1
|
Jeong Y, Yang D, Solidum JG, Ortinau L, Park D. Comparative Single-Cell Analysis Reveals Tendon Progenitor Dysfunction by Age-Associated Oxidative Stress and Its Restoration by Antioxidant Treatments. J Cell Physiol 2025; 240:e70016. [PMID: 39987523 DOI: 10.1002/jcp.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Impaired healing of adult tendons with fibrosis remains clinical challenges while neonatal tendons have full functional restoration. However, age-associated cellular and molecular changes in tendon cells and tendon stem/progenitor cells (TSPCs) remain unknown. Here, comparative single cell transcriptomics of early postnatal (2 weeks old) and adult (20 weeks old) mouse tendons revealed that adult tendons have reduced number of TSPCs, decreased gene expression in tendon and cartilage development, and a greater population of fibro-tenogenic cells. Notably, adult TSPCs and tenocytes exhibit increased expression of immune-response and oxidative-stress genes with higher EGFR but decreased IGF signaling. Adult tendon cells show increased levels of intracellular reactive oxygen species (ROS) in vivo. In contrast, antioxidant treatment of adult tendons significantly reduces intracellular ROS of TSPCs and improves tendon strength in vivo. Hence, these findings suggest that increased inflammation and ROS during tendon aging deteriorates tendon function and regeneration that can be mitigated by antioxidant treatment.
Collapse
Affiliation(s)
- Youngjae Jeong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Dongwook Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jea Giezl Solidum
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Philippines
| | - Laura Ortinau
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Dongsu Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Center for Skeletal Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Rodríguez Gil JE, Blanco-Prieto O. Techniques to Determine Mammalian Sperm Capacitation. Methods Mol Biol 2025; 2897:463-495. [PMID: 40202654 DOI: 10.1007/978-1-0716-4406-5_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The detection of the achievement of the capacitation status in a sperm sample is a very important asset for optimizing most reproductive techniques centered on semen, from freezing to "in vitro" fertilization. However, there is not a single, simple test that can determine the precise capacitation of a sample. This implies that a combined panel of separate tests focused on separate aspects of sperm function must be carried out to obtain a precise knowledge of the functional status of the sample. This work deals with a brief explanation of the most important techniques applied at these moments to determine sperm capacitation, with an emphasis not on the description of each technique, but on the advantages, disadvantages, and main purposes taking into account practical aspects such as the precise target by which a laboratory wants to determine capacitation. In this way, the main aim of this work is to give a practical guide for practitioners of laboratories from separate objectives, from standard semen quality analysis to molecular and/or mechanistic studies of sperm function, for choosing the most adequate tests to determine capacitation basing on the intended precise targets chosen in each case.
Collapse
Affiliation(s)
- Joan E Rodríguez Gil
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, University of Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.
| | | |
Collapse
|
3
|
Panda ES, Gautam AS, Pandey SK, Singh RK. IL-17A-Induced Redox Imbalance and Inflammatory Responses in Mice Lung via Act1-TRAF6-IKBα Signaling Pathway: Implications for Lung Disease Pathogenesis. Inflammation 2024:10.1007/s10753-024-02199-9. [PMID: 39607627 DOI: 10.1007/s10753-024-02199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
IL-17A is a potent proinflammatory cytokine that plays a crucial role in the pathogenesis of various lung diseases. This study focused on the evaluation of the role of IL-17 receptor signaling through one-week intranasal exposure of IL-17A in lung tissues of BALB/c mice. IL-17A triggered inflammatory responses in the mice lungs and led to changes in the morphological alveolar arrangements. Exposure of IL-17A induced redox imbalance by triggering an increase in the level of the pro-oxidants (reactive oxygen species, nitrite and malondialdehyde) and reduction of the levels of antioxidant proteins (glutathione, superoxide dismutase and catalase) in the lung tissue. IL-17A also caused a significant elevation in the levels of proinflammatory cytokines lines including TNF-α, IL-1β and IL-6, in lung tissue as well as in plasma. More interestingly, these changes were accompanied by the alterations in IL-17 receptor downstream signaling through activation of IL-17R-Act1-TRAF6-IKBα-mediated pathway. IL-17A exposure also caused lung tissue injury, recruitment and polarization of immune cells from anti-inflammatory to pro-inflammatory. This study clearly demonstrated the role of IL-17A-induced signaling in worsening lung inflammatory diseases, and hence points towards its emergence as an important therapeutic target to control lung inflammation.
Collapse
Affiliation(s)
- Ekta Swarnamayee Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Shivam Kumar Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
4
|
Huang C, Gan J, Mo X, Li Q, Liao L, Wang B, Wu X, Liang H, Xie C, Peng T, Lei Y, Zhuang B, Zeng M, Peng Y, Chen Y, Liu C, Zhou J, Wang K, Li C. Accumulation of polyunsaturated lipids fuels ferroptosis to promote liver failure after extended hepatectomy in mice. Free Radic Res 2024; 58:733-747. [PMID: 39514464 DOI: 10.1080/10715762.2024.2423691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/07/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Post-hepatectomy liver failure (PHLF) is a fatal complication of hepatectomy. However, the mechanism of hepatocyte injury in PHLF remains elusive. METHODS PHLF was induced by extended 86% hepatectomy (eHx) in mice. Lipidomics was performed to investigate the eHx-induced lipid alteration in the residual liver. Ferroptosis was assessed to screen the hepatocyte injury induced by eHx. The therapeutic effects of ferrostatin-1 (Fer-1) on PHLF were evaluated. RESULTS PHLF was induced by eHx with elevation in markers of hepatocyte injury and mortality in mice within 48 h after surgery. eHx-induced hepatocyte injury was manifested by hepatocyte enlargement and hepatocyte death with glycogen depletion and lipid accumulation. Lipidomics revealed that eHx induced the accumulation of ferroptosis-favored polyunsaturated lipids. Ferroptosis was found to mediate the eHx-induced hepatocyte death in the residual liver during the development of PHLF. Fer-1 could attenuate the eHx-induced ferroptotic hepatocyte death and PHLF in mice. CONCLUSIONS Ferroptosis partly mediates the eHx-induced hepatocyte injury during the development of PHLF. Accumulation of polyunsaturated lipids in hepatocytes may promote eHx-induced ferroptosis, and targeting lipid peroxidation is a potential therapeutic strategy for PHLF.
Collapse
Affiliation(s)
- Can Huang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Gan
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangyue Mo
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qingping Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Leyi Liao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Biao Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianqiu Wu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hanbiao Liang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Xie
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tianzhou Peng
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Lei
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baoxiong Zhuang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Minghui Zeng
- Institute of Scientific Research, Southern Medical University, Guangzhou, China
| | - Yonghong Peng
- Central Laboratory, Southern Medical University, Guangzhou, China
| | - Yisi Chen
- Central Laboratory, Southern Medical University, Guangzhou, China
| | - Cuiting Liu
- Central Laboratory, Southern Medical University, Guangzhou, China
| | - Jie Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Lin Y, Liu J, Chong SY, Ting HJ, Tang X, Yang L, Zhang S, Qi X, Pei P, Yi Z, Huang C, Hou X, Gao L, Torta F, Liu X, Liu B, Kah JCY, Wang J. Dual-Function Nanoscale Coordination Polymer Nanoparticles for Targeted Diagnosis and Therapeutic Delivery in Atherosclerosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401659. [PMID: 39185808 PMCID: PMC11579969 DOI: 10.1002/smll.202401659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/08/2024] [Indexed: 08/27/2024]
Abstract
Atherosclerosis is the primary cause of cardiovascular events such as heart attacks and strokes. However, current medical practice lacks non-invasive, reliable approaches for both imaging atherosclerotic plaques and delivering therapeutic agents directly therein. Here, a biocompatible and biodegradable pH-responsive nanoscale coordination polymers (NCPs) based theranostic system is reported for managing atherosclerosis. NCPs are synthesized with a pH-responsive benzoic-imine (BI) linker and Gd3+. Simvastatin (ST), a statin not used for lowering blood cholesterol but known for its anti-inflammatory and antioxidant effects in mice, is chosen as the model drug. By incorporating ST into the hydrophobic domain of a lipid bilayer shell on NCPs surfaces, ST/NCP-PEG nanoparticles are created that are designed for dual purposes: they diagnose and treat atherosclerosis. When administered intravenously, they target atherosclerotic plaques, breaking down in the mild acidic microenvironment of the plaque to release ST, which reduces inflammation and oxidative stress, and Gd-complexes for MR imaging of the plaques. ST/NCP-PEG nanoparticles show efficacy in slowing the progression of atherosclerosis in live models and allow for simultaneous in vivo monitoring without observed toxicity in major organs. This positions ST/NCP-PEG nanoparticles as a promising strategy for the spontaneous diagnosis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yuanzhe Lin
- Department of SurgeryYong Loo Lin School of MedicineNational University of Singapore1E Kent Ridge RdSingapore119228Singapore
- Department of Biomedical EngineeringNational University of Singapore4 Engineering Drive 3, Block E4, #04‐08Singapore117583Singapore
- Nanomedicine Translational Research ProgramYong Loo Lin School of MedicineNational University of SingaporeSingapore117609Singapore
| | - Jingjing Liu
- Institute of Translational MedicineMedical CollegeYangzhou UniversityYangzhouJiangsu225001China
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117585Singapore
| | - Suet Yen Chong
- Department of SurgeryYong Loo Lin School of MedicineNational University of Singapore1E Kent Ridge RdSingapore119228Singapore
- Nanomedicine Translational Research ProgramYong Loo Lin School of MedicineNational University of SingaporeSingapore117609Singapore
- Cardiovascular Research InstituteNational University Heart Centre Singapore (NUHCS)14 Medical DriveSingapore117599Singapore
| | - Hui Jun Ting
- Department of SurgeryYong Loo Lin School of MedicineNational University of Singapore1E Kent Ridge RdSingapore119228Singapore
- Nanomedicine Translational Research ProgramYong Loo Lin School of MedicineNational University of SingaporeSingapore117609Singapore
| | - Xichuan Tang
- Department of SurgeryYong Loo Lin School of MedicineNational University of Singapore1E Kent Ridge RdSingapore119228Singapore
- Nanomedicine Translational Research ProgramYong Loo Lin School of MedicineNational University of SingaporeSingapore117609Singapore
| | - Liqiang Yang
- Department of SurgeryYong Loo Lin School of MedicineNational University of Singapore1E Kent Ridge RdSingapore119228Singapore
- Nanomedicine Translational Research ProgramYong Loo Lin School of MedicineNational University of SingaporeSingapore117609Singapore
| | - Sitong Zhang
- Department of SurgeryYong Loo Lin School of MedicineNational University of Singapore1E Kent Ridge RdSingapore119228Singapore
- Nanomedicine Translational Research ProgramYong Loo Lin School of MedicineNational University of SingaporeSingapore117609Singapore
| | - Xinyi Qi
- Department of SurgeryYong Loo Lin School of MedicineNational University of Singapore1E Kent Ridge RdSingapore119228Singapore
- Nanomedicine Translational Research ProgramYong Loo Lin School of MedicineNational University of SingaporeSingapore117609Singapore
| | - Peng Pei
- Department of SurgeryYong Loo Lin School of MedicineNational University of Singapore1E Kent Ridge RdSingapore119228Singapore
- Nanomedicine Translational Research ProgramYong Loo Lin School of MedicineNational University of SingaporeSingapore117609Singapore
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Zhigao Yi
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Chenyuan Huang
- Department of SurgeryYong Loo Lin School of MedicineNational University of Singapore1E Kent Ridge RdSingapore119228Singapore
- Nanomedicine Translational Research ProgramYong Loo Lin School of MedicineNational University of SingaporeSingapore117609Singapore
| | - Xiao Hou
- Department of SurgeryYong Loo Lin School of MedicineNational University of Singapore1E Kent Ridge RdSingapore119228Singapore
- Nanomedicine Translational Research ProgramYong Loo Lin School of MedicineNational University of SingaporeSingapore117609Singapore
| | - Liang Gao
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingapore117596Singapore
- Singapore Lipidomics Incubator (SLING)Life Sciences InstituteNational University of SingaporeSingapore117456Singapore
| | - Federico Torta
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingapore117596Singapore
- Singapore Lipidomics Incubator (SLING)Life Sciences InstituteNational University of SingaporeSingapore117456Singapore
| | - Xiaogang Liu
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117585Singapore
| | - James Chen Yong Kah
- Department of Biomedical EngineeringNational University of Singapore4 Engineering Drive 3, Block E4, #04‐08Singapore117583Singapore
| | - Jiong‐Wei Wang
- Department of SurgeryYong Loo Lin School of MedicineNational University of Singapore1E Kent Ridge RdSingapore119228Singapore
- Nanomedicine Translational Research ProgramYong Loo Lin School of MedicineNational University of SingaporeSingapore117609Singapore
- Cardiovascular Research InstituteNational University Heart Centre Singapore (NUHCS)14 Medical DriveSingapore117599Singapore
- Department of PhysiologyYong Loo Lin School of MedicineNational University of Singapore2 Medical DriveSingapore117593Singapore
| |
Collapse
|
6
|
Christodoulou A, Nikolaou PE, Symeonidi L, Katogiannis K, Pechlivani L, Nikou T, Varela A, Chania C, Zerikiotis S, Efentakis P, Vlachodimitropoulos D, Katsoulas N, Agapaki A, Dimitriou C, Tsoumani M, Kostomitsopoulos N, Davos CH, Skaltsounis AL, Tselepis A, Halabalaki M, Tseti I, Iliodromitis EK, Ikonomidis I, Andreadou I. Cardioprotective potential of oleuropein, hydroxytyrosol, oleocanthal and their combination: Unravelling complementary effects on acute myocardial infarction and metabolic syndrome. Redox Biol 2024; 76:103311. [PMID: 39153251 PMCID: PMC11378258 DOI: 10.1016/j.redox.2024.103311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Clinical studies have previously established the role of olive products in cardiovascular disease (CVD) prevention, whilst the identification of the responsible constituents for the beneficial effects is still pending. We sought to assess and compare the cardioprotective potential of oleuropein (OL), hydroxytyrosol (HT), oleocanthal (OC) and oleanolic Acid (OA), regarding Ischemia/Reperfusion Injury (IRI) and CVD risk factors alleviation. The scope of the study was to design a potent and safe combinatorial therapy for high-cardiovascular-risk patients on a bench-to-bedside approach. We evaluated the IRI-limiting potential of 6-weeks treatment with OL, HT, OC or OA at nutritional doses, in healthy and metabolic syndrome (MS)-burdened mice. Three combinatorial regimens were designed and the mixture with preponderant benefits (OL-HT-OC, Combo 2), including infarct sparing and antiglycemic potency, compared to the isolated compounds, was further investigated for its anti-atherosclerotic effects. In vivo experiments revealed that the combination regimen of Combo 2 presented the most favorable effects in limiting infarct size and hyperglycemia, which was selected to be further investigated in the clinical setting in Chronic Coronary Artery Syndrome (CCAS) patients. Cardiac function, inflammation markers and oxidative stress were assessed at baseline and after 4 weeks of treatment with the OL-HT-OC supplement in the clinical study. We found that OL, OC and OA significantly reduced infarct size in vivo compared to Controls. OL exhibited antihyperglycemic properties and OA attenuated hypercholesterolemia. OL-HT-OA, OL-HT-OC and OL-HT-OC-OA combination regimens were cardioprotective, whereas only OL-HT-OC mitigated hyperglycemia. Combo 2 cardioprotection was attributed to apoptosis suppression, enhanced antioxidant effects and upregulation of antioxidant enzymes. Additionally, it reduced atherosclerotic plaque extent in vivo. OL-HT-OC supplement ameliorated cardiac, vascular and endothelial function in the small-scale clinical study. Conclusively, OL-HT-OC combination therapy exerts potent cardioprotective, antihyperglycemic and anti-atherosclerotic properties in vivo, with remarkable and clinically translatable cardiovascular benefits in high-risk patients.
Collapse
Affiliation(s)
- Andriana Christodoulou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Athens, Greece
| | - Panagiota-Efstathia Nikolaou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Athens, Greece
| | - Lydia Symeonidi
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Athens, Greece
| | - Konstantinos Katogiannis
- Laboratory of Echocardiography and Preventive Cardiology, Second Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Louisa Pechlivani
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Theodora Nikou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Aimilia Varela
- Cardiovascular Research Laboratory, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Christina Chania
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Athens, Greece
| | - Stelios Zerikiotis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Athens, Greece
| | - Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Athens, Greece
| | - Dimitris Vlachodimitropoulos
- Laboratory of Forensic Medicine and Toxicology, Medical School National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Katsoulas
- Laboratory of Forensic Medicine and Toxicology, Medical School National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Agapaki
- Histochemistry Unit, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Costantinos Dimitriou
- Centre of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Maria Tsoumani
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Centre of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Constantinos H Davos
- Cardiovascular Research Laboratory, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Alexios Leandros Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Tselepis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Ignatios Ikonomidis
- Laboratory of Echocardiography and Preventive Cardiology, Second Cardiology Department, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Athens, Greece.
| |
Collapse
|
7
|
Takahashi R, Nojiri H, Ohara Y, Fujiwara T, Ishijima M. Decreased grip strength is associated with paraspinal muscular oxidative stress in female lumbar degenerative disease patients. J Orthop Res 2024; 42:2287-2295. [PMID: 38650087 DOI: 10.1002/jor.25863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
We aimed to investigate the relationship between superoxide dismutase 2-related oxidative stress in the paraspinal muscles and spinal alignment, clinical skeletal muscle parameters, and mitochondrial function. Multifidus muscle samples from patients who underwent posterior lumbar surgery were analyzed. Patients with diseases affecting oxidative stress and spinal alignment were excluded. The superoxide dismutase 2 redox index was defined as the ratio of reactive oxygen species (superoxide) to antioxidant enzymes (superoxide dismutase 2) and was used as an index of oxidative stress. Patients were divided into two groups based on the superoxide dismutase 2 redox index. Spinal alignment, clinical skeletal muscle parameters, and succinic dehydrogenase (SDH) mean grayscale value were compared between the groups, with analyzes for both sexes. Multiple regression analyzes were used to adjust for the confounding effect of age on variables showing a significant difference between the two groups. Thirty-five patients with lumbar degenerative diseases were included. No significant differences were observed between the two groups for any of the parameters in males; however, females with a higher superoxide dismutase 2 redox index had greater lumbar lordosis, lower grip strength, and higher SDH mean grayscale value than those with a lower index. Multiple regression analyzes revealed that the superoxide dismutase 2 redox index was an independent explanatory variable for lumbar lordosis, grip strength, and SDH mean grayscale value in female patients. In conclusion, superoxide dismutase 2-related oxidative stress in the paraspinal muscles was associated with mitochondrial dysfunction and decreased grip strength in female lumbar degenerative disease patients.
Collapse
Affiliation(s)
- Ryosuke Takahashi
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Orthopaedics, Juntendo University School of Medicine, Tokyo, Japan
- Spine and Spinal Cord Center, Juntendo University Hospital, Tokyo, Japan
| | - Hidetoshi Nojiri
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Orthopaedics, Juntendo University School of Medicine, Tokyo, Japan
- Spine and Spinal Cord Center, Juntendo University Hospital, Tokyo, Japan
| | - Yukoh Ohara
- Spine and Spinal Cord Center, Juntendo University Hospital, Tokyo, Japan
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiyuki Fujiwara
- Department of Rehabilitation Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Orthopaedics, Juntendo University School of Medicine, Tokyo, Japan
- Spine and Spinal Cord Center, Juntendo University Hospital, Tokyo, Japan
| |
Collapse
|
8
|
Varma M, Bhandari R, Sarkar A, Jain M, Paliwal JK, Medhi B, Kuhad A. Exploring Astrocytes Involvement and Glutamate Induced Neuroinflammation in Chlorpyrifos-Induced Paradigm Of Autism Spectrum Disorders (ASD). Neurochem Res 2024; 49:2573-2599. [PMID: 38896196 DOI: 10.1007/s11064-024-04191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders manifested mainly in children, with symptoms ranging from social/communication deficits and stereotypies to associated behavioral anomalies like anxiety, depression, and ADHD. While the patho-mechanism is not well understood, the role of neuroinflammation has been suggested. Nevertheless, the triggers giving rise to this neuroinflammation have not previously been explored in detail, so the present study was aimed at exploring the role of glutamate on these processes, potentially carried out through increased activity of inflammatory cells like astrocytes, and a decline in neuronal health. A novel chlorpyrifos-induced paradigm of ASD in rat pups was used for the present study. The animals were subjected to tests assessing their neonatal development and adolescent behaviors (social skills, stereotypies, sensorimotor deficits, anxiety, depression, olfactory, and pain perception). Markers for inflammation and the levels of molecules involved in glutamate excitotoxicity, and neuroinflammation were also measured. Additionally, the expression of reactive oxygen species and markers of neuronal inflammation (GFAP) and function (c-Fos) were evaluated, along with an assessment of histopathological alterations. Based on these evaluations, it was found that postnatal administration of CPF had a negative impact on neurobehavior during both the neonatal and adolescent phases, especially on developmental markers, and brought about the generation of ASD-like symptoms. This was further corroborated by elevations in the expression of glutamate and downstream calcium, as well as certain cytokines and neuroinflammatory markers, and validated through histopathological and immunohistochemical results showing a decline in neuronal health in an astrocyte-mediated cytokine-dependent fashion. Through our findings, conclusive evidence regarding the involvement of glutamate in neuroinflammatory pathways implicated in the development of ASD-like symptoms, as well as its ability to activate further downstream processes linked to neuronal damage has been obtained. The role of astrocytes and the detrimental effect on neuronal health are also concluded. The significance of our study and its findings lies in the evaluation of the involvement of chlorpyrifos-induced neurotoxicity in the development of ASD, particularly in relation to glutamatergic dysfunction and neuronal damage.
Collapse
Affiliation(s)
- Manasi Varma
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC- Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India
| | - Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC- Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India.
- Division of Pharmaceutics, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India.
- Director, AKB INNOVANT HEALHCARE PVT. LTD., Chandigarh, India.
| | - Ankan Sarkar
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC- Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India
| | - Manish Jain
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC- Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India
| | - Jyoti K Paliwal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC- Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India
| | - Bikash Medhi
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC- Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India
- Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC- Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
9
|
Wolosiewicz M, Balatskyi VV, Duda MK, Filip A, Ntambi JM, Navrulin VO, Dobrzyn P. SCD4 deficiency decreases cardiac steatosis and prevents cardiac remodeling in mice fed a high-fat diet. J Lipid Res 2024; 65:100612. [PMID: 39094772 PMCID: PMC11402454 DOI: 10.1016/j.jlr.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Stearoyl-CoA desaturase (SCD) is a lipogenic enzyme that catalyzes formation of the first double bond in the carbon chain of saturated fatty acids. Four isoforms of SCD have been identified in mice, the most poorly characterized of which is SCD4, which is cardiac-specific. In the present study, we investigated the role of SCD4 in systemic and cardiac metabolism. We used WT and global SCD4 KO mice that were fed standard laboratory chow or a high-fat diet (HFD). SCD4 deficiency reduced body adiposity and decreased hyperinsulinemia and hypercholesterolemia in HFD-fed mice. The loss of SCD4 preserved heart morphology in the HFD condition. Lipid accumulation decreased in the myocardium in SCD4-deficient mice and in HL-1 cardiomyocytes with knocked out Scd4 expression. This was associated with an increase in the rate of lipolysis and, more specifically, adipose triglyceride lipase (ATGL) activity. Possible mechanisms of ATGL activation by SCD4 deficiency include lower protein levels of the ATGL inhibitor G0/G1 switch protein 2 and greater activation by protein kinase A under lipid overload conditions. Moreover, we observed higher intracellular Ca2+ levels in HL-1 cells with silenced Scd4 expression. This may explain the activation of protein kinase A in response to higher Ca2+ levels. Additionally, the loss of SCD4 inhibited mitochondrial enlargement, NADH overactivation, and reactive oxygen species overproduction in the heart in HFD-fed mice. In conclusion, SCD4 deficiency activated lipolysis, resulting in a reduction of cardiac steatosis, prevented the induction of left ventricular hypertrophy, and reduced reactive oxygen species levels in the heart in HFD-fed mice.
Collapse
Affiliation(s)
- Marcin Wolosiewicz
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Monika K Duda
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Anna Filip
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - James M Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Viktor O Navrulin
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
10
|
Bell G, Thoma A, Hargreaves IP, Lightfoot AP. The Role of Mitochondria in Statin-Induced Myopathy. Drug Saf 2024; 47:643-653. [PMID: 38492173 DOI: 10.1007/s40264-024-01413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
Statins represent the primary therapy for combatting hypercholesterolemia and reducing mortality from cardiovascular events. Despite their pleiotropic effects in lowering cholesterol synthesis, circulating cholesterol, as well as reducing the risk of other systemic diseases, statins have adverse events in a small, but significant, population of treated patients. The most prominent of these adverse effects is statin-induced myopathy, which lacks precise definition but is characterised by elevations in the muscle enzyme creatine kinase alongside musculoskeletal complaints, including pain, weakness and fatigue. The exact aetiology of statin-induced myopathy remains to be elucidated, although impaired mitochondrial function is thought to be an important underlying cause. This may result from or be the consequence of several factors including statin-induced inhibition of coenzyme Q10 (CoQ10) biosynthesis, impaired Ca2+ signalling and modified reactive oxygen species (ROS) generation. The purpose of this review article is to provide an update on the information available linking statin therapy with mitochondrial dysfunction and to outline any mechanistic insights, which may be beneficial in the future treatment of myopathic adverse events.
Collapse
Affiliation(s)
- Gavin Bell
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Anastasia Thoma
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK.
| | - Adam P Lightfoot
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
11
|
Wani MJ, Arif A, Salman KA, Mahmood R. Glycated LDL generates reactive species that damage cell components, oxidize hemoglobin and alter surface morphology in human erythrocytes. Int J Biol Macromol 2024; 269:132257. [PMID: 38729492 DOI: 10.1016/j.ijbiomac.2024.132257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
Low-density lipoprotein (LDL) transports cholesterol to various tissues via the blood. Glycation of LDL occurs during hyperglycemic condition which is characterised by persistently high blood glucose level. Circulating erythrocytes can come in direct contact with glycated LDL (G-LDL). The objective of this study was to investigate the effect of G-LDL on human erythrocytes, specifically on hemoglobin, intracellular generation of reactive species and the antioxidant defence system. Isolated erythrocytes were incubated with G-LDL (3 and 6 mg/ml) and native LDL (6 mg/ml) at 37 °C for 24 h. Native LDL and G-LDL untreated erythrocytes were similarly incubated at 37 °C and served as control. G-LDL treatment increased hemolysis compared to control and native LDL-treated erythrocytes. Incubation of erythrocytes with G-LDL led to an increase in protein oxidation and lipid peroxidation while greatly decreasing the total sulfhydryl content. It also significantly enhanced hemoglobin oxidation, heme degradation, and the release of free iron moiety. Treatment with G-LDL led to an appreciable increase in the production of reactive oxygen and nitrogen species. The antioxidant power and activities of major antioxidant enzymes were drastically reduced, while critical membrane-bound enzymes were inhibited. The surface morphology of G-LDL-treated erythrocytes was altered leading to the formation of echinocytes. Importantly, treatment of erythrocytes with native LDL did not significantly affect the above-mentioned parameters and values were similar to the corresponding controls. Thus, G-LDL is cytotoxic to human erythrocytes and causes oxidative damage to cell components. This can reduce the oxygen-transporting ability of blood and also result in red cell senescence and anemia.
Collapse
Affiliation(s)
- Mohd Junaid Wani
- Department of Biochemistry, Faculty of Medicine, J.N.M.C., Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Amin Arif
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Khushtar Anwar Salman
- Department of Biochemistry, Faculty of Medicine, J.N.M.C., Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
12
|
Kulsange SE, Sharma M, Sonawane B, Jaiswal MR, Kulkarni MJ, Santhakumari B. SWATH-MS reveals that bisphenol A and its analogs regulate pathways leading to disruption in insulin signaling and fatty acid metabolism. Food Chem Toxicol 2024; 188:114667. [PMID: 38653447 DOI: 10.1016/j.fct.2024.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC), associated with obesity and insulin resistance. The FDA prohibited the use of BPA-based polycarbonate resins in infant formula packaging; thus, its analogs, viz. Bisphenol S (BPS) and Bisphenol F (BPF) were considered alternatives in epoxy resins, plastics, and food cans. As these analogs might evoke a similar response, we investigated the role of Bisphenols (BPA, BPF, and BPS), on insulin signaling in CHO-HIRc-myc-GLUT4eGFP cells at environmentally relevant concentrations of 2 nM and 200 nM. Insulin signaling demonstrated that Bisphenols reduced phosphorylation of IR and AKT2, GLUT4 translocation, and glucose uptake. This was accompanied by increased oxidative stress. Furthermore, SWATH-MS-based proteomics of 3T3-L1 cells demonstrated that Bisphenol-treated cells regulate proteins in insulin resistance, adipogenesis, and fatty acid metabolism pathways differently. All three Bisphenols induced differentially expressed proteins enriched similar pathways, although their abundance differed for each Bisphenol. This might be due to their varying toxicity level, structural differences, and estrogen-mimetic activity. This study has important implications in addressing health concerns related to EDCs. Given that the analogs of BPA are considered alternatives to BPA, the findings of this study suggest they are equally potent in altering fatty acid metabolism and inducing insulin resistance.
Collapse
Affiliation(s)
- Shabda E Kulsange
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Monika Sharma
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Babasaheb Sonawane
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Meera R Jaiswal
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahesh J Kulkarni
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - B Santhakumari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Centre for Material Characterization, CSIR-National Chemical Laboratory, Pune 411008, India.
| |
Collapse
|
13
|
Torres-Sanchez A, Torres G, Estrada S, Perez D, Garcia C, Milian M, Velazquez E, Molina V, Delgado Y. Unraveling the Impact of Six Pentacyclic Triterpenes Regulating Metabolic Pathways on Lung Carcinoma Cells. Pharmaceuticals (Basel) 2024; 17:694. [PMID: 38931361 PMCID: PMC11206507 DOI: 10.3390/ph17060694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Recently, there has been great interest in plant-derived compounds known as phytochemicals. The pentacyclic oleanane-, ursane-, and lupane-type triterpenes are phytochemicals that exert significant activity against diseases like cancer. Lung cancer is the leading cause of cancer-related death worldwide. Although chemotherapy is the treatment of choice for lung cancer, its effectiveness is hampered by the dose-limiting toxic effects and chemoresistance. Herein, we investigated six pentacyclic triterpenes, oleanolic acid, ursolic acid, asiatic acid, betulinic acid, betulin, and lupeol, on NSCLC A549 cells. These triterpenes have several structural variations that can influence the activation/inactivation of key cellular pathways. From our results, we determined that most of these triterpenes induced apoptosis, S-phase and G2/M-phase cycle arrest, the downregulation of ribonucleotide reductase (RR), reactive oxygen species, and caspase 3 activation. For chemoresistance markers, we found that most triterpenes downregulated the expression of MAPK/PI3K, STAT3, and PDL1. In contrast, UrA and AsA also induced DNA damage and autophagy. Then, we theoretically determined other possible molecular targets of these triterpenes using the online database ChEMBL. The results showed that even slight structural changes in these triterpenes can influence the cellular response. This study opens up promising perspectives for further research on the pharmaceutical role of phytochemical triterpenoids.
Collapse
Affiliation(s)
- Anamaris Torres-Sanchez
- Biology Department, University of Puerto Rico-Rio Piedras, San Juan, PR 00931, USA;
- Biochemistry Department, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA
| | - Grace Torres
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA (D.P.); (E.V.); (V.M.)
| | - Sthephanie Estrada
- Biology Department, University of Puerto Rico-Cayey, Cayey, PR 00736, USA;
| | - Daraishka Perez
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA (D.P.); (E.V.); (V.M.)
| | - Carlos Garcia
- Medical Program, Ponce Health Science University, Ponce, PR 00716, USA
| | - Melissa Milian
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA (D.P.); (E.V.); (V.M.)
| | - Eddian Velazquez
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA (D.P.); (E.V.); (V.M.)
| | - Valerie Molina
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA (D.P.); (E.V.); (V.M.)
| | - Yamixa Delgado
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA (D.P.); (E.V.); (V.M.)
| |
Collapse
|
14
|
Nagarajan M, Maadurshni GB, Manivannan J. Exposure to low dose of Bisphenol A (BPA) intensifies kidney oxidative stress, inflammatory factors expression and modulates Angiotensin II signaling under hypertensive milieu. J Biochem Mol Toxicol 2024; 38:e23533. [PMID: 37718616 DOI: 10.1002/jbt.23533] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/18/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
Humans are constantly exposed to low concentrations of ubiquitous environmental pollutant, Bisphenol A (BPA). Due to the prevalence of hypertension (one of the major risk factors of cardiovascular disease [CVD]) in the population, it is necessary to explore the adverse effect of BPA under hypertension associated pathogenic milieu. The current study exposed the Nω-nitro-l-arginine methyl ester (L-NAME) induced hypertensive Wistar rats to low dose BPA (50 μg/kg) for 30 days period. In tissue samples immunohistochemistry, real-time quantitative polymerase chain reaction and enzymatic assays were conducted. Moreover, studies on primary kidney cell culture were employed to explore the impact of low dose of BPA exposure at nanomolar level (20-80 nM range) on renal cells through various fluorescence assays. The observed results illustrate that BPA exposure potentiates/aggravates hypertension induced tissue abnormalities (renal fibrosis), oxidative stress (ROS generation), elevated angiotensin-converting enzyme activity, malfunction of the antioxidant and tricarboxylic acid cycle enzymes, tissue lipid abnormalities and inflammatory factor expression (both messenger RNA and protein level of TNF-α and IL-6). Further, in vitro exposure of nM levels of BPA to primary kidney cells modulates oxidative stress (both superoxide and total ROS), mitochondrial physiology (reduced mitochondrial transmembrane potential-∆ψm) and lipid peroxidation in a dose dependent manner. In addition, angiotensin II induced ROS generation was aggravated further by BPA during coexposure in kidney cells. Therefore, during risk assessment, a precise investigation on BPA exposure in hypertensive (CVD vulnerable) populations is highly suggested.
Collapse
Affiliation(s)
- Manigandan Nagarajan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Jeganathan Manivannan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
15
|
Kapoor N, Bhattacharjee A, Chakraborty S, Katti DS. Piperlongumine mediates amelioration of osteoarthritis via inhibition of chondrocyte senescence and inflammation in a goat ex vivo model. Eur J Pharmacol 2023; 961:176136. [PMID: 37944845 DOI: 10.1016/j.ejphar.2023.176136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 10/06/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
In osteoarthritis (OA), chondrocytes manifest senescence, which results in a vicious signaling loop that aids the progression of the disease. More specifically, inflammation-associated senescence is one of the major regulators of the initiation and progression of OA. Therefore, we targeted senescence through inflammation with a pharmacological approach for OA amelioration. In this study, we first confirmed the suitability of the IL1β-induced goat ex vivo OA model (emphasizing 3R's principle) for the screening of senotherapeutics, namely, ABT-263, ABT-737, and Piperlongumine (PL), wherein PL showed a positive outcome in the preliminary studies. Thereafter, we determined the cytocompatible concentrations of PL using live/dead staining. Further, treatment of ex vivo OA cartilage with PL exhibited a concentration-dependent increase in the retention of key cartilage matrix components. We then examined the effect of PL on chondrocyte senescence and observed a decreased expression of major senescence markers in the PL-treated groups. Interestingly, PL treatment reduced the expression of major downstream effectors of the chondrocyte senescence pathway in a concentration-dependent manner at both gene and protein levels. Moreover, IL1β-induced elevated levels of oxidative stress and DNA damage in cartilage explants were rescued by all the tested concentrations of PL. In addition, PL also reduced the expression of major inflammatory markers of OA in the goat ex vivo OA model. Finally, we proposed a model for the mechanism of action of PL in the treatment of OA. Overall, PL showed a promising outcome as a senotherapeutic for the amelioration of OA in the goat ex vivo OA model.
Collapse
Affiliation(s)
- Nindiya Kapoor
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Arijit Bhattacharjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Saptomee Chakraborty
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Dhirendra S Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
| |
Collapse
|
16
|
Kuo SH, Hsu WL, Wu CY, Lai YC, Chen TC. Dolutegravir-induced growth and lifespan effects in Caenorhabditis elegans. BMC Pharmacol Toxicol 2023; 24:74. [PMID: 38062506 PMCID: PMC10702061 DOI: 10.1186/s40360-023-00715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Integrase strand transfer inhibitor (INSTIs)-based combination antiretroviral treatment in people living with HIV (PLWH) has been reportedly correlated with several adverse effects, such as weight gain, fetal defects or psychiatric disorders. METHODS To comprehensively understand the adverse effect of INSTIs, our study utilized Caenorhabditis Elegans (C. elegans) as a model to investigate how dolutegravir (DTG) affected its life cycle, growth, reproduction and lifespan. RESULTS Our results indicated that DTG enhanced body growth at the early stage of treatment, but no change was detected for long-term treatment. The treatment also influenced the reproductive system, decreased egg-hatching but had no effect on egg-laying. Besides, DTG resulted in lifespan reduction, which is dependent on increased levels of reactive oxidative species (ROS) accumulation. Treatment with N-acetyl-cysteine (NAC) in worms restrained intracellular ROS accumulation and improved DTG-induced lifespan reduction. CONCLUSIONS Our study demonstrates for the first time the effect of DTG treatment on life cycle. DTG-induced adverse effects are potentially associated with intracellular ROS accumulation. Quenching ROS accumulation might provide a novel strategy for dealing with the adverse effects of INSTIs.
Collapse
Affiliation(s)
- Shin-Huei Kuo
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, 80145, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Infection Control Office, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, No. 68, Jhonghua 3rd Rd, Cianjin District, Kaohsiung, 80145, Taiwan
| | - Wen-Li Hsu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80145, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ching-Ying Wu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80145, Taiwan
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan
| | - Yu-Chang Lai
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tun-Chieh Chen
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, 80145, Taiwan.
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Infection Control Office, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, No. 68, Jhonghua 3rd Rd, Cianjin District, Kaohsiung, 80145, Taiwan.
- Center for Medical Education and Humanizing Health Professional Education, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
17
|
Singh K, Kumari S, Ali M, Das MK, Mishra A, Singh AK. Association of transient mitochondrial functional impairment with acute heat exposure in children from Muzaffarpur region of Bihar, India. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:1975-1989. [PMID: 37796289 DOI: 10.1007/s00484-023-02555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Over the past several years, the Muzaffarpur district of Bihar (India) has witnessed recurrent outbreaks of acute encephalitis illness of unknown etiology, called acute encephalitis syndrome (AES) among young children, especially during the peak-summer season. Pesticide exposure, viral encephalitis, and litchi toxin intake have all been postulated as potential sources of the ailment. However, no conclusive etiology for AES has been identified in the affected children. During recent rounds of the outbreak, metabolic abnormalities have been documented in these children, and a direct correlation was observed between higher environmental temperature during the peak-summer month and AES caseload. The clinical and metabolic profiles of these children suggested the possible involvement of mitochondrial dysfunction during heat stress as one of the several contributory factors leading to multisystem metabolic derangement. The present study observed that mitochondrial function parameters such as cell death, mitochondrial membrane potential, oxidative stress, and mitochondrial pathway-related gene expression in peripheral blood mononuclear cells (PBMCs) isolated from children were affected in peak-summer when compared to post-summer months. Similar observations of mitochondrial function parameters along with impaired bioenergetic parameters were demonstrated in the heat-exposed model of PBMCs isolated from healthy adult individuals. In conclusion, the results suggested that there is an association of transient mitochondrial dysfunction when exposed to sustained heat during the summer months. One may consider mitochondrial dysfunction as one of the important factors leading to an outbreak of AES among the children from affected regions though this needs to be substantiated with further studies.
Collapse
Affiliation(s)
- Kanika Singh
- Cardiorespiratory Disease Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India
| | - Swati Kumari
- Cardiorespiratory Disease Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manzoor Ali
- Cardiorespiratory Disease Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manoja K Das
- Public Health, The INCLEN Trust International, New Delhi, 110020, India
| | - Aastha Mishra
- Cardiorespiratory Disease Unit, CSIR-Institute of Genomics and Integrative Biology, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Arun K Singh
- Department of Neonatology, All India Institute of Medical Sciences, Jodhpur, 342001, India.
| |
Collapse
|
18
|
Kessel D. Adventures in Photodynamic Therapy: Location, Location, Location. Photochem Photobiol 2023; 99:1364-1365. [PMID: 36890682 DOI: 10.1111/php.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/04/2023] [Indexed: 03/10/2023]
Abstract
In the context of photodynamic therapy, reports periodically turn up in journals where reviewers are apparently unacquainted with the essentials. Bizarre procedures and results can thereby appear. This appears to be a byproduct of the publishing industry, especially for some of the "pay to play" options.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
19
|
Carretero VJ, Ramos E, Segura-Chama P, Hernández A, Baraibar AM, Álvarez-Merz I, Muñoz FL, Egea J, Solís JM, Romero A, Hernández-Guijo JM. Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging. Antioxidants (Basel) 2023; 12:1844. [PMID: 37891922 PMCID: PMC10603966 DOI: 10.3390/antiox12101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this review is to explore the relationship between melatonin, free radicals, and non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant attention in recent years due to its diverse physiological functions and potential therapeutic benefits by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage, melatonin may help slow down the aging process and protect against age-related cognitive decline. Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties, including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced by stroke and aging processes. The intracellular accumulation of certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes and thus, the blockade of the amino acid transporters involved in the process could be an alternative therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals, specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and contributes to age-related decline. Recent research suggests a complex interplay between melatonin, free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms collectively contribute to the preservation of neuronal integrity and functions, making them promising targets for therapeutic interventions in stroke and age-related disorders.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pedro Segura-Chama
- Investigador por México-CONAHCYT, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - Adan Hernández
- Institute of Neurobiology, Universidad Nacional Autónoma of México, Juriquilla, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Andrés M Baraibar
- Department of Neurosciences, Universidad del País Vasco UPV/EHU, Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Francisco López Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - José M Solís
- Neurobiology-Research Service, Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| |
Collapse
|
20
|
Semyachkina-Glushkovskaya O, Sokolovski S, Fedosov I, Shirokov A, Navolokin N, Bucharskaya A, Blokhina I, Terskov A, Dubrovski A, Telnova V, Tzven A, Tzoy M, Evsukova A, Zhlatogosrkaya D, Adushkina V, Dmitrenko A, Manzhaeva M, Krupnova V, Noghero A, Bragin D, Bragina O, Borisova E, Kurths J, Rafailov E. Transcranial Photosensitizer-Free Laser Treatment of Glioblastoma in Rat Brain. Int J Mol Sci 2023; 24:13696. [PMID: 37762000 PMCID: PMC10530910 DOI: 10.3390/ijms241813696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Over sixty years, laser technologies have undergone a technological revolution and become one of the main tools in biomedicine, particularly in neuroscience, neurodegenerative diseases and brain tumors. Glioblastoma is the most lethal form of brain cancer, with very limited treatment options and a poor prognosis. In this study on rats, we demonstrate that glioblastoma (GBM) growth can be suppressed by photosensitizer-free laser treatment (PS-free-LT) using a quantum-dot-based 1267 nm laser diode. This wavelength, highly absorbed by oxygen, is capable of turning triplet oxygen to singlet form. Applying 1267 nm laser irradiation for a 4 week course with a total dose of 12.7 kJ/cm2 firmly suppresses GBM growth and increases survival rate from 34% to 64%, presumably via LT-activated apoptosis, inhibition of the proliferation of tumor cells, a reduction in intracranial pressure and stimulation of the lymphatic drainage and clearing functions. PS-free-LT is a promising breakthrough technology in non- or minimally invasive therapy for superficial GBMs in infants as well as in adult patients with high photosensitivity or an allergic reaction to PSs.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany;
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Sergey Sokolovski
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham B4 7ET, UK;
| | - Ivan Fedosov
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (A.D.); (M.T.)
| | - Alexander Shirokov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, 410049 Saratov, Russia
| | - Nikita Navolokin
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia;
| | - Alla Bucharskaya
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia;
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Alexander Dubrovski
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (A.D.); (M.T.)
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Anna Tzven
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Maria Tzoy
- Physics Department, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (I.F.); (A.D.); (M.T.)
| | - Arina Evsukova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Daria Zhlatogosrkaya
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Alexander Dmitrenko
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Maria Manzhaeva
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Valeria Krupnova
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
| | - Alessio Noghero
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (A.N.); (D.B.); (O.B.)
| | - Denis Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (A.N.); (D.B.); (O.B.)
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Olga Bragina
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (A.N.); (D.B.); (O.B.)
- Department of Neurology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ekaterina Borisova
- Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee Blvd. 72, 1784 Sofia, Bulgaria;
| | - Jürgen Kurths
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany;
- Department of Biology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (A.S.); (N.N.); (I.B.); (A.T.); (V.T.); (A.T.); (A.E.); (D.Z.); (V.A.); (A.D.); (M.M.); (V.K.)
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
- Centre for Analysis of Complex Systems, Sechenov First Moscow State Medical University Moscow, 119991 Moscow, Russia
| | - Edik Rafailov
- Optoelectronics and Biomedical Photonics Group, AIPT, Aston University, Birmingham B4 7ET, UK;
| |
Collapse
|
21
|
Kajal S, Kairo AK, Quadri JA, Sarwar S, Ahmed A, Shamim A, Kakkar A, Shariff A, Kumar R, Thakar A. Can Superoxide Anions Predict the Malignant Potential of Carotid body Tumor? - A Pilot Study. Indian J Otolaryngol Head Neck Surg 2023; 75:1819-1825. [PMID: 37636665 PMCID: PMC10447714 DOI: 10.1007/s12070-023-03623-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/21/2023] [Indexed: 08/29/2023] Open
Abstract
Currently, there is no consensus on estimating the malignant potential of Carotid Body Tumor (CBT) and the only way to predict a metastatic CBT is through DOTANOC Positron Emission Tomography (PET) scan. There is a well-established correlation between CBT and superoxide anions inside tumor cells. The purpose of this pilot study was to measure superoxide anions inside CBT cells and find if these can be used as marker to predict malignant potential of CBT. The results were also co-related with findings of DOTANOC PET scan retrospectively. The CBT tissue from 10 patients was stained using a fluorogenic dye and superoxide anions were measured by analysis of fluorescent image. The patients were divided into two groups - First group with four patients having potentially malignant CBT based upon clinico-surgical characteristics and second group with the rest of the six patients. It was seen that the superoxide anions were highest in the first group which included patients with metastatic carotid body tumor, patients with multiple paragangliomas and patient with positive family history (p = 0.011). The same patients also had metastasis and multiple tumors detected on DOTANOC PET scan. It was concluded that measuring superoxide anions in excised tumor tissue can be used to estimate malignant potential of CBT and can identify patients who truly require DOTANOC PET scan; without affecting the treatment, as it is an expensive investigation involving ionizing radiation and may not be available in all centres. Supplementary Information The online version contains supplementary material available at 10.1007/s12070-023-03623-6.
Collapse
Affiliation(s)
- S Kajal
- Department of Otorhinolaryngology and Head-Neck Surgery, All India Institute of Medical Sciences (AIIMS), New Delhi Delhi, India
| | - Arvind Kumar Kairo
- Department of Otorhinolaryngology and Head-Neck Surgery, All India Institute of Medical Sciences (AIIMS), New Delhi Delhi, India
| | | | - Saba Sarwar
- Department of Anatomy, AIIMS, New Delhi Delhi, India
| | - Anam Ahmed
- Department of Anatomy, AIIMS, New Delhi Delhi, India
| | - Ahmad Shamim
- Department of Nuclear Medicine, AIIMS, New Delhi Delhi, India
| | | | - A Shariff
- Department of Anatomy, AIIMS, New Delhi Delhi, India
| | - Rakesh Kumar
- Department of Otorhinolaryngology and Head-Neck Surgery, All India Institute of Medical Sciences (AIIMS), New Delhi Delhi, India
| | - Alok Thakar
- Department of Otorhinolaryngology and Head-Neck Surgery, All India Institute of Medical Sciences (AIIMS), New Delhi Delhi, India
| |
Collapse
|
22
|
Barayan D, Abdullahi A, Knuth CM, Khalaf F, Rehou S, Screaton RA, Jeschke MG. Lactate shuttling drives the browning of white adipose tissue after burn. Am J Physiol Endocrinol Metab 2023; 325:E180-E191. [PMID: 37406182 PMCID: PMC10396278 DOI: 10.1152/ajpendo.00084.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
High levels of plasma lactate are associated with increased mortality in critically injured patients, including those with severe burns. Although lactate has long been considered a waste product of glycolysis, it was recently revealed that it acts as a potent inducer of white adipose tissue (WAT) browning, a response implicated in mediating postburn cachexia, hepatic steatosis, and sustained hypermetabolism. Despite the clinical presentation of hyperlactatemia and browning in burns, whether these two pathological responses are linked is currently unknown. Here, we report that elevated lactate plays a causal signaling role in mediating adverse outcomes after burn trauma by directly promoting WAT browning. Using WAT obtained from human burn patients and mouse models of thermal injury, we show that the induction of postburn browning is positively correlated with a shift toward lactate import and metabolism. Furthermore, daily administration of l-lactate is sufficient to augment burn-induced mortality and weight loss in vivo. At the organ level, increased lactate transport amplified the thermogenic activation of WAT and its associated wasting, thereby driving postburn hepatic lipotoxicity and dysfunction. Mechanistically, the thermogenic effects of lactate appeared to result from increased import through MCT transporters, which in turn increased intracellular redox pressure, [NADH/NAD+], and expression of the batokine, FGF21. In fact, pharmacological inhibition of MCT-mediated lactate uptake attenuated browning and improved hepatic function in mice after injury. Collectively, our findings identify a signaling role for lactate that impacts multiple aspects of postburn hypermetabolism, necessitating further investigation of this multifaceted metabolite in trauma and critical illness.NEW & NOTEWORTHY To our knowledge, this study was the first to investigate the role of lactate signaling in mediating white adipose tissue browning after burn trauma. We show that the induction of browning in both human burn patients and mice is positively correlated with a shift toward lactate import and metabolism. Daily l-lactate administration augments burn-induced mortality, browning, and hepatic lipotoxicity in vivo, whereas pharmacologically targeting lactate transport alleviates burn-induced browning and improves liver dysfunction after injury.
Collapse
Affiliation(s)
- Dalia Barayan
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Abdikarim Abdullahi
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Carly M Knuth
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Fadi Khalaf
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Sarah Rehou
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Robert A Screaton
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Marc G Jeschke
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
23
|
Aoki T, Wong V, Endo Y, Hayashida K, Takegawa R, Okuma Y, Shoaib M, Miyara SJ, Yin T, Becker LB, Shinozaki K. Bio-physiological susceptibility of the brain, heart, and lungs to systemic ischemia reperfusion and hyperoxia-induced injury in post-cardiac arrest rats. Sci Rep 2023; 13:3419. [PMID: 36854715 PMCID: PMC9974929 DOI: 10.1038/s41598-023-30120-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Cardiac arrest (CA) patients suffer from systemic ischemia-reperfusion (IR) injury leading to multiple organ failure; however, few studies have focused on tissue-specific pathophysiological responses to IR-induced oxidative stress. Herein, we investigated biological and physiological parameters of the brain and heart, and we particularly focused on the lung dysfunction that has not been well studied to date. We aimed to understand tissue-specific susceptibility to oxidative stress and tested how oxygen concentrations in the post-resuscitation setting would affect outcomes. Rats were resuscitated from 10 min of asphyxia CA. Mechanical ventilation was initiated at the beginning of cardiopulmonary resuscitation. We examined animals with or without CA, and those were further divided into the animals exposed to 100% oxygen (CA_Hypero) or those with 30% oxygen (CA_Normo) for 2 h after resuscitation. Biological and physiological parameters of the brain, heart, and lungs were assessed. The brain and lung functions were decreased after CA and resuscitation indicated by worse modified neurological score as compared to baseline (222 ± 33 vs. 500 ± 0, P < 0.05), and decreased PaO2 (20 min after resuscitation: 113 ± 9 vs. baseline: 128 ± 9 mmHg, P < 0.05) and increased airway pressure (2 h: 10.3 ± 0.3 vs. baseline: 8.1 ± 0.2 mmHg, P < 0.001), whereas the heart function measured by echocardiography did not show significant differences compared before and after CA (ejection fraction, 24 h: 77.9 ± 3.3% vs. baseline: 82.2 ± 1.9%, P = 0.2886; fractional shortening, 24 h: 42.9 ± 3.1% vs. baseline: 45.7 ± 1.9%, P = 0.4658). Likewise, increases of superoxide production in the brain and lungs were remarkable, while those in the heart were moderate. mRNA gene expression analysis revealed that CA_Hypero group had increases in Il1b as compared to CA_Normo group significantly in the brain (P < 0.01) and lungs (P < 0.001) but not the heart (P = 0.4848). Similarly, hyperoxia-induced increases in other inflammatory and apoptotic mRNA gene expression were observed in the brain, whereas no differences were found in the heart. Upon systemic IR injury initiated by asphyxia CA, hyperoxia-induced injury exacerbated inflammation/apoptosis signals in the brain and lungs but might not affect the heart. Hyperoxia following asphyxia CA is more damaging to the brain and lungs but not the heart.
Collapse
Affiliation(s)
- Tomoaki Aoki
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Vanessa Wong
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Yusuke Endo
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Kei Hayashida
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Ryosuke Takegawa
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Yu Okuma
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Neurosurgery, Sonoda Daiichi Hospital, Tokyo, Japan
| | - Muhammad Shoaib
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, USA
| | - Santiago J Miyara
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Tai Yin
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Lance B Becker
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, USA
| | - Koichiro Shinozaki
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY, USA.
| |
Collapse
|
24
|
Zhu TT, Wang H, Gu HW, Ju LS, Wu XM, Pan WT, Zhao MM, Yang JJ, Liu PM. Melanin-like polydopamine nanoparticles mediating anti-inflammatory and rescuing synaptic loss for inflammatory depression therapy. J Nanobiotechnology 2023; 21:52. [PMID: 36765377 PMCID: PMC9913011 DOI: 10.1186/s12951-023-01807-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Inflammatory depression is closely related to neuroinflammation. However, current anti-inflammatory drugs have low permeability to cross blood-brain barrier with difficulties reaching the central nervous system to provide therapeutic effectiveness. To overcome this limitation, the nano-based drug delivery technology was used to synthesize melanin-like polydopamine nanoparticles (PDA NPs) (~ 250 nm) which can cross the blood-brain barrier. Importantly, PDA NPs with abundant phenolic hydroxyl groups function as excellent free radical scavengers to attenuate cell damage caused by reactive oxygen species or acute inflammation. In vitro experiments revealed that PDA NPs exhibited excellent antioxidative properties. Next, we aimed to investigate the therapeutic effect of PDA NPs on inflammatory depression through intraperitoneal injection to the lipopolysaccharide-induced inflammatory depression model in mice. PDA NPs significantly reversed the depression-like behavior. PDA NPs was also found to reduce the peripheral and central inflammation induced by LPS, showing that alleviated splenomegaly, reduced serum inflammatory cytokines, inhibited microglial activation and restored synaptic loss. Various experiments also showed that PDA NPs had good biocompatibility both in vivo and in vitro. Our work suggested that PDA NPs may be biocompatible nano-drugs in treating inflammatory depression but their clinical application requires further study.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Neuroscience Research InstituteZhengzhou University Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - He Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Han-Wen Gu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Neuroscience Research InstituteZhengzhou University Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Ling-Sha Ju
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xin-Miao Wu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Neuroscience Research InstituteZhengzhou University Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Wei-Tong Pan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Neuroscience Research InstituteZhengzhou University Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Ming-Ming Zhao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Neuroscience Research InstituteZhengzhou University Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Neuroscience Research InstituteZhengzhou University Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Pan-Miao Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Neuroscience Research InstituteZhengzhou University Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
25
|
Semyachkina-Glushkovskaya O, Bragin D, Bragina O, Socolovski S, Shirokov A, Fedosov I, Ageev V, Blokhina I, Dubrovsky A, Telnova V, Terskov A, Khorovodov A, Elovenko D, Evsukova A, Zhoy M, Agranovich I, Vodovozova E, Alekseeva A, Kurths J, Rafailov E. Low-Level Laser Treatment Induces the Blood-Brain Barrier Opening and the Brain Drainage System Activation: Delivery of Liposomes into Mouse Glioblastoma. Pharmaceutics 2023; 15:567. [PMID: 36839889 PMCID: PMC9966329 DOI: 10.3390/pharmaceutics15020567] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The progress in brain diseases treatment is limited by the blood-brain barrier (BBB), which prevents delivery of the vast majority of drugs from the blood into the brain. In this study, we discover unknown phenomenon of opening of the BBBB (BBBO) by low-level laser treatment (LLLT, 1268 nm) in the mouse cortex. LLLT-BBBO is accompanied by activation of the brain drainage system contributing effective delivery of liposomes into glioblastoma (GBM). The LLLT induces the generation of singlet oxygen without photosensitizers (PSs) in the blood endothelial cells and astrocytes, which can be a trigger mechanism of BBBO. LLLT-BBBO causes activation of the ABC-transport system with a temporal decrease in the expression of tight junction proteins. The BBB recovery is accompanied by activation of neuronal metabolic activity and stabilization of the BBB permeability. LLLT-BBBO can be used as a new opportunity of interstitial PS-free photodynamic therapy (PDT) for modulation of brain tumor immunity and improvement of immuno-therapy for GBM in infants in whom PDT with PSs, radio- and chemotherapy are strongly limited, as well as in adults with a high allergic reaction to PSs.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Institute of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Denis Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Olga Bragina
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA
| | - Sergey Socolovski
- Optoelectronics and Biomedical Photonics Group, Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK
| | - Alexander Shirokov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, 410049 Saratov, Russia
| | - Ivan Fedosov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Vasily Ageev
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Alexander Dubrovsky
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Alexander Khorovodov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Daria Elovenko
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Arina Evsukova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Maria Zhoy
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Ilana Agranovich
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anna Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Jürgen Kurths
- Institute of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Potsdam Institute for Climate Impact Research, Department of Complexity Science, Telegrafenberg A31, 14473 Potsdam, Germany
| | - Edik Rafailov
- Optoelectronics and Biomedical Photonics Group, Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
26
|
Ibeh S, Bakkar NMZ, Ahmad F, Nwaiwu J, Barsa C, Mekhjian S, Reslan MA, Eid AH, Harati H, Nabha S, Mechref Y, El-Yazbi AF, Kobeissy F. High fat diet exacerbates long-term metabolic, neuropathological, and behavioral derangements in an experimental mouse model of traumatic brain injury. Life Sci 2023; 314:121316. [PMID: 36565814 DOI: 10.1016/j.lfs.2022.121316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
AIMS Traumatic brain injury (TBI) constitutes a serious public health concern. Although TBI targets the brain, it can exert several systemic effects which can worsen the complications observed in TBI subjects. Currently, there is no FDA-approved therapy available for its treatment. Thus, there has been an increasing need to understand other factors that could modulate TBI outcomes. Among the factors involved are diet and lifestyle. High-fat diets (HFD), rich in saturated fat, have been associated with adverse effects on brain health. MAIN METHODS To study this phenomenon, an experimental mouse model of open head injury, induced by the controlled cortical impact was used along with high-fat feeding to evaluate the impact of HFD on brain injury outcomes. Mice were fed HFD for a period of two months where several neurological, behavioral, and molecular outcomes were assessed to investigate the impact on chronic consequences of the injury 30 days post-TBI. KEY FINDINGS Two months of HFD feeding, together with TBI, led to a notable metabolic, neurological, and behavioral impairment. HFD was associated with increased blood glucose and fat-to-lean ratio. Spatial learning and memory, as well as motor coordination, were all significantly impaired. Notably, HFD aggravated neuroinflammation, oxidative stress, and neurodegeneration. Also, cell proliferation post-TBI was repressed by HFD, which was accompanied by an increased lesion volume. SIGNIFICANCE Our research indicated that chronic HFD feeding can worsen functional outcomes, predispose to neurodegeneration, and decrease brain recovery post-TBI. This sheds light on the clinical impact of HFD on TBI pathophysiology and rehabilitation as well.
Collapse
Affiliation(s)
- Stanley Ibeh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nour-Mounira Z Bakkar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fatima Ahmad
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Neuroscience Research Center, Lebanese University, Beirut, Lebanon
| | - Judith Nwaiwu
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Deparment of Chemistry, Texas Tech University, Lubbock, TX, USA
| | - Chloe Barsa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sarine Mekhjian
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mohammad Amine Reslan
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Hayat Harati
- Neuroscience Research Center, Lebanese University, Beirut, Lebanon
| | - Sanaa Nabha
- Neuroscience Research Center, Lebanese University, Beirut, Lebanon
| | - Yehia Mechref
- Deparment of Chemistry, Texas Tech University, Lubbock, TX, USA
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Deparment of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Faculty of Pharmacy, Alamein International University, Al-Alamein, Egypt.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Morehouse School of Medicine, Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), 720 Westview Dr. SW, Atlanta, GA 30310, USA.
| |
Collapse
|
27
|
Wu K, Nie L, Nusantara AC, Woudstra W, Vedelaar T, Sigaeva A, Schirhagl R. Diamond Relaxometry as a Tool to Investigate the Free Radical Dialogue between Macrophages and Bacteria. ACS NANO 2023; 17:1100-1111. [PMID: 36630151 PMCID: PMC9878971 DOI: 10.1021/acsnano.2c08190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Although free radicals, which are generated by macrophages play a key role in antimicrobial activities, macrophages sometimes fail to kill Staphylococcus aureus (S. aureus) as bacteria have evolved mechanisms to withstand oxidative stress. In the past decades, several ROS-related staphylococcal proteins and enzymes were characterized to explain the microorganism's antioxidative defense system. Yet, time-resolved and site-specific free radical/ROS detection in bacterial infection were full of challenges. In this work, we utilize diamond-based quantum sensing for studying alterations of the free radical response near S. aureus in macrophages. To achieve this goal we used S. aureus-fluorescent nanodiamond conjugates and measured the spin-lattice relaxation (T1) of NV defects embedded in nanodiamonds. We observed an increase of intracellular free radical generation when macrophages were challenged with S. aureus. However, under a high intracellular oxidative stress environment elicited by lipopolysaccharides, a lower radical load was recorded on the bacteria surfaces. Moreover, by performing T1 measurements on the same particles at different times postinfection, we found that radicals were dominantly scavenged by S. aureus from 80 min postinfection under a high intracellular oxidative stress environment.
Collapse
Affiliation(s)
- Kaiqi Wu
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Linyan Nie
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anggrek C. Nusantara
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Willem Woudstra
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Thea Vedelaar
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Alina Sigaeva
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Romana Schirhagl
- Department
of Biomedical Engineering, University of
Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
28
|
Seenak P, Kumphune S, Prasitsak T, Nernpermpisooth N, Malakul W. Atorvastatin and ezetimibe protect against hypercholesterolemia-induced lung oxidative stress, inflammation, and fibrosis in rats. Front Med (Lausanne) 2022; 9:1039707. [PMID: 37082028 PMCID: PMC10111198 DOI: 10.3389/fmed.2022.1039707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
BackgroundHypercholesterolemia is a major risk factor for interstitial lung disease (ILD). Atorvastatin and ezetimibe are antilipemic drugs that have pleiotropic effects. However, their effects on pulmonary fibrosis prevention and the mechanisms underlying hypercholesterolemia have not been fully investigated. This study aimed to evaluate the individual effects of atorvastatin and ezetimibe on lung inflammation and fibrosis in high-cholesterol diet (HCD)-fed rats.Materials and methodsMale Sprague-Dawley rats were divided into four groups — standard diet (S), standard diet + 1% cholesterol (SC), standard diet + 1% cholesterol with 30 mg/kg/day atorvastatin (SCA), and standard diet + 1% cholesterol with 10 mg/kg/day ezetimibe (SCE). At the end of an 8-week dietary schedule, serum lipid parameters and the levels of lung oxidative stress, inflammatory cytokines, and fibrotic mediators were determined.ResultsAtorvastatin and ezetimibe treatment remarkably reduced serum lipid profiles with reversed pulmonary histological alterations, in addition to reducing the levels of lung oxidative stress, inflammation, and fibrosis in hypercholesterolemic rats.ConclusionAtorvastatin and ezetimibe treatment showed a protective effect against hypercholesterolemia-induced pulmonary fibrosis in rats. This information appears potentially useful in the prevention of PF in a hypercholesterolemia model; however, further rigorous investigations are needed to prove their clinical utility on antifibrosis.
Collapse
Affiliation(s)
- Porrnthanate Seenak
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Sarawut Kumphune
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, Thailand
| | - Thanit Prasitsak
- Department of Oral Biology, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| | - Nitirut Nernpermpisooth
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Wachirawadee Malakul
- Department of Physiology, Faculty of Medical Sciences, Naresuan University, Phitsanulok, Thailand
- *Correspondence: Wachirawadee Malakul, ; orcid.org/0000-0002-1677-2086
| |
Collapse
|
29
|
Synthesis and Cytotoxic Activity of 1,2,4-Triazolo-Linked Bis-Indolyl Conjugates as Dual Inhibitors of Tankyrase and PI3K. Molecules 2022; 27:molecules27217642. [PMID: 36364474 PMCID: PMC9657870 DOI: 10.3390/molecules27217642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
A series of new 1,2,4-triazolo-linked bis-indolyl conjugates (15a–r) were prepared by multistep synthesis and evaluated for their cytotoxic activity against various human cancer cell lines. It was observed that they were more susceptible to colon and breast cancer cells. Conjugates 15o (IC50 = 2.04 μM) and 15r (IC50 = 0.85 μM) illustrated promising cytotoxicity compared to 5-fluorouracil (5-FU, IC50 = 5.31 μM) against the HT-29 cell line. Interestingly, 15o and 15r induced cell cycle arrest at the G0/G1 phase and disrupted the mitochondrial membrane potential. Moreover, these conjugates led to apoptosis in HT-29 at 2 μM and 1 μM, respectively, and also enhanced the total ROS production as well as the mitochondrial-generated ROS. Immunofluorescence and Western blot assays revealed that these conjugates reduced the expression levels of the PI3K-P85, β-catenin, TAB-182, β-actin, AXIN-2, and NF-κB markers that are involved in the β-catenin pathway of colorectal cancer. The results of the in silico docking studies of 15r and 15o further support their dual inhibitory behaviour against PI3K and tankyrase. Interestingly, the conjugates have adequate ADME-toxicity parameters based on the calculated results of the molecular dynamic simulations, as we found that these inhibitors (15r) influenced the conformational flexibility of the 4OA7 and 3L54 proteins.
Collapse
|
30
|
Li H, Yang Q, Huang Z, Liang C, Zhang DH, Shi HT, Du JQ, Du BB, Zhang YZ. Dual-specificity phosphatase 12 attenuates oxidative stress injury and apoptosis in diabetic cardiomyopathy via the ASK1-JNK/p38 signaling pathway. Free Radic Biol Med 2022; 192:13-24. [PMID: 36108935 DOI: 10.1016/j.freeradbiomed.2022.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 10/31/2022]
Abstract
Diabetic cardiomyopathy (DCM) is ventricular dysfunction that occurs in patients with diabetes mellitus (DM), independent of recognized risk factors, such as coronary artery disease, hypertension, and valvular heart disease. Dual-specificity phosphatase 12 (DUSP12) is a dual-specificity phosphatase expressed in all tissues. Genome-wide linkage studies have found an association between DUSP12 and type 2 diabetes (T2D). However, the role of DUSP12 in DCM remains largely unknown. Ubiquitously expressed DUSP12 is involved in nonalcoholic fatty liver disease, bacterial infection, and myocardial hypertrophy and plays a critical role in tumorigenesis. Herein, we observed an increased expression of DUSP12 in a hyperglycemia cell model and a high-fat diet (HFD) mouse model. Heart-specific DUSP12-deficient mice showed severe cardiac dysfunction and remodeling induced by an HFD. DUSP12 deficiency exacerbated oxidative stress injury and apoptosis, whereas DUSP12 overexpression had the opposite effect. At the molecular level, DUSP12 physically bound to apoptotic signal-regulated kinase 1 (ASK1), promoted its dephosphorylation, and inhibited its action on c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Rescue experiments have shown that oxidative stress injury and apoptosis, exacerbated by DUSP12 deficiency, are alleviated by ASK1 inhibition. Therefore, we consider DUSP12 an important signaling pathway in DCM.
Collapse
Affiliation(s)
- Huan Li
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Qin Yang
- Department of Cardiology, Huanggang Central Hospital, Huanggang, 438021, China
| | - Zhen Huang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Cui Liang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Dian-Hong Zhang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Hui-Ting Shi
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Jia-Qi Du
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Bin-Bin Du
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China.
| | - Yan-Zhou Zhang
- Cardiovascular Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
31
|
Wu H, Zhu Q, Liu X, Hao H, Sun Z, Wang M, Hill MA, Xu C, Liu Z. Recovery of Ischemic Limb and Femoral Artery Endothelial Function Are Preserved in Mice with Dextran Sodium Sulfate-Induced Chronic Colitis. BIOLOGY 2022; 11:biology11081169. [PMID: 36009796 PMCID: PMC9405034 DOI: 10.3390/biology11081169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The present study examines the effect of experimental inflammatory bowel disease on femoral artery endothelial function and limb ischemia recovery in female mice using a chronic colitis model induced by dextran sodium sulfate exposure. As expected, plasma levels of proinflammatory cytokines, including interleukin-6, interleukin-17, tumor necrosis factor alpha, and chemokine ligand 1, were significantly increased in the chronic colitis model. However, ROS levels in the ischemic muscle tissues were not significantly increased in mice with colitis as compared to controls. There were no significant changes in endothelium-dependent or -independent vasodilation of femoral artery between the colitis model and the control. Recovery of function and blood flow of the ischemic limb and capillary density in the ischemic muscle were preserved in the colitis model as compared with the control. Abstract Inflammatory bowel disease (IBD) produces significant systemic inflammation and increases the risk of endothelial dysfunction and peripheral artery disease. Our recent study demonstrated that abdominal aortic endothelial cell function was impaired selectively in female mice with chronic colitis. This study aimed to test the hypothesis that experimental colitis leads to femoral artery endothelial cell dysfunction and impairs limb ischemia recovery in female mice. An experimental chronic colitis model was created in female C57BL/6 mice with dextran sodium sulfate (DSS) treatment. Unilateral hind limb ischemia was produced by femoral artery ligation. Limb blood perfusion, vascular density, tissue ROS levels, and plasma levels of proinflammatory cytokines were assessed. Femoral artery endothelium-dependent and -independent vasodilation of the contralateral limb were evaluated ex vivo using acetylcholine and nitroglycerin, respectively. As expected, the plasma levels of proinflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, and IL-17, were significantly increased in the DSS-induced colitis model. However, ROS levels in the ischemic muscle tissues were not significantly increased in colitis model as compared to the controls. There were no significant changes in endothelium-dependent or -independent vasodilation of the femoral artery between colitis model and the control. Recovery of function and blood flow in the ischemic limb and capillary density in the ischemic gastrocnemius muscle were preserved in the colitis model as compared with the control. The data demonstrated that DSS-induced chronic colitis had no significant impact on femoral artery endothelial function or ischemic limb recovery in female mice.
Collapse
Affiliation(s)
- Hao Wu
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qiang Zhu
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Xuanyou Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA
| | - Meifang Wang
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Michael A. Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, USA
| | - Canxia Xu
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Correspondence:
| |
Collapse
|
32
|
Li Y, Ma Y, Dang QY, Fan XR, Han CT, Xu SZ, Li PY. Assessment of mitochondrial dysfunction and implications in cardiovascular disorders. Life Sci 2022; 306:120834. [PMID: 35902031 DOI: 10.1016/j.lfs.2022.120834] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022]
Abstract
Mitochondria play a pivotal role in cellular function, not only acting as the powerhouse of the cell, but also regulating ATP synthesis, reactive oxygen species (ROS) production, intracellular Ca2+ cycling, and apoptosis. During the past decade, extensive progress has been made in the technology to assess mitochondrial functions and accumulating evidences have shown that mitochondrial dysfunction is a key pathophysiological mechanism for many diseases including cardiovascular disorders, such as ischemic heart disease, cardiomyopathy, hypertension, atherosclerosis, and hemorrhagic shock. The advances in methodology have been accelerating our understanding of mitochondrial molecular structure and function, biogenesis and ROS and energy production, which facilitates new drug target identification and therapeutic strategy development for mitochondrial dysfunction-related disorders. This review will focus on the assessment of methodologies currently used for mitochondrial research and discuss their advantages, limitations and the implications of mitochondrial dysfunction in cardiovascular disorders.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ying Ma
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qing-Ya Dang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xin-Rong Fan
- Department of Cardiology, The First Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chu-Ting Han
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shang-Zhong Xu
- Academic Diabetes, Endocrinology and Metabolism, Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom.
| | - Peng-Yun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
33
|
Ramos H, Bogdanov P, Huerta J, Deàs-Just A, Hernández C, Simó R. Antioxidant Effects of DPP-4 Inhibitors in Early Stages of Experimental Diabetic Retinopathy. Antioxidants (Basel) 2022; 11:antiox11071418. [PMID: 35883908 PMCID: PMC9312245 DOI: 10.3390/antiox11071418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
Hyperglycemia-induced oxidative stress plays a key role in the impairment of the retinal neurovascular unit, an early event in the pathogenesis of DR. The aim of this study was to assess the antioxidant properties of topical administration (eye drops) of sitagliptin in the diabetic retina. For this purpose, db/db mice received sitagliptin or vehicle eye drops twice per day for two weeks. Age-matched db/+ mice were used as the control group. We evaluated retinal mRNA (RT-PCR) and protein levels (Western blotting and immunohistochemistry) of different components from both the antioxidant system (NRF2, CAT, GPX, GR, CuZnSOD, and MnSOD) and the prooxidant machinery (PKC and TXNIP). We also studied superoxide levels (dihydroethidium staining) and oxidative damage to DNA/RNA (8-hydroxyguanosine immunostaining) and proteins (nitrotyrosine immunostaining). Finally, NF-кB translocation and IL-1β production were assessed through Western blotting and/or immunohistochemistry. We found that sitagliptin protected against diabetes-induced oxidative stress by reducing superoxide, TXNIP, PKC, and DNA/RNA/protein oxidative damage, and it prevented the downregulation of NRF2 and antioxidant enzymes, with the exception of catalase. Sitagliptin also exerted anti-inflammatory effects, avoiding both NF-кB translocation and IL-1β production. Sitagliptin prevents the diabetes-induced imbalance between ROS production and antioxidant defenses that occurs in diabetic retinas.
Collapse
Affiliation(s)
- Hugo Ramos
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (H.R.); (P.B.); (J.H.); (A.D.-J.)
- Center for Networked Biomedical Research of Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute (ICSIII), 28029 Madrid, Spain
| | - Patricia Bogdanov
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (H.R.); (P.B.); (J.H.); (A.D.-J.)
- Center for Networked Biomedical Research of Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute (ICSIII), 28029 Madrid, Spain
| | - Jordi Huerta
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (H.R.); (P.B.); (J.H.); (A.D.-J.)
| | - Anna Deàs-Just
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (H.R.); (P.B.); (J.H.); (A.D.-J.)
- Center for Networked Biomedical Research of Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute (ICSIII), 28029 Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (H.R.); (P.B.); (J.H.); (A.D.-J.)
- Center for Networked Biomedical Research of Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute (ICSIII), 28029 Madrid, Spain
- Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
- Correspondence: (C.H.); (R.S.); Tel.: +34-934-894-172 (C.H.)
| | - Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (H.R.); (P.B.); (J.H.); (A.D.-J.)
- Center for Networked Biomedical Research of Diabetes and Associated Metabolic Diseases (CIBERDEM), Carlos III Health Institute (ICSIII), 28029 Madrid, Spain
- Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
- Correspondence: (C.H.); (R.S.); Tel.: +34-934-894-172 (C.H.)
| |
Collapse
|
34
|
Sung JY, Kim SG, Kang YJ, Choi HC. Metformin mitigates stress-induced premature senescence by upregulating AMPKα at Ser485 phosphorylation induced SIRT3 expression and inactivating mitochondrial oxidants. Mech Ageing Dev 2022; 206:111708. [PMID: 35863470 DOI: 10.1016/j.mad.2022.111708] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/10/2023]
Abstract
The senescence of vascular smooth muscle cells (VSMCs) is an important cause of cardiovascular disease such as atherosclerosis and hypertension. These senescence may be triggered by many factors, such as oxidative stress, inflammation, DNA damage, and senescence-associated secretory phenotypes (SASPs). Mitochondrial oxidative stress induces cellular senescence, but the mechanisms by which mitochondrial reactive oxygen species (mtROS) regulates cellular senescence are still largely unknown. Here, we investigated the mechanism responsible for the anti-aging effect of metformin by examining links between VSMC senescence and mtROS in in vitro and in vivo. Metformin was found to increase p-AMPK (Ser485), but to decrease senescence-associated phenotypes and protein levels of senescence markers during ADR-induced VSMC senescence. Importantly, metformin decreased mtROS by inducing the deacetylation of superoxide dismutase 2 (SOD2) by increasing SIRT3 expression. Moreover, AMPK depletion reduced the expression of SIRT3 and increased the expression of acetylated SOD2 despite metformin treatment, suggesting AMPK activation by metformin is required to protect against mitochondrial oxidative stress by SIRT3. This study provides mechanistic evidence that metformin acts as an anti-aging agent and alleviates VSMC senescence by upregulating mitochondrial antioxidant induced p-AMPK (Ser485)-dependent SIRT3 expression, which suggests metformin has therapeutic potential for the treatment of age-associated vascular disease.
Collapse
Affiliation(s)
- Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea; Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea.
| |
Collapse
|
35
|
Nieminen V, Juntunen M, Naarala J, Luukkonen J. Static or 50 Hz magnetic fields at 100 μT do not modify the clonogenic survival of doxorubicin-treated MCF-7 cancer cells. Bioelectrochemistry 2022; 147:108196. [DOI: 10.1016/j.bioelechem.2022.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/02/2022]
|
36
|
Wang Z, Song Y, Jiang J, Piao Y, Li L, Bai Q, Xu C, Liu H, Li L, Piao H, Yan G. MicroRNA-182-5p Attenuates Asthmatic Airway Inflammation by Targeting NOX4. Front Immunol 2022; 13:853848. [PMID: 35711428 PMCID: PMC9192947 DOI: 10.3389/fimmu.2022.853848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Bronchial asthma is characterized by chronic airway inflammation, airway hyperresponsiveness, and airway remodeling. MicroRNA (miRNA) has recently been implicated in the pathogenesis of asthma. However, the mechanisms of different miRNAs in asthma are complicated, and the mechanism of miRNA-182-5p in asthma is still unclear. Here, we aim to explore the mechanism of miRNA182-5p in asthma-related airway inflammation. Ovalbumin (OVA)-induced asthma model was established. MiRNA Microarray Analysis was performed to analyze the differentially expressed miRNAs in the asthma model. We found that the expression of miRNA-182-5p was significantly decreased in OVA-induced asthma. In vitro, IL-13 stimulation of BEAS-2B cells resulted in a significant up-regulation of NOX4 (nicotinamide adenine dinucleotide phosphate oxidase 4), accompanied by mitochondrial damage-induced apoptosis, NLRP3 (NOD-like receptor family pyrin domain-containing 3)/IL-1β activation, and reduced miRNA-182-5p. In contrast, overexpression of miRNA-182-5p significantly inhibited epithelial cell apoptosis and NLRP3/IL-1β activation. In addition, we found that miRNA-182-5p could bind to the 3’ untranscripted region of NOX4 mRNA and inhibit epithelial cell inflammation by reducing oxidative stress and mitochondrial damage. In vivo, miRNA-182-5p agomir treatment significantly reduced the percentage of eosinophils in bronchoalveolar lavage fluid, and down-regulated Th2 inflammatory factors, including IL-4, IL-5, and OVA induced IL-13. Meanwhile, miRNA-182-5p agomir reduced the peribronchial inflammatory cell infiltration, goblet cell proliferation and collagen deposition. In summary, targeting miRNA-182-5p may provide a new strategy for the treatment of asthma.
Collapse
Affiliation(s)
- Zhiguang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Jingzhi Jiang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Yihua Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Intensive Care Unit, Affiliated Hospital of Yanbian University, Yanji, China
| | - Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Qiaoyun Bai
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Chang Xu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Hanye Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
| | - Hongmei Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, China
- *Correspondence: Hongmei Piao, ; Guanghai Yan, ;
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, China
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, China
- *Correspondence: Hongmei Piao, ; Guanghai Yan, ;
| |
Collapse
|
37
|
Claudin-17 Deficiency in Mice Results in Kidney Injury Due to Electrolyte Imbalance and Oxidative Stress. Cells 2022; 11:cells11111782. [PMID: 35681477 PMCID: PMC9180152 DOI: 10.3390/cells11111782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
The multi-gene claudin (CLDN) family of tight junction proteins have isoform-specific roles in blood–tissue barrier regulation. CLDN17, a putative anion pore-forming CLDN based on its structural characterization, is assumed to regulate anion balance across the blood-tissue barriers. However, our knowledge about CLDN17 in physiology and pathology is limited. The current study investigated how Cldn17 deficiency in mice affects blood electrolytes and kidney structure. Cldn17−/− mice revealed no breeding abnormalities, but the newborn pups exhibited delayed growth. Adult Cldn17−/− mice displayed electrolyte imbalance, oxidative stress, and injury to the kidneys. Ingenuity pathway analysis followed by RNA-sequencing revealed hyperactivation of signaling pathways and downregulation of SOD1 expression in kidneys associated with inflammation and reactive oxygen species generation, demonstrating the importance of Cldn17 in the maintenance of electrolytes and reactive oxygen species across the blood-tissue barrier.
Collapse
|
38
|
The Antileukemic and Anti-Prostatic Effect of Aeroplysinin-1 Is Mediated through ROS-Induced Apoptosis via NOX Activation and Inhibition of HIF-1a Activity. Life (Basel) 2022; 12:life12050687. [PMID: 35629355 PMCID: PMC9145196 DOI: 10.3390/life12050687] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022] Open
Abstract
Aeroplysinin-1 is a brominated isoxazoline alkaloid that has exhibited a potent antitumor cell effect in previous reports. We evaluated the cytotoxicity of aeroplysinin-1 against leukemia and prostate cancer cells in vitro. This marine alkaloid inhibited the cell proliferation of leukemia Molt-4, K562 cells, and prostate cancer cells Du145 and PC-3 with IC50 values of 0.12 ± 0.002, 0.54 ± 0.085, 0.58 ± 0.109 and 0.33 ± 0.042 µM, respectively, as shown by the MTT assay. Furthermore, in the non-malignant cells, CCD966SK and NR8383, its IC50 values were 1.54 ± 0.138 and 6.77 ± 0.190 μM, respectively. In a cell-free system, the thermal shift assay and Western blot assay verified the binding affinity of aeroplysinin-1 to Hsp90 and Topo IIα, which inhibited their activity. Flow cytometry analysis showed that the cytotoxic effect of aeroplysinin-1 is mediated through mitochondria-dependent apoptosis induced by reactive oxygen species (ROS). ROS interrupted the cellular oxidative balance by activating NOX and inhibiting HIF-1α and HO-1 expression. Pretreatment with N-acetylcysteine (NAC) reduced Apl-1-induced mitochondria-dependent apoptosis and preserved the expression of NOX, HO-1, and HIF-1a. Our findings indicated that aeroplysinin-1 targeted leukemia and prostate cancer cells through multiple pathways, suggesting its potential application as an anti-leukemia and prostate cancer drug lead.
Collapse
|
39
|
Clavere NG, Alqallaf A, Rostron KA, Parnell A, Mitchell R, Patel K, Boateng SY. Inhibition of activin A receptor signalling attenuates age-related pathological cardiac remodelling. Dis Model Mech 2022; 15:275323. [PMID: 35380160 PMCID: PMC9118092 DOI: 10.1242/dmm.049424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
In the heart, ageing is associated with DNA damage, oxidative stress, fibrosis and activation of the activin signalling pathway, leading to cardiac dysfunction. The cardiac effects of activin signalling blockade in progeria are unknown. This study investigated the cardiac effects of progeria induced by attenuated levels of Ercc1, which is required for DNA excision and repair, and the impact of activin signalling blockade using a soluble activin receptor type IIB (sActRIIB). DNA damage and oxidative stress were significantly increased in Ercc1Δ/− hearts, but were reduced by sActRIIB treatment. sActRIIB treatment improved cardiac systolic function and induced cardiomyocyte hypertrophy in Ercc1Δ/− hearts. RNA-sequencing analysis showed that in Ercc1Δ/− hearts, there was an increase in pro-oxidant and a decrease in antioxidant gene expression, whereas sActRIIB treatment reversed this effect. Ercc1Δ/− hearts also expressed higher levels of anti-hypertrophic genes and decreased levels of pro-hypertrophic ones, which were also reversed by sActRIIB treatment. These results show for the first time that inhibition of activin A receptor signalling attenuates cardiac dysfunction, pathological tissue remodelling and gene expression in Ercc1-deficient mice and presents a potentially novel therapeutic target for heart diseases. Summary: Attenuated DNA repair is associated with pathological cardiac remodelling and gene expression. Much of this phenotype is attenuated by inhibition of the activin signalling pathway using soluble activin receptor treatment.
Collapse
Affiliation(s)
- Nicolas G Clavere
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Ali Alqallaf
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Kerry A Rostron
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Andrew Parnell
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Robert Mitchell
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Ketan Patel
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Samuel Y Boateng
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| |
Collapse
|
40
|
Wu H, Hu T, Zhang L, Xia X, Liu X, Zhu Q, Wang M, Sun Z, Hao H, Cui Y, Parrish AR, Li DP, Hill MA, Xu C, Liu Z. Abdominal Aortic Endothelial Dysfunction Occurs in Female Mice With Dextran Sodium Sulfate-Induced Chronic Colitis Independently of Reactive Oxygen Species Formation. Front Cardiovasc Med 2022; 9:871335. [PMID: 35463755 PMCID: PMC9021429 DOI: 10.3389/fcvm.2022.871335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/04/2022] [Indexed: 01/19/2023] Open
Abstract
Background and Objective Inflammatory bowel disease (IBD) produces significant local and systemic inflammation with increased reactive oxygen species (ROS) formation. IBD Patients are at an increased risk for developing endothelial dysfunction and cardiovascular diseases. The present study tested the hypothesis that IBD impairs aortic endothelial function via ROS formation and investigate potential sex-related differences. Methods and Results Acute and chronic colitis models were induced in male and female C57BL/6 mice with dextran sodium sulfate (DSS) treatment. Aortic wall stiffness, endothelial function, and ROS levels, as well as serum levels of pro-inflammatory cytokines were evaluated. Acetylcholine (Ach)-induced endothelium-dependent relaxation of abdominal aorta without perivascular adipose tissue (PVAT) was significantly reduced in female mice, not males, with chronic colitis without a change in nitroglycerin-induced endothelium-independent relaxation. PVAT effectively preserved Ach-induced relaxation in abdominal aorta of female mice with chronic colitis. Aortic peak velocity, maximal intraluminal diameters, pulse wave velocity, distensibility and radial strain were preserved in mice with both acute and chronic colitis. Although pro-inflammatory cytokines levels were increased in mice with acute and chronic colitis, aortic ROS levels were not increased. Conclusion The data demonstrate that abdominal aortic endothelial function was attenuated selectively in female mice with chronic colitis independent of ROS formation. Further, PVAT played an important role in preserving endothelial function in female mice with chronic colitis.
Collapse
Affiliation(s)
- Hao Wu
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, United States
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Tingzi Hu
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Linfang Zhang
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Xiujuan Xia
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Xuanyou Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Qiang Zhu
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Meifang Wang
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Yuqi Cui
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Alan R. Parrish
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, United States
| | - De-Pei Li
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| | - Michael A. Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Canxia Xu
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| |
Collapse
|
41
|
Huang L, Zhang Y, Zhao L, Chen Q, Li L. Ferrostatin-1 Polarizes Microglial Cells Toward M2 Phenotype to Alleviate Inflammation After Intracerebral Hemorrhage. Neurocrit Care 2022; 36:942-954. [PMID: 35099711 DOI: 10.1007/s12028-021-01401-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is one of the most lethal stroke types and lacks effective therapeutic regimens. Recently, evidence has suggested the involvement of the ferroptosis inhibitor ferrostatin-1 (Fer-1) in the pathophysiological process of ICH. In this study, we examined the underlying mechanism. METHODS We induced an in vitro apoptosis model in organotypic hippocampal slice (OHS) using hemoglobin (Hb) and an in vivo ICH model using collagenase. OHSs were treated with MK-801, Fer-1, glutamate, and Hb to assess the impacts of Fer-1 on neuron apoptosis, glutathione peroxidase-4 activity, reactive oxygen species production, inflammation-related factors, expression of M1 markers and M2 markers, and the phagocytic function of microglial cells in vitro. Then, ICH mice were treated with Fer-1 and ruxolitinib to evaluate the effects of Fer-1-orchestrating janus kinase 1/signal transducer and activator of transcription 6 pathway on neurological function, brain water content, hematoma volume, the anti-inflammatory factor, M1 and M2 markers, and the phagocytic function of microglial cells in vivo. RESULTS Hb or glutamate facilitated glutathione peroxidase dysfunction, reactive oxygen species production, and neuronal apoptosis in OHSs, which was nullified by Fer-1. Fer-1 polarized microglial cells to the M2 phenotype, enhanced their phagocytic function, and prevented inflammation in Hb-induced OHSs. In the ICH mouse model, Fer-1 was found to improve neurological function and promote hematoma absorption. In addition, Fer-1 activated the Fer-1-orchestrating janus kinase 1/signal transducer and activator of transcription 6 pathway, which accelerated microglial M2 polarization, enhanced the phagocytic function of microglial cells, and restrained inflammation in ICH mice. CONCLUSIONS Overall, our findings suggest that Fer-1 may be a novel mechanism underlying microglial M2 polarization and inflammation after ICH.
Collapse
Affiliation(s)
- Lijuan Huang
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar Cancer Hospital, No. 27, Taishun Street, Tiefeng District, Heilongjiang, 161000, Heilongjiang Province, People's Republic of China
| | - Yanjiao Zhang
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar Cancer Hospital, No. 27, Taishun Street, Tiefeng District, Heilongjiang, 161000, Heilongjiang Province, People's Republic of China
| | - Liang Zhao
- Department of Anesthesiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar Cancer Hospital, Heilongjiang, People's Republic of China
| | - Qingyou Chen
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar Cancer Hospital, No. 27, Taishun Street, Tiefeng District, Heilongjiang, 161000, Heilongjiang Province, People's Republic of China
| | - Li Li
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar Cancer Hospital, No. 27, Taishun Street, Tiefeng District, Heilongjiang, 161000, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
42
|
Ogiso K, Shayo SC, Kawade S, Hashiguchi H, Deguchi T, Nishio Y. Repeated glucose spikes and insulin resistance synergistically deteriorate endothelial function and bardoxolone methyl ameliorates endothelial dysfunction. PLoS One 2022; 17:e0263080. [PMID: 35073378 PMCID: PMC8786204 DOI: 10.1371/journal.pone.0263080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/11/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Both insulin resistance and postprandial glucose spikes are known for their potential to induce vascular endothelial dysfunction in individuals with metabolic syndrome. However, these factors are inextricable, and therefore, their relative contributions to inducing endothelial dysfunction remain elusive. In this study, we aimed to disentangle the effects of these factors and clarify whether bardoxolone methyl (CDDO-Me), a novel nuclear factor erythroid 2-related factor 2 (Nrf2) activator, protects against glucose spike-induced endothelial dysfunction. METHODS We induced glucose spikes twice daily for a duration of 1 week to rats fed a standard/control diet (CD) and Western-type diet (WTD). Endothelium-dependent relaxation (EDR) was evaluated using isolated thoracic aortas. Gene expression and dihydroethidium (DHE)-fluorescence studies were carried out; the effect of CDDO-Me on aortic endothelial dysfunction in vivo was also evaluated. RESULTS Neither WTD-induced insulin resistance nor pure glucose spikes significantly deteriorated EDR. However, under high-glucose (20 mM) conditions, the EDR of thoracic aortas of WTD-fed rats subjected to glucose spikes was significantly impaired. In this group of rats, we observed significantly enhanced DHE fluorescence as a marker of reactive oxygen species, upregulation of an oxidative stress-related gene (NOX2), and downregulation of an antioxidant gene (SOD2) in the thoracic aortas. As expected, treatment of the thoracic aorta of this group of rats with antioxidant agents significantly improved EDR. We also noted that pretreatment of aortas from the same group with CDDO-Me attenuated endothelial dysfunction, accompanied by a correction of the redox imbalance, as observed in gene expression and DHE fluorescence studies. CONCLUSIONS For the first time, we showed that insulin resistance and glucose spikes exert a synergistic effect on aortic endothelial dysfunction. Furthermore, our study reveals that CDDO-Me ameliorates endothelial dysfunction caused by glucose spikes in a rat model of metabolic syndrome.
Collapse
Affiliation(s)
- Kazuma Ogiso
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Sigfrid Casmir Shayo
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Shigeru Kawade
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Hiroshi Hashiguchi
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Takahisa Deguchi
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Yoshihiko Nishio
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| |
Collapse
|
43
|
Chen X, Mi L, Gu G, Gao X, Shi M, Chai Y, Chen F, Yang W, Zhang JN. Dysfunctional ER-mitochondrion coupling is associated with ER stress-induced apoptosis and neurological deficits in a rodent model of severe head injury. J Neurotrauma 2022; 39:560-576. [PMID: 35018820 DOI: 10.1089/neu.2021.0347] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cellular homeostasis requires critical communications between the endoplasmic reticulum (ER) and mitochondria to maintain the viability of cells. This communication is mediated and maintained by the mitochondria-associated membranes (MAMs) and may be disrupted during acute traumatic brain injury (TBI), leading to structural and functional damages of neurons and supporting cells. To test this hypothesis, we subjected male C57BL/6 mice to severe TBI (sTBI) using a controlled cortical impact (CCI) device. We analyzed the physical ER-mitochondrion contacts in the perilesional cortex using transmission electron microscopy, western blot, and immunofluorescence. We specifically measured changes in the production of reactive oxygen species (ROS) in mitochondria, the unfolded protein response (UPR), the neuroinflammatory response, and ER stress-mediated apoptosis in the traumatic injured cerebral tissue. A modified neurological severity score (mNSS) was used to evaluate neurological function in the sTBI mice. We found that sTBI induced significant reorganizations of MEMs in the cerebral cortex within the first 24 hr post-injury. This ER-mitochondrion coupling was enhanced, reaching its peak level at 6 hrs post-sTBI. This enhanced coupling correlated closely with increases in the expression of the Ca2+ regulatory proteins (IP3R1, VDAC1, GRP75, Sigma-1R), production of ROS, degree of ER stress, levels of UPR, and release of proinflammatory cytokines. Furthermore, the neurological function of sTBI mice was significantly improved by silencing the gene for the ER-mitochondrion tethering factor PACS2, restoring the IP3R1-GRP75-VDAC1 axis of Ca2+ regulation, alleviating mitochondria-derived oxidative stress, suppressing inflammatory response through the PERK/eIF2α/ATF4/CHOP pathway, and inhibiting ER stress and associated apoptosis. These results indicate that dysfunctional ER-mitochondrion coupling might be primarily involved in the neuronal apoptosis and neurological deficits, and modulating the ER-mitochondrion crosstalk might be a novel therapeutic strategy for sTBI.
Collapse
Affiliation(s)
- Xin Chen
- Tianjin Medical University General Hospital, 117865, Neurosurgery, 154 Anshan Road, Heping District, Tianjin, Tianjin, China, 300052.,Tianjin Neurological Institute, 230967, 154 Anshan Road, Heping District, Tianjin, China, 300052;
| | - Liang Mi
- Tianjin Medical University General Hospital, 117865, Neurosurgery, Tianjin, Tianjin, China;
| | - Gang Gu
- Tianjin Medical University General Hospital, 117865, Tianjin, Tianjin, China;
| | - Xiangliang Gao
- Tianjin Medical University General Hospital, 117865, Department of Neurosurgery, Tianjin, Tianjin, China;
| | - Mingming Shi
- Tianjin Medical University General Hospital, 117865, Neurosurgery, Tianjin, Tianjin, China;
| | - Yan Chai
- Tianjin Neurological Institute, 230967, Tianjin, China;
| | - Fanglian Chen
- Tianjin Neurological Institute, 230967, Tianjin, Tianjin, China;
| | - Weidong Yang
- Tianjin Medical University General Hospital, 117865, Neurosurgery, Tianjin, Tianjin, China;
| | - Jian-Ning Zhang
- Tianjin Medical University General Hospital, 117865, Neurosurgery, Tianjin, Tianjin, China;
| |
Collapse
|
44
|
Chandra S, Qureshi S, Chopra D, Shukla S, Patel SK, Singh J, Ray RS. UVR-induced phototoxicity mechanism of methyl N-methylanthranilate in human keratinocyte cell line. Toxicol In Vitro 2022; 80:105322. [DOI: 10.1016/j.tiv.2022.105322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
|
45
|
A Plate Reader-Based Measurement of the Cellular ROS Production Using Dihydroethidium and MitoSOX. Methods Mol Biol 2022; 2497:333-337. [PMID: 35771455 DOI: 10.1007/978-1-0716-2309-1_24] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Intracellular reactive oxygen species (ROS) act as an important signaling transductor in cells, regulating almost every aspect of cell biology. Measurements of ROS production thus, offer links between oxidative stress and cell pathophysiology. Here, we describe a simple screening assay in intact adherent cells by fluorescence microplate readers, using dihydroethidium (DHE) and MitoSOX to measure cytosolic superoxide and mitochondrial superoxide production, respectively. This assay enables a quick and reliable assessment of ROS generation in a well-controlled environment.
Collapse
|
46
|
Exosome-eluting stents for vascular healing after ischaemic injury. Nat Biomed Eng 2021; 5:1174-1188. [PMID: 33820981 PMCID: PMC8490494 DOI: 10.1038/s41551-021-00705-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Drug-eluting stents implanted after ischaemic injury reduce the proliferation of endothelial cells and vascular smooth muscle cells and thus neointimal hyperplasia. However, the eluted drug also slows down the re-endothelialization process, delays arterial healing and can increase the risk of late restenosis. Here we show that stents releasing exosomes derived from mesenchymal stem cells in the presence of reactive oxygen species enhance vascular healing in rats with renal ischaemia-reperfusion injury, promoting endothelial cell tube formation and proliferation, and impairing the migration of smooth muscle cells. Compared with drug-eluting stents and bare-metal stents, the exosome-coated stents accelerated re-endothelialization and decreased in-stent restenosis 28 days after implantation. We also show that exosome-eluting stents implanted in the abdominal aorta of rats with unilateral hindlimb ischaemia regulated macrophage polarization, reduced local vascular and systemic inflammation, and promoted muscle tissue repair.
Collapse
|
47
|
Herb M, Gluschko A, Schramm M. Reactive Oxygen Species: Not Omnipresent but Important in Many Locations. Front Cell Dev Biol 2021; 9:716406. [PMID: 34557488 PMCID: PMC8452931 DOI: 10.3389/fcell.2021.716406] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Reactive oxygen species (ROS), such as the superoxide anion or hydrogen peroxide, have been established over decades of research as, on the one hand, important and versatile molecules involved in a plethora of homeostatic processes and, on the other hand, as inducers of damage, pathologies and diseases. Which effects ROS induce, strongly depends on the cell type and the source, amount, duration and location of ROS production. Similar to cellular pH and calcium levels, which are both strictly regulated and only altered by the cell when necessary, the redox balance of the cell is also tightly regulated, not only on the level of the whole cell but in every cellular compartment. However, a still widespread view present in the scientific community is that the location of ROS production is of no major importance and that ROS randomly diffuse from their cellular source of production throughout the whole cell and hit their redox-sensitive targets when passing by. Yet, evidence is growing that cells regulate ROS production and therefore their redox balance by strictly controlling ROS source activation as well as localization, amount and duration of ROS production. Hopefully, future studies in the field of redox biology will consider these factors and analyze cellular ROS more specifically in order to revise the view of ROS as freely flowing through the cell.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Alexander Gluschko
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Michael Schramm
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| |
Collapse
|
48
|
Marek-Iannucci S, Ozdemir AB, Moreira D, Gomez AC, Lane M, Porritt RA, Lee Y, Shimada K, Abe M, Stotland A, Zemmour D, Parker S, Sanchez-Lopez E, Van Eyk J, Gottlieb RA, Fishbein M, Karin M, Crother TR, Noval Rivas M, Arditi M. Autophagy-mitophagy induction attenuates cardiovascular inflammation in a murine model of Kawasaki disease vasculitis. JCI Insight 2021; 6:e151981. [PMID: 34403365 PMCID: PMC8492304 DOI: 10.1172/jci.insight.151981] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023] Open
Abstract
Kawasaki disease (KD) is the leading cause of acquired heart disease among children. Murine and human data suggest that the NLRP3-IL-1β pathway is the main driver of KD pathophysiology. NLRP3 can be activated during defective autophagy/mitophagy. We used the Lactobacillus casei cell wall extract (LCWE) murine model of KD vasculitis, to examine the role of autophagy/mitophagy on cardiovascular lesion development. LCWE-injected mice had impaired autophagy/mitophagy and increased levels of ROS in cardiovascular lesions, together with increased systemic 8-OHdG release. Enhanced autophagic flux significantly reduced cardiovascular lesions in LCWE-injected mice, whereas autophagy blockade increased inflammation. Vascular smooth muscle cell specific deletion of Atg16l1 and global Parkin-/- significantly increased disease formation, supporting the importance of autophagy/mitophagy in this model. Ogg1-/- mice had significantly increased lesions with increased NLRP3 activity, whereas treatment with MitoQ, reduced vascular tissue inflammation, ROS production and systemic 8-OHdG release. Treatment with MN58b or Metformin (increasing AMPK and reducing ROS), resulted in decreased disease formation. Our results demonstrate that impaired autophagy/mitophagy and ROS-dependent damage exacerbate the development of murine KD vasculitis. This pathway can be efficiently targeted to reduce disease severity. These findings enhance our understanding of KD pathogenesis and identify novel therapeutic avenues for KD treatment.
Collapse
Affiliation(s)
- Stefanie Marek-Iannucci
- Graduate School of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, United States of America
| | - A Beyza Ozdemir
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, United States of America
| | - Debbie Moreira
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, United States of America
| | - Angela C Gomez
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, United States of America
| | - Malcolm Lane
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, United States of America
| | - Rebecca A Porritt
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, United States of America
| | - Youngho Lee
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, United States of America
| | - Kenichi Shimada
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, United States of America
| | - Masanori Abe
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, United States of America
| | - Aleksandr Stotland
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, United States of America
| | - David Zemmour
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, United States of America
| | - Sarah Parker
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, United States of America
| | | | - Jennifer Van Eyk
- Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, United States of America
| | - Roberta A Gottlieb
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, United States of America
| | - Michael Fishbein
- Department of Pathology, UCLA, Los Angeles, United States of America
| | - Michael Karin
- Department of Pathology, UCSD, San Diego, United States of America
| | - Timothy R Crother
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, United States of America
| | - Magali Noval Rivas
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, United States of America
| | - Moshe Arditi
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, United States of America
| |
Collapse
|
49
|
The in vitro and in vivo anti-virulent effect of organic acid mixtures against Eimeria tenella and Eimeria bovis. Sci Rep 2021; 11:16202. [PMID: 34376718 PMCID: PMC8355357 DOI: 10.1038/s41598-021-95459-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022] Open
Abstract
Eimeria tenella and Eimeria bovis are complex parasites responsible for the condition of coccidiosis, that invade the animal gastrointestinal intestinal mucosa causing severe diarrhoea, loss of appetite or abortions, with devastating impacts on the farming industry. The negative impacts of these parasitic infections are enhanced by their role in promoting the colonisation of the gut by common foodborne pathogens. The aim of this study was to test the anti-Eimeria efficacy of maltodextrin, sodium chloride, citric acid, sodium citrate, silica, malic acid, citrus extract, and olive extract individually, in vitro and in combination, in vivo. Firstly, in vitro infection models demonstrated that antimicrobials reduced (p < 0.05), both singly and in combination (AG), the ability of E. tenella and E. bovis to infect MDBK and CLEC-213 epithelial cells, and the virulence reduction was similar to that of the anti-coccidial drug Robenidine. Secondly, using an in vivo broiler infection model, we demonstrated that AG reduced (p = 0.001) E. tenella levels in the caeca and excreted faeces, reduced inflammatory oxidative stress, improved the immune response through reduced ROS, increased Mn-SOD and SCFA levels. Levels of IgA and IgM were significantly increased in caecal tissues of broilers that received 0.5% AG and were associated with improved (p < 0.0001) tissue lesion scores. A prophylactic approach increased the anti-parasitic effect in vivo, and results indicated that administration from day 0, 5 and 10 post-hatch reduced tissue lesion scores (p < 0.0001) and parasite excretion levels (p = 0.002). Conclusively, our in vitro and in vivo results demonstrate that the natural antimicrobial mixture (AG) reduced parasitic infections through mechanisms that reduced pathogen virulence and attenuated host inflammatory events.
Collapse
|
50
|
Deshpande P, Gogia N, Chimata AV, Singh A. Unbiased automated quantitation of ROS signals in live retinal neurons of Drosophila using Fiji/ImageJ. Biotechniques 2021; 71:416-424. [PMID: 34350780 PMCID: PMC10288391 DOI: 10.2144/btn-2021-0006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022] Open
Abstract
Numerous imaging modules are utilized to study changes that occur during cellular processes. Besides qualitative (immunohistochemical) or semiquantitative (Western blot) approaches, direct quantitation method(s) for detecting and analyzing signal intensities for disease(s) biomarkers are lacking. Thus, there is a need to develop method(s) to quantitate specific signals and eliminate noise during live tissue imaging. An increase in reactive oxygen species (ROS) such as superoxide (O2•-) radicals results in oxidative damage of biomolecules, which leads to oxidative stress. This can be detected by dihydroethidium staining in live tissue(s), which does not rely on fixation and helps prevent stress on tissues. However, the signal-to-noise ratio is reduced in live tissue staining. We employ the Drosophila eye model of Alzheimer's disease as a proof of concept to quantitate ROS in live tissue by adapting an unbiased method. The method presented here has a potential application for other live tissue fluorescent images.
Collapse
Affiliation(s)
| | - Neha Gogia
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | | | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
- Premedical Program, University of Dayton, Dayton, OH 45469, USA
- Center for Tissue Regeneration & Engineering at Dayton (TREND), University of Dayton, Dayton, OH 45469, USA
- The Integrative Science & Engineering Center, University of Dayton, Dayton, OH 45469, USA
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA
| |
Collapse
|