1
|
Wulansari D, Jeelani G, Yazaki E, Nozaki T. Identification and characterization of archaeal-type FAD synthase as a novel tractable drug target from the parasitic protozoa Entamoeba histolytica. mSphere 2024; 9:e0034724. [PMID: 39189775 PMCID: PMC11423594 DOI: 10.1128/msphere.00347-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Flavin adenine dinucleotide (FAD) is an essential cofactor for numerous flavoenzymes present in all living organisms. The biosynthesis of FAD from riboflavin involves two sequential reactions catalyzed by riboflavin kinase and flavin adenine dinucleotide synthase (FADS). Entamoeba histolytica, the protozoan parasite responsible for amebiasis, apparently lacks a gene encoding FADS that share similarity with bacterial and eukaryotic canonical FADS, yet it can synthesize FAD. In this study, we have identified the gene responsible for FADS and thoroughly characterized physiological and biochemical properties of FADS from E. histolytica. Phylogenetic analysis revealed that the gene was likely laterally transferred from archaea. The kinetic properties of recombinant EhFADS were consistent with the notion that EhFADS is of archaeal origin, exhibiting KM and kcat values similar to those of the arachaeal enzyme while significantly differing from the human counterpart. Repression of gene expression of EhFADS by epigenetic gene silencing caused substantial reduction in FAD levels and parasite growth, underscoring the importance of EhFADS for the parasite. Furthermore, we demonstrated that EhFADS gene silencing reduced thioredoxin reductase activity, which requires FAD as a cofactor and makes the ameba more susceptible to metronidazole. In summary, this study unveils unique evolutionary and biochemical features of EhFADS and underscores its significance as a promising drug target in combating human amebiasis.IMPORTANCEFAD is important for all forms of life, yet its role and metabolism are still poorly studied in E. histolytica, the protozoan parasite causing human amebiasis. Our study uncovers the evolutionary unique key enzyme, archaeal-type FADS for FAD biosynthesis from E. histolytica for the first time. Additionally, we showed the essentiality of this enzyme for parasite survival, highlighting its potential as target for drug development against E. histolytica infections.
Collapse
Affiliation(s)
- Dewi Wulansari
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- National Research and Innovation Agency, Jakarta, Indonesia
| | - Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Euki Yazaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Duwor S, Brites D, Mäser P. Phylogenetic Analysis of Pyruvate-Ferredoxin Oxidoreductase, a Redox Enzyme Involved in the Pharmacological Activation of Nitro-Based Prodrugs in Bacteria and Protozoa. BIOLOGY 2024; 13:178. [PMID: 38534448 DOI: 10.3390/biology13030178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
The present frontrunners in the chemotherapy of infections caused by protozoa are nitro-based prodrugs that are selectively activated by PFOR-mediated redox reactions. This study seeks to analyze the distribution of PFOR in selected protozoa and bacteria by applying comparative genomics to test the hypothesis that PFOR in eukaryotes was acquired through horizontal gene transfer (HGT) from bacteria. Furthermore, to identify other putatively acquired genes, proteome-wide and gene enrichment analyses were used. A plausible explanation for the patchy occurrence of PFOR in protozoa is based on the hypothesis that bacteria are potential sources of genes that enhance the adaptation of protozoa in hostile environments. Comparative genomics of Entamoeba histolytica and the putative gene donor, Desulfovibrio vulgaris, identified eleven candidate genes for HGT involved in intermediary metabolism. If these results can be reproduced in other PFOR-possessing protozoa, it would provide more validated evidence to support the horizontal transfer of pfor from bacteria.
Collapse
Affiliation(s)
- Seth Duwor
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
3
|
Guillén N. Pathogenicity and virulence of Entamoeba histolytica, the agent of amoebiasis. Virulence 2023; 14:2158656. [PMID: 36519347 DOI: 10.1080/21505594.2022.2158656] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The amoeba parasite Entamoeba histolytica is the causative agent of human amebiasis, an enteropathic disease affecting millions of people worldwide. This ancient protozoan is an elementary example of how parasites evolve with humans, e.g. taking advantage of multiple mechanisms to evade immune responses, interacting with microbiota for nutritional and protective needs, utilizing host resources for growth, division, and encystation. These skills of E. histolytica perpetuate the species and incidence of infection. However, in 10% of infected cases, the parasite turns into a pathogen; the host-parasite equilibrium is then disorganized, and the simple lifecycle based on two cell forms, trophozoites and cysts, becomes unbalanced. Trophozoites acquire a virulent phenotype which, when non-controlled, leads to intestinal invasion with the onset of amoebiasis symptoms. Virulent E. histolytica must cross mucus, epithelium, connective tissue and possibly blood. This highly mobile parasite faces various stresses and a powerful host immune response, with oxidative stress being a challenge for its survival. New emerging research avenues and omics technologies target gene regulation to determine human or parasitic factors activated upon infection, their role in virulence activation, and in pathogenesis; this research bears in mind that E. histolytica is a resident of the complex intestinal ecosystem. The goal is to eradicate amoebiasis from the planet, but the parasitic life of E. histolytica is ancient and complex and will likely continue to evolve with humans. Advances in these topics are summarized here.
Collapse
Affiliation(s)
- Nancy Guillén
- Cell Biology and Infection Department, Institut Pasteur and Centre National de la Recherche Scientifique CNRS-ERM9195, Paris, France
| |
Collapse
|
4
|
Kenarkoohi A, Abdoli A, Rostamzad A, Rashnavadi M, Naserifar R, Abdi J, Shams M, Bozorgomid A, Saeb S, Al-Fahad D, Khezri K, Falahi S. Presence of CRISPR CAS-Like Sequences as a Proposed Mechanism for Horizontal Genetic Exchanges between Trichomonas vaginalis and Its Associated Virus: A Comparative Genomic Analysis with the First Report of a Putative CRISPR CAS Structures in Eukaryotic Cells. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8069559. [PMID: 38058394 PMCID: PMC10696477 DOI: 10.1155/2023/8069559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/04/2023] [Accepted: 09/07/2023] [Indexed: 12/08/2023]
Abstract
Introduction Trichomonas vaginalis genome is among the largest genome size and coding capacities. Combinations of gene duplications, transposon, repeated sequences, and lateral gene transfers (LGTs) have contributed to the unexpected large genomic size and diversity. This study is aimed at investigating genomic exchange and seeking for presence of the CRISPR CAS system as one of the possible mechanisms for some level of genetic exchange. Material and Methods. In this comparative analysis, 398 publicly available Trichomonas vaginalis complete genomes were investigated for the presence of CRISPR CAS. Spacer sequences were also analyzed for their origin using BLAST. Results We identified a CRISPR CAS (Cas3). CRISPR spacers are highly similar to transposable genetic elements such as viruses of protozoan parasites, especially megavirals, some transposons, and, interestingly, papillomavirus and HIV-1 in a few cases. Discussion. There is a striking similarity between the prokaryotes/Archaean CRISPR and what we find as eukaryotic CRISPR. About 5-10% of the 398 T. vaginalis possess a CRISPR structure. Conclusion According to sequences and their organization, we assume that these repeated sequences and spacer, along with their mentioned features, could be the eukaryotic homolog of prokaryotes and Archaean CRISPR systems and may involve in a process similar to the CRISPR function.
Collapse
Affiliation(s)
- Azra Kenarkoohi
- Department of Laboratory Sciences, School of Allied Medical Sciences, Iran
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Amir Abdoli
- Zoonoses Research Centre, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Arman Rostamzad
- Department of Biology, Faculty of Sciences, Ilam University, Ilam, Iran
| | | | - Razi Naserifar
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Jahangir Abdi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Arezoo Bozorgomid
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sepideh Saeb
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Dhurgham Al-Fahad
- Pharmaceutical Department, College of Pharmacy, University of Thi-Qar, Iraq
| | - Kosar Khezri
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
5
|
Cote-L’Heureux A, Maurer-Alcalá XX, Katz LA. Old genes in new places: A taxon-rich analysis of interdomain lateral gene transfer events. PLoS Genet 2022; 18:e1010239. [PMID: 35731825 PMCID: PMC9255765 DOI: 10.1371/journal.pgen.1010239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/05/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022] Open
Abstract
Vertical inheritance is foundational to Darwinian evolution, but fails to explain major innovations such as the rapid spread of antibiotic resistance among bacteria and the origin of photosynthesis in eukaryotes. While lateral gene transfer (LGT) is recognized as an evolutionary force in prokaryotes, the role of LGT in eukaryotic evolution is less clear. With the exception of the transfer of genes from organelles to the nucleus, a process termed endosymbiotic gene transfer (EGT), the extent of interdomain transfer from prokaryotes to eukaryotes is highly debated. A common critique of studies of interdomain LGT is the reliance on the topology of single-gene trees that attempt to estimate more than one billion years of evolution. We take a more conservative approach by identifying cases in which a single clade of eukaryotes is found in an otherwise prokaryotic gene tree (i.e. exclusive presence). Starting with a taxon-rich dataset of over 13,600 gene families and passing data through several rounds of curation, we identify and categorize the function of 306 interdomain LGT events into diverse eukaryotes, including 189 putative EGTs, 52 LGTs into Opisthokonta (i.e. animals, fungi and their microbial relatives), and 42 LGTs nearly exclusive to anaerobic eukaryotes. To assess differential gene loss as an explanation for exclusive presence, we compare branch lengths within each LGT tree to a set of vertically-inherited genes subsampled to mimic gene loss (i.e. with the same taxonomic sampling) and consistently find shorter relative distance between eukaryotes and prokaryotes in LGT trees, a pattern inconsistent with gene loss. Our methods provide a framework for future studies of interdomain LGT and move the field closer to an understanding of how best to model the evolutionary history of eukaryotes.
Collapse
Affiliation(s)
- Auden Cote-L’Heureux
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | | | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- Program in Organismic Biology and Evolution, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
6
|
Peng R, Yoshinari S, Kawano-Sugaya T, Jeelani G, Nozaki T. Identification and Functional Characterization of Divergent 3'-Phosphate tRNA Ligase From Entamoeba histolytica. Front Cell Infect Microbiol 2022; 11:746261. [PMID: 34976851 PMCID: PMC8718801 DOI: 10.3389/fcimb.2021.746261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
HSPC117/RtcB, 3'-phosphate tRNA ligase, is a critical enzyme involved in tRNA splicing and maturation. HSPC117/RtcB is also involved in mRNA splicing of some protein-coding genes including XBP-1. Entamoeba histolytica, a protozoan parasite responsible for human amebiasis, possesses two RtcB proteins (EhRtcB1 and 2), but their biological functions remain unknown. Both RtcBs show kinship with mammalian/archaeal type, and all amino acid residues present in the active sites are highly conserved, as suggested by protein alignment and phylogenetic analyses. EhRtcB1 was demonstrated to be localized to the nucleus, while EhRtcB2 was in the cytosol. EhRtcB1, but not EhRtcB2, was required for optimal growth of E. histolytica trophozoites. Both EhRtcB1 (in cooperation with EhArchease) and EhRtcB2 showed RNA ligation activity in vitro. The predominant role of EhRtcB1 in tRNAIle(UAU) processing in vivo was demonstrated in EhRtcB1- and 2-gene silenced strains. Taken together, we have demonstrated the conservation of tRNA splicing and functional diversification of RtcBs in this amoebozoan lineage.
Collapse
Affiliation(s)
- Ruofan Peng
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeo Yoshinari
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuro Kawano-Sugaya
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ghulam Jeelani
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Laboratory of Biomedical Chemistry, Department of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Žárský V, Klimeš V, Pačes J, Vlček Č, Hradilová M, Beneš V, Nývltová E, Hrdý I, Pyrih J, Mach J, Barlow L, Stairs CW, Eme L, Hall N, Eliáš M, Dacks JB, Roger A, Tachezy J. The Mastigamoeba balamuthi Genome and the Nature of the Free-Living Ancestor of Entamoeba. Mol Biol Evol 2021; 38:2240-2259. [PMID: 33528570 PMCID: PMC8136499 DOI: 10.1093/molbev/msab020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The transition of free-living organisms to parasitic organisms is a mysterious process that occurs in all major eukaryotic lineages. Parasites display seemingly unique features associated with their pathogenicity; however, it is important to distinguish ancestral preconditions to parasitism from truly new parasite-specific functions. Here, we sequenced the genome and transcriptome of anaerobic free-living Mastigamoeba balamuthi and performed phylogenomic analysis of four related members of the Archamoebae, including Entamoeba histolytica, an important intestinal pathogen of humans. We aimed to trace gene histories throughout the adaptation of the aerobic ancestor of Archamoebae to anaerobiosis and throughout the transition from a free-living to a parasitic lifestyle. These events were associated with massive gene losses that, in parasitic lineages, resulted in a reduction in structural features, complete losses of some metabolic pathways, and a reduction in metabolic complexity. By reconstructing the features of the common ancestor of Archamoebae, we estimated preconditions for the evolution of parasitism in this lineage. The ancestor could apparently form chitinous cysts, possessed proteolytic enzyme machinery, compartmentalized the sulfate activation pathway in mitochondrion-related organelles, and possessed the components for anaerobic energy metabolism. After the split of Entamoebidae, this lineage gained genes encoding surface membrane proteins that are involved in host–parasite interactions. In contrast, gene gains identified in the M. balamuthi lineage were predominantly associated with polysaccharide catabolic processes. A phylogenetic analysis of acquired genes suggested an essential role of lateral gene transfer in parasite evolution (Entamoeba) and in adaptation to anaerobic aquatic sediments (Mastigamoeba).
Collapse
Affiliation(s)
- Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jan Pačes
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Čestmír Vlček
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Miluše Hradilová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vladimír Beneš
- European Molecular Biology Laboratory (EMBL), Genomics Core Facility, Heidelberg, Germany
| | - Eva Nývltová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Pyrih
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Mach
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Lael Barlow
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Courtney W Stairs
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.,Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Laura Eme
- Diversity, Ecology and Evolution of Microbes (DEEM), Unité Ecologie Systématique Evolution Université Paris-Saclay, Orsay, France
| | - Neil Hall
- The Earlham Institute, Norwich Research Park, Norwich, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Joel B Dacks
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Institute of Parasitology, Biology Centre, CAS, v.v.i., Ceske Budejovice, Czech Republic
| | - Andrew Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
8
|
Handrich MR, Garg SG, Sommerville EW, Hirt RP, Gould SB. Characterization of the BspA and Pmp protein family of trichomonads. Parasit Vectors 2019; 12:406. [PMID: 31426868 PMCID: PMC6701047 DOI: 10.1186/s13071-019-3660-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/08/2019] [Indexed: 11/16/2022] Open
Abstract
Background Trichomonas vaginalis is a human-infecting trichomonad and as such the best studied and the only for which the full genome sequence is available considering its parasitic lifestyle, T. vaginalis encodes an unusually high number of proteins. Many gene families are massively expanded and some genes are speculated to have been acquired from prokaryotic sources. Among the latter are two gene families that harbour domains which share similarity with proteins of Bacteroidales/Spirochaetales and Chlamydiales: the BspA and the Pmp proteins, respectively. Results We sequenced the transcriptomes of five trichomonad species and screened for the presence of BspA and Pmp domain-containing proteins and characterized individual candidate proteins from both families in T. vaginalis. Here, we demonstrate that (i) BspA and Pmp domain-containing proteins are universal to trichomonads, but specifically expanded in T. vaginalis; (ii) in line with a concurrent expansion of the endocytic machinery, there is a high number of BspA and Pmp proteins which carry C-terminal endocytic motifs; and (iii) both families traffic through the ER and have the ability to increase adhesion performance in a non-virulent T. vaginalis strain and Tetratrichomonas gallinarum by a so far unknown mechanism. Conclusions Our results initiate the functional characterization of these two broadly distributed protein families and help to better understand the origin and evolution of BspA and Pmp domains in trichomonads. Electronic supplementary material The online version of this article (10.1186/s13071-019-3660-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria R Handrich
- Institute for Molecular Evolution, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ewen W Sommerville
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert P Hirt
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
9
|
Trasviña-Arenas CH, David SS, Delaye L, Azuara-Liceaga E, Brieba LG. Evolution of Base Excision Repair in Entamoeba histolytica is shaped by gene loss, gene duplication, and lateral gene transfer. DNA Repair (Amst) 2019; 76:76-88. [DOI: 10.1016/j.dnarep.2019.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/14/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
|
10
|
Leitsch D, Williams CF, Hrdý I. Redox Pathways as Drug Targets in Microaerophilic Parasites. Trends Parasitol 2018; 34:576-589. [PMID: 29807758 DOI: 10.1016/j.pt.2018.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/06/2023]
Abstract
The microaerophilic parasites Entamoeba histolytica, Trichomonas vaginalis, and Giardia lamblia jointly cause hundreds of millions of infections in humans every year. Other microaerophilic parasites such as Tritrichomonas foetus and Spironucleus spp. pose a relevant health problem in veterinary medicine. Unfortunately, vaccines against these pathogens are unavailable, but their microaerophilic lifestyle opens opportunities for specifically developed chemotherapeutics. In particular, their high sensitivity towards oxygen can be exploited by targeting redox enzymes. This review focusses on the redox pathways of microaerophilic parasites and on drugs, either already in use or currently in the state of development, which target these pathways.
Collapse
Affiliation(s)
- David Leitsch
- Institute for Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Austria.
| | - Catrin F Williams
- School of Engineering, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ivan Hrdý
- Department of Parasitology, Charles University, Faculty of Science, Prague, Czech Republic
| |
Collapse
|
11
|
Mazumdar R, Endler L, Monoyios A, Hess M, Bilic I. Establishment of a de novo Reference Transcriptome of Histomonas meleagridis Reveals Basic Insights About Biological Functions and Potential Pathogenic Mechanisms of the Parasite. Protist 2017; 168:663-685. [DOI: 10.1016/j.protis.2017.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/21/2017] [Accepted: 09/23/2017] [Indexed: 12/28/2022]
|
12
|
Dupont PY, Cox MP. Genomic Data Quality Impacts Automated Detection of Lateral Gene Transfer in Fungi. G3 (BETHESDA, MD.) 2017; 7:1301-1314. [PMID: 28235827 PMCID: PMC5386878 DOI: 10.1534/g3.116.038448] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/17/2017] [Indexed: 12/26/2022]
Abstract
Lateral gene transfer (LGT, also known as horizontal gene transfer), an atypical mechanism of transferring genes between species, has almost become the default explanation for genes that display an unexpected composition or phylogeny. Numerous methods of detecting LGT events all rely on two fundamental strategies: primary structure composition or gene tree/species tree comparisons. Discouragingly, the results of these different approaches rarely coincide. With the wealth of genome data now available, detection of laterally transferred genes is increasingly being attempted in large uncurated eukaryotic datasets. However, detection methods depend greatly on the quality of the underlying genomic data, which are typically complex for eukaryotes. Furthermore, given the automated nature of genomic data collection, it is typically impractical to manually verify all protein or gene models, orthology predictions, and multiple sequence alignments, requiring researchers to accept a substantial margin of error in their datasets. Using a test case comprising plant-associated genomes across the fungal kingdom, this study reveals that composition- and phylogeny-based methods have little statistical power to detect laterally transferred genes. In particular, phylogenetic methods reveal extreme levels of topological variation in fungal gene trees, the vast majority of which show departures from the canonical species tree. Therefore, it is inherently challenging to detect LGT events in typical eukaryotic genomes. This finding is in striking contrast to the large number of claims for laterally transferred genes in eukaryotic species that routinely appear in the literature, and questions how many of these proposed examples are statistically well supported.
Collapse
Affiliation(s)
- Pierre-Yves Dupont
- Statistics and Bioinformatics Group, Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
- the Bio-Protection Research Centre, Massey University, Palmerston North 4442, New Zealand
| | - Murray P Cox
- Statistics and Bioinformatics Group, Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
- the Bio-Protection Research Centre, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
13
|
Vera MAG, Brune A. Hand over that gun: lateral gene transfer provides an amoeba with a bacterial weapon. Environ Microbiol 2017; 19:847-848. [DOI: 10.1111/1462-2920.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manuel A. G. Vera
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| | - Andreas Brune
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| |
Collapse
|
14
|
Nývltová E, Šut'ák R, Žárský V, Harant K, Hrdý I, Tachezy J. Lateral gene transfer of p-cresol- and indole-producing enzymes from environmental bacteria to Mastigamoeba balamuthi. Environ Microbiol 2017; 19:1091-1102. [PMID: 27902886 DOI: 10.1111/1462-2920.13636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/10/2016] [Accepted: 11/22/2016] [Indexed: 12/01/2022]
Abstract
p-Cresol and indole are volatile biologically active products of the bacterial degradation of tyrosine and tryptophan respectively. They are typically produced by bacteria in animal intestines, soil and various sediments. Here, we demonstrate that the free-living eukaryote Mastigamoeba balamuthi and its pathogenic relative Entamoeba histolytica produce significant amounts of indole via tryptophanase activity. Unexpectedly, M. balamuthi also produces p-cresol in concentrations that are bacteriostatic to non-p-cresol-producing bacteria. The ability of M. balamuthi to produce p-cresol, which has not previously been observed in any eukaryotic microbe, was gained due to the lateral acquisition of a bacterial gene for 4-hydroxyphenylacetate decarboxylase (HPAD). In bacteria, the genes for HPAD and the S-adenosylmethionine-dependent activating enzyme (AE) are present in a common operon. In M. balamuthi, HPAD displays a unique fusion with the AE that suggests the operon-mediated transfer of genes from a bacterial donor. We also clarified that the tyrosine-to-4-hydroxyphenylacetate conversion proceeds via the Ehrlich pathway. The acquisition of the bacterial HPAD gene may provide M. balamuthi a competitive advantage over other microflora in its native habitat.
Collapse
Affiliation(s)
- Eva Nývltová
- Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Robert Šut'ák
- Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Karel Harant
- Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Charles University in Prague, Faculty of Science, Prague, Czech Republic
| |
Collapse
|
15
|
Abstract
The outcome of an Entamoeba histolytica infection is variable and the contribution of genetic diversity within E. histolytica to human disease is not fully understood. The information provided by the whole genome sequence of the E. histolytica reference laboratory strain (HM-1:IMSS) and thirteen additional laboratory strains have been made publically available. In this review theories on the source of the unexpected level of structural diversity found in E. histolytica will be discussed.
Collapse
Affiliation(s)
- Carol A Gilchrist
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
16
|
Barratt J, Gough R, Stark D, Ellis J. Bulky Trichomonad Genomes: Encoding a Swiss Army Knife. Trends Parasitol 2016; 32:783-797. [PMID: 27312283 DOI: 10.1016/j.pt.2016.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/19/2016] [Accepted: 05/24/2016] [Indexed: 01/01/2023]
Abstract
The trichomonads are a remarkably successful lineage of ancient, predominantly parasitic protozoa. Recent molecular analyses have revealed extensive duplication of certain genetic loci in trichomonads. Consequently, their genomes are exceptionally large compared to other parasitic protozoa. Retention of these large gene expansions across different trichomonad families raises the question: do these duplications afford an advantage? Many duplicated genes are linked to the parasitic lifestyle and some are regulated differently to their paralogues, suggesting they have acquired new functions. It is proposed that these large genomes encode a Swiss army knife of sorts, packed with a multitude of tools for use in many different circumstances. This may have bestowed trichomonads with the extraordinary versatility that has undoubtedly contributed to their success.
Collapse
Affiliation(s)
- Joel Barratt
- I3 Institute, University of Technology Sydney, Broadway, NSW, Australia; School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia.
| | - Rory Gough
- I3 Institute, University of Technology Sydney, Broadway, NSW, Australia; School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Damien Stark
- Division of Microbiology, Sydpath, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| |
Collapse
|
17
|
Shapiro JA. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read-Write Genome Evolution as an Active Biological Process. BIOLOGY 2016; 5:E27. [PMID: 27338490 PMCID: PMC4929541 DOI: 10.3390/biology5020027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/20/2016] [Accepted: 06/02/2016] [Indexed: 01/15/2023]
Abstract
The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess "Read-Write Genomes" they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
18
|
Katz LA. Recent events dominate interdomain lateral gene transfers between prokaryotes and eukaryotes and, with the exception of endosymbiotic gene transfers, few ancient transfer events persist. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140324. [PMID: 26323756 DOI: 10.1098/rstb.2014.0324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While there is compelling evidence for the impact of endosymbiotic gene transfer (EGT; transfer from either mitochondrion or chloroplast to the nucleus) on genome evolution in eukaryotes, the role of interdomain transfer from bacteria and/or archaea (i.e. prokaryotes) is less clear. Lateral gene transfers (LGTs) have been argued to be potential sources of phylogenetic information, particularly for reconstructing deep nodes that are difficult to recover with traditional phylogenetic methods. We sought to identify interdomain LGTs by using a phylogenomic pipeline that generated 13 465 single gene trees and included up to 487 eukaryotes, 303 bacteria and 118 archaea. Our goals include searching for LGTs that unite major eukaryotic clades, and describing the relative contributions of LGT and EGT across the eukaryotic tree of life. Given the difficulties in interpreting single gene trees that aim to capture the approximately 1.8 billion years of eukaryotic evolution, we focus on presence-absence data to identify interdomain transfer events. Specifically, we identify 1138 genes found only in prokaryotes and representatives of three or fewer major clades of eukaryotes (e.g. Amoebozoa, Archaeplastida, Excavata, Opisthokonta, SAR and orphan lineages). The majority of these genes have phylogenetic patterns that are consistent with recent interdomain LGTs and, with the notable exception of EGTs involving photosynthetic eukaryotes, we detect few ancient interdomain LGTs. These analyses suggest that LGTs have probably occurred throughout the history of eukaryotes, but that ancient events are not maintained unless they are associated with endosymbiotic gene transfer among photosynthetic lineages.
Collapse
Affiliation(s)
- Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA Program in Organismic and Evolutionary Biology, UMass-Amherst, Amherst, MA 01003, USA
| |
Collapse
|
19
|
Horizontal Gene Transfers from Bacteria to Entamoeba Complex: A Strategy for Dating Events along Species Divergence. J Parasitol Res 2016; 2016:3241027. [PMID: 27239333 PMCID: PMC4863120 DOI: 10.1155/2016/3241027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/03/2016] [Indexed: 01/08/2023] Open
Abstract
Horizontal gene transfer has proved to be relevant in eukaryotic evolution, as it has been found more often than expected and related to adaptation to certain niches. A relatively large list of laterally transferred genes has been proposed and evaluated for the parasite Entamoeba histolytica. The goals of this work were to elucidate the importance of lateral gene transfer along the evolutionary history of some members of the genus Entamoeba, through identifying donor groups and estimating the divergence time of some of these events. In order to estimate the divergence time of some of the horizontal gene transfer events, the dating of some Entamoeba species was necessary, following an indirect dating strategy based on the fossil record of plausible hosts. The divergence between E. histolytica and E. nuttallii probably occurred 5.93 million years ago (Mya); this lineage diverged from E. dispar 9.97 Mya, while the ancestor of the latter separated from E. invadens 68.18 Mya. We estimated times for 22 transferences; the most recent occurred 31.45 Mya and the oldest 253.59 Mya. Indeed, the acquisition of genes through lateral transfer may have triggered a period of adaptive radiation, thus playing a major role in the evolution of the Entamoeba genus.
Collapse
|
20
|
Chen L, Zhang YH, Huang T, Cai YD. Gene expression profiling gut microbiota in different races of humans. Sci Rep 2016; 6:23075. [PMID: 26975620 PMCID: PMC4791684 DOI: 10.1038/srep23075] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/22/2016] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment, and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China.,College of Information Engineering, Shanghai Maritime University, Shanghai 201306, People's Republic of China
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
21
|
Reyna-Fabián ME, Zermeño V, Ximénez C, Flores J, Romero MF, Diaz D, Argueta J, Moran P, Valadez A, Cerritos R. Analysis of the Bacterial Diversity in Liver Abscess: Differences Between Pyogenic and Amebic Abscesses. Am J Trop Med Hyg 2015; 94:147-55. [PMID: 26572872 DOI: 10.4269/ajtmh.15-0458] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/19/2015] [Indexed: 11/07/2022] Open
Abstract
Several recent studies have demonstrated that virulence in Entamoeba histolytica is triggered in the presence of both pathogenic and nonpathogenic bacteria species using in vitro and in vivo experimental animal models. In this study, we examined samples aspirated from abscess material obtained from patients who were clinically diagnosed with amebic liver abscess (ALA) or pyogenic liver abscess (PLA). To determine the diversity of bacterial species in the abscesses, we performed partial 16S rRNA gene sequencing. In addition, the E. histolytica and Entamoeba dispar species were genotyped using tRNA-linked short tandem repeats as specific molecular markers. The association between clinical data and bacterial and parasite genotypes were examined through a correspondence analysis. The results showed the presence of numerous bacterial groups. These taxonomic groups constitute common members of the gut microbiota, although all of the detected bacterial species have a close phylogenetic relationship with bacterial pathogens. Furthermore, some patients clinically diagnosed with PLA and ALA were coinfected with E. dispar or E. histolytica, which suggests that the virulence of these parasites increased in the presence of bacteria. However, no specific bacterial groups were associated with this effect. Together, our results suggest a nonspecific mechanism of virulence modulation by bacteria in Entamoeba.
Collapse
Affiliation(s)
- Miriam E Reyna-Fabián
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Valeria Zermeño
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Cecilia Ximénez
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Janin Flores
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Miguel F Romero
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Daniel Diaz
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Jesús Argueta
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Patricia Moran
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Alicia Valadez
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - René Cerritos
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México City, México; Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| |
Collapse
|
22
|
Barratt JLN, Cao M, Stark DJ, Ellis JT. The Transcriptome Sequence of Dientamoeba fragilis Offers New Biological Insights on its Metabolism, Kinome, Degradome and Potential Mechanisms of Pathogenicity. Protist 2015; 166:389-408. [PMID: 26188431 DOI: 10.1016/j.protis.2015.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/27/2015] [Accepted: 06/13/2015] [Indexed: 01/08/2023]
Abstract
Dientamoeba fragilis is a human bowel parasite with a worldwide distribution. Dientamoeba was once described as a rare and harmless commensal though recent reports suggest it is common and potentially pathogenic. Molecular data on Dientamoeba is scarce which limits our understanding of this parasite. To address this, sequencing of the Dientamoeba transcriptome was performed. Messenger RNA was extracted from cultured Dientamoeba trophozoites originating from clinical stool specimens, and sequenced using Roche GS FLX and Illumina HiSeq technologies. In total 6,595 Dientamoeba transcripts were identified. These sequences were analysed using the BLAST2GO software suite and via BLAST comparisons to sequences available from TrichDB, GenBank, MEROPS and kinase.com. Several novel KEGG pathway maps were generated and gene ontology analysis was also performed. These results are thoroughly discussed guided by knowledge available for other related protozoa. Attention is paid to the novel biological insights afforded by this data including peptidases and kinases of Dientamoeba, as well as its metabolism, novel chemotherapeutics and possible mechanisms of pathogenicity. Currently, this work represents the largest contribution to our understanding of Dientamoeba molecular biology and also represents a major contribution to our understanding of the trichomonads generally, many of which are important pathogens of humans and animals.
Collapse
Affiliation(s)
- Joel L N Barratt
- University of Technology Sydney, iThree Institute, Broadway, New South Wales 2007, Australia; University of Technology Sydney, School of Life Sciences, Broadway, New South Wales 2007, Australia.
| | - Maisie Cao
- University of Technology Sydney, School of Life Sciences, Broadway, New South Wales 2007, Australia
| | - Damien J Stark
- University of Technology Sydney, School of Life Sciences, Broadway, New South Wales 2007, Australia; Division of Microbiology, Sydpath, St. Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia
| | - John T Ellis
- University of Technology Sydney, School of Life Sciences, Broadway, New South Wales 2007, Australia
| |
Collapse
|
23
|
Lalle M, Camerini S, Cecchetti S, Finelli R, Sferra G, Müller J, Ricci G, Pozio E. The FAD-dependent glycerol-3-phosphate dehydrogenase of Giardia duodenalis: an unconventional enzyme that interacts with the g14-3-3 and it is a target of the antitumoral compound NBDHEX. Front Microbiol 2015; 6:544. [PMID: 26082764 PMCID: PMC4450592 DOI: 10.3389/fmicb.2015.00544] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/17/2015] [Indexed: 12/18/2022] Open
Abstract
The flagellated protozoan Giardia duodenalis is a worldwide parasite causing giardiasis, an acute and chronic diarrheal disease. Metabolism in G. duodenalis has a limited complexity thus making metabolic enzymes ideal targets for drug development. However, only few metabolic pathways (i.e., carbohydrates) have been described so far. Recently, the parasite homolog of the mitochondrial-like glycerol-3-phosphate dehydrogenase (gG3PD) has been identified among the interactors of the g14-3-3 protein. G3PD is involved in glycolysis, electron transport, glycerophospholipids metabolism, and hyperosmotic stress response, and is emerging as promising target in tumor treatment. In this work, we demonstrate that gG3PD is a functional flavoenzyme able to convert glycerol-3-phosphate into dihydroxyacetone phosphate and that its activity and the intracellular glycerol level increase during encystation. Taking advantage of co-immunoprecipitation assays and deletion mutants, we provide evidence that gG3PD and g14-3-3 interact at the trophozoite stage, the intracellular localization of gG3PD is stage dependent and it partially co-localizes with mitosomes during cyst development. Finally, we demonstrate that the gG3PD activity is affected by the antitumoral compound 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol, that results more effective in vitro at killing G. duodenalis trophozoites than the reference drug metronidazole. Overall, our results highlight the involvement of gG3PD in processes crucial for the parasite survival thus proposing this enzyme as target for novel antigiardial interventions.
Collapse
Affiliation(s)
- Marco Lalle
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| | - Serena Camerini
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità Rome, Italy
| | - Serena Cecchetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità Rome, Italy
| | - Renata Finelli
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| | - Gabriella Sferra
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| | - Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern Bern, Switzerland
| | - Giorgio Ricci
- Department of Sciences and Chemical Technologies, University of Rome "Tor Vergata" Rome, Italy
| | - Edoardo Pozio
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| |
Collapse
|
24
|
Mitosis, microtubule dynamics and the evolution of kinesins. Exp Cell Res 2015; 334:61-9. [PMID: 25708751 DOI: 10.1016/j.yexcr.2015.02.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/10/2015] [Indexed: 12/20/2022]
|
25
|
Woehle C, Kusdian G, Radine C, Graur D, Landan G, Gould SB. The parasite Trichomonas vaginalis expresses thousands of pseudogenes and long non-coding RNAs independently from functional neighbouring genes. BMC Genomics 2014; 15:906. [PMID: 25326207 PMCID: PMC4223856 DOI: 10.1186/1471-2164-15-906] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 10/09/2014] [Indexed: 12/11/2022] Open
Abstract
Background The human pathogen Trichomonas vaginalis is a parabasalian flagellate that is estimated to infect 3% of the world’s population annually. With a 160 megabase genome and up to 60,000 genes residing in six chromosomes, the parasite has the largest genome among sequenced protists. Although it is thought that the genome size and unusual large coding capacity is owed to genome duplication events, the exact reason and its consequences are less well studied. Results Among transcriptome data we found thousands of instances, in which reads mapped onto genomic loci not annotated as genes, some reaching up to several kilobases in length. At first sight these appear to represent long non-coding RNAs (lncRNAs), however, about half of these lncRNAs have significant sequence similarities to genomic loci annotated as protein-coding genes. This provides evidence for the transcription of hundreds of pseudogenes in the parasite. Conventional lncRNAs and pseudogenes are expressed in Trichomonas through their own transcription start sites and independently from flanking genes in Trichomonas. Expression of several representative lncRNAs was verified through reverse-transcriptase PCR in different T. vaginalis strains and case studies exclude the use of alternative start codons or stop codon suppression for the genes analysed. Conclusion Our results demonstrate that T. vaginalis expresses thousands of intergenic loci, including numerous transcribed pseudogenes. In contrast to yeast these are expressed independently from neighbouring genes. Our results furthermore illustrate the effect genome duplication events can have on the transcriptome of a protist. The parasite’s genome is in a steady state of changing and we hypothesize that the numerous lncRNAs could offer a large pool for potential innovation from which novel proteins or regulatory RNA units could evolve. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-906) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Sven B Gould
- Institute of Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
26
|
Grant JR, Katz LA. Phylogenomic study indicates widespread lateral gene transfer in Entamoeba and suggests a past intimate relationship with parabasalids. Genome Biol Evol 2014; 6:2350-60. [PMID: 25146649 PMCID: PMC4217692 DOI: 10.1093/gbe/evu179] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2014] [Indexed: 12/13/2022] Open
Abstract
Lateral gene transfer (LGT) has impacted the evolutionary history of eukaryotes, though to a lesser extent than in bacteria and archaea. Detecting LGT and distinguishing it from single gene tree artifacts is difficult, particularly when considering very ancient events (i.e., over hundreds of millions of years). Here, we use two independent lines of evidence--a taxon-rich phylogenetic approach and an assessment of the patterns of gene presence/absence--to evaluate the extent of LGT in the parasitic amoebozoan genus Entamoeba. Previous work has suggested that a number of genes in the genome of Entamoeba spp. were acquired by LGT. Our approach, using an automated phylogenomic pipeline to build taxon-rich gene trees, suggests that LGT is more extensive than previously thought. Our analyses reveal that genes have frequently entered the Entamoeba genome via nonvertical events, including at least 116 genes acquired directly from bacteria or archaea, plus an additional 22 genes in which Entamoeba plus one other eukaryote are nested among bacteria and/or archaea. These genes may make good candidates for novel therapeutics, as drugs targeting these genes are less likely to impact the human host. Although we recognize the challenges of inferring intradomain transfers given systematic errors in gene trees, we find 109 genes supporting LGT from a eukaryote to Entamoeba spp., and 178 genes unique to Entamoeba spp. and one other eukaryotic taxon (i.e., presence/absence data). Inspection of these intradomain LGTs provide evidence of a common sister relationship between genes of Entamoeba (Amoebozoa) and parabasalids (Excavata). We speculate that this indicates a past close relationship (e.g., symbiosis) between ancestors of these extant lineages.
Collapse
Affiliation(s)
- Jessica R Grant
- Department of Biological Sciences, Smith College, Northampton, MA
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA Program in Organismic and Evolutionary Biology, University of Massachusetts
| |
Collapse
|
27
|
Strese A, Backlund A, Alsmark C. A recently transferred cluster of bacterial genes in Trichomonas vaginalis--lateral gene transfer and the fate of acquired genes. BMC Evol Biol 2014; 14:119. [PMID: 24898731 PMCID: PMC4082486 DOI: 10.1186/1471-2148-14-119] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/27/2014] [Indexed: 01/10/2023] Open
Abstract
Background Lateral Gene Transfer (LGT) has recently gained recognition as an important contributor to some eukaryote proteomes, but the mechanisms of acquisition and fixation in eukaryotic genomes are still uncertain. A previously defined norm for LGTs in microbial eukaryotes states that the majority are genes involved in metabolism, the LGTs are typically localized one by one, surrounded by vertically inherited genes on the chromosome, and phylogenetics shows that a broad collection of bacterial lineages have contributed to the transferome. Results A unique 34 kbp long fragment with 27 clustered genes (TvLF) of prokaryote origin was identified in the sequenced genome of the protozoan parasite Trichomonas vaginalis. Using a PCR based approach we confirmed the presence of the orthologous fragment in four additional T. vaginalis strains. Detailed sequence analyses unambiguously suggest that TvLF is the result of one single, recent LGT event. The proposed donor is a close relative to the firmicute bacterium Peptoniphilus harei. High nucleotide sequence similarity between T. vaginalis strains, as well as to P. harei, and the absence of homologs in other Trichomonas species, suggests that the transfer event took place after the radiation of the genus Trichomonas. Some genes have undergone pseudogenization and degradation, indicating that they may not be retained in the future. Functional annotations reveal that genes involved in informational processes are particularly prone to degradation. Conclusions We conclude that, although the majority of eukaryote LGTs are single gene occurrences, they may be acquired in clusters of several genes that are subsequently cleansed of evolutionarily less advantageous genes.
Collapse
Affiliation(s)
| | | | - Cecilia Alsmark
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
28
|
Yue J, Sun G, Hu X, Huang J. The scale and evolutionary significance of horizontal gene transfer in the choanoflagellate Monosiga brevicollis. BMC Genomics 2013; 14:729. [PMID: 24156600 PMCID: PMC4046809 DOI: 10.1186/1471-2164-14-729] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/17/2013] [Indexed: 12/29/2022] Open
Abstract
Background It is generally agreed that horizontal gene transfer (HGT) is common in phagotrophic protists. However, the overall scale of HGT and the cumulative impact of acquired genes on the evolution of these organisms remain largely unknown. Results Choanoflagellates are phagotrophs and the closest living relatives of animals. In this study, we performed phylogenomic analyses to investigate the scale of HGT and the evolutionary importance of horizontally acquired genes in the choanoflagellate Monosiga brevicollis. Our analyses identified 405 genes that are likely derived from algae and prokaryotes, accounting for approximately 4.4% of the Monosiga nuclear genome. Many of the horizontally acquired genes identified in Monosiga were probably acquired from food sources, rather than by endosymbiotic gene transfer (EGT) from obsolete endosymbionts or plastids. Of 193 genes identified in our analyses with functional information, 84 (43.5%) are involved in carbohydrate or amino acid metabolism, and 45 (23.3%) are transporters and/or involved in response to oxidative, osmotic, antibiotic, or heavy metal stresses. Some identified genes may also participate in biosynthesis of important metabolites such as vitamins C and K12, porphyrins and phospholipids. Conclusions Our results suggest that HGT is frequent in Monosiga brevicollis and might have contributed substantially to its adaptation and evolution. This finding also highlights the importance of HGT in the genome and organismal evolution of phagotrophic eukaryotes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-729) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
29
|
Faust DM, Guillen N. Virulence and virulence factors in Entamoeba histolytica, the agent of human amoebiasis. Microbes Infect 2012; 14:1428-41. [DOI: 10.1016/j.micinf.2012.05.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/09/2012] [Accepted: 05/28/2012] [Indexed: 11/26/2022]
|
30
|
Jeelani G, Husain A, Sato D, Soga T, Suematsu M, Nozaki T. Biochemical and functional characterization of novel NADH kinase in the enteric protozoan parasite Entamoeba histolytica. Biochimie 2012; 95:309-19. [PMID: 23069387 DOI: 10.1016/j.biochi.2012.09.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 09/27/2012] [Indexed: 11/30/2022]
Abstract
NAD(H) kinase catalyzes the phosphorylation of NAD(H) to form NADP(H) using ATP or inorganic polyphosphate as a phosphoryl donor. While the enzyme is conserved throughout prokaryotes and eukaryotes, remarkable differences in kinetic parameters including substrate preference, cation dependence, and physiological roles exist among the organisms. In the present study, we biochemically characterized NAD(H) kinase from the anaerobic/microaerophilic fermentative protozoan parasite Entamoeba histolytica, which lacks the conventional mitochondria capable of oxidative phosphorylation, leading to ATP. The kinetic properties of E. histolytica NAD(H) kinase recombinantly produced in Escherichia coli showed remarkable differences from those in bacteria and higher eukaryotes. Entamoeba NAD(H) kinase preferred NADH to NAD+ as the phosphoryl acceptor, utilized nucleoside triphosphates including ATP, GTP and deoxyATP, but not nucleoside di-, mono-phosphates, or inorganic polyphosphates, as the phosphoryl donor. To further understand the physiological roles in E. histolytica, we generated a stable transformant overexpressing NAD(H) kinase. Overexpression of NAD(H) kinase resulted in a 1.6-2 fold increase in the NADPH and NADP+ concentrations, a 40% reduction of the intracellular concentration of reactive oxygen species, and also led to increased tolerance toward hydrogen peroxide. These data, together with the essentially of NAD(H) kinase gene, underscore its significance as an NADP(H)-producing enzyme in this organism, and should help in designing of drugs targeting this enzyme.
Collapse
Affiliation(s)
- Ghulam Jeelani
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Mulangi V, Chibucos MC, Phuntumart V, Morris PF. Kinetic and phylogenetic analysis of plant polyamine uptake transporters. PLANTA 2012; 236:1261-1273. [PMID: 22711282 DOI: 10.1007/s00425-012-1668-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/18/2012] [Indexed: 06/01/2023]
Abstract
The rice gene Polyamine Uptake Transporter1 (PUT1) was originally identified based on its homology to the polyamine uptake transporters LmPOT1 and TcPAT12 in Leishmania major and Trypanosoma cruzi, respectively. Here we show that five additional transporters from rice and Arabidopsis that cluster in the same clade as PUT1 all function as high affinity spermidine uptake transporters. Yeast expression assays of these genes confirmed that uptake of spermidine was minimally affected by 166 fold or greater concentrations of amino acids. Characterized polyamine transporters from both Arabidopsis thaliana and Oryza sativa along with the two polyamine transporters from L. major and T. cruzi were aligned and used to generate a hidden Markov model. This model was used to identify significant matches to proteins in other angiosperms, bryophytes, chlorophyta, discicristates, excavates, stramenopiles and amoebozoa. No significant matches were identified in fungal or metazoan genomes. Phylogenic analysis showed that some sequences from the haptophyte, Emiliania huxleyi, as well as sequences from oomycetes and diatoms clustered closer to sequences from plant genomes than from a homologous sequence in the red algal genome Galdieria sulphuraria, consistent with the hypothesis that these polyamine transporters were acquired by horizontal transfer from green algae. Leishmania and Trypansosoma formed a separate cluster with genes from other Discicristates and two Entamoeba species. We surmise that the genes in Entamoeba species were acquired by phagotrophy of Discicristates. In summary, phylogenetic and functional analysis has identified two clades of genes that are predictive of polyamine transport activity.
Collapse
Affiliation(s)
- Vaishali Mulangi
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | | | | | | |
Collapse
|
32
|
Sormacheva I, Smyshlyaev G, Mayorov V, Blinov A, Novikov A, Novikova O. Vertical Evolution and Horizontal Transfer of CR1 Non-LTR Retrotransposons and Tc1/mariner DNA Transposons in Lepidoptera Species. Mol Biol Evol 2012; 29:3685-702. [DOI: 10.1093/molbev/mss181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
33
|
Genetic Characterization of Trichomonas vaginalis Isolates by Use of Multilocus Sequence Typing. J Clin Microbiol 2012; 50:3293-300. [DOI: 10.1128/jcm.00643-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
34
|
Hirt RP, de Miguel N, Nakjang S, Dessi D, Liu YC, Diaz N, Rappelli P, Acosta-Serrano A, Fiori PL, Mottram JC. Trichomonas vaginalis pathobiology new insights from the genome sequence. ADVANCES IN PARASITOLOGY 2012; 77:87-140. [PMID: 22137583 DOI: 10.1016/b978-0-12-391429-3.00006-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The draft genome of the common sexually transmitted pathogen Trichomonas vaginalis encodes one of the largest known proteome with 60,000 candidate proteins. This provides parasitologists and molecular cell biologists alike with exciting, yet challenging, opportunities to unravel the molecular features of the parasite's cellular systems and potentially the molecular basis of its pathobiology. Here, recent investigations addressing selected aspects of the parasite's molecular cell biology are discussed, including surface and secreted virulent factors, membrane trafficking, cell signalling, the degradome, and the potential role of RNA interference in the regulation of gene expression.
Collapse
Affiliation(s)
- Robert P Hirt
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nakjang S, Ndeh DA, Wipat A, Bolam DN, Hirt RP. A novel extracellular metallopeptidase domain shared by animal host-associated mutualistic and pathogenic microbes. PLoS One 2012; 7:e30287. [PMID: 22299034 PMCID: PMC3267712 DOI: 10.1371/journal.pone.0030287] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/16/2011] [Indexed: 12/20/2022] Open
Abstract
The mucosal microbiota is recognised as an important factor for our health, with many disease states linked to imbalances in the normal community structure. Hence, there is considerable interest in identifying the molecular basis of human-microbe interactions. In this work we investigated the capacity of microbes to thrive on mucosal surfaces, either as mutualists, commensals or pathogens, using comparative genomics to identify co-occurring molecular traits. We identified a novel domain we named M60-like/PF13402 (new Pfam entry PF13402), which was detected mainly among proteins from animal host mucosa-associated prokaryotic and eukaryotic microbes ranging from mutualists to pathogens. Lateral gene transfers between distantly related microbes explained their shared M60-like/PF13402 domain. The novel domain is characterised by a zinc-metallopeptidase-like motif and is distantly related to known viral enhancin zinc-metallopeptidases. Signal peptides and/or cell surface anchoring features were detected in most microbial M60-like/PF13402 domain-containing proteins, indicating that these proteins target an extracellular substrate. A significant subset of these putative peptidases was further characterised by the presence of associated domains belonging to carbohydrate-binding module family 5/12, 32 and 51 and other glycan-binding domains, suggesting that these novel proteases are targeted to complex glycoproteins such as mucins. An in vitro mucinase assay demonstrated degradation of mammalian mucins by a recombinant form of an M60-like/PF13402-containing protein from the gut mutualist Bacteroides thetaiotaomicron. This study reveals that M60-like domains are peptidases targeting host glycoproteins. These peptidases likely play an important role in successful colonisation of both vertebrate mucosal surfaces and the invertebrate digestive tract by both mutualistic and pathogenic microbes. Moreover, 141 entries across various peptidase families described in the MEROPS database were also identified with carbohydrate-binding modules defining a new functional context for these glycan-binding domains and providing opportunities to engineer proteases targeting specific glycoproteins for both biomedical and industrial applications.
Collapse
Affiliation(s)
- Sirintra Nakjang
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Didier A. Ndeh
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anil Wipat
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - David N. Bolam
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert P. Hirt
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
A machine learning approach to identify hydrogenosomal proteins in Trichomonas vaginalis. EUKARYOTIC CELL 2011; 11:217-28. [PMID: 22140228 DOI: 10.1128/ec.05225-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The protozoan parasite Trichomonas vaginalis is the causative agent of trichomoniasis, the most widespread nonviral sexually transmitted disease in humans. It possesses hydrogenosomes-anaerobic mitochondria that generate H(2), CO(2), and acetate from pyruvate while converting ADP to ATP via substrate-level phosphorylation. T. vaginalis hydrogenosomes lack a genome and translation machinery; hence, they import all their proteins from the cytosol. To date, however, only 30 imported proteins have been shown to localize to the organelle. A total of 226 nuclear-encoded proteins inferred from the genome sequence harbor a characteristic short N-terminal presequence, reminiscent of mitochondrial targeting peptides, which is thought to mediate hydrogenosomal targeting. Recent studies suggest, however, that the presequences might be less important than previously thought. We sought to identify new hydrogenosomal proteins within the 59,672 annotated open reading frames (ORFs) of T. vaginalis, independent of the N-terminal targeting signal, using a machine learning approach. Our training set included 57 gene and protein features determined for all 30 known hydrogenosomal proteins and 576 nonhydrogenosomal proteins. Several classifiers were trained on this set to yield an import score for all proteins encoded by T. vaginalis ORFs, predicting the likelihood of hydrogenosomal localization. The machine learning results were tested through immunofluorescence assay and immunodetection in isolated cell fractions of 14 protein predictions using hemagglutinin constructs expressed under the homologous SCSα promoter in transiently transformed T. vaginalis cells. Localization of 6 of the 10 top predicted hydrogenosome-localized proteins was confirmed, and two of these were found to lack an obvious N-terminal targeting signal.
Collapse
|
37
|
Weedall GD, Hall N. Evolutionary genomics of Entamoeba. Res Microbiol 2011; 162:637-45. [PMID: 21288488 PMCID: PMC3268252 DOI: 10.1016/j.resmic.2011.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 12/17/2010] [Indexed: 11/06/2022]
Abstract
Entamoeba histolytica is a human pathogen that causes amoebic dysentery and leads to significant morbidity and mortality worldwide. Understanding the genome and evolution of the parasite will help explain how, when and why it causes disease. Here we review current knowledge about the evolutionary genomics of Entamoeba: how differences between the genomes of different species may help explain different phenotypes, and how variation among E. histolytica parasites reveals patterns of population structure. The imminent expansion of the amount genome data will greatly improve our knowledge of the genus and of pathogenic species within it.
Collapse
Affiliation(s)
- Gareth D Weedall
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | | |
Collapse
|
38
|
Dittmar T, Zänker KS. Horizontal gene transfers with or without cell fusions in all categories of the living matter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 714:5-89. [PMID: 21506007 PMCID: PMC7120942 DOI: 10.1007/978-94-007-0782-5_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reviews the history of widespread exchanges of genetic segments initiated over 3 billion years ago, to be part of their life style, by sphero-protoplastic cells, the ancestors of archaea, prokaryota, and eukaryota. These primordial cells shared a hostile anaerobic and overheated environment and competed for survival. "Coexist with, or subdue and conquer, expropriate its most useful possessions, or symbiose with it, your competitor" remain cellular life's basic rules. This author emphasizes the role of viruses, both in mediating cell fusions, such as the formation of the first eukaryotic cell(s) from a united crenarchaeon and prokaryota, and the transfer of host cell genes integrated into viral (phages) genomes. After rising above the Darwinian threshold, rigid rules of speciation and vertical inheritance in the three domains of life were established, but horizontal gene transfers with or without cell fusions were never abolished. The author proves with extensive, yet highly selective documentation, that not only unicellular microorganisms, but the most complex multicellular entities of the highest ranks resort to, and practice, cell fusions, and donate and accept horizontally (laterally) transferred genes. Cell fusions and horizontally exchanged genetic materials remain the fundamental attributes and inherent characteristics of the living matter, whether occurring accidentally or sought after intentionally. These events occur to cells stagnating for some 3 milliard years at a lower yet amazingly sophisticated level of evolution, and to cells achieving the highest degree of differentiation, and thus functioning in dependence on the support of a most advanced multicellular host, like those of the human brain. No living cell is completely exempt from gene drains or gene insertions.
Collapse
Affiliation(s)
- Thomas Dittmar
- Inst. Immunologie, Universität Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| | - Kurt S. Zänker
- Institute of Immunologie, University of Witten/Herdecke, Stockumer Str. 10, Witten, 58448 Germany
| |
Collapse
|
39
|
Cui J, Das S, Smith TF, Samuelson J. Trichomonas transmembrane cyclases result from massive gene duplication and concomitant development of pseudogenes. PLoS Negl Trop Dis 2010; 4:e782. [PMID: 20689771 PMCID: PMC2914791 DOI: 10.1371/journal.pntd.0000782] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 07/02/2010] [Indexed: 01/04/2023] Open
Abstract
Background Trichomonas vaginalis has an unusually large genome (∼160 Mb) encoding ∼60,000 proteins. With the goal of beginning to understand why some Trichomonas genes are present in so many copies, we characterized here a family of ∼123 Trichomonas genes that encode transmembrane adenylyl cyclases (TMACs). Methodology/Principal Findings The large family of TMACs genes is the result of recent duplications of a small set of ancestral genes that appear to be unique to trichomonads. Duplicated TMAC genes are not closely associated with repetitive elements, and duplications of flanking sequences are rare. However, there is evidence for TMAC gene replacements by homologous recombination. A high percentage of TMAC genes (∼46%) are pseudogenes, as they contain stop codons and/or frame shifts, or the genes are truncated. Numerous stop codons present in the genome project G3 strain are not present in orthologous genes of two other Trichomonas strains (S1 and B7RC2). Each TMAC is composed of a series of N-terminal transmembrane helices and a single C-terminal cyclase domain that has adenylyl cyclase activity. Multiple TMAC genes are transcribed by Trichomonas cloned by limiting dilution. Conclusions/Significance We conclude that one reason for the unusually large genome of Trichomonas is the presence of unstable families of genes such as those encoding TMACs that are undergoing massive gene duplication and concomitant development of pseudogenes. Trichomonas vaginalis is the only medically important protist (single-cell eukaryote) that is sexually transmitted. The ∼160-Mb Trichomonas genome contains more predicted protein-encoding genes (∼60,000) than the human genome. To begin to understand why there are so many copies of some genes, we chose here to study a large family of genes encoding unique transmembrane cyclases. Our most important results include the following. More than 100 transmembrane cyclase genes do not result from chromosomal duplications, because for the most part only the coding regions of the genes, rather than flanking sequences, are duplicated. Almost half of the transmembrane cyclase genes are pseudogenes, and these pseudogenes are polymorphic among laboratory strains of Trichomonas. Messenger RNAs for numerous transmembrane cyclases are expressed simultaneously, and representative cyclase domains have adenylyl cyclase activity. In summary, the large family of Trichomonas genes encoding transmembrane adenylyl cyclases results from massive gene duplication and concomitant development of pseudogenes.
Collapse
Affiliation(s)
- Jike Cui
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Bioinformatics, Boston University, Boston, Massachusetts, United States of America
| | - Suchismita Das
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Temple F. Smith
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
40
|
Noël CJ, Diaz N, Sicheritz-Ponten T, Safarikova L, Tachezy J, Tang P, Fiori PL, Hirt RP. Trichomonas vaginalis vast BspA-like gene family: evidence for functional diversity from structural organisation and transcriptomics. BMC Genomics 2010; 11:99. [PMID: 20144183 PMCID: PMC2843621 DOI: 10.1186/1471-2164-11-99] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 02/08/2010] [Indexed: 12/31/2022] Open
Abstract
Background Trichomonas vaginalis is the most common non-viral human sexually transmitted pathogen and importantly, contributes to facilitating the spread of HIV. Yet very little is known about its surface and secreted proteins mediating interactions with, and permitting the invasion and colonisation of, the host mucosa. Initial annotations of T. vaginalis genome identified a plethora of candidate extracellular proteins. Results Data mining of the T. vaginalis genome identified 911 BspA-like entries (TvBspA) sharing TpLRR-like leucine-rich repeats, which represent the largest gene family encoding potential extracellular proteins for the pathogen. A broad range of microorganisms encoding BspA-like proteins was identified and these are mainly known to live on mucosal surfaces, among these T. vaginalis is endowed with the largest gene family. Over 190 TvBspA proteins with inferred transmembrane domains were characterised by a considerable structural diversity between their TpLRR and other types of repetitive sequences and two subfamilies possessed distinct classic sorting signal motifs for endocytosis. One TvBspA subfamily also shared a glycine-rich protein domain with proteins from Clostridium difficile pathogenic strains and C. difficile phages. Consistent with the hypothesis that TvBspA protein structural diversity implies diverse roles, we demonstrated for several TvBspA genes differential expression at the transcript level in different growth conditions. Identified variants of repetitive segments between several TvBspA paralogues and orthologues from two clinical isolates were also consistent with TpLRR and other repetitive sequences to be functionally important. For one TvBspA protein cell surface expression and antibody responses by both female and male T. vaginalis infected patients were also demonstrated. Conclusions The biased mucosal habitat for microbial species encoding BspA-like proteins, the characterisation of a vast structural diversity for the TvBspA proteins, differential expression of a subset of TvBspA genes and the cellular localisation and immunological data for one TvBspA; all point to the importance of the TvBspA proteins to various aspects of T. vaginalis pathobiology at the host-pathogen interface.
Collapse
Affiliation(s)
- Christophe J Noël
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Shapiro JA. Mobile DNA and evolution in the 21st century. Mob DNA 2010; 1:4. [PMID: 20226073 PMCID: PMC2836002 DOI: 10.1186/1759-8753-1-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 01/25/2010] [Indexed: 01/05/2023] Open
Abstract
Scientific history has had a profound effect on the theories of evolution. At the beginning of the 21st century, molecular cell biology has revealed a dense structure of information-processing networks that use the genome as an interactive read-write (RW) memory system rather than an organism blueprint. Genome sequencing has documented the importance of mobile DNA activities and major genome restructuring events at key junctures in evolution: exon shuffling, changes in cis-regulatory sites, horizontal transfer, cell fusions and whole genome doublings (WGDs). The natural genetic engineering functions that mediate genome restructuring are activated by multiple stimuli, in particular by events similar to those found in the DNA record: microbial infection and interspecific hybridization leading to the formation of allotetraploids. These molecular genetic discoveries, plus a consideration of how mobile DNA rearrangements increase the efficiency of generating functional genomic novelties, make it possible to formulate a 21st century view of interactive evolutionary processes. This view integrates contemporary knowledge of the molecular basis of genetic change, major genome events in evolution, and stimuli that activate DNA restructuring with classical cytogenetic understanding about the role of hybridization in species diversification.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, Gordon Center for Integrative Science W123B, 929 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
42
|
Paz-Y-Miño C G, Espinosa A. Integrating horizontal gene transfer and common descent to depict evolution and contrast it with "common design". J Eukaryot Microbiol 2009; 57:11-8. [PMID: 20021546 DOI: 10.1111/j.1550-7408.2009.00458.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Horizontal gene transfer (HGT) and common descent interact in space and time. Because events of HGT co-occur with phylogenetic evolution, it is difficult to depict evolutionary patterns graphically. Tree-like representations of life's diversification are useful, but they ignore the significance of HGT in evolutionary history, particularly of unicellular organisms, ancestors of multicellular life. Here we integrate the reticulated-tree model, ring of life, symbiogenesis whole-organism model, and eliminative pattern pluralism to represent evolution. Using Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2), a bifunctional enzyme in the glycolytic pathway of amoeba, we illustrate how EhADH2 could be the product of both horizontally acquired features from ancestral prokaryotes (i.e. aldehyde dehydrogenase [ALDH] and alcohol dehydrogenase [ADH]), and subsequent functional integration of these enzymes into EhADH2, which is now inherited by amoeba via common descent. Natural selection has driven the evolution of EhADH2 active sites, which require specific amino acids (cysteine 252 in the ALDH domain; histidine 754 in the ADH domain), iron- and NAD(+) as cofactors, and the substrates acetyl-CoA for ALDH and acetaldehyde for ADH. Alternative views invoking "common design" (i.e. the non-naturalistic emergence of major taxa independent from ancestry) to explain the interaction between horizontal and vertical evolution are unfounded.
Collapse
Affiliation(s)
- Guillermo Paz-Y-Miño C
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, USA
| | | |
Collapse
|
43
|
Kinoshita S, Isu S, Kaneko G, Yamada H, Hara T, Itoh Y, Watabe S. The occurrence of eukaryotic type III glutamine synthetase in the marine diatom Chaetoceros compressum. Mar Genomics 2009; 2:103-11. [DOI: 10.1016/j.margen.2009.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 05/26/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
|