (EVs) were initially characterized as "garbage bags" with the purpose of removing unwanted material from cells. It is now becoming clear that EVs mediate intercellular communication between distant cells through a transfer of genetic material, a process important to the systemic adaptation in physiological and pathological conditions. Although speculative, it has been suggested that the majority of EVs that make it into the bloodstream would be coming from skeletal muscle, since it is one of the largest organs in the human body. Although it is well established that skeletal muscle secretes peptides (currently known as myokines) into the bloodstream, the notion that skeletal muscle releases EVs is in its infancy. Besides intercellular communication and systemic adaptation, EV release could represent the mechanism by which muscle adapts to certain stimuli. This review summarizes the current understanding of EV biology and biogenesis and current isolation methods and briefly discusses the possible role EVs have in regulating skeletal muscle mass.
Collapse
Affiliation(s)
- Ivan J Vechetti
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
46
|
Bachurski D, Schuldner M, Nguyen PH, Malz A, Reiners KS, Grenzi PC, Babatz F, Schauss AC, Hansen HP, Hallek M, Pogge von Strandmann E. Extracellular vesicle measurements with nanoparticle tracking analysis – An accuracy and repeatability comparison between NanoSight NS300 and ZetaView. J Extracell Vesicles 2019. [DOI: 78495111110.1080/20013078.2019.1596016' target='_blank'>'"<>78495111110.1080/20013078.2019.1596016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.1080/20013078.2019.1596016','', '10.1007/978-1-4939-6728-5_4')">Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
78495111110.1080/20013078.2019.1596016" />
Affiliation(s)
- Daniel Bachurski
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on ‘‘Cellular Stress Responses in Aging-Associated Diseases’’, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Maximiliane Schuldner
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Department of Hematology, Oncology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Phuong-Hien Nguyen
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on ‘‘Cellular Stress Responses in Aging-Associated Diseases’’, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Alexandra Malz
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Department of Hematology, Oncology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Katrin S Reiners
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Patricia C Grenzi
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Felix Babatz
- CECAD Center of Excellence on ‘‘Cellular Stress Responses in Aging-Associated Diseases’’, University of Cologne, Cologne, Germany
| | - Astrid C Schauss
- CECAD Center of Excellence on ‘‘Cellular Stress Responses in Aging-Associated Diseases’’, University of Cologne, Cologne, Germany
| | - Hinrich P Hansen
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on ‘‘Cellular Stress Responses in Aging-Associated Diseases’’, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on ‘‘Cellular Stress Responses in Aging-Associated Diseases’’, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Department of Hematology, Oncology and Immunology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
47
|
Bachurski D, Schuldner M, Nguyen PH, Malz A, Reiners KS, Grenzi PC, Babatz F, Schauss AC, Hansen HP, Hallek M, Pogge von Strandmann E. Extracellular vesicle measurements with nanoparticle tracking analysis - An accuracy and repeatability comparison between NanoSight NS300 and ZetaView. J Extracell Vesicles 2019; 8:1596016. [PMID: 30988894 PMCID: PMC6450530 DOI: 10.1080/20013078.2019.1596016] [Citation(s) in RCA: 365] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 02/14/2019] [Accepted: 03/03/2019] [Indexed: 12/13/2022] Open
Abstract
The expanding field of extracellular vesicle (EV) research needs reproducible and accurate methods to characterize single EVs. Nanoparticle Tracking Analysis (NTA) is commonly used to determine EV concentration and diameter. As the EV field is lacking methods to easily confirm and validate NTA data, questioning the reliability of measurements remains highly important. In this regard, a comparison addressing measurement quality between different NTA devices such as Malvern’s NanoSight NS300 or Particle Metrix’ ZetaView has not yet been conducted. To evaluate the accuracy and repeatability of size and concentration determinations of both devices, we employed comparative methods including transmission electron microscopy (TEM) and single particle interferometric reflectance imaging sensing (SP-IRIS) by ExoView. Multiple test measurements with nanospheres, liposomes and ultracentrifuged EVs from human serum and cell culture supernatant were performed. Additionally, serial dilutions and freeze-thaw cycle-dependent EV decrease were measured to determine the robustness of each system. Strikingly, NanoSight NS300 exhibited a 2.0–2.1-fold overestimation of polystyrene and silica nanosphere concentration. By measuring serial dilutions of EV samples, we demonstrated higher accuracy in concentration determination by ZetaView (% BIAS range: 2.7–8.5) in comparison with NanoSight NS300 (% BIAS range: 32.9–36.8). The concentration measurements by ZetaView were also more precise (% CV range: 0.0–4.7) than measurements by NanoSight NS300 (% CV range: 5.4–10.7). On the contrary, quantitative TEM imaging indicated more accurate EV sizing by NanoSight NS300 (% DTEM range: 79.5–134.3) compared to ZetaView (% DTEM range: 111.8–205.7), while being equally repeatable (NanoSight NS300% CV range: 0.8–6.7; ZetaView: 1.4–7.8). However, both devices failed to report a peak EV diameter below 60 nm compared to TEM and SP-IRIS. Taken together, NTA devices differ strongly in their hardware and software affecting measuring results. ZetaView provided a more accurate and repeatable depiction of EV concentration, whereas NanoSight NS300 supplied size measurements of higher resolution.
Collapse
Affiliation(s)
- Daniel Bachurski
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on ''Cellular Stress Responses in Aging-Associated Diseases'', Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Maximiliane Schuldner
- Department I of Internal Medicine, University of Cologne, Cologne, Germany.,Experimental Tumor Research, Center for Tumor Biology and Immunology, Department of Hematology, Oncology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Phuong-Hien Nguyen
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on ''Cellular Stress Responses in Aging-Associated Diseases'', Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Alexandra Malz
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Department of Hematology, Oncology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Katrin S Reiners
- Department I of Internal Medicine, University of Cologne, Cologne, Germany.,Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Patricia C Grenzi
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Felix Babatz
- CECAD Center of Excellence on ''Cellular Stress Responses in Aging-Associated Diseases'', University of Cologne, Cologne, Germany
| | - Astrid C Schauss
- CECAD Center of Excellence on ''Cellular Stress Responses in Aging-Associated Diseases'', University of Cologne, Cologne, Germany
| | - Hinrich P Hansen
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on ''Cellular Stress Responses in Aging-Associated Diseases'', Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, University Hospital of Cologne, Center for Integrated Oncology Cologne-Bonn, CECAD Center of Excellence on ''Cellular Stress Responses in Aging-Associated Diseases'', Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Department of Hematology, Oncology and Immunology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
48
|
Hartjes TA, Mytnyk S, Jenster GW, van Steijn V, van Royen ME. Extracellular Vesicle Quantification and Characterization: Common Methods and Emerging Approaches. Bioengineering (Basel) 2019; 6:bioengineering6010007. [PMID: 30654439 PMCID: PMC6466085 DOI: 10.3390/bioengineering6010007] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are a family of small membrane vesicles that carry information about cells by which they are secreted. Growing interest in the role of EVs in intercellular communication, but also in using their diagnostic, prognostic and therapeutic potential in (bio) medical applications, demands for accurate assessment of their biochemical and physical properties. In this review, we provide an overview of available technologies for EV analysis by describing their working principles, assessing their utility in EV research and summarising their potential and limitations. To emphasise the innovations in EV analysis, we also highlight the unique possibilities of emerging technologies with high potential for further development.
Collapse
Affiliation(s)
- Thomas A Hartjes
- Department of Pathology, Erasmus Optical Imaging Centre, Erasmus MC, 3015 GE Rotterdam, The Netherlands.
| | - Serhii Mytnyk
- Department of Chemical Engineering, Delft University of Technology, 3015 CD Delft, The Netherlands.
| | - Guido W Jenster
- Department of Urology, Erasmus MC, 3015 CD Rotterdam, The Netherlands.
| | - Volkert van Steijn
- Department of Chemical Engineering, Delft University of Technology, 3015 CD Delft, The Netherlands.
| | - Martin E van Royen
- Department of Pathology, Erasmus Optical Imaging Centre, Erasmus MC, 3015 GE Rotterdam, The Netherlands.
| |
Collapse
|
49
|
Paolini L, Zendrini A, Radeghieri A. Biophysical properties of extracellular vesicles in diagnostics. Biomark Med 2018; 12:383-391. [PMID: 29441794 DOI: 10.2217/bmm-2017-0458] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived nanoparticles, involved in cell-to-cell communication, in both normal and pathological processes. Originating by the outward budding of the plasma membrane or released by exocytosis, they are natural cargoes for lipids, carbohydrates, proteins and nucleic acids. EV-based diagnostics promises unique advantages compared with conventional strategies involving whole body fluid analysis, including the reduction of biofluids complexity and more specific and sensitive detection of low abundance biomacromolecules. Besides EV cargoes, new breakthrough technologies are addressing EV 'colloidal properties' - including particle content, size and membrane mechanical properties - directly experienced by researchers to be critical factors in biomarkers discovery. This article focuses on the progresses in EV biophysical properties characterization as diagnostic tools for different pathological conditions.
Collapse
Affiliation(s)
- Lucia Paolini
- Department of Molecular & Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Andrea Zendrini
- Department of Molecular & Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Annalisa Radeghieri
- Department of Molecular & Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
50
|
Ramirez MI, Amorim MG, Gadelha C, Milic I, Welsh JA, Freitas VM, Nawaz M, Akbar N, Couch Y, Makin L, Cooke F, Vettore AL, Batista PX, Freezor R, Pezuk JA, Rosa-Fernandes L, Carreira ACO, Devitt A, Jacobs L, Silva IT, Coakley G, Nunes DN, Carter D, Palmisano G, Dias-Neto E. Technical challenges of working with extracellular vesicles. NANOSCALE 2018; 10:881-906. [PMID: 29265147 DOI: 10.1039/c7nr08360b] [Citation(s) in RCA: 373] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Extracellular Vesicles (EVs) are gaining interest as central players in liquid biopsies, with potential applications in diagnosis, prognosis and therapeutic guidance in most pathological conditions. These nanosized particles transmit signals determined by their protein, lipid, nucleic acid and sugar content, and the unique molecular pattern of EVs dictates the type of signal to be transmitted to recipient cells. However, their small sizes and the limited quantities that can usually be obtained from patient-derived samples pose a number of challenges to their isolation, study and characterization. These challenges and some possible options to overcome them are discussed in this review.
Collapse
Affiliation(s)
- Marcel I Ramirez
- Fundação Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil and Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Catarina Gadelha
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ivana Milic
- School of Life and Health Sciences, Aston University, England, UK
| | | | | | - Muhammad Nawaz
- Universidade de São Paulo, São Paulo, SP, Brazil and University of Gothenburg, Sweden
| | - Naveed Akbar
- Division of Cardiovascular Medicine, University of Oxford, Oxford, England, UK
| | - Yvonne Couch
- Acute Stroke Programme, RDM-Investigative Medicine, University of Oxford, Oxford, England, UK
| | - Laura Makin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, England, UK
| | - Fiona Cooke
- University of St Andrews, St Andrews, Fife, Scotland, UK
| | - Andre L Vettore
- Federal University of São Paulo campus Diadema, Diadema, Brazil
| | | | | | - Julia A Pezuk
- Universidade Anhanguera de São Paulo, São Paulo, Brazil
| | - Lívia Rosa-Fernandes
- Universidade de São Paulo, São Paulo, SP, Brazil and University of Southern Denmark, Odense, Denmark
| | | | - Andrew Devitt
- School of Life and Health Sciences, Aston University, England, UK
| | | | | | - Gillian Coakley
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, UK
| | - Diana N Nunes
- CIPE, A.C.Camargo Cancer Center, São Paulo, SP, Brazil.
| | - Dave Carter
- Oxford Brookes University, Oxford, England, UK
| | - Giuseppe Palmisano
- Universidade de São Paulo, São Paulo, SP, Brazil and IRCCS, Fondazione Santa Lucia, Rome, Italy
| | - Emmanuel Dias-Neto
- CIPE, A.C.Camargo Cancer Center, São Paulo, SP, Brazil. and Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|