1
|
Wu J, Qiu Y, Lyashenko E, Torregrosa T, Pfister EL, Ryan MJ, Mueller C, Choudhury SR. Prediction of Adeno-Associated Virus Fitness with a Protein Language-Based Machine Learning Model. Hum Gene Ther 2025; 36:823-829. [PMID: 40241334 DOI: 10.1089/hum.2024.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Adeno-associated virus (AAV)-based therapeutics have the potential to transform the lives of patients by delivering one-time treatments for a variety of diseases. However, a critical challenge to their widespread adoption and distribution is the high cost of goods. Reducing manufacturing costs by developing AAV capsids with improved yield, or fitness, is key to making gene therapies more affordable. AAV fitness is largely determined by the amino acid sequence of the capsid, however, engineered AAVs are rarely optimized for manufacturability. Here, we report a state-of-the art machine learning (ML) model that predicts the fitness of AAV2 capsid mutants based on the amino acid sequence of the capsid monomer. By combining a protein language model (PLM) and classical ML techniques, our model achieved a significantly high prediction accuracy (Pearson correlation = 0.818) for capsid fitness. Importantly, tests on completely independent datasets showed robustness and generalizability of our model, even for multimutant AAV capsids. Our accurate ML-based model can be used as a surrogate for laborious in vitro experiments, thus saving time and resources, and can be deployed to increase the fitness of clinical AAV capsids to make gene therapies economically viable for patients.
Collapse
Affiliation(s)
- Jason Wu
- Genomic Medicine Unit, Sanofi, Waltham, Massachusetts, USA
| | - Yu Qiu
- Large Molecule Research, Sanofi, Cambridge, Massachusetts, USA
| | | | | | | | - Michael J Ryan
- Genomic Medicine Unit, Sanofi, Waltham, Massachusetts, USA
| | | | | |
Collapse
|
2
|
Jiang D, Wang M, Wheeler AP, Croteau SE. 2025 Clinical Trials Update on Hemophilia, VWD, and Rare Inherited Bleeding Disorders. Am J Hematol 2025; 100:666-684. [PMID: 39901862 DOI: 10.1002/ajh.27602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 02/05/2025]
Abstract
Clinical trial programs for inherited bleeding disorders feature an array of innovative prophylaxis options: engineered clotting factor concentrates, FVIIIa mimetics, gene therapies, and biologics to bolster thrombin generation (rebalancing agents). Increasingly, non-hemophilia bleeding disorders and a broader demographic (females, children, and infants) are being incorporated into study populations. Ongoing clinical trials broadly address three themes: (1) indication expansion for licensed therapeutics in previously uninvestigated patient subgroups or clinical scenarios, (2) evaluation of efficacy and safety among other bleeding disorders such as von Willebrand disease, platelet function defects, and rare clotting factor deficiencies, and (3) longitudinal assessment of approved treatments particularly with regard to longer-term efficacy outcomes such as musculoskeletal health and treatment-specific safety outcomes including thrombotic risk and liver health. With these new prophylaxis modalities, providers must have a nuanced understanding of each therapy's mechanism of action, advantages, side effect profile, therapeutic limitations, and impact on hemostasis and laboratory monitoring. Treatment is no longer "one size fits all." Rather, management is tailored to individual needs and preferences. Here, we review active investigational trials and highlight promising approaches in preclinical development, expanding the innovative, complex landscape of inherited bleeding disorders therapeutics.
Collapse
Affiliation(s)
- Debbie Jiang
- Hematology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael Wang
- Hemophilia and Thrombosis Center, University of Colorado, Aurora, Colorado, USA
| | - Allison P Wheeler
- Washington Center for Bleeding Disorders, University of Washington School of Medicine, Seattle, Washington, USA
| | - Stacy E Croteau
- Boston Bleeding Disorders Center, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Meierrieks F, Rosario JC, Rübeling L, Asikoglu H, Pflanz K, Pickl A, Kusch K, Wolff MW, Graf B. Combining steric exclusion with anion exchange - development of a universal and scalable adeno-associated virus downstream process. J Chromatogr A 2025; 1743:465674. [PMID: 39824069 DOI: 10.1016/j.chroma.2025.465674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
Adeno-associated viruses (AAV) are among the leading vectors for in vivo gene therapy. The purification of AAV remains a bottleneck as it typically requires multiple individual process steps, often resulting in product loss and high costs. Current downstream processes are usually serotype-specific and rely primarily on expensive affinity resins. To address these limitations, we developed a serotype-independent purification method using steric exclusion chromatography (SXC) that can be combined with a subsequent anion exchange full/empty separation step. This alternative approach eliminates the need for intermediate concentration and buffer exchange, thereby reducing the number of process steps required while achieving high-purity full AAV particles. SXC conditions were optimized using a design of experiments approach. Isocratic separation of full and empty AAV resulted in further purification of the sample. The overall process achieved a viral genome recovery of 51.7 %, along with impurity depletions of 99.9 % for DNA and 99.8 % for protein. The process was successfully adapted to different AAV serotypes and genes of interest, demonstrating its robustness and versatility. In addition, the scalability of SXC was demonstrated, highlighting its potential for large-scale manufacturing. This streamlined, universal, and scalable process provides a robust and efficient alternative to traditional AAV purification processes, addressing critical challenges in gene therapy production and paving the way for broader implementation in research and manufacturing.
Collapse
Affiliation(s)
- Frederik Meierrieks
- Lab Essentials Applications Development, Sartorius Lab Instruments GmbH & Co. KG, Göttingen, Germany.
| | - Juan-Carlos Rosario
- Bioproduct Research and Development, Lilly Technology Center North, Eli Lilly, Indianapolis, Indiana, USA
| | - Lena Rübeling
- Lab Essentials Applications Development, Sartorius Lab Instruments GmbH & Co. KG, Göttingen, Germany
| | - Hatice Asikoglu
- Lab Essentials Applications Development, Sartorius Lab Instruments GmbH & Co. KG, Göttingen, Germany
| | - Karl Pflanz
- Lab Essentials Applications Development, Sartorius Stedim Biotech GmbH, Göttingen, Germany
| | - Andreas Pickl
- Lab Essentials Applications Development, Sartorius Lab Instruments GmbH & Co. KG, Göttingen, Germany
| | - Kathrin Kusch
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Germany; Functional Auditory Genomics Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Giessen, Germany
| | - Benjamin Graf
- Lab Essentials Applications Development, Sartorius Lab Instruments GmbH & Co. KG, Göttingen, Germany
| |
Collapse
|
4
|
Townsend JA, Li S, Sweezy L, Liu N, Rosconi MP, Pyles EA, Zhi L, Liu D, Wu Z, Qiu H, Shameem M, Li N. Comparative analysis of empty and full adeno-associated viruses under stress conditions by anion-exchange chromatography, analytical ultracentrifugation, and mass photometry. J Pharm Sci 2025; 114:1237-1244. [PMID: 39826843 DOI: 10.1016/j.xphs.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
Adeno-associated viruses (AAVs) have emerged as a promising gene delivery vehicle for the treatment of diseases. As AAVs are a complex therapeutic modality, new analytical techniques are needed to thoroughly characterize the critical quality attributes (CQAs) to support drug development. Empty and full ratio is one of the CQAs of AAVs that may impact drug safety and efficacy. While the empty and full ratio of AAV therapeutics in untreated conditions can be well characterized by different analytical methods, limited studies have demonstrated whether these analytical methods can be used for characterizing stressed AAVs, which can help with assessing the stability of the molecule and identify potential degradation pathways. Here, we employ three orthogonal analytical techniques - (1) anion-exchange chromatography (AEX), (2) analytical ultracentrifugation (AUC), and (3) recently introduced mass photometry (MP) - to investigate their ability to characterize AAV samples subjected to various stress conditions, including freeze/thaw, physical agitation, and thermal stress. Based on our observations, AEX is a high-throughput technique. However, it falls short in quantifying the amount of partially filled AAVs, and the quantification is significantly impacted by post-translational modifications, which often occur to AAVs under stress conditions. AUC provides the best resolution for stressed AAV samples but is limited by its throughput and high sample consumption. MP combines the strength of being high-throughput and requires the least amount of samples, albeit at the expense of lower resolution compared to AUC. Our study suggests that each of these three techniques, AEX, AUC, and the emerging MP method, is suitable for characterizing empty and full AAV particles at various stages throughout the lifecycle of drug development.
Collapse
Affiliation(s)
- Julia A Townsend
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Shuai Li
- Formulation Development, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Laura Sweezy
- Protein Biochemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Nina Liu
- Protein Biochemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Michael P Rosconi
- Protein Biochemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Erica A Pyles
- Protein Biochemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Li Zhi
- Formulation Development, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Dingjiang Liu
- Formulation Development, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Zhijie Wu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Mohammed Shameem
- Formulation Development, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| |
Collapse
|
5
|
Hołubowicz R, Du SW, Felgner J, Smidak R, Choi EH, Palczewska G, Menezes CR, Dong Z, Gao F, Medani O, Yan AL, Hołubowicz MW, Chen PZ, Bassetto M, Risaliti E, Salom D, Workman JN, Kiser PD, Foik AT, Lyon DC, Newby GA, Liu DR, Felgner PL, Palczewski K. Safer and efficient base editing and prime editing via ribonucleoproteins delivered through optimized lipid-nanoparticle formulations. Nat Biomed Eng 2025; 9:57-78. [PMID: 39609561 PMCID: PMC11754100 DOI: 10.1038/s41551-024-01296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
Delivering ribonucleoproteins (RNPs) for in vivo genome editing is safer than using viruses encoding for Cas9 and its respective guide RNA. However, transient RNP activity does not typically lead to optimal editing outcomes. Here we show that the efficiency of delivering RNPs can be enhanced by cell-penetrating peptides (covalently fused to the protein or as excipients) and that lipid nanoparticles (LNPs) encapsulating RNPs can be optimized for enhanced RNP stability, delivery efficiency and editing potency. Specifically, after screening for suitable ionizable cationic lipids and by optimizing the concentration of the synthetic lipid DMG-PEG 2000, we show that the encapsulation, via microfluidic mixing, of adenine base editor and prime editor RNPs within LNPs using the ionizable lipid SM102 can result in in vivo editing-efficiency enhancements larger than 300-fold (with respect to the delivery of the naked RNP) without detectable off-target edits. We believe that chemically defined LNP formulations optimized for RNP-encapsulation stability and delivery efficiency will lead to safer genome editing.
Collapse
Grants
- F30 EY033642 NEI NIH HHS
- FENG.02.01-IP.05-T005/23 Fundacja na rzecz Nauki Polskiej (Foundation for Polish Science)
- R01 EY032948 NEI NIH HHS
- R01EY032948, R21NS113264 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- RM1 HG009490 NHGRI NIH HHS
- R00 HL163805 NHLBI NIH HHS
- R21 NS113264 NINDS NIH HHS
- R01 EY030873 NEI NIH HHS
- U01 AI142756 NIAID NIH HHS
- UG3AI150551, U01AI142756, R35GM118062, RM1HG009490 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- R01 EY034501 NEI NIH HHS
- N66001-21-C-4013 United States Department of Defense | Defense Threat Reduction Agency (DTRA)
- T32GM008620, F30EY033642 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- T32GM148383 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- P30EY034070 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- I01BX004939 U.S. Department of Veterans Affairs (Department of Veterans Affairs)
- UG3 AI150551 NIAID NIH HHS
- 75N93022C00054 NIAID NIH HHS
- R01EY009339, R01EY030873, P30EY034070, P30CA062203 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- R01 EY009339 NEI NIH HHS
- P30 EY034070 NEI NIH HHS
- T32 GM008620 NIGMS NIH HHS
- R00HL163805 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
- I01 BX004939 BLRD VA
- R35 GM118062 NIGMS NIH HHS
- T32 GM148383 NIGMS NIH HHS
- P30 CA062203 NCI NIH HHS
- 2022/47/B/NZ5/03023, 2020/39/D/NZ4/01881, 2019/34/E/NZ5/00434 Narodowe Centrum Nauki (National Science Centre)
- Knights Templar Eye Foundation (Knights Templar Eye Foundation, Inc.)
- Howard Hughes Medical Institute (HHMI)
Collapse
Affiliation(s)
- Rafał Hołubowicz
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Samuel W Du
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Jiin Felgner
- Adeline Yen Mah Vaccine Center, Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Roman Smidak
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Elliot H Choi
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Grazyna Palczewska
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Carolline Rodrigues Menezes
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Zhiqian Dong
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Fangyuan Gao
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Omar Medani
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Alexander L Yan
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Program in Neuroscience, Amherst College, Amherst, MA, USA
| | - Maria W Hołubowicz
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - Paul Z Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marco Bassetto
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
- Research Service, Tibor Rubin VA Long Beach Medical Center, Long Beach, CA, USA
| | - Eleonora Risaliti
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - David Salom
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
| | - J Noah Workman
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Philip D Kiser
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
- Research Service, Tibor Rubin VA Long Beach Medical Center, Long Beach, CA, USA
- Department of Clinical Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Andrzej T Foik
- International Centre for Translational Eye Research (ICTER), Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - David C Lyon
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| | - Philip L Felgner
- Adeline Yen Mah Vaccine Center, Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, CA, USA.
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
6
|
Boychenko S, Abdullina A, Laktyushkin VS, Brovin A, Egorov AD. Assessment of Adipocyte Transduction Using Different AAV Capsid Variants. Pharmaceuticals (Basel) 2024; 17:1227. [PMID: 39338389 PMCID: PMC11435061 DOI: 10.3390/ph17091227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Adeno-associated viruses (AAVs) are widely used as viral vectors for gene delivery in mammalian cells. We focused on the efficacy of the transduction of AAV2/5, 2/6, 2/8 and 2/9 expressing GFP in preadipocyte cells by live imaging microscopy using IncuCyte S3 and flow cytometry. METHODS Three transduction modes in 3T3-L1 preadipocyte cells assessed: AAV transduction in 3T3-L1 preadipocyte cells, transduction with further differentiation into mature adipocyte-like cells and the transduction of differentiated 3T3-L1 adipocytes. For the in vivo study, we injected AAV2/6, AAV2/8 and AAV2/9 in adipose tissue of C57BL6 mice, and the transduction capacity of AAV2/6, along with AAV2/8 and AAV2/9 was evaluated. RESULTS AAV2/6 demonstrated the highest transduction efficiency in 3T3-L1 preadipocytes, as it was 1.5-2-fold more effective than AAV2/5, and AAV2/8 in the range of viral concentrations from 2 × 104 to 1.6 × 105 VG/cell. AAV2/5 and AAV2/8 showed transduction efficiencies similar to each other. The expression of GFP under the CMV promoter remained stable for up to 20 days. The induction of 3T3-L1 differentiation in three days after AAV transduction did not alter the GFP expression level, and AAV2/6 showed the best transduction efficiency. AAV2/6 demonstrated the ability to transduce mature adipocytes. These results were confirmed by in vivo studies on C57BL6 mice. AAV2/6 had the highest transducing activity on both inguinal and interscapular adipose tissue. CONCLUSIONS Thus, AAV2/6 has demonstrated higher transduction efficacy compared to AAV2/5, AAV2/8 and AAV2/9 both in 3T3-L1 adipocytes and adipose tissue in vivo, which proves its usability along with AAV2/8 and AAV2/9 for gene delivery to adipocytes.
Collapse
Affiliation(s)
- Stanislav Boychenko
- Gene Therapy Department, Science Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (A.A.); (A.B.)
| | - Alina Abdullina
- Gene Therapy Department, Science Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (A.A.); (A.B.)
| | - Viktor S. Laktyushkin
- Resource Center for Cell Technologies, Laboratory Complex, Sirius University of Science and Technology, 354340 Sirius, Russia;
| | - Andrew Brovin
- Gene Therapy Department, Science Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (A.A.); (A.B.)
| | - Alexander D. Egorov
- Gene Therapy Department, Science Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (A.A.); (A.B.)
| |
Collapse
|
7
|
Kurosawa Y, Tsunekawa Y, Wada M, Aizen Y, Nitahara-Kasahara Y, Okada T. Purification of Adeno-Associated Viral Vector Serotype 9 Using Ceramic Hydroxyapatite Chromatography and its Analysis. Curr Protoc 2024; 4:e1068. [PMID: 38837274 DOI: 10.1002/cpz1.1068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Adeno-associated virus (AAV) vectors can efficiently transduce exogenous genes into various tissues in vivo. Owing to their convenience, high efficiency, long-term stable gene expression, and minimal side effects, AAV vectors have become one of the gold standards for investigating gene functions in vivo, especially in non-clinical studies. However, challenges persist in efficiently preparing a substantial quantity of high-quality AAV vectors. Commercial AAV vectors are typically associated with high costs. Further, in-laboratory production is hindered by the lack of specific laboratory equipment, such as ultracentrifuges. Therefore, a simple, quick, and scalable preparation method for AAV vectors is needed for proof-of-concept experiments. Herein, we present an optimized method for producing and purifying high-quality AAV serotype 9 (AAV9) vectors using standard laboratory equipment and chromatography. Using ceramic hydroxyapatite as a mixed-mode chromatography medium can markedly increase the quality of purified AAV vectors. Basic Protocols and optional methods for evaluating purified AAV vectors are also described. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production of AAV9 vectors in 293EB cells Basic Protocol 2: Concentration and buffer exchange of AAV9 vectors from 293EB cell culture supernatants using tangential flow filtration Basic Protocol 3: Purification of AAV9 vectors from TFF samples using ceramic hydroxyapatite chromatography Basic Protocol 4: Analysis of the purified AAV9 vectors.
Collapse
Affiliation(s)
- Yae Kurosawa
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Chromatography Media Business Division, HOYA Technosurgical Corporation, Tokyo, Japan
| | - Yuji Tsunekawa
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mikako Wada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuko Aizen
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuko Nitahara-Kasahara
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Duran T, Naik S, Sharifi L, DiLuzio WR, Chanda A, Chaudhuri B. Studying the ssDNA loaded adeno-associated virus aggregation using coarse-grained molecular dynamics simulations. Int J Pharm 2024; 655:123985. [PMID: 38484860 DOI: 10.1016/j.ijpharm.2024.123985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
The aggregation of adeno-associated viral (AAV) capsids in an aqueous environment was investigated via coarse-grained molecular dynamics (CG-MD) simulations. The primary driving force and mechanism of the aggregation were investigated with or without single-strand DNA (ssDNA) loaded at various process temperatures. Capsid aggregation appeared to involve multiple residue interactions (i.e., hydrophobic, polar and charged residues) leading to complex protein aggregation. In addition, two aggregation mechanisms (i.e., the fivefold face-to-face contact and the edge-to-edge contact) were identified from this study. The ssDNA with its asymmetric structure could be the reason for destabilizing protein subunits and enhancing the interaction between the charged residues, and further result in the non-reversible face-to-face contact. At higher temperature, the capsid structure was found to be unstable with the significant size expansion of the loaded ssDNA which could be attributed to reduced number of intramolecular hydrogen bonds, the increased conformational deviations of protein subunits and the higher residue fluctuations. The CG-MD model was further validated with previous experimental and simulation data, including the full capsid size measurement and the capsid internal pressure. Thus, a good understanding of AAV capsid aggregation, instability and the role of ssDNA were revealed by applying the developed computational model.
Collapse
Affiliation(s)
- Tibo Duran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Shivangi Naik
- Technical Operations, Sarepta Therapeutics, Cambridge, MA 02142, USA
| | - Leila Sharifi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Willow R DiLuzio
- Technical Operations, Sarepta Therapeutics, Cambridge, MA 02142, USA
| | - Arani Chanda
- Technical Operations, Sarepta Therapeutics, Cambridge, MA 02142, USA
| | - Bodhisattwa Chaudhuri
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA; Institute of Material Sciences (IMS), University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
9
|
Chaqour B, Duong TT, Yue J, Liu T, Camacho D, Dine KE, Esteve-Rudd J, Ellis S, Bennett J, Shindler KS, Ross AG. AAV2 vector optimization for retinal ganglion cell-targeted delivery of therapeutic genes. Gene Ther 2024; 31:175-186. [PMID: 38200264 DOI: 10.1038/s41434-023-00436-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Recombinant adeno-associated virus (AAV)-2 has significant potential as a delivery vehicle of therapeutic genes to retinal ganglion cells (RGCs), which are key interventional targets in optic neuropathies. Here we show that when injected intravitreally, AAV2 engineered with a reporter gene driven by cytomegalovirus (CMV) enhancer and chicken β-actin (CBA) promoters, displays ubiquitous and high RGC expression, similar to its synthetic derivative AAV8BP2. A novel AAV2 vector combining the promoter of the human RGC-selective γ-synuclein (hSNCG) gene and woodchuck hepatitis post-transcriptional regulatory element (WPRE) inserted upstream and downstream of a reporter gene, respectively, induces widespread transduction and strong transgene expression in RGCs. High transduction efficiency and selectivity to RGCs is further achieved by incorporating in the vector backbone a leading CMV enhancer and an SV40 intron at the 5' and 3' ends, respectively, of the reporter gene. As a delivery vehicle of hSIRT1, a 2.2-kb therapeutic gene with anti-apoptotic, anti-inflammatory and anti-oxidative stress properties, this recombinant vector displayed improved transduction efficiency, a strong, widespread and selective RGC expression of hSIRT1, and increased RGC survival following optic nerve crush. Thus, AAV2 vector carrying hSNCG promoter with additional regulatory sequences may offer strong potential for enhanced effects of candidate gene therapies targeting RGCs.
Collapse
Affiliation(s)
- Brahim Chaqour
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Thu T Duong
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- GlaxoSmithKline, Collegeville, PA, 19426, USA
| | - Jipeng Yue
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Tehui Liu
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Spark Therapeutics, Philadelphia, PA, 19104, USA
| | - David Camacho
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kimberly E Dine
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | | | - Scott Ellis
- Gyroscope Therapeutics Limited, a Novartis Company, London, N7 9AS, UK
| | - Jean Bennett
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kenneth S Shindler
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Ahmara G Ross
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Nagy A, Chakrabarti L, Kurasawa J, Mulagapati SHR, Devine P, Therres J, Chen Z, Schmelzer AE. Engineered CHO cells as a novel AAV production platform for gene therapy delivery. Sci Rep 2023; 13:19210. [PMID: 37932360 PMCID: PMC10628118 DOI: 10.1038/s41598-023-46298-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
The Herpes simplex virus (HSV)-based platform for production of recombinant adeno-associated viral vectors (rAAVs) yields higher titers and increased percentage of full capsids when compared to the triple transient transfection (TTT) method. However, this platform currently faces two major challenges. The first challenge is the reliance on commercial media, sometimes supplemented with serum, leading to costly manufacturing and a high risk for introduction of adventitious agents. The second challenge is that the production of HSV-1 relies on adherent complementing Vero cells (V27), making it difficult to scale up. We engineered serum-free-adapted CHO cells expressing key HSV-1 entry receptors, HVEM and/or Nectin-1 to address the first challenge. Using high-throughput cloning methods, we successfully selected a HVEM receptor-expressing clone (CHO-HV-C1) that yields 1.62 × 109, 2.51 × 109, and 4.07 × 109 viral genome copies/mL with rAAV6.2-GFP, rAAV8-GFP, and rAAV9-GFP vectors respectively, within 24 h post rHSV-1 co-infection. Moreover, CHO-HV-C1-derived rAAVs had comparable in vitro transduction, infectivity, and biodistribution titers to those produced by TTT. The second challenge was addressed via engineering CHO-HV-C1 cells to express HSV-1 CP27. These cells successfully produced rHSV-1 vectors, but with significantly lower titers than V27 cells. Taken together, the CHO/HSV system provides a novel, scalable, reduced cost, serum-free AAV manufacturing platform.
Collapse
Affiliation(s)
- Abdou Nagy
- Cell Culture and Fermentation Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| | - Lina Chakrabarti
- Cell Culture and Fermentation Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - James Kurasawa
- Biologics Engineering, R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Sri Hari Raju Mulagapati
- Analytical Science, Biopharmaceutical Development, Biopharma R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Paul Devine
- Analytical Science, Biopharmaceutical Development, Biopharma R&D, AstraZeneca, Milstein Building, Granta Park, Cambridge, CB216GH, UK
| | - Jamy Therres
- Cell Culture and Fermentation Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Zhongying Chen
- Clinical Pharmacology and Safety Sciences, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Albert E Schmelzer
- Cell Culture and Fermentation Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
11
|
Madigan V, Zhang F, Dahlman JE. Drug delivery systems for CRISPR-based genome editors. Nat Rev Drug Discov 2023; 22:875-894. [PMID: 37723222 DOI: 10.1038/s41573-023-00762-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 09/20/2023]
Abstract
CRISPR-based drugs can theoretically manipulate any genetic target. In practice, however, these drugs must enter the desired cell without eliciting an unwanted immune response, so a delivery system is often required. Here, we review drug delivery systems for CRISPR-based genome editors, focusing on adeno-associated viruses and lipid nanoparticles. After describing how these systems are engineered and their subsequent characterization in preclinical animal models, we highlight data from recent clinical trials. Preclinical targeting mediated by polymers, proteins, including virus-like particles, and other vehicles that may deliver CRISPR systems in the future is also discussed.
Collapse
Affiliation(s)
- Victoria Madigan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
12
|
Ali Zaidi SS, Fatima F, Ali Zaidi SA, Zhou D, Deng W, Liu S. Engineering siRNA therapeutics: challenges and strategies. J Nanobiotechnology 2023; 21:381. [PMID: 37848888 PMCID: PMC10583313 DOI: 10.1186/s12951-023-02147-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
Small interfering RNA (siRNA) is a potential method of gene silencing to target specific genes. Although the U.S. Food and Drug Administration (FDA) has approved multiple siRNA-based therapeutics, many biological barriers limit their use for treating diseases. Such limitations include challenges concerning systemic or local administration, short half-life, rapid clearance rates, nonspecific binding, cell membrane penetration inability, ineffective endosomal escape, pH sensitivity, endonuclease degradation, immunological responses, and intracellular trafficking. To overcome these barriers, various strategies have been developed to stabilize siRNA, ensuring their delivery to the target site. Chemical modifications implemented with nucleotides or the phosphate backbone can reduce off-target binding and immune stimulation. Encapsulation or formulation can protect siRNA from endonuclease degradation and enhance cellular uptake while promoting endosomal escape. Additionally, various techniques such as viral vectors, aptamers, cell-penetrating peptides, liposomes, and polymers have been developed for delivering siRNA, greatly improving their bioavailability and therapeutic potential.
Collapse
Affiliation(s)
- Syed Saqib Ali Zaidi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Faria Fatima
- College of Medical Technology, Ziauddin University, Karachi, 74700, Pakistan
| | - Syed Aqib Ali Zaidi
- Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Wuquan Deng
- Department of Endocrinology and Metabolism, Chongqing Diabetic Foot Medical Research Center, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China.
| | - Shuai Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Salimando GJ, Tremblay S, Kimmey BA, Li J, Rogers SA, Wojick JA, McCall NM, Wooldridge LM, Rodrigues A, Borner T, Gardiner KL, Jayakar SS, Singeç I, Woolf CJ, Hayes MR, De Jonghe BC, Bennett FC, Bennett ML, Blendy JA, Platt ML, Creasy KT, Renthal WR, Ramakrishnan C, Deisseroth K, Corder G. Human OPRM1 and murine Oprm1 promoter driven viral constructs for genetic access to μ-opioidergic cell types. Nat Commun 2023; 14:5632. [PMID: 37704594 PMCID: PMC10499891 DOI: 10.1038/s41467-023-41407-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
With concurrent global epidemics of chronic pain and opioid use disorders, there is a critical need to identify, target and manipulate specific cell populations expressing the mu-opioid receptor (MOR). However, available tools and transgenic models for gaining long-term genetic access to MOR+ neural cell types and circuits involved in modulating pain, analgesia and addiction across species are limited. To address this, we developed a catalog of MOR promoter (MORp) based constructs packaged into adeno-associated viral vectors that drive transgene expression in MOR+ cells. MORp constructs designed from promoter regions upstream of the mouse Oprm1 gene (mMORp) were validated for transduction efficiency and selectivity in endogenous MOR+ neurons in the brain, spinal cord, and periphery of mice, with additional studies revealing robust expression in rats, shrews, and human induced pluripotent stem cell (iPSC)-derived nociceptors. The use of mMORp for in vivo fiber photometry, behavioral chemogenetics, and intersectional genetic strategies is also demonstrated. Lastly, a human designed MORp (hMORp) efficiently transduced macaque cortical OPRM1+ cells. Together, our MORp toolkit provides researchers cell type specific genetic access to target and functionally manipulate mu-opioidergic neurons across a range of vertebrate species and translational models for pain, addiction, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gregory J Salimando
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sébastien Tremblay
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Blake A Kimmey
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jia Li
- Dept. of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sophie A Rogers
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica A Wojick
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nora M McCall
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa M Wooldridge
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amrith Rodrigues
- Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tito Borner
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristin L Gardiner
- Dept. of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selwyn S Jayakar
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ilyas Singeç
- Stem Cell Translation Laboratory, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthew R Hayes
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Bart C De Jonghe
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - F Christian Bennett
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurology, Dept. of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mariko L Bennett
- Division of Neurology, Dept. of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julie A Blendy
- Dept. of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L Platt
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kate Townsend Creasy
- Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - William R Renthal
- Dept. of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Karl Deisseroth
- CNC Program, Stanford University, Stanford, CA, USA.
- Dept. of Bioengineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Dept. of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA.
| | - Gregory Corder
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Casy W, Garza IT, Chen X, Dong T, Hu Y, Kanchwala M, Trygg CB, Shyng C, Xing C, Bunnell BA, Braun SE, Gray SJ. SMRT Sequencing Enables High-Throughput Identification of Novel AAVs from Capsid Shuffling and Directed Evolution. Genes (Basel) 2023; 14:1660. [PMID: 37628711 PMCID: PMC10454592 DOI: 10.3390/genes14081660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The use of AAV capsid libraries coupled with various selection strategies has proven to be a remarkable approach for generating novel AAVs with enhanced and desired features. The inability to reliably sequence the complete capsid gene in a high-throughput manner has been the bottleneck of capsid engineering. As a result, many library strategies are confined to localized and modest alterations in the capsid, such as peptide insertions or single variable region (VR) alterations. The caveat of short reads by means of next-generation sequencing (NGS) hinders the diversity of capsid library construction, shifting the field away from whole-capsid modifications. We generated AAV capsid shuffled libraries of naturally occurring AAVs and applied directed evolution in both mice and non-human primates (NHPs), with the goal of yielding AAVs that are compatible across both species for translational applications. We recovered DNA from the tissues of injected animal and used single molecule real-time (SMRT) sequencing to identify variants enriched in the central nervous system (CNS). We provide insights and considerations for variant identification by comparing bulk tissue sequencing to that of isolated nuclei. Our work highlights the potential advantages of whole-capsid engineering, as well as indispensable methodological improvements for the analysis of recovered capsids, including the nuclei-enrichment step and SMRT sequencing.
Collapse
Affiliation(s)
- Widler Casy
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (I.T.G.); (X.C.); (Y.H.)
| | - Irvin T. Garza
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (I.T.G.); (X.C.); (Y.H.)
- Graduate School of Basic Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (I.T.G.); (X.C.); (Y.H.)
| | - Thomas Dong
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (I.T.G.); (X.C.); (Y.H.)
| | - Yuhui Hu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (I.T.G.); (X.C.); (Y.H.)
| | - Mohammed Kanchwala
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.K.)
| | - Cynthia B. Trygg
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA (B.A.B.); (S.E.B.)
| | - Charles Shyng
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Chao Xing
- Eugene McDermott Center for Human Growth & Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (M.K.)
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce A. Bunnell
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA (B.A.B.); (S.E.B.)
| | - Stephen E. Braun
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA (B.A.B.); (S.E.B.)
| | - Steven J. Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (I.T.G.); (X.C.); (Y.H.)
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
15
|
Issa SS, Shaimardanova AA, Solovyeva VV, Rizvanov AA. Various AAV Serotypes and Their Applications in Gene Therapy: An Overview. Cells 2023; 12:785. [PMID: 36899921 PMCID: PMC10000783 DOI: 10.3390/cells12050785] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Despite scientific discoveries in the field of gene and cell therapy, some diseases still have no effective treatment. Advances in genetic engineering methods have enabled the development of effective gene therapy methods for various diseases based on adeno-associated viruses (AAVs). Today, many AAV-based gene therapy medications are being investigated in preclinical and clinical trials, and new ones are appearing on the market. In this article, we present a review of AAV discovery, properties, different serotypes, and tropism, and a following detailed explanation of their uses in gene therapy for disease of different organs and systems.
Collapse
Affiliation(s)
- Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
16
|
Wilton-Clark H, Yokota T. Biological and genetic therapies for the treatment of Duchenne muscular dystrophy. Expert Opin Biol Ther 2023; 23:49-59. [PMID: 36409820 DOI: 10.1080/14712598.2022.2150543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Duchenne muscular dystrophy is a lethal genetic disease which currently has no cure, and poor standard treatment options largely focused on symptom relief. The development of multiple biological and genetic therapies is underway across various stages of clinical progress which could markedly affect how DMD patients are treated in the future. AREAS COVERED The purpose of this review is to provide an introduction to the different therapeutic modalities currently being studied, as well as a brief description of their progress to date and relative advantages and disadvantages for the treatment of DMD. This review discusses exon skipping therapy, microdystrophin therapy, stop codon readthrough therapy, CRISPR-based gene editing, cell-based therapy, and utrophin upregulation. Secondary therapies addressing nonspecific symptoms of DMD were excluded. EXPERT OPINION Despite the vast potential held by gene replacement therapy options such as microdystrophin production and utrophin upregulation, safety risks inherent to the adeno-associated virus delivery vector might hamper the clinical viability of these approaches until further improvements can be made. Of the mutation-specific therapies, exon skipping therapy remains the most extensively validated and explored option, and the cell-based CAP-1002 therapy may prove to be a suitable adjunct therapy filling the urgent need for cardiac-specific therapies.
Collapse
Affiliation(s)
- Harry Wilton-Clark
- Faculty of Medicine and Dentistry, Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Toshifumi Yokota
- Faculty of Medicine and Dentistry, Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Rode L, Bär C, Groß S, Rossi A, Meumann N, Viereck J, Abbas N, Xiao K, Riedel I, Gietz A, Zimmer K, Odenthal M, Büning H, Thum T. AAV capsid engineering identified two novel variants with improved in vivo tropism for cardiomyocytes. Mol Ther 2022; 30:3601-3618. [PMID: 35810332 PMCID: PMC9734024 DOI: 10.1016/j.ymthe.2022.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023] Open
Abstract
AAV vectors are promising delivery tools for human gene therapy. However, broad tissue tropism and pre-existing immunity against natural serotypes limit their clinical use. We identified two AAV capsid variants, AAV2-THGTPAD and AAV2-NLPGSGD, by in vivo AAV2 peptide display library screening in a murine model of pressure overload-induced cardiac hypertrophy. Both variants showed significantly improved efficacy in in vivo cardiomyocyte transduction compared with the parental serotype AAV2 as indicated by a higher number of AAV vector episomes in the nucleus and significant improved transduction efficiency. Both variants also outcompeted the reference serotype AAV9 regarding cardiomyocyte tropism, reaching comparable cardiac transduction efficiencies accompanied with liver de-targeting and decreased transduction efficiency of non-cardiac cells. Capsid modification influenced immunogenicity as sera of mice treated with AAV2-THGTPAD and AAV2-NLPGSGD demonstrated a poor neutralization capacity for the parental serotype and the novel variants. In a therapeutic setting, using the long non-coding RNA H19 in low vector dose conditions, novel AAV variants mediated superior anti-hypertrophic effects and revealed a further improved target-to-noise ratio, i.e., cardiomyocyte tropism. In conclusion, AAV2-THGTPAD and AAV2-NLPGSGD are promising novel tools for cardiac-directed gene therapy outperforming AAV9 regarding the specificity and therapeutic efficiency of in vivo cardiomyocyte transduction.
Collapse
Affiliation(s)
- Laura Rode
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany; REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | - Sonja Groß
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Axel Rossi
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Nadja Meumann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Janika Viereck
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Naisam Abbas
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Isabelle Riedel
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Anika Gietz
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Karina Zimmer
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany
| | - Margarete Odenthal
- Institute of Pathology, University Hospital of Cologne and Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Hildegard Büning
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, OE 8886, Carl-Neuberg-Str. 1, 30635 Hannover, Germany; REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany.
| |
Collapse
|
18
|
Zou L, Wang J, Fang Y, Tian H. PEG-mediated transduction of rAAV as a platform for spatially confined and efficient gene delivery. Biomater Res 2022; 26:69. [PMID: 36461117 PMCID: PMC9716683 DOI: 10.1186/s40824-022-00322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/13/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Recombinant adeno-associated viruses (rAAV) are commonly used vectors for gene delivery in both basic neuroscience and clinical applications due to their nonpathogenic, minimally immunogenic, and sustained expression properties. However, several challenges remain for the wide-scale rAAV applications, including poor infection of many clinically important cell lines, insufficient expression at low titers, and diffusive transduction in vivo. METHODS In this work, PEG, which is a safe and non-toxic polymer of ethylene oxide monomer, was applied as an auxiliary transduction agent to improve the expression of rAAV. In detail, a small dose of PEG was added into the rAAV solution for the transgene expression in cell lines in vitro, and in the central nervous system (CNS) in vivo. The biocompatibility of PEG enhancer was assessed by characterizing the immune responses, cell morphology, cell tropism of rAAV, neuronal apoptosis, as well as motor function of animals. RESULTS The results show that small dose of PEG additive can effectively improve the gene expression characteristics of rAAV both in vitro and in vivo. Specifically, the PEG additive allows efficient transgene expression in cell lines that are difficult to be transfected with rAAV alone. In vivo studies show that the PEG additive can promote a spatially confined and efficient transgene expression of low-titer rAAV in the brain over long terms. In addition, no obvious side effects of PEG were observed on CNS in the biocompatibility studies. CONCLUSIONS This spatially confined and efficient transduction method can facilitate the applications of rAAV in fundamental research, especially in the precise dissection of neural circuits, and also improve the capabilities of rAAV in the treatment of neurological diseases which originate from the disorders of small nuclei in the brain.
Collapse
Affiliation(s)
- Liang Zou
- grid.419265.d0000 0004 1806 6075CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China ,grid.9227.e0000000119573309CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jinfen Wang
- grid.419265.d0000 0004 1806 6075CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Ying Fang
- grid.419265.d0000 0004 1806 6075CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China ,grid.9227.e0000000119573309CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Huihui Tian
- grid.419265.d0000 0004 1806 6075CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| |
Collapse
|
19
|
Lopes MM, Paysan J, Rino J, Lopes SM, Pereira de Almeida L, Cortes L, Nobre RJ. A new protocol for whole-brain biodistribution analysis of AAVs by tissue clearing, light-sheet microscopy and semi-automated spatial quantification. Gene Ther 2022; 29:665-679. [PMID: 36316447 DOI: 10.1038/s41434-022-00372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 12/23/2022]
Abstract
Recombinant adeno-associated virus (rAAV) has become one of the most promising gene delivery systems for both in vitro and in vivo applications. However, a key challenge is the lack of suitable imaging technologies to evaluate delivery, biodistribution and tropism of rAAVs and efficiently monitor disease amelioration promoted by AAV-based therapies at a whole-organ level with single-cell resolution. Therefore, we aimed to establish a new pipeline for the biodistribution analysis of natural and new variants of AAVs at a whole-brain level by tissue clearing and light-sheet fluorescence microscopy (LSFM). To test this platform, neonatal C57BL/6 mice were intravenously injected with rAAV9 encoding EGFP and, after sacrifice, brains were processed by standard immunohistochemistry and a recently released aqueous-based clearing procedure. This clearing technique required no dedicated equipment and rendered highly cleared brains, while simultaneously preserving endogenous fluorescence. Moreover, three-dimensional imaging by LSFM allowed the quantitative analysis of EGFP at a whole-brain level, as well as the reconstruction of Purkinje cells for the retrieval of valuable morphological information inaccessible by standard immunohistochemistry. In conclusion, the pipeline herein described takes the AAVs to a new level when coupled to LSFM, proving its worth as a bioimaging tool in tropism and gene therapy studies.
Collapse
Affiliation(s)
- Miguel M Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | | | - José Rino
- iMM - Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sara M Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- ViraVector - Viral Vectors for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal.
- FFUC - Faculty of Pharmacy of the University of Coimbra, Coimbra, Portugal.
| | - Luísa Cortes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
- MICC-CNC - Microscopy Imaging Center of Coimbra - CNC, University of Coimbra, Coimbra, Portugal.
| | - Rui Jorge Nobre
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
- ViraVector - Viral Vectors for Gene Transfer Core Facility, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
20
|
Jäschke N, Büning H. Adeno-Associated Virus Vector Design-Moving the Adeno-Associated Virus to a Bioengineered Therapeutic Nanoparticle. Hematol Oncol Clin North Am 2022; 36:667-685. [PMID: 35778330 DOI: 10.1016/j.hoc.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although the number of market-approved gene therapies is still low, this new class of therapeutics has become an integral part of modern medicine. The success and safety of gene therapy depend on the vectors used to deliver the therapeutic material. Adeno-associated virus (AAV) vectors have emerged as the most frequently used delivery system for in vivo gene therapy. This success was achieved with first-generation vectors, using capsids derived from natural AAV serotypes. Their broad tropism, the high seroprevalence for many of the AAV serotypes in the human population, and the high vector doses needed to transduce a sufficient number of therapy-relevant target cells are challenges that are addressed by engineering the capsid and the vector genome, improving the efficacy of these biological nanoparticles.
Collapse
Affiliation(s)
- Nico Jäschke
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str.1, Hannover 30625, Germany
| | - Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str.1, Hannover 30625, Germany; REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str.1, Hannover 30625, Germany; German Center for Infection Research, Partner Site Hannover-Braunschweig.
| |
Collapse
|
21
|
Antisense and Gene Therapy Options for Duchenne Muscular Dystrophy Arising from Mutations in the N-Terminal Hotspot. Genes (Basel) 2022; 13:genes13020257. [PMID: 35205302 PMCID: PMC8872079 DOI: 10.3390/genes13020257] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal genetic disease affecting children that is caused by a mutation in the gene encoding for dystrophin. In the absence of functional dystrophin, patients experience progressive muscle deterioration, leaving them wheelchair-bound by age 12 and with few patients surviving beyond their third decade of life as the disease advances and causes cardiac and respiratory difficulties. In recent years, an increasing number of antisense and gene therapies have been studied for the treatment of muscular dystrophy; however, few of these therapies focus on treating mutations arising in the N-terminal encoding region of the dystrophin gene. This review summarizes the current state of development of N-terminal antisense and gene therapies for DMD, mainly focusing on exon-skipping therapy for duplications and deletions, as well as microdystrophin therapy.
Collapse
|
22
|
Kremer LP, Cerrizuela S, Dehler S, Stiehl T, Weinmann J, Abendroth H, Kleber S, Laure A, El Andari J, Anders S, Marciniak-Czochra A, Grimm D, Martin-Villalba A. High throughput screening of novel AAV capsids identifies variants for transduction of adult NSCs within the subventricular zone. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:33-50. [PMID: 34553001 PMCID: PMC8427210 DOI: 10.1016/j.omtm.2021.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
The adult mammalian brain entails a reservoir of neural stem cells (NSCs) generating glial cells and neurons. However, NSCs become increasingly quiescent with age, which hampers their regenerative capacity. New means are therefore required to genetically modify adult NSCs for re-enabling endogenous brain repair. Recombinant adeno-associated viruses (AAVs) are ideal gene-therapy vectors due to an excellent safety profile and high transduction efficiency. We thus conducted a high-throughput screening of 177 intraventricularly injected barcoded AAV variants profiled by RNA sequencing. Quantification of barcoded AAV mRNAs identified two synthetic capsids, peptide-modified derivative of wild-type AAV9 (AAV9_A2) and peptide-modified derivative of wild-type AAV1 (AAV1_P5), both of which transduce active and quiescent NSCs. Further optimization of AAV1_P5 by judicious selection of the promoter and dose of injected viral genomes enabled labeling of 30%–60% of the NSC compartment, which was validated by fluorescence-activated cell sorting (FACS) analyses and single-cell RNA sequencing. Importantly, transduced NSCs readily produced neurons. The present study identifies AAV variants with a high regional tropism toward the ventricular-subventricular zone (v-SVZ) with high efficiency in targeting adult NSCs, thereby paving the way for preclinical testing of regenerative gene therapy.
Collapse
Affiliation(s)
- Lukas P.M. Kremer
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
| | - Santiago Cerrizuela
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sascha Dehler
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Stiehl
- Institute of Applied Mathematics, Interdisciplinary Center for Scientific Computing and BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Jonas Weinmann
- Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence Cell Networks, BioQuant, 69120 Heidelberg, Germany
| | - Heike Abendroth
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Susanne Kleber
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alexander Laure
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jihad El Andari
- Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence Cell Networks, BioQuant, 69120 Heidelberg, Germany
| | - Simon Anders
- Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, Interdisciplinary Center for Scientific Computing and BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Dirk Grimm
- Virus-Host Interaction Group, Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence Cell Networks, BioQuant, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), partner site Heidelberg, 69120 Heidelberg, Germany
| | - Ana Martin-Villalba
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Corresponding author: Ana Martin-Villalba, Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
23
|
Shahnaij M, Iyori M, Mizukami H, Kajino M, Yamagoshi I, Syafira I, Yusuf Y, Fujiwara K, Yamamoto DS, Kato H, Ohno N, Yoshida S. Liver-Directed AAV8 Booster Vaccine Expressing Plasmodium falciparum Antigen Following Adenovirus Vaccine Priming Elicits Sterile Protection in a Murine Model. Front Immunol 2021; 12:612910. [PMID: 34248928 PMCID: PMC8261234 DOI: 10.3389/fimmu.2021.612910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocyte infection by malaria sporozoites is a bottleneck in the life-cycle of Plasmodium spp. including P. falciparum, which causes the most lethal form of malaria. Therefore, developing an effective vaccine capable of inducing the strong humoral and cellular immune responses necessary to block the pre-erythrocytic stage has potential to overcome the spatiotemporal hindrances pertaining to parasite biology and hepatic microanatomy. We recently showed that when combined with a human adenovirus type 5 (AdHu5)-priming vaccine, adeno-associated virus serotype 1 (AAV1) is a potent booster malaria vaccine vector capable of inducing strong and long-lasting protective immune responses in a rodent malaria model. Here, we evaluated the protective efficacy of a hepatotropic virus, adeno-associated virus serotype 8 (AAV8), as a booster vector because it can deliver a transgene potently and rapidly to the liver, the organ malaria sporozoites initially infect and multiply in following sporozoite injection by the bite of an infected mosquito. We first generated an AAV8-vectored vaccine expressing P. falciparum circumsporozoite protein (PfCSP). Intravenous (i.v.) administration of AAV8-PfCSP to mice initially primed with AdHu5-PfCSP resulted in a hepatocyte transduction rate ~2.5 times above that seen with intramuscular (i.m.) administration. This immunization regimen provided a better protection rate (100% sterile protection) than that of the i.m. AdHu5-prime/i.m. AAV8-boost regimen (60%, p < 0.05), i.m. AdHu5-prime/i.v. AAV1-boost (78%), or i.m. AdHu5-prime/i.m. AAV1-boost (80%) against challenge with transgenic PfCSP-expressing P. berghei sporozoites. Compared with the i.m. AdHu5-prime/i.v. AAV1-boost regimen, three other regimens induced higher levels of PfCSP-specific humoral immune responses. Importantly, a single i.v. dose of AAV8-PfCSP recruited CD8+ T cells, especially resident memory CD8+ T cells, in the liver. These data suggest that boost with i.v. AAV8-PfCSP can improve humoral and cellular immune responses in BALB/c mice. Therefore, this regimen holds great promise as a next-generation platform for the development of an effective malaria vaccine.
Collapse
Affiliation(s)
- Mohammad Shahnaij
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Mizukami
- Division of Gene Therapy, Jichi Medical University, Shimotsuke, Japan
| | - Mayu Kajino
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Iroha Yamagoshi
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Intan Syafira
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Yenni Yusuf
- Department of Parasitology, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - Ken Fujiwara
- Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Japan
| | - Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Japan
| | - Nobuhiko Ohno
- Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
24
|
Korneyenkov MA, Zamyatnin AA. Next Step in Gene Delivery: Modern Approaches and Further Perspectives of AAV Tropism Modification. Pharmaceutics 2021; 13:pharmaceutics13050750. [PMID: 34069541 PMCID: PMC8160765 DOI: 10.3390/pharmaceutics13050750] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Today, adeno-associated virus (AAV) is an extremely popular choice for gene therapy delivery. The safety profile and simplicity of the genome organization are the decisive advantages which allow us to claim that AAV is currently among the most promising vectors. Several drugs based on AAV have been approved in the USA and Europe, but AAV serotypes’ unspecific tissue tropism is still a serious limitation. In recent decades, several techniques have been developed to overcome this barrier, such as the rational design, directed evolution and chemical conjugation of targeting molecules with a capsid. Today, all of the abovementioned approaches confer the possibility to produce AAV capsids with tailored tropism, but recent data indicate that a better understanding of AAV biology and the growth of structural data may theoretically constitute a rational approach to most effectively produce highly selective and targeted AAV capsids. However, while we are still far from this goal, other approaches are still in play, despite their drawbacks and limitations.
Collapse
Affiliation(s)
- Maxim A. Korneyenkov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence: ; Tel.: +7-495-622-9843
| |
Collapse
|
25
|
Grech L, Borg K, Borg J. Novel therapies in β-thalassaemia. Br J Clin Pharmacol 2021; 88:2509-2524. [PMID: 34004015 DOI: 10.1111/bcp.14918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 01/19/2023] Open
Abstract
Beta-thalassaemia is one of the most significant haemoglobinopathies worldwide resulting in the synthesis of little or no β-globin chains. Without treatment, β-thalassaemia major is lethal within the first decade of life due to the complex pathophysiology, which leads to wide clinical manifestations. Current clinical management for these patients depends on repeated transfusions followed by iron-chelating therapy. Several novel approaches to correct the resulting α/β-globin chain imbalance, treat ineffective erythropoiesis and improve iron overload are currently being developed. Up to now, the only curative treatment for β-thalassemia is haematopoietic stem-cell transplantation, but this is a risky and costly procedure. Gene therapy, gene editing and base editing are emerging as a powerful approach to treat this disease. In β-thalassaemia, gene therapy involves the insertion of a vector containing the normal β-globin or γ-globin gene into haematopoietic stem cells to permanently produce normal red blood cells. Gene editing and base editing involves the use of zinc finger nucleases, transcription activator-like nucleases and clustered regularly interspaced short palindromic repeats/Cas9 to either correct the causative mutation or else insert a single nucleotide variant that will increase foetal haemoglobin. In this review, we will examine the current management strategies used to treat β-thalassaemia and focus on the novel therapies targeting ineffective erythropoiesis, improving iron overload and correction of the globin chain imbalance.
Collapse
Affiliation(s)
- Laura Grech
- Centre for Molecular Medicine and Biobanking, University of Malta, Malta
| | - Karen Borg
- Department of Public Health Medicine, Ministry for Health, Malta
| | - Joseph Borg
- Centre for Molecular Medicine and Biobanking, University of Malta, Malta.,Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Malta
| |
Collapse
|
26
|
Xu X, Chen W, Zhu W, Chen J, Ma B, Ding J, Wang Z, Li Y, Wang Y, Zhang X. Adeno-associated virus (AAV)-based gene therapy for glioblastoma. Cancer Cell Int 2021; 21:76. [PMID: 33499886 PMCID: PMC7836184 DOI: 10.1186/s12935-021-01776-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common and malignant Grade IV primary craniocerebral tumor caused by glial cell carcinogenesis with an extremely poor median survival of 12–18 months. The current standard treatments for GBM, including surgical resection followed by chemotherapy and radiotherapy, fail to substantially prolong survival outcomes. Adeno-associated virus (AAV)-mediated gene therapy has recently attracted considerable interest because of its relatively low cytotoxicity, poor immunogenicity, broad tissue tropism, and long-term stable transgene expression. Furthermore, a range of gene therapy trials using AAV as vehicles are being investigated to thwart deadly GBM in mice models. At present, AAV is delivered to the brain by local injection, intracerebroventricular (ICV) injection, or systematic injection to treat experimental GBM mice model. In this review, we summarized the experimental trials of AAV-based gene therapy as GBM treatment and compared the advantages and disadvantages of different AAV injection approaches. We systematically introduced the prospect of the systematic injection of AAV as an approach for AAV-based gene therapy for GBM.
Collapse
Affiliation(s)
- Xin Xu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Wenli Chen
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Zhu
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang, Lianyungang, 222006, China
| | - Jing Chen
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Bin Ma
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianxia Ding
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zaichuan Wang
- School of Medicine, Yangzhou University, Yangzhou, 225600, China
| | - Yifei Li
- School of Medicine, Yangzhou University, Yangzhou, 225600, China
| | - Yeming Wang
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Lianyungang, 222006, Jiangsu, China.
| | - Xiaochun Zhang
- School of Medicine, Yangzhou University, Yangzhou, 225600, China. .,Department of Oncology, Yangzhou Traditional Chinese Medical Hospital, Yangzhou, 225600, Jiangsu, China.
| |
Collapse
|
27
|
Self-complementarity in adeno-associated virus enhances transduction and gene expression in mouse cochlear tissues. PLoS One 2020; 15:e0242599. [PMID: 33227033 PMCID: PMC7682903 DOI: 10.1371/journal.pone.0242599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/06/2020] [Indexed: 12/03/2022] Open
Abstract
Sensorineural hearing loss is one of the most common disabilities worldwide. Such prevalence necessitates effective tools for studying the molecular workings of cochlear cells. One prominent and effective vector for expressing genes of interest in research models is adeno-associated virus (AAV). However, AAV efficacy in transducing cochlear cells can vary for a number of reasons including serotype, species, and methodology, and oftentimes requires high multiplicity of infection which can damage the sensory cells. Reports in other systems suggest multiple approaches can be used to enhance AAV transduction including self-complementary vector design and pharmacological inhibition of degradation. Here we produced AAV to drive green fluorescent protein (GFP) expression in explanted neonatal mouse cochleae. Treatment with eeyarestatin I, tyrphostin 23, or lipofectamine 2000 did not result in increased transduction, however, self-complementary vector design resulted in significantly more GFP positive cells when compared to single-stranded controls. Similarly, self-complementary AAV2 vectors demonstrated enhanced transduction efficiency compared to single stranded AAV2 when injected via the posterior semicircular canal, in vivo. Self-complementary vectors for AAV1, 8, and 9 serotypes also demonstrated robust GFP transduction in cochlear cells in vivo, though these were not directly compared to single stranded vectors. These findings suggest that second-strand synthesis may be a rate limiting step in AAV transduction of cochlear tissues and that self-complementary AAV can be used to effectively target large numbers of cochlear cells in vitro and in vivo.
Collapse
|
28
|
The Golgi Calcium ATPase Pump Plays an Essential Role in Adeno-associated Virus Trafficking and Transduction. J Virol 2020; 94:JVI.01604-20. [PMID: 32817219 PMCID: PMC7565633 DOI: 10.1128/jvi.01604-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Adeno-associated viruses (AAVs) have proven to be effective gene transfer vectors. However, our understanding of how the host cell environment influences AAV transduction is still evolving. In the present study, we investigated the role of ATP2C1, which encodes a membrane calcium transport pump, SPCA1, essential for maintaining cellular calcium homeostasis on AAV transduction. Our results indicate that cellular calcium is essential for efficient intracellular trafficking and conformational changes in the AAV capsid that support efficient genome transcription. Further, we show that pharmacological modulation of cellular calcium levels can potentially be applied to improve the AAV gene transfer efficiency. Adeno-associated viruses (AAVs) are dependoparvoviruses that have proven useful for therapeutic gene transfer; however, our understanding of host factors that influence AAV trafficking and transduction is still evolving. Here, we investigated the role of cellular calcium in the AAV infectious pathway. First, we demonstrated a critical role for the host Golgi compartment-resident ATP-powered calcium pump (secretory pathway calcium ATPase 1 [SPCA1]) encoded by the ATP2C1 gene in AAV infection. CRISPR-based knockout (KO) of ATP2C1 decreases transduction by different AAV serotypes. ATP2C1 KO does not appear to inhibit AAV binding, cellular uptake, or nuclear entry; however, capsids within ATP2C1 KO cells demonstrate dispersed and punctate trafficking distinct from the perinuclear, trans-Golgi pattern observed in normal cells. In addition, we observed a defect in the ability of AAV capsids to undergo conformational changes and support efficient vector genome transcription in ATP2C1 KO cells. The calcium chelator BAPTA-AM, which reduces cytosolic calcium, rescues the defective ATP2C1 KO phenotype and AAV transduction in vitro. Conversely, the calcium ionophore ionomycin, which disrupts calcium gradients, blocks AAV transduction. Further, we demonstrated that modulating calcium in the murine brain using BAPTA-AM augments AAV gene expression in vivo. Taking these data together, we postulate that the maintenance of an intracellular calcium gradient by the calcium ATPase and processing within the Golgi compartment are essential for priming the capsid to support efficient AAV genome transcription. IMPORTANCE Adeno-associated viruses (AAVs) have proven to be effective gene transfer vectors. However, our understanding of how the host cell environment influences AAV transduction is still evolving. In the present study, we investigated the role of ATP2C1, which encodes a membrane calcium transport pump, SPCA1, essential for maintaining cellular calcium homeostasis on AAV transduction. Our results indicate that cellular calcium is essential for efficient intracellular trafficking and conformational changes in the AAV capsid that support efficient genome transcription. Further, we show that pharmacological modulation of cellular calcium levels can potentially be applied to improve the AAV gene transfer efficiency.
Collapse
|
29
|
Ghosh S, Brown AM, Jenkins C, Campbell K. Viral Vector Systems for Gene Therapy: A Comprehensive Literature Review of Progress and Biosafety Challenges. APPLIED BIOSAFETY 2020; 25:7-18. [PMID: 36033383 PMCID: PMC9134621 DOI: 10.1177/1535676019899502] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Introduction National Institutes of Health (NIH) defines gene therapy as an experimental technique that uses genes to treat or prevent disease. Although gene therapy is a promising treatment option for a number of diseases (including inherited disorders, some types of cancer, and certain viral infections), the technique remains risky and is still under study to make sure that it will be effective and safe. Methods Applications of viral vectors and nonviral gene delivery systems have found an encouraging new beginning in gene therapy in recent years. Although several viral vectors and nonviral gene delivery systems have been developed in the past 3 decades, no one delivery system can be applied in gene therapy to all cell types in vitro and in vivo. Furthermore, the use of viral vector systems (both in vitro and in vivo) present unique occupational health and safety challenges. In this review article, we discuss the biosafety challenges and the current framework of risk assessment for working with the viral vector systems. Discussion The recent advances in the field of gene therapy is exciting, but it is important for scientists, institutional biosafety committees, and biosafety officers to safeguard public trust in the use of this technology in clinical trials and make conscious efforts to engage the public through ongoing forums and discussions.
Collapse
Affiliation(s)
- Sumit Ghosh
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Alex M. Brown
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Chris Jenkins
- Clinical Biosafety Services, A Division of Sabai Global, Wildwood, MO, USA
| | - Katie Campbell
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
30
|
Büning H, Srivastava A. Capsid Modifications for Targeting and Improving the Efficacy of AAV Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 12:248-265. [PMID: 30815511 PMCID: PMC6378346 DOI: 10.1016/j.omtm.2019.01.008] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the past decade, recombinant vectors based on a non-pathogenic parvovirus, the adeno-associated virus (AAV), have taken center stage as a gene delivery vehicle for the potential gene therapy for a number of human diseases. To date, the safety of AAV vectors in 176 phase I, II, and III clinical trials and their efficacy in at least eight human diseases are now firmly documented. Despite these remarkable achievements, it has also become abundantly clear that the full potential of first generation AAV vectors composed of naturally occurring capsids is not likely to be realized, since the wild-type AAV did not evolve for the purpose of therapeutic gene delivery. In this article, we provide a brief historical account of the progress that has been made in the development of capsid-modified, next-generation AAV vectors to ensure both the safety and efficacy of these vectors in targeting a wide variety of human diseases.
Collapse
Affiliation(s)
- Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Arun Srivastava
- Division of Cellular and Molecular Therapy, Departments of Pediatrics and Molecular Genetics & Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
31
|
Kant R, Rayaprolu V, McDonald K, Bothner B. Curating viscoelastic properties of icosahedral viruses, virus-based nanomaterials, and protein cages. J Biol Phys 2018; 44:211-224. [PMID: 29637472 DOI: 10.1007/s10867-018-9491-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
The beauty, symmetry, and functionality of icosahedral virus capsids has attracted the attention of biologists, physicists, and mathematicians ever since they were first observed. Viruses and protein cages assemble into functional architectures in a range of sizes, shapes, and symmetries. To fulfill their biological roles, these structures must self-assemble, resist stress, and are often dynamic. The increasing use of icosahedral capsids and cages in materials science has driven the need to quantify them in terms of structural properties such as rigidity, stiffness, and viscoelasticity. In this study, we employed Quartz Crystal Microbalance with Dissipation technology (QCM-D) to characterize and compare the mechanical rigidity of different protein cages and viruses. We attempted to unveil the relationships between rigidity, radius, shell thickness, and triangulation number. We show that the rigidity and triangulation numbers are inversely related to each other and the comparison of rigidity and radius also follows the same trend. Our results suggest that subunit orientation, protein-protein interactions, and protein-nucleic acid interactions are important for the resistance to deformation of these complexes, however, the relationships are complex and need to be explored further. The QCM-D based viscoelastic measurements presented here help us elucidate these relationships and show the future prospect of this technique in the field of physical virology and nano-biotechnology.
Collapse
Affiliation(s)
- Ravi Kant
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Vamseedhar Rayaprolu
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, USA
| | - Kaitlyn McDonald
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
32
|
Liu S, Romano V, Steger B, Kaye SB, Hamill KJ, Willoughby CE. Gene-based antiangiogenic applications for corneal neovascularization. Surv Ophthalmol 2018; 63:193-213. [DOI: 10.1016/j.survophthal.2017.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 12/22/2022]
|
33
|
Finet JE, Wan X, Donahue JK. Fusion of Anthopleurin-B to AAV2 increases specificity of cardiac gene transfer. Virology 2018; 513:43-51. [PMID: 29032346 DOI: 10.1016/j.virol.2017.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
Abstract
AAV-mediated gene therapy has become a promising therapeutic strategy for chronic diseases. Its clinical utilization, however, is limited by the potential risk of off-target effects. In this work we attempt to overcome this challenge, hypothesizing that cardiac ion channel-specific ligands could be fused onto the AAV capsid, and narrow its tropism to cardiac myocytes. We successfully fused the cardiac sodium channel (Nav1.5)-binding toxin Anthopleurin-B onto the AAV2 capsid without compromising virus integrity, and demonstrated increased specificity of cardiomyocyte attachment. Although virus attachment to Nav1.5 did not supersede the natural heparan-mediated virus binding, heparan-binding ablated vectors carrying Anthopleurin-B eliminated hepatic and other extracardiac gene transfer, while preserving cardiac myocyte gene transfer. Virus binding to the cardiac sodium channel transiently decreased sodium current density, but did not cause any arrhythmias. Our findings expand the knowledge of attachment, infectivity, and intracellular processing of AAV vectors, and present an alternative strategy for vector retargeting.
Collapse
Affiliation(s)
- J Emanuel Finet
- Krannert Institute of Cardiology, Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Xiaoping Wan
- Heart and Vascular Research Center, Case Western Reserve University, MetroHealth Campus, Cleveland, OH, USA
| | - J Kevin Donahue
- Division of Cardiology, Department of Medicine, University of Massachusetts Medical School, 368 Plantation Street, Albert Sherman Center, 7th floor, Worcester, MA 01605, USA.
| |
Collapse
|
34
|
de Solis CA, Hosek MP, Holehonnur R, Ho A, Banerjee A, Luong JA, Jones LE, Chaturvedi D, Ploski JE. Adeno-associated viral serotypes differentially transduce inhibitory neurons within the rat amygdala. Brain Res 2017; 1672:148-162. [PMID: 28764932 DOI: 10.1016/j.brainres.2017.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/21/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022]
Abstract
Recombinant adeno-associated viruses (AAV) are frequently used to make localized genetic manipulations within the rodent brain. It is accepted that the different viral serotypes possess differing affinities for particular cell types, but it is not clear how these properties affect their ability to transduce specific neuronal cell sub-types. Here, we examined ten AAV serotypes for their ability to transduce neurons within the rat basal and lateral nuclei of the amygdala (BLA) and the central nucleus of the amygdala (CeA). AAV2 based viral genomes designed to express either green fluorescent protein (GFP) from a glutamate decarboxylase (GAD65) promoter or the far-red fluorescent protein (E2-Crimson) from a phosphate-activated glutaminase (PAG) promoter were created and pseudotyped as AAV2/1, AAV2/4, AAV2/5, AAV2/6, AAV2/7, AAV 2/8, AAV2/9, AAV2/rh10, AAV2/DJ and AAV2/DJ8. These viruses were infused into the BLA and CeA at equal titers and twenty-one days later tissue within the amygdala was examined for viral transduction efficiency. These serotypes transduced neurons with similar efficiency, except for AAV4 and AAV5, which exhibited significantly less efficient neuronal transduction. Notably, AAV4 and AAV5 possess the most divergent capsid protein sequences compared to the other commonly available serotypes. We found that the Gad65-GFP virus did not exclusively express GFP within inhibitory neurons, as assessed by fluorescent in situ hybridization (FISH), but when this virus was used to transduce CeA neurons, the majority of the neurons that expressed GFP were in fact inhibitory neurons and this was likely due to the fact that this nucleus contains a very high percentage of inhibitory neurons.
Collapse
Affiliation(s)
- C A de Solis
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - M P Hosek
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - R Holehonnur
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - A Ho
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - A Banerjee
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - J A Luong
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - L E Jones
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - D Chaturvedi
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States
| | - J E Ploski
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, The University of Texas at Dallas, United States.
| |
Collapse
|
35
|
Abstract
Molecular genetic details of the human coagulation system were among the first successes of the genetic revolution in the 1980s. This information led to new molecular diagnostic strategies for inherited disorders of hemostasis and the development of recombinant clotting factors for the treatment of the common inherited bleeding disorders. A longer term goal of this knowledge has been the establishment of gene transfer to provide continuing access to missing or defective hemostatic proteins. Because of the relative infrequency of inherited coagulation factor disorders and the availability of safe and effective alternative means of management, the application of gene therapy for these conditions has been slow to realize clinical application. Nevertheless, the tools for effective and safe gene transfer are now much improved, and we have started to see examples of clinical gene therapy successes. Leading the way has been the use of adeno-associated virus-based strategies for factor IX gene transfer in hemophilia B. Several small phase 1/2 clinical studies using this approach have shown prolonged expression of therapeutically beneficial levels of factor IX. Nevertheless, before the application of gene therapy for coagulation disorders becomes widespread, several obstacles need to be overcome. Immunologic responses to the vector and transgenic protein need to be mitigated, and production strategies for clinical grade vectors require enhancements. There is little doubt that with the development of more efficient and facile strategies for genome editing and the application of other nucleic acid-based approaches to influence the coagulation system, the future of genetic therapies for hemostasis is bright.
Collapse
Affiliation(s)
- Laura L Swystun
- From the Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - David Lillicrap
- From the Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
36
|
Nance ME, Hakim CH, Yang NN, Duan D. Nanotherapy for Duchenne muscular dystrophy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [PMID: 28398005 DOI: 10.1002/wnan.1472] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/09/2017] [Accepted: 03/11/2017] [Indexed: 12/14/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked childhood muscle wasting disease caused by mutations in the dystrophin gene. Nanobiotechnology-based therapies (such as synthetic nanoparticles and naturally existing viral and nonviral nanoparticles) hold great promise to replace and repair the mutated dystrophin gene and significantly change the disease course. While a majority of DMD nanotherapies are still in early preclinical development, several [such as adeno-associated virus (AAV)-mediated systemic micro-dystrophin gene therapy] are advancing for phase I clinical trials. Recent regulatory approval of Ataluren (a nonsense mutation read-through chemical) in Europe and Exondys51 (an exon-skipping antisense oligonucleotide drug) in the United States shall offer critical insight in how to move DMD nanotherapy to human patients. Progress in novel, optimized nano-delivery systems may further improve emerging molecular therapeutic modalities for DMD. Despite these progresses, DMD nanotherapy faces a number of unique challenges. Specifically, the dystrophin gene is one of the largest genes in the genome while nanoparticles have an inherent size limitation per definition. Furthermore, muscle is the largest tissue in the body and accounts for 40% of the body mass. How to achieve efficient bodywide muscle targeting in human patients with nanomedication remains a significant translational hurdle. New creative approaches in the design of the miniature micro-dystrophin gene, engineering of muscle-specific synthetic AAV capsids, and novel nanoparticle-mediated exon-skipping are likely to result in major breakthroughs in DMD therapy. WIREs Nanomed Nanobiotechnol 2018, 10:e1472. doi: 10.1002/wnan.1472 This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Michael E Nance
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Chady H Hakim
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA.,National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - N Nora Yang
- National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Dongsheng Duan
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA.,Department of Neurology, University of Missouri, Columbia, MO, USA.,Department of Bioengineering, University of Missouri, Columbia, MO, USA.,Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
37
|
Duan D. Systemic delivery of adeno-associated viral vectors. Curr Opin Virol 2016; 21:16-25. [PMID: 27459604 PMCID: PMC5138077 DOI: 10.1016/j.coviro.2016.07.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 12/21/2022]
Abstract
For diseases like muscular dystrophy, an effective gene therapy requires bodywide correction. Systemic viral vector delivery has been attempted since early 1990s. Yet a true success was not achieved until mid-2000 when adeno-associated virus (AAV) serotype-6, 8 and 9 were found to result in global muscle transduction in rodents following intravenous injection. The simplicity of the technique immediately attracts attention. Marvelous whole body amelioration has been achieved in rodent models of many diseases. Scale-up in large mammals also shows promising results. Importantly, the first systemic AAV-9 therapy was initiated in patients in April 2014. Recent studies have now begun to reveal molecular underpinnings of systemic AAV delivery and to engineer new AAV capsids with superior properties for systemic gene therapy.
Collapse
Affiliation(s)
- Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA; Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO 65212, USA; Department of Bioengineering, The University of Missouri, Columbia, MO 65212, USA; Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
38
|
Lu Y, Ai J, Gessler D, Su Q, Tran K, Zheng Q, Xu X, Gao G. Efficient Transduction of Corneal Stroma by Adeno-Associated Viral Serotype Vectors for Implications in Gene Therapy of Corneal Diseases. Hum Gene Ther 2016; 27:598-608. [PMID: 27001051 DOI: 10.1089/hum.2015.167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yi Lu
- Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Fundus Disease, Shanghai, China
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jianzhong Ai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dominic Gessler
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Karen Tran
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Qiang Zheng
- Research and Development Department, Chengdu Kanghong Pharmaceuticals Group Company, Chengdu, Sichuan, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Fundus Disease, Shanghai, China
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
39
|
Madigan VJ, Asokan A. Engineering AAV receptor footprints for gene therapy. Curr Opin Virol 2016; 18:89-96. [PMID: 27262111 PMCID: PMC6537878 DOI: 10.1016/j.coviro.2016.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/03/2016] [Accepted: 05/08/2016] [Indexed: 11/24/2022]
Abstract
Adeno-associated viruses (AAV) are currently at the forefront of human gene therapy clinical trials as recombinant vectors. Significant progress has been made in elucidating the structure, biology and tropisms of different naturally occurring AAV isolates in the past decade. In particular, a spectrum of AAV capsid interactions with host receptors have been identified and characterized. These studies have enabled a better understanding of key determinants of AAV cell recognition and entry in different hosts. This knowledge is now being applied toward engineering new, lab-derived AAV capsids with favorable transduction profiles. The current review conveys a structural perspective of capsid-glycan interactions and provides a roadmap for generating synthetic strains by engineering AAV receptor footprints.
Collapse
Affiliation(s)
- Victoria J Madigan
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Aravind Asokan
- Gene Therapy Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Biochemistry & Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
40
|
Abstract
Here we review the recent literature on Hemophilia gene transfer/therapy. Gene therapy is one of several new technologies being developed as a treatment for bleeding disorders. We will discuss current and pending clinical efforts and attempt to relate how the field is trending. In doing so, we will focus on the use of recombinant Adeno-associated viral (rAAV) vector-mediated gene transfer since all currently active trials are using this vector. Recent exciting results embody nearly 20 years of preclinical and translational research. After several early clinical attempts, therapeutic factor levels that can now be achieved reflect several modifications of the original vectors. Patterns of results are slowly starting to emerge as different AAV vectors are being tested. As with any new technology, there are drawbacks, and the potential for immune/inflammatory and oncogenic risks have emerged and will be discussed.
Collapse
Affiliation(s)
- Peter Ward
- a Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai, One Gustave Levy Place , New York City , NY , USA
| | - Christopher E Walsh
- a Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai, One Gustave Levy Place , New York City , NY , USA
| |
Collapse
|
41
|
Abstract
This chapter outlines some general principles of transcriptional targeting approaches using viral vectors in the central nervous system. Transcriptional targeting is first discussed in the context of vector tropism and appropriate delivery. Then, some of our own attempts to restrict expression of therapeutic factors to distinct brain cell populations are discussed, followed by a detailed description of the setscrews that are available for these experiments. A critical discussion of current stumbling blocks and necessary developments to achieve clinical applicability of advanced targeted vector systems is provided.
Collapse
Affiliation(s)
- Sebastian Kügler
- Department of Neurology, Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), University Medicine Göttingen, Waldweg 33, 37073, Göttingen, Germany.
| |
Collapse
|
42
|
Conlon TJ, Erger K, Porvasnik S, Cossette T, Roberts C, Combee L, Islam S, Kelley J, Cloutier D, Clément N, Abernathy CR, Byrne BJ. Preclinical toxicology and biodistribution studies of recombinant adeno-associated virus 1 human acid α-glucosidase. HUM GENE THER CL DEV 2014; 24:127-33. [PMID: 24021025 DOI: 10.1089/humc.2013.147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A biodistribution and toxicology study was performed to test the acute toxicities of intradiaphragmatic injection of a recombinant adeno-associated virus (rAAV) 2/1-human acid alpha-Glucosidase (hGAA) driven by a cytomegalovirus (CMV) promoter (rAAV1-CMV-hGAA) in New Zealand white rabbits and in the rodent Pompe disease model by injecting at the right quadriceps. Studies performed using fluoroscopy and AAV2-GFP demonstrated spread upon intradiaphragmatic injection, and the ability of AAV to infect and express acid α-glucosidase (GAA) throughout the diaphragm. For the preclinical study, 10 rabbits (5 male, 5 female) were divided into two groups, vehicle control (Lactated Ringer's) and test article (1.5×10(12) vector genomes [vg] rAAV1-CMV-hGAA), and euthanized on day 21. After direct visualization, the left hemidiaphragm was injected at three locations. There was up to a 2,500-fold increase in circulating anti-AAV1 antibodies directed to the vector capsids. In addition, up to an 18-fold increase in antibodies against the GAA protein was generated. Injection sites maintained up to 1.0×10(5) vg/μg genomic DNA (gDNA), while uninjected sites had up to 1.0×10(4) vg/μg gDNA. Vector DNA was present in blood at 24 hr postinjection at up to 1.0×10(6) vg/μg gDNA, followed by a decrease to 1.0×10(3) vg/μg gDNA at euthanization on day 21. Nominal amounts of vector DNA were present in peripheral organs, including the brain, spinal cord, gonads, and skeletal muscle. Upon histopathological examination, fibroplasias of the serosal surface were noted at diaphragm injections sites of both groups. In addition, an increase in mononuclear cell infiltration in the diaphragm and esophagus in vector-dosed animals was found. Elevated creatine phosphokinase levels, an indicator of muscle repair, was observed in all animals postprocedure but persisted in vector-injected rabbits until euthanization. A follow-up study suggested that this was directed against the human transgene expression in a foreign species. Overall, this study demonstrates diffusion of vector throughout the diaphragm after localized injections.
Collapse
Affiliation(s)
- Thomas J Conlon
- 1 Department of Pediatrics, University of Florida College of Medicine , Gainesville, FL, 32610
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lagor WR, Johnston JC, Lock M, Vandenberghe LH, Rader DJ. Adeno-associated viruses as liver-directed gene delivery vehicles: focus on lipoprotein metabolism. Methods Mol Biol 2014; 1027:273-307. [PMID: 23912992 DOI: 10.1007/978-1-60327-369-5_13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Adeno-associated viral vectors have proven to be excellent gene delivery vehicles for somatic overexpression. These viral vectors can efficiently and selectively target the liver, which plays a central role in lipoprotein metabolism. Both liver-expressed as well as non-hepatic secreted proteins can be easily examined in different mouse models using this approach. The dosability of adeno-associated viral (AAV) vectors, as well as their potential for long-term expression, makes them an excellent choice for assessing gene function in vivo. This section will cover the use of AAV to study lipoprotein metabolism-including vector design, virus production and purification, and viral delivery, as well as monitoring of transgene expression and resulting phenotypic changes. Practical information is provided to assist the investigator in designing, interpreting, and troubleshooting experiments.
Collapse
Affiliation(s)
- William R Lagor
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
44
|
Tenney RM, Bell CL, Wilson JM. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating. Virology 2014; 454-455:227-36. [PMID: 24725949 DOI: 10.1016/j.virol.2014.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/22/2013] [Accepted: 02/12/2014] [Indexed: 01/03/2023]
Abstract
Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8׳s robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 - a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII & IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype.
Collapse
Affiliation(s)
- Rebeca M Tenney
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christie L Bell
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James M Wilson
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
45
|
Holehonnur R, Luong JA, Chaturvedi D, Ho A, Lella SK, Hosek MP, Ploski JE. Adeno-associated viral serotypes produce differing titers and differentially transduce neurons within the rat basal and lateral amygdala. BMC Neurosci 2014; 15:28. [PMID: 24533621 PMCID: PMC3937004 DOI: 10.1186/1471-2202-15-28] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 02/11/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In recent years, there has been an increased interest in using recombinant adeno-associated viruses (AAV) to make localized genetic manipulations within the rodent brain. Differing serotypes of AAV possess divergent capsid protein sequences and these variations greatly influence each serotype's ability to transduce particular cell types and brain regions. We therefore aimed to determine the AAV serotype that is optimal for targeting neurons within the Basal and Lateral Amygdala (BLA) since the transduction efficiency of AAV has not been previously examined within the BLA. This region is desirable to genetically manipulate due to its role in emotion, learning & memory, and numerous psychiatric disorders. We accomplished this by screening 9 different AAV serotypes (AAV2/1, AAV2/2, AAV2/5, AAV2/7, AAV2/8, AAV2/9, AAV2/rh10, AAV2/DJ and AAV2/DJ8) designed to express red fluorescent protein (RFP) under the regulation of an alpha Ca2+/calmodulin-dependent protein kinase II promoter (αCaMKII). RESULTS We determined that these serotypes produce differing amounts of virus under standard laboratory production. Notably AAV2/2 consistently produced the lowest titers compared to the other serotypes examined. These nine serotypes were bilaterally infused into the rat BLA at the highest titers achieved for each serotype and at a normalized titer of 7.8E + 11 GC/ml. Twenty one days following viral infusion the degree of transduction was quantitated throughout the amygdala. These viruses exhibited differential transduction of neurons within the BLA. AAV2/7 exhibited a trend toward having the highest efficiency of transduction and AAV2/5 exhibited significantly lower transduction efficiency as compared to the serotypes examined. AAV2/5's decreased ability to transduce BLA neurons correlates with its significantly different capsid protein sequences as compared to the other serotypes examined. CONCLUSIONS For laboratories producing their own recombinant adeno-associated viruses, the use of AAV2/2 is likely less desirable since AAV2/2 produces significantly lower titers than many other serotypes of AAV. Numerous AAV serotypes appear to efficiently transduce BLA neurons, with the exception of AAV2/5. Taking into consideration the ability of certain serotypes to achieve high titers and transduce BLA neurons well, in our hands AAV2/DJ8 and AAV2/9 appear to be ideal serotypes to use when targeting neurons within the BLA.
Collapse
Affiliation(s)
- Roopashri Holehonnur
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, University of Texas at Dallas, 800 West Campbell RD, Richardson, TX 75080, USA
| | - Jonathan A Luong
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, University of Texas at Dallas, 800 West Campbell RD, Richardson, TX 75080, USA
| | - Dushyant Chaturvedi
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, University of Texas at Dallas, 800 West Campbell RD, Richardson, TX 75080, USA
| | - Anthony Ho
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, University of Texas at Dallas, 800 West Campbell RD, Richardson, TX 75080, USA
| | - Srihari K Lella
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, University of Texas at Dallas, 800 West Campbell RD, Richardson, TX 75080, USA
| | - Matthew P Hosek
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, University of Texas at Dallas, 800 West Campbell RD, Richardson, TX 75080, USA
| | - Jonathan E Ploski
- School of Behavioral and Brain Sciences and the Department of Molecular & Cell Biology, University of Texas at Dallas, 800 West Campbell RD, Richardson, TX 75080, USA
| |
Collapse
|
46
|
Chahal PS, Schulze E, Tran R, Montes J, Kamen AA. Production of adeno-associated virus (AAV) serotypes by transient transfection of HEK293 cell suspension cultures for gene delivery. J Virol Methods 2013; 196:163-73. [PMID: 24239634 PMCID: PMC7113661 DOI: 10.1016/j.jviromet.2013.10.038] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/11/2013] [Accepted: 10/29/2013] [Indexed: 01/29/2023]
Abstract
Transient transfection of HEK293 suspension cells efficiently produce AAV vectors. Nine different AAV serotypes were produced with yields of 1E+13 Vg/L. AAV2 and AAV6 produced in 3-L bioreactors gave yields comparable to shake-flasks. The process is cGMP compatible using serum-free media and HEK293 master cell bank. Industrialization of the process is possible for manufacturing AAV serotypes.
Adeno-associated virus (AAV) is being used successfully in gene therapy. Different serotypes of AAV target specific organs and tissues with high efficiency. There exists an increasing demand to manufacture various AAV serotypes in large quantities for pre-clinical and clinical trials. A generic and scalable method has been described in this study to efficiently produce AAV serotypes (AAV1-9) by transfection of a fully characterized cGMP HEK293SF cell line grown in suspension and serum-free medium. First, the production parameters were evaluated using AAV2 as a model serotype. Second, all nine AAV serotypes were produced successfully with yields of 1013 Vg/L cell culture. Subsequently, AAV2 and AAV6 serotypes were produced in 3-L controlled bioreactors where productions yielded up to 1013 Vg/L similar to the yields obtained in shake-flasks. For example, for AAV2 1013 Vg/L cell culture (6.8 × 1011 IVP/L) were measured between 48 and 64 h post transfection (hpt). During this period, the average cell specific AAV2 yields of 6800 Vg per cell and 460 IVP per cell were obtained with a Vg to IVP ratio of less than 20. Successful operations in bioreactors demonstrated the potential for scale-up and industrialization of this generic process for manufacturing AAV serotypes efficiently.
Collapse
Affiliation(s)
- Parminder Singh Chahal
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P2R2
| | - Erica Schulze
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P2R2
| | - Rosa Tran
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P2R2
| | - Johnny Montes
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P2R2
| | - Amine A Kamen
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P2R2.
| |
Collapse
|
47
|
Wagner A, Röhrs V, Kedzierski R, Fechner H, Kurreck J. A novel method for the quantification of adeno-associated virus vectors for RNA interference applications using quantitative polymerase chain reaction and purified genomic adeno-associated virus DNA as a standard. Hum Gene Ther Methods 2013; 24:355-63. [PMID: 23987130 DOI: 10.1089/hgtb.2013.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are promising tools in gene therapy, but accurate quantification of the vector dose remains a critical issue for their successful application. We therefore aimed at the precise determination of the titer of self-complementary AAV (scAAV) vectors to improve the reliability of RNA interference (RNAi)-mediated knockdown approaches. Vector titers were initially determined by quantitative polymerase chain reaction (qPCR) using four primer sets targeting different regions within the AAV vector genome (VG) and either coiled or linearized plasmid standards. Despite very low variability between replicates in each assay, these quantification experiments revealed up to 20-fold variation in vector titers. Therefore, we developed a novel approach for the reproducible determination of titers of scAAV vectors based on the use of purified genomic vector DNA as a standard (scAAVStd). Consistent results were obtained in qPCR assays using the four primer sets mentioned above. RNAi-mediated silencing of human cyclophilin B (hCycB) by short hairpin RNA-expressing scAAV vectors was investigated in HeLa cells using two independent vector preparations. We found that the required vector titers for efficient knockdown differed by a factor of 3.5 between both preparations. Hence, we also investigated the number of internalized scAAV vectors, termed transduction units (TUs). TUs were determined by qPCR applying the scAAVStd. Very similar values for 80% hCycB knockdown were obtained for the two AAV vector preparations. Thus, only the determination of TUs, rather than vector concentration, allows for reproducible results in functional analyses using AAV vectors.
Collapse
Affiliation(s)
- Anke Wagner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin , Berlin 13355, Germany
| | | | | | | | | |
Collapse
|
48
|
Abstract
Icosahedral viral capsids are obligated to perform a thermodynamic balancing act. Capsids must be stable enough to protect the genome until a suitable host cell is encountered yet be poised to bind receptor, initiate cell entry, navigate the cellular milieu, and release their genome in the appropriate replication compartment. In this study, serotypes of adeno-associated virus (AAV), AAV1, AAV2, AAV5, and AAV8, were compared with respect to the physical properties of their capsids that influence thermodynamic stability. Thermal stability measurements using differential scanning fluorimetry, differential scanning calorimetry, and electron microscopy showed that capsid melting temperatures differed by more than 20°C between the least and most stable serotypes, AAV2 and AAV5, respectively. Limited proteolysis and peptide mass mapping of intact particles were used to investigate capsid protein dynamics. Active hot spots mapped to the region surrounding the 3-fold axis of symmetry for all serotypes. Cleavages also mapped to the unique region of VP1 which contains a phospholipase domain, indicating transient exposure on the surface of the capsid. Data on the biophysical properties of the different AAV serotypes are important for understanding cellular trafficking and is critical to their production, storage, and use for gene therapy. The distinct differences reported here provide direction for future studies on entry and vector production.
Collapse
|
49
|
Intraganglionic AAV6 results in efficient and long-term gene transfer to peripheral sensory nervous system in adult rats. PLoS One 2013; 8:e61266. [PMID: 23613824 PMCID: PMC3628918 DOI: 10.1371/journal.pone.0061266] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/07/2013] [Indexed: 12/18/2022] Open
Abstract
We previously demonstrated safe and reliable gene transfer to the dorsal root ganglion (DRG) using a direct microinjection procedure to deliver recombinant adeno-associated virus (AAV) vector. In this study, we proceed to compare the in vivo transduction patterns of self-complementary (sc) AAV6 and AAV8 in the peripheral sensory pathway. A single, direct microinjection of either AAV6 or AAV8 expressing EGFP, at the adjusted titer of 2×109 viral particle per DRG, into the lumbar (L) 4 and L5 DRGs of adult rats resulted in efficient EGFP expression (48±20% for AAV6 and 25±4% for AAV8, mean ± SD) selectively in sensory neurons and their axonal projections 3 weeks after injection, which remained stable for up to 3 months. AAV6 efficiently transfers EGFP to all neuronal size groups without differential neurotropism, while AAV8 predominantly targets large-sized neurons. Neurons transduced with AAV6 penetrate into the spinal dorsal horn (DH) and terminate predominantly in superficial DH laminae, as well as in the dorsal columns and deeper laminae III-V. Only few AAV8-transduced afferents were evident in the superficial laminae, and spinal EGFP was mostly present in the deeper dorsal horn (lamina III-V) and dorsal columns, with substantial projections to the ventral horn. AAV6-mediated EGFP-positive nerve fibers were widely observed in the medial plantar skin of ipsilateral hindpaws. No apparent inflammation, tissue damage, or major pain behaviors were observed for either AAV serotype. Taken together, both AAV6 and AAV8 are efficient and safe vectors for transgene delivery to primary sensory neurons, but they exhibit distinct functional features. Intraganglionic delivery of AAV6 is more uniform and efficient compared to AAV8 in gene transfer to peripheral sensory neurons and their axonal processes.
Collapse
|
50
|
Corneal gene therapy: basic science and translational perspective. Ocul Surf 2013; 11:150-64. [PMID: 23838017 DOI: 10.1016/j.jtos.2012.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/21/2012] [Accepted: 12/01/2012] [Indexed: 11/20/2022]
Abstract
Corneal blindness is the third leading cause of blindness worldwide. Gene therapy is an emerging technology for corneal blindness due to the accessibility and immune-privileged nature of the cornea, ease of vector administration and visual monitoring, and ability to perform frequent noninvasive corneal assessment. Vision restoration by gene therapy is contingent upon vector and mode of therapeutic gene introduction into targeted cells/tissues. Numerous efficacious vectors, delivery techniques, and approaches have evolved in the last decade for developing gene-based interventions for corneal diseases. Maximizing the potential benefits of gene therapy requires efficient and sustained therapeutic gene expression in target cells, low toxicity, and a high safety profile. This review describes the basic science associated with many gene therapy vectors and the present progress of gene therapy carried out for various ocular surface disorders and diseases.
Collapse
|