1
|
Romero-Muñoz L, Sanz-Martos AB, Olmo ND, Merino B, Ruiz-Gayo M, Cano V. Impact of fatty acids on glutamate-related gene expression in the hippocampus: Focus on lauric acid. Neurosci Lett 2025; 850:138152. [PMID: 39923978 DOI: 10.1016/j.neulet.2025.138152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Excessive dietary fat consumption has been linked to impairments in synaptic plasticity in the hippocampus (HIP), a brain region crucial for learning and memory that relies on balanced glutamatergic neurotransmission. This study investigates the acute effects of three fatty acids (FAs)-lauric acid (LA), palmitic acid (PA), and oleic acid (OA)-on glutamate (GLU)-related gene expression in the HIP of male and female young mice. Hippocampal slices were treated with FAs, and mRNA levels of genes involved in GLU transport, GLU-glutamine (GLN) cycling, and GLU receptor subunit encoding were quantified using RT-PCR. FA treatment reduced mRNA levels of enzymes involved in the conversion of GLU to GLN (glutamine synthetase; GS), GABA (glutamate decarboxylase 1; GAD67), and α-ketoglutarate (glutamate pyruvate transaminase 2; AAT2). Additionally, the expression of glutamine transporters (SNAT1, SNAT2, SNAT3), the astrocytic GLU transporter GLT-1, and the NMDA receptor subunit NMDA2a was also reduced. These effects were most pronounced with LA. Notably, while the HIP showed similar sensitivity to fatty acids across sexes, overall gene expression levels were lower in females. These findings highlight the acute susceptibility of hippocampal GLU-related pathways to FA exposure, particularly LA, suggesting potential risks of high-LA diets on cognitive function. Further research is needed to explore the long-term consequences of dietary fat on hippocampal health and its sex-specific effects.
Collapse
Affiliation(s)
- Laura Romero-Muñoz
- Department of Health and Pharmaceutical Sciences Facultad de Farmacia Universidad CEU-San Pablo CEU Universities Madrid Spain
| | - Ana Belén Sanz-Martos
- Department of Psychobiology School of Psychology National University for Distance Education (UNED) Madrid Spain
| | - Nuria Del Olmo
- Department of Psychobiology School of Psychology National University for Distance Education (UNED) Madrid Spain
| | - Beatriz Merino
- Department of Health and Pharmaceutical Sciences Facultad de Farmacia Universidad CEU-San Pablo CEU Universities Madrid Spain
| | - Mariano Ruiz-Gayo
- Department of Health and Pharmaceutical Sciences Facultad de Farmacia Universidad CEU-San Pablo CEU Universities Madrid Spain
| | - Victoria Cano
- Department of Health and Pharmaceutical Sciences Facultad de Farmacia Universidad CEU-San Pablo CEU Universities Madrid Spain.
| |
Collapse
|
2
|
Cellot G, Di Mauro G, Ricci C, Tiribelli C, Bellarosa C, Ballerini L. Bilirubin Triggers Calcium Elevations and Dysregulates Giant Depolarizing Potentials During Rat Hippocampus Maturation. Cells 2025; 14:172. [PMID: 39936964 PMCID: PMC11817189 DOI: 10.3390/cells14030172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Neonatal hyperbilirubinemia may result in long-lasting motor, auditory and learning impairments. The mechanisms responsible for the localization of unconjugated bilirubin (UCB) to specific brain areas as well as those involved in potentially permanent central nervous system (CNS) dysfunctions are far from being clear. One area of investigation includes exploring how hyperbilirubinemia determines neuronal alterations predisposing to neurodevelopmental disorders. We focused on the hippocampus and pyramidal cell dysregulation of calcium homeostasis and synaptic activity, with a particular focus on early forms of correlated network activity, i.e., giant depolarizing potentials (GDPs), crucially involved in shaping mature synaptic networks. We performed live calcium imaging and patch clamp recordings from acute hippocampal slices isolated from wild-type rats exposed to exogenous high bilirubin concentration. We then explored the impact of endogenous bilirubin accumulation in hippocampal slices isolated from a genetic model of hyperbilirubinemia, i.e., Gunn rats. Our data show in both models an age-dependent dysregulation of calcium dynamics accompanied by severe alterations in GDPs, which were strongly reduced in hippocampal slices of hyperbilirubinemic rats, where the expression of GABAergic neurotransmission markers was also altered. We propose that hyperbilirubinemia damages neurons and affects the refinement of GABAergic synaptic circuitry during a critical period of hippocampal development.
Collapse
Affiliation(s)
- Giada Cellot
- International School for Advanced Studies (SISSA), Neuroscience Area, Via Bonomea, 265, 34136 Trieste, Italy; (G.D.M.); (C.R.)
| | - Giuseppe Di Mauro
- International School for Advanced Studies (SISSA), Neuroscience Area, Via Bonomea, 265, 34136 Trieste, Italy; (G.D.M.); (C.R.)
| | - Chiara Ricci
- International School for Advanced Studies (SISSA), Neuroscience Area, Via Bonomea, 265, 34136 Trieste, Italy; (G.D.M.); (C.R.)
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS—Italian Liver Foundation, Bldg Q-AREA Science Park Basovizza, SS14 Km 163.5, 34149 Trieste, Italy;
| | - Cristina Bellarosa
- Fondazione Italiana Fegato ONLUS—Italian Liver Foundation, Bldg Q-AREA Science Park Basovizza, SS14 Km 163.5, 34149 Trieste, Italy;
| | - Laura Ballerini
- International School for Advanced Studies (SISSA), Neuroscience Area, Via Bonomea, 265, 34136 Trieste, Italy; (G.D.M.); (C.R.)
| |
Collapse
|
3
|
Husna M, Handono K, Sujuti H, Aulanni'am A, Rukmigarsari E. Regulation of MAP2, GFAP, and calcium in the CA3 Region Following Kainic Acid Exposure to organotypic hippocampal slice culture. F1000Res 2025; 12:47. [PMID: 39816762 PMCID: PMC11733419 DOI: 10.12688/f1000research.126732.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
Background Neurodegeneration due to neurotoxicity is one of the phenomena in temporal lobe epilepsy. Experimentally, hippocampal excitotoxicity process can occur due to kainic acid exposure, especially in the CA3 area. Neuronal death, astrocyte reactivity and increased calcium also occur in hippocampal excitotoxicity, but few studies have investigated immediate effect after kainic acid exposure. The organotypic hippocampal slice culture (OHSC) is a useful model for studying the neurodegeneration process, but there are still many protocol differences. In this study, minor modifications were made in the OHSC protocol. Methods OHSC was obtained from three healthy wild type Wistar rats aged P10. Healthy culture slices were obtained and lasted up to 10 days in vitro (DIV 10). Bath application of kainic acid for 48 hours in DIV 10 followed by observation of its initial effects on neurons, astrocytes, and calcium via the expression of MAP2, GFAP, and intracellular calcium imaging, subsequently. Results After 48 h of kainic acid administration, there was a significant increase in intracellular calcium intensity (p = 0.006 < α), accompanied by a significant decrease in MAP2 (p = 0.003 < α) and GFAP (p = 0.010 < α) expression. Conclusion These findings suggest early neuronal and astrocyte damage at the initial onset of hippocampal injury. This implies that astrocyte damage occurs early before an increase in GFAP that characterizes reactive astrogliosis found in other studies. Damage to neurons and astrocytes may be associated with increased intracellular calcium. It is necessary to develop further research regarding regulation of calcium, MAP2, and GFAP at a spatial time after exposure to kainic acid and strategies to reduce damage caused by excitotoxicity.
Collapse
Affiliation(s)
- Machlusil Husna
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
- Department of Neurology, Faculty of Medicine Universitas Brawijaya / dr. Saiful Anwar General Hospital, Malang, East Java, Indonesia
| | - Kusworini Handono
- Department of Clinical Pathology, Faculty of Medicine Universitas Brawijaya / dr. Saiful Anwar General Hospital, Malang, East Java, Indonesia
| | - Hidayat Sujuti
- Department of Ophthalmology, Faculty of Medicine Universitas Brawijaya / dr. Saiful Anwar General Hospital, Malang, East Java, Indonesia
| | - Aulanni'am Aulanni'am
- Department of Chemistry, Faculty of Sciences Universitas Brawijaya, Malang, East Java, Indonesia
| | - Ettie Rukmigarsari
- Faculty of Teaching and Education Sciences, Islamic University of Malang, Malang, East Java, Indonesia
| |
Collapse
|
4
|
Dias C, Lourenço CF, Laranjinha J, Ledo A. High-Resolution Respirometry Methodology for Bioenergetic and Metabolic Studies in Intact Brain Slices. Methods Mol Biol 2025; 2878:35-48. [PMID: 39546255 DOI: 10.1007/978-1-0716-4264-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The brain is critically dependent on energetic substrates as it consumes circa 20% of glucose and oxygen under normal physiological conditions. Although different cell types and at different locations might experience particular specificities in the utilization of these substrates, overall, mitochondrial oxidative phosphorylation supports the most efficient energy transduction process, enabling the complete oxidation of glucose to CO2 coupled to ATP synthesis in the presence of O2. Impairment of mitochondrial bioenergetics has been identified as an early event in many brain diseases and aging. Thus, novel methodologies to readily assess mitochondrial respiration in brain tissue, while preserving cellular and mitochondrial architecture and overcoming the serious drawbacks of studies using isolated mitochondrial preparations, are needed. Here we describe a methodology for studying functional parameters defining tissue metabolic respiration in brain hippocampal slices. The methodology can be used for physiological, pharmacological, and toxicological studies.
Collapse
Affiliation(s)
- Cândida Dias
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Cátia F Lourenço
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Ledo
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
5
|
Brown R, Rabeling A, Goolam M. Progress and potential of brain organoids in epilepsy research. Stem Cell Res Ther 2024; 15:361. [PMID: 39396038 PMCID: PMC11470583 DOI: 10.1186/s13287-024-03944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024] Open
Abstract
Epilepsies are disorders of the brain characterised by an imbalance in electrical activity, linked to a disruption in the excitation and inhibition of neurons. Progress in the epilepsy research field has been hindered by the lack of an appropriate model, with traditionally used 2D primary cell culture assays and animal models having a number of limitations which inhibit their ability to recapitulate the developing brain and the mechanisms behind epileptogenesis. As a result, the mechanisms behind the pathogenesis of epilepsy are largely unknown. Brain organoids are 3D aggregates of neural tissue formed in vitro and have been shown to recapitulate the gene expression patterns of the brain during development, and can successfully model a range of epilepsies and drug responses. They thus present themselves as a novel tool to advance studies into epileptogenesis. In this review, we discuss the formation of brain organoids, their recent application in studying genetic epilepsies, hyperexcitability dynamics and oxygen glucose deprivation as a hyperexcitability agent, their use as an epilepsy drug testing and development platform, as well as the limitations of their use in epilepsy research and how these can be mitigated.
Collapse
Affiliation(s)
- Rachel Brown
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| | - Alexa Rabeling
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa
- UCT Neuroscience Institute, Cape Town, South Africa
| | - Mubeen Goolam
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, 7925, South Africa.
- UCT Neuroscience Institute, Cape Town, South Africa.
| |
Collapse
|
6
|
Talevi A, Bellera C. An update on the novel methods for the discovery of antiseizure and antiepileptogenic medications: where are we in 2024? Expert Opin Drug Discov 2024; 19:975-990. [PMID: 38963148 DOI: 10.1080/17460441.2024.2373165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Despite the availability of around 30 antiseizure medications, 1/3 of patients with epilepsy fail to become seizure-free upon pharmacological treatment. Available medications provide adequate symptomatic control in two-thirds of patients, but disease-modifying drugs are still scarce. Recently, though, new paradigms have been explored. AREAS COVERED Three areas are reviewed in which a high degree of innovation in the search for novel antiseizure and antiepileptogenic medications has been implemented: development of novel screening approaches, search for novel therapeutic targets, and adoption of new drug discovery paradigms aligned with a systems pharmacology perspective. EXPERT OPINION In the past, worldwide leaders in epilepsy have reiteratively stated that the lack of progress in the field may be explained by the recurrent use of the same molecular targets and screening procedures to identify novel medications. This landscape has changed recently, as reflected by the new Epilepsy Therapy Screening Program and the introduction of many in vitro and in vivo models that could possibly improve our chances of identifying first-in-class medications that may control drug-resistant epilepsy or modify the course of disease. Other milestones include the study of new molecular targets for disease-modifying drugs and exploration of a systems pharmacology perspective to design new drugs.
Collapse
Affiliation(s)
- Alan Talevi
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata, Argentina
| | - Carolina Bellera
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata, Argentina
| |
Collapse
|
7
|
Suryavanshi P, Baule S, Glykys J. Trauma in Neonatal Acute Brain Slices Alters Calcium and Network Dynamics and Causes Calpain-Mediated Cell Death. eNeuro 2024; 11:ENEURO.0007-24.2024. [PMID: 38886064 PMCID: PMC11232372 DOI: 10.1523/eneuro.0007-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/07/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Preparing acute brain slices produces trauma that mimics severe penetrating brain injury. In neonatal acute brain slices, the spatiotemporal characteristics of trauma-induced calcium dynamics in neurons and its effect on network activity are relatively unknown. Using multiphoton laser scanning microscopy of the somatosensory neocortex in acute neonatal mouse brain slices (P8-12), we simultaneously imaged neuronal Ca2+ dynamics (GCaMP6s) and cytotoxicity (propidium iodide or PI) to determine the relationship between cytotoxic Ca2+ loaded neurons (GCaMP-filled) and cell viability at different depths and incubation times. PI+ cells and GCaMP-filled neurons were abundant at the surface of the slices, with an exponential decrease with depth. Regions with high PI+ cells correlated with elevated neuronal and neuropil Ca2+ The number of PI+ cells and GCaMP-filled neurons increased with prolonged incubation. GCaMP-filled neurons did not participate in stimulus-evoked or seizure-evoked network activity. Significantly, the superficial tissue, with a higher degree of trauma-induced injury, showed attenuated seizure-related neuronal Ca2+ responses. Calpain inhibition prevented the increase in PI+ cells and GCaMP-filled neurons in the deep tissue and during prolonged incubation times. Isoform-specific pharmacological inhibition implicated calpain-2 as a significant contributor to trauma-induced injury in acute slices. Our results show a calpain-mediated spatiotemporal relationship between cell death and aberrant neuronal Ca2+ load in acute neonatal brain slices. Also, we demonstrate that neurons in acute brain slices exhibit altered physiology depending on the degree of trauma-induced injury. Blocking calpains may be a therapeutic option to prevent acute neuronal death during traumatic brain injury in the young brain.
Collapse
Affiliation(s)
- Pratyush Suryavanshi
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa 52241
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52241
| | - Samuel Baule
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa 52241
- Departments of Biomedical Engineering, The University of Iowa, Iowa City, Iowa 52241
| | - Joseph Glykys
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa 52241
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52241
- Neurology, The University of Iowa, Iowa City, Iowa 52241
| |
Collapse
|
8
|
Vajaria R, Davis D, Thaweepanyaporn K, Dovey J, Nasuto S, Delivopoulos E, Tamagnini F, Knight P, Vasudevan N. Estrogen and testosterone secretion from the mouse brain. Steroids 2024; 204:109398. [PMID: 38513983 DOI: 10.1016/j.steroids.2024.109398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Estrogen and testosterone are typically thought of as gonadal or adrenal derived steroids that cross the blood brain barrier to signal via both rapid nongenomic and slower genomic signalling pathways. Estrogen and testosterone signalling has been shown to drive interlinked behaviours such as social behaviours and cognition by binding to their cognate receptors in hypothalamic and forebrain nuclei. So far, acute brain slices have been used to study short-term actions of 17β-estradiol, typically using electrophysiological measures. For example, these techniques have been used to investigate, nongenomic signalling by estrogen such as the estrogen modulation of long-term potentiation (LTP) in the hippocampus. Using a modified method that preserves the slice architecture, we show, for the first time, that acute coronal slices from the prefrontal cortex and from the hypothalamus maintained in aCSF over longer periods i.e. 24 h can be steroidogenic, increasing their secretion of testosterone and estrogen. We also show that the hypothalamic nuclei produce more estrogen and testosterone than the prefrontal cortex. Therefore, this extended acute slice system can be used to study the regulation of steroid production and secretion by discrete nuclei in the brain.
Collapse
Affiliation(s)
- Ruby Vajaria
- School of Biological Sciences, University of Reading, Reading, UK
| | - DeAsia Davis
- School of Biological Sciences, University of Reading, Reading, UK
| | | | - Janine Dovey
- School of Biological Sciences, University of Reading, Reading, UK
| | - Slawomir Nasuto
- School of Biological Sciences, University of Reading, Reading, UK
| | | | | | - Philip Knight
- School of Biological Sciences, University of Reading, Reading, UK
| | | |
Collapse
|
9
|
Andrew PM, Feng W, Calsbeek JJ, Antrobus SP, Cherednychenko GA, MacMahon JA, Bernardino PN, Liu X, Harvey DJ, Lein PJ, Pessah IN. The α4 Nicotinic Acetylcholine Receptor Is Necessary for the Initiation of Organophosphate-Induced Neuronal Hyperexcitability. TOXICS 2024; 12:263. [PMID: 38668486 PMCID: PMC11054284 DOI: 10.3390/toxics12040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024]
Abstract
Acute intoxication with organophosphorus (OP) cholinesterase inhibitors can produce seizures that rapidly progress to life-threatening status epilepticus. Significant research effort has been focused on investigating the involvement of muscarinic acetylcholine receptors (mAChRs) in OP-induced seizure activity. In contrast, there has been far less attention on nicotinic AChRs (nAChRs) in this context. Here, we address this data gap using a combination of in vitro and in vivo models. Pharmacological antagonism and genetic deletion of α4, but not α7, nAChR subunits prevented or significantly attenuated OP-induced electrical spike activity in acute hippocampal slices and seizure activity in mice, indicating that α4 nAChR activation is necessary for neuronal hyperexcitability triggered by acute OP exposures. These findings not only suggest that therapeutic strategies for inhibiting the α4 nAChR subunit warrant further investigation as prophylactic and immediate treatments for acute OP-induced seizures, but also provide mechanistic insight into the role of the nicotinic cholinergic system in seizure generation.
Collapse
Affiliation(s)
- Peter M. Andrew
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Wei Feng
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Jonas J. Calsbeek
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Shane P. Antrobus
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Gennady A. Cherednychenko
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Jeremy A. MacMahon
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Pedro N. Bernardino
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Xiuzhen Liu
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Danielle J. Harvey
- Department of Public Health Sciences, UC Davis School of Medicine, Davis, CA 95616, USA;
| | - Pamela J. Lein
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| | - Isaac N. Pessah
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA; (P.M.A.); (W.F.); (J.J.C.); (S.P.A.); (G.A.C.); (J.A.M.); (P.N.B.); (X.L.)
| |
Collapse
|
10
|
Miao S, Fourgeaud L, Burrola PG, Stern S, Zhang Y, Happonen KE, Novak SW, Gage FH, Lemke G. Tyro3 promotes the maturation of glutamatergic synapses. Front Neurosci 2024; 18:1327423. [PMID: 38410160 PMCID: PMC10894971 DOI: 10.3389/fnins.2024.1327423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
The receptor tyrosine kinase Tyro3 is abundantly expressed in neurons of the neocortex, hippocampus, and striatum, but its role in these cells is unknown. We found that neuronal expression of this receptor was markedly up-regulated in the postnatal mouse neocortex immediately prior to the final development of glutamatergic synapses. In the absence of Tyro3, cortical and hippocampal synapses never completed end-stage differentiation and remained electrophysiologically and ultrastructurally immature. Tyro3-/- cortical neurons also exhibited diminished plasma membrane expression of the GluA2 subunits of AMPA-type glutamate receptors, which are essential to mature synaptic function. Correspondingly, GluA2 membrane insertion in wild-type neurons was stimulated by Gas6, a Tyro3 ligand widely expressed in the postnatal brain. Behaviorally, Tyro3-/- mice displayed learning enhancements in spatial recognition and fear-conditioning assays. Together, these results demonstrate that Tyro3 promotes the functional maturation of glutamatergic synapses by driving plasma membrane translocation of GluA2 AMPA receptor subunits.
Collapse
Affiliation(s)
- Sheng Miao
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Lawrence Fourgeaud
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Patrick G Burrola
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Shani Stern
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Yuhan Zhang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Kaisa E Happonen
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
11
|
Puzio M, Moreton N, Sullivan M, Scaife C, Glennon JC, O'Connor JJ. An Electrophysiological and Proteomic Analysis of the Effects of the Superoxide Dismutase Mimetic, MnTMPyP, on Synaptic Signalling Post-Ischemia in Isolated Rat Hippocampal Slices. Antioxidants (Basel) 2023; 12:antiox12040792. [PMID: 37107167 PMCID: PMC10135248 DOI: 10.3390/antiox12040792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic stress and the increased production of reactive oxygen species (ROS) are two main contributors to neuronal damage and synaptic plasticity in acute ischemic stroke. The superoxide scavenger MnTMPyP has been previously reported to have a neuroprotective effect in organotypic hippocampal slices and to modulate synaptic transmission after in vitro hypoxia and oxygen-glucose deprivation (OGD). However, the mechanisms involved in the effect of this scavenger remain elusive. In this study, two concentrations of MnTMPyP were evaluated on synaptic transmission during ischemia and post-ischemic synaptic potentiation. The complex molecular changes supporting cellular adaptation to metabolic stress, and how these are modulated by MnTMPyP, were also investigated. Electrophysiological data showed that MnTMPyP causes a decrease in baseline synaptic transmission and impairment of synaptic potentiation. Proteomic analysis performed on MnTMPyP and hypoxia-treated tissue indicated an impairment in vesicular trafficking mechanisms, including reduced expression of Hsp90 and actin signalling. Alterations of vesicular trafficking may lead to reduced probability of neurotransmitter release and AMPA receptor activity, resulting in the observed modulatory effect of MnTMPyP. In OGD, protein enrichment analysis highlighted impairments in cell proliferation and differentiation, such as TGFβ1 and CDKN1B signalling, in addition to downregulation of mitochondrial dysfunction and an increased expression of CAMKII. Taken together, our results may indicate modulation of neuronal sensitivity to the ischemic insult, and a complex role for MnTMPyP in synaptic transmission and plasticity, potentially providing molecular insights into the mechanisms mediating the effects of MnTMPyP during ischemia.
Collapse
Affiliation(s)
- Martina Puzio
- UCD School of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Niamh Moreton
- UCD School of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Mairéad Sullivan
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
- UCD School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Caitriona Scaife
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Jeffrey C Glennon
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
- UCD School of Medicine, University College Dublin, Dublin 4, Ireland
| | - John J O'Connor
- UCD School of Biomolecular & Biomedical Science, University College Dublin, Dublin 4, Ireland
- Mass Spectrometry Core Facility, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
12
|
Michaluk P, Rusakov DA. Monitoring cell membrane recycling dynamics of proteins using whole-cell fluorescence recovery after photobleaching of pH-sensitive genetic tags. Nat Protoc 2022; 17:3056-3079. [PMID: 36064755 DOI: 10.1038/s41596-022-00732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/07/2022] [Indexed: 11/08/2022]
Abstract
Population behavior of signaling molecules on the cell surface is key to their adaptive function. Live imaging of proteins tagged with fluorescent molecules has been an essential tool in understanding this behavior. Typically, genetic or chemical tags are used to target molecules present throughout the cell, whereas antibody-based tags label the externally exposed molecular domains only. Both approaches could potentially overlook the intricate process of in-out membrane recycling in which target molecules appear or disappear on the cell surface. This limitation is overcome by using a pH-sensitive fluorescent tag, such as Super-Ecliptic pHluorin (SEP), because its emission depends on whether it resides inside or outside the cell. Here we focus on the main glial glutamate transporter GLT1 and describe a genetic design that equips GLT1 molecules with SEP without interfering with the transporter's main function. Expressing GLT1-SEP in astroglia in cultures or in hippocampal slices enables monitoring of the real-time dynamics of the cell-surface and cytosolic fractions of the transporter in living cells. Whole-cell fluorescence recovery after photobleaching and quantitative image-kinetic analysis of the resulting time-lapse images enables assessment of the rate of GLT1-SEP recycling on the cell surface, a fundamental trafficking parameter unattainable previously. The present protocol takes 15-20 d to set up cell preparations, and 2-3 d to carry out live cell experiments and data analyses. The protocol can be adapted to study different membrane molecules of interest, particularly those proteins whose lifetime on the cell surface is critical to their adaptive function.
Collapse
Affiliation(s)
- Piotr Michaluk
- UCL Queen Square Institute of Neurology, University College London, London, UK.
- BRAINCITY, Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, Warsaw, Poland.
| | - Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
13
|
Dias C, Fernandes E, Barbosa RM, Ledo A. A Platinized Carbon Fiber Microelectrode-Based Oxidase Biosensor for Amperometric Monitoring of Lactate in Brain Slices. SENSORS (BASEL, SWITZERLAND) 2022; 22:7011. [PMID: 36146360 PMCID: PMC9501957 DOI: 10.3390/s22187011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Direct and real-time monitoring of lactate in the extracellular space can help elucidate the metabolic and modulatory role of lactate in the brain. Compared to in vivo studies, brain slices allow the investigation of the neural contribution separately from the effects of cerebrovascular response and permit easy control of recording conditions. METHODS We have used a platinized carbon fiber microelectrode platform to design an oxidase-based microbiosensor for monitoring lactate in brain slices with high spatial and temporal resolution operating at 32 °C. Lactate oxidase (Aerococcus viridans) was immobilized by crosslinking with glutaraldehyde and a layer of polyurethane was added to extend the linear range. Selectivity was improved by electropolymerization of m-phenylenediamine and concurrent use of a null sensor. RESULTS The lactate microbiosensor exhibited high sensitivity, selectivity, and optimal analytical performance at a pH and temperature compatible with recording in hippocampal slices. Evaluation of operational stability under conditions of repeated use supports the suitability of this design for up to three repeated assays. CONCLUSIONS The microbiosensor displayed good analytical performance to monitor rapid changes in lactate concentration in the hippocampal tissue in response to potassium-evoked depolarization.
Collapse
Affiliation(s)
- Cândida Dias
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Eliana Fernandes
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rui M. Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
14
|
Moreton N, Puzio M, O’Connor JJ. The effects of the superoxide dismutase mimetic, MnTMPyP, post hypoxia and oxygen glucose deprivation, in isolated rat hippocampal slices. Brain Res Bull 2022; 190:105-115. [DOI: 10.1016/j.brainresbull.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 09/27/2022] [Indexed: 11/02/2022]
|
15
|
Schumm SN, Gabrieli D, Meaney DF. Plasticity impairment exposes CA3 vulnerability in a hippocampal network model of mild traumatic brain injury. Hippocampus 2022; 32:231-250. [PMID: 34978378 DOI: 10.1002/hipo.23402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022]
Abstract
Proper function of the hippocampus is critical for executing cognitive tasks such as learning and memory. Traumatic brain injury (TBI) and other neurological disorders are commonly associated with cognitive deficits and hippocampal dysfunction. Although there are many existing models of individual subregions of the hippocampus, few models attempt to integrate the primary areas into one system. In this work, we developed a computational model of the hippocampus, including the dentate gyrus, CA3, and CA1. The subregions are represented as an interconnected neuronal network, incorporating well-characterized ex vivo slice electrophysiology into the functional neuron models and well-documented anatomical connections into the network structure. In addition, since plasticity is foundational to the role of the hippocampus in learning and memory as well as necessary for studying adaptation to injury, we implemented spike-timing-dependent plasticity among the synaptic connections. Our model mimics key features of hippocampal activity, including signal frequencies in the theta and gamma bands and phase-amplitude coupling in area CA1. We also studied the effects of spike-timing-dependent plasticity impairment, a potential consequence of TBI, in our model and found that impairment decreases broadband power in CA3 and CA1 and reduces phase coherence between these two subregions, yet phase-amplitude coupling in CA1 remains intact. Altogether, our work demonstrates characteristic hippocampal activity with a scaled network model of spiking neurons and reveals the sensitive balance of plasticity mechanisms in the circuit through one manifestation of mild traumatic injury.
Collapse
Affiliation(s)
- Samantha N Schumm
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Gabrieli
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David F Meaney
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Mai-Morente SP, Irigoyen JP, Carriquiry VM, Marset VM, Di Doménico M, Isasi E, Abudara V. Pericyte Mapping in Cerebral Slices with the Far-red Fluorophore TO-PRO-3. Bio Protoc 2021; 11:e4222. [PMID: 34909443 DOI: 10.21769/bioprotoc.4222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/02/2022] Open
Abstract
This protocol describes a method for high-resolution confocal imaging of pericytes with the far-red fluorophore TO-PROTM-3 Iodide 642/661 in cerebral slices of murine. Identification of pericytes with TO-PRO-3 is a short time-consuming, high cost-effective and robust technique to label pericytes with no need for immunostaining or generation of reporter mice. Since the TO-PRO-3 stain resists immunofluorescence, and lacks spectral overlap, the probe is well suited for multiple labelling. Our procedures also combine TO-PRO-3-staining of pericytes with fluorescent markers for astrocytes and vessels in brain slices. These approaches should enable the assessment of pericyte biology in gliovascular unit.
Collapse
Affiliation(s)
- Sandra P Mai-Morente
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, CP 11 800, Uruguay
| | - Juan P Irigoyen
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, CP 11 800, Uruguay
| | - Victoria M Carriquiry
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, CP 11 800, Uruguay
| | - Virginia M Marset
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, CP 11 800, Uruguay
| | - Mariana Di Doménico
- Departamento de Biofísica, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, CP 11 800, Uruguay
| | - Eugenia Isasi
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, CP 11 800, Uruguay
| | - Verónica Abudara
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, CP 11 800, Uruguay
| |
Collapse
|
17
|
Tukker AM, Westerink RHS. Novel test strategies for in vitro seizure liability assessment. Expert Opin Drug Metab Toxicol 2021; 17:923-936. [PMID: 33595380 PMCID: PMC8367052 DOI: 10.1080/17425255.2021.1876026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The increasing incidence of mental illnesses and neurodegenerative diseases results in a high demand for drugs targeting the central nervous system (CNS). These drugs easily reach the CNS, have a high affinity for CNS targets, and are prone to cause seizures as an adverse drug reaction. Current seizure liability assessment heavily depends on in vivo or ex vivo animal models and is therefore ethically debated, labor intensive, expensive, and not always predictive for human risk. AREAS COVERED The demand for CNS drugs urges the development of alternative safety assessment strategies. Yet, the complexity of the CNS hampers reliable detection of compound-induced seizures. This review provides an overview of the requirements of in vitro seizure liability assays and highlights recent advances, including micro-electrode array (MEA) recordings using rodent and human cell models. EXPERT OPINION Successful and cost-effective replacement of in vivo and ex vivo models for seizure liability screening can reduce animal use for drug development, while increasing the predictive value of the assays, particularly if human cell models are used. However, these novel test strategies require further validation and standardization as well as additional refinements to better mimic the human in vivo situation and increase their predictive value.
Collapse
Affiliation(s)
- Anke M. Tukker
- School of Health Sciences, Purdue University, Hall for Discovery and Learning Research (DLR 339), INUSA
| | - Remco H. S. Westerink
- Neurotoxicology Research Group, Toxicology Division, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, TD Utrecht, The Netherlands
| |
Collapse
|
18
|
Preparation of Rat Organotypic Hippocampal Slice Cultures Using the Membrane-Interface Method. Methods Mol Biol 2021; 2188:243-257. [PMID: 33119855 DOI: 10.1007/978-1-0716-0818-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cultured hippocampal slices from rodents, in which the architecture and functional properties of the hippocampal network are largely preserved, have proved to be a powerful substrate for studying healthy and pathological neuronal mechanisms. Here, we delineate the membrane-interface method for maintaining organotypic slices in culture for several weeks. The protocol includes procedures for dissecting hippocampus from rat brain, and collecting slices using a vibratome. This method provides the experimenter with easy access to both the brain tissue and culture medium, which facilitates genetic and pharmacological manipulations and enables experiments that incorporate imaging and electrophysiology. The method is generally applicable to rats of different ages, and to different brain regions, and can be modified for culture of slices from other species including mice.
Collapse
|
19
|
Gul Z, Demircan C, Bagdas D, Buyukuysal RL. Aging protects rat cortical slices against to oxygen-glucose deprivation induced damage. Int J Neurosci 2020; 130:1183-1191. [PMID: 32064981 DOI: 10.1080/00207454.2020.1730830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Objective: In present study, we aimed to clarify effect of aging on the susceptibility of brain tissue to neurodegeneration induced by ischemia.Methods: Damage induced by oxygen-glucose deprivation (OGD) followed by reoxygenation (REO) were compared in cortical slices prepared from young (3 months of age) and aged (22-24 months of age) male Sprague Dawley rats.Results: After incubation of the slices in an oxygen and glucose containing control condition, 2,3,5-triphenyl tetrazolium chloride (TTC) staining intensity was found significantly high in aged cortical slices. Although thirty minutes incubation of the slices in OGD medium followed by REO (OGD-REO) caused similar decline in TTC staining in young and aged cortical slices, staining intensity was still significantly higher in the slices prepared from aged animals. Thirty minutes of OGD-REO, on the other hand, also caused more increase in lactate dehydrogenase (LDH) leakage from young slices. While water contents of the slices were almost equal under control condition, it was significantly high in young cortical slices after OGD-REO incubations. In contrary to these findings, OGD and REO caused more increases in S100B output from aged rat cortical slices. S100B levels in brain regions including the cerebral cortex were also found higher in aged rats.Conclusion: All these results indicate that, cortical slices prepared from aged male rats are significantly less responsive to in vitro OGD-REO induced alterations. Since protein S100B outputs were almost doubled from aged cortical slices, a possible involvement of this enhanced S100B output seems to be likely.
Collapse
Affiliation(s)
- Zulfiye Gul
- Faculty of Medicine, Department of Medical Pharmacology, Bahcesehir University, Istanbul, Turkey
| | - Celaleddin Demircan
- Faculty of Medicine, Department of Internal Medicine, Uludag University, Bursa, Turkey
| | - Deniz Bagdas
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
| | | |
Collapse
|
20
|
Lourenço CF, Caetano M, Ledo A, Barbosa RM. Platinized carbon fiber-based glucose microbiosensor designed for metabolic studies in brain slices. Bioelectrochemistry 2019; 130:107325. [DOI: 10.1016/j.bioelechem.2019.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022]
|
21
|
Hoshi T, Toyama T, Shinozaki Y, Koizumi S, Lee JY, Naganuma A, Hwang GW. Evaluation of M1-microglial activation by neurotoxic metals using optimized organotypic cerebral slice cultures. J Toxicol Sci 2019; 44:471-479. [PMID: 31270303 DOI: 10.2131/jts.44.471] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
M1-microglia (neurotoxic microglia) regulate neuronal development and cell death and are involved in many pathologies in the brain. Although organotypic brain slice cultures are widely used to study the crosstalk between neurons and microglia, little is known about the properties of microglia in the mouse cerebral cortex slices. Here, we aimed to optimize the mouse cerebral slice cultures that reflect microglial functions and evaluate the effects of neurotoxic metals on M1-microglial activation. Most microglia in the cerebral slices prepared from postnatal day (P) 7 mice were similar to mature microglia in adult mice brains, but those in the slices prepared from P2 mice were immature, which is a conventional preparation condition. The degree of expression of M1-microglial markers (CD16 and CD32) and inflammatory cytokines (tumor necrosis factor-α and interleukin-1β) by lipopolysaccharide, a representative microglia activator, in the cerebral slices of P7 mice were higher than that in the slices of P2 mice. These results indicate that M1-microglial activation can be evaluated more accurately in the cerebral slices of P7 mice than in those of P2 mice. Therefore, we next examined the effects of various neurotoxic metals on M1-microglial activation using the cerebral slices of P7 mice and found that methylmercury stimulated the activation to M1-microglia, but arsenite, lead, and tributyltin did not induce such activation. Altogether, the optimized mouse cerebral slice cultures used in this study can be a helpful tool to study the influence of various chemicals on the central nervous system in the presence of functionally mature microglia.
Collapse
Affiliation(s)
- Takayuki Hoshi
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Takashi Toyama
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi
| | - Jin-Yong Lee
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University
| | - Akira Naganuma
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Gi-Wook Hwang
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
22
|
Tang X, Drotar J, Li K, Clairmont CD, Brumm AS, Sullins AJ, Wu H, Liu XS, Wang J, Gray NS, Sur M, Jaenisch R. Pharmacological enhancement of KCC2 gene expression exerts therapeutic effects on human Rett syndrome neurons and Mecp2 mutant mice. Sci Transl Med 2019; 11:eaau0164. [PMID: 31366578 PMCID: PMC8140401 DOI: 10.1126/scitranslmed.aau0164] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 04/14/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the methyl CpG binding protein 2 (MECP2) gene. There are currently no approved treatments for RTT. The expression of K+/Cl- cotransporter 2 (KCC2), a neuron-specific protein, has been found to be reduced in human RTT neurons and in RTT mouse models, suggesting that KCC2 might play a role in the pathophysiology of RTT. To develop neuron-based high-throughput screening (HTS) assays to identify chemical compounds that enhance the expression of the KCC2 gene, we report the generation of a robust high-throughput drug screening platform that allows for the rapid assessment of KCC2 gene expression in genome-edited human reporter neurons. From an unbiased screen of more than 900 small-molecule chemicals, we have identified a group of compounds that enhance KCC2 expression termed KCC2 expression-enhancing compounds (KEECs). The identified KEECs include U.S. Food and Drug Administration-approved drugs that are inhibitors of the fms-like tyrosine kinase 3 (FLT3) or glycogen synthase kinase 3β (GSK3β) pathways and activators of the sirtuin 1 (SIRT1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) pathways. Treatment with hit compounds increased KCC2 expression in human wild-type (WT) and isogenic MECP2 mutant RTT neurons, and rescued electrophysiological and morphological abnormalities of RTT neurons. Injection of KEEC KW-2449 or piperine in Mecp2 mutant mice ameliorated disease-associated respiratory and locomotion phenotypes. The small-molecule compounds described in our study may have therapeutic effects not only in RTT but also in other neurological disorders involving dysregulation of KCC2.
Collapse
Affiliation(s)
- Xin Tang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jesse Drotar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Keji Li
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Austin J Sullins
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hao Wu
- Fulcrum Therapeutics, Cambridge, MA 02139, USA
| | | | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
23
|
Cayla NS, Dagne BA, Wu Y, Lu Y, Rodriguez L, Davies DL, Gross ER, Heifets BD, Davies MF, MacIver MB, Bertaccini EJ. A newly developed anesthetic based on a unique chemical core. Proc Natl Acad Sci U S A 2019; 116:15706-15715. [PMID: 31308218 PMCID: PMC6681746 DOI: 10.1073/pnas.1822076116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Intravenous anesthetic agents are associated with cardiovascular instability and poorly tolerated in patients with cardiovascular disease, trauma, or acute systemic illness. We hypothesized that a new class of intravenous (IV) anesthetic molecules that is highly selective for the slow type of γ-aminobutyric acid type A receptor (GABAAR) could have potent anesthetic efficacy with limited cardiovascular effects. Through in silico screening using our GABAAR model, we identified a class of lead compounds that are N-arylpyrrole derivatives. Electrophysiological analyses using both an in vitro expression system and intact rodent hippocampal brain slice recordings demonstrate a GABAAR-mediated mechanism. In vivo experiments also demonstrate overt anesthetic activity in both tadpoles and rats with a potency slightly greater than that of propofol. Unlike the clinically approved GABAergic anesthetic etomidate, the chemical structure of our N-arylpyrrole derivative is devoid of the chemical moieties producing adrenal suppression. Our class of compounds also shows minimal to no suppression of blood pressure, in marked contrast to the hemodynamic effects of propofol. These compounds are derived from chemical structures not previously associated with anesthesia and demonstrate that selective targeting of GABAAR-slow subtypes may eliminate the hemodynamic side effects associated with conventional IV anesthetics.
Collapse
Affiliation(s)
- Noëlie S Cayla
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Beza A Dagne
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Yun Wu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Yao Lu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Larry Rodriguez
- Department of Molecular Pharmacology and Toxicology, University of Southern California School of Pharmacy, Los Angeles, CA 90089
| | - Daryl L Davies
- Department of Molecular Pharmacology and Toxicology, University of Southern California School of Pharmacy, Los Angeles, CA 90089
| | - Eric R Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Boris D Heifets
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - M Frances Davies
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Anesthesia, Palo Alto VA Health Care System, Palo Alto, CA 94304
| | - M Bruce MacIver
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Edward J Bertaccini
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Anesthesia, Palo Alto VA Health Care System, Palo Alto, CA 94304
| |
Collapse
|
24
|
Trivino-Paredes JS, Nahirney PC, Pinar C, Grandes P, Christie BR. Acute slice preparation for electrophysiology increases spine numbers equivalently in the male and female juvenile hippocampus: a DiI labeling study. J Neurophysiol 2019; 122:958-969. [PMID: 31268808 DOI: 10.1152/jn.00332.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hippocampal slices are widely used for in vitro electrophysiological experiments to study underlying mechanisms for synaptic transmission and plasticity, and there is a growing appreciation for sex differences in synaptic plasticity. To date, several studies have shown that the process of making slices from male animals can induce synaptogenesis in cornu ammonis area 1 (CA1) pyramidal cells, but there is a paucity of data for females and other brain regions. In the current study we use microcrystals of the lipophilic carbocyanine dye DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) to stain individual neurons in the CA1 and dentate gyrus (DG) hippocampal subfields of postnatal day 21 male and female rats. We show that the preparation of sections for electrophysiology produces significant increases in spines in sections obtained from females, similar to that observed in males. We also show that the procedures used for in vitro electrophysiology also result in significant spine increases in the DG and CA1 subfields. These results demonstrate the utility of this refined DiI procedure for staining neuronal dendrites and spines. They also show, for the first time, that in vitro electrophysiology slice preparations enhance spine numbers on hippocampal cells equivalently in both juvenile females and males.NEW & NOTEWORTHY This study introduces a new DiI technique that elucidates differences in spine numbers in juvenile female and male hippocampus, and shows that slice preparations for hippocampal electrophysiology in vitro may mask these differences.
Collapse
Affiliation(s)
- J S Trivino-Paredes
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - P C Nahirney
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - C Pinar
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - P Grandes
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Vizcaya, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Vizcaya, Spain
| | - B R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada.,Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Investigating KYNA production and kynurenergic manipulation on acute mouse brain slice preparations. Brain Res Bull 2019; 146:185-191. [DOI: 10.1016/j.brainresbull.2018.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/19/2018] [Accepted: 12/26/2018] [Indexed: 01/09/2023]
|
26
|
Grainger AI, King MC, Nagel DA, Parri HR, Coleman MD, Hill EJ. In vitro Models for Seizure-Liability Testing Using Induced Pluripotent Stem Cells. Front Neurosci 2018; 12:590. [PMID: 30233290 PMCID: PMC6127295 DOI: 10.3389/fnins.2018.00590] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
The brain is the most complex organ in the body, controlling our highest functions, as well as regulating myriad processes which incorporate the entire physiological system. The effects of prospective therapeutic entities on the brain and central nervous system (CNS) may potentially cause significant injury, hence, CNS toxicity testing forms part of the “core battery” of safety pharmacology studies. Drug-induced seizure is a major reason for compound attrition during drug development. Currently, the rat ex vivo hippocampal slice assay is the standard option for seizure-liability studies, followed by primary rodent cultures. These models can respond to diverse agents and predict seizure outcome, yet controversy over the relevance, efficacy, and cost of these animal-based methods has led to interest in the development of human-derived models. Existing platforms often utilize rodents, and so lack human receptors and other drug targets, which may produce misleading data, with difficulties in inter-species extrapolation. Current electrophysiological approaches are typically used in a low-throughput capacity and network function may be overlooked. Human-derived induced pluripotent stem cells (iPSCs) are a promising avenue for neurotoxicity testing, increasingly utilized in drug screening and disease modeling. Furthermore, the combination of iPSC-derived models with functional techniques such as multi-electrode array (MEA) analysis can provide information on neuronal network function, with increased sensitivity to neurotoxic effects which disrupt different pathways. The use of an in vitro human iPSC-derived neural model for neurotoxicity studies, combined with high-throughput techniques such as MEA recordings, could be a suitable addition to existing pre-clinical seizure-liability testing strategies.
Collapse
Affiliation(s)
| | - Marianne C King
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - David A Nagel
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - H Rheinallt Parri
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Michael D Coleman
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Eric J Hill
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
27
|
Corradini I, Focchi E, Rasile M, Morini R, Desiato G, Tomasoni R, Lizier M, Ghirardini E, Fesce R, Morone D, Barajon I, Antonucci F, Pozzi D, Matteoli M. Maternal Immune Activation Delays Excitatory-to-Inhibitory Gamma-Aminobutyric Acid Switch in Offspring. Biol Psychiatry 2018; 83:680-691. [PMID: 29146047 DOI: 10.1016/j.biopsych.2017.09.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/03/2017] [Accepted: 09/11/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND The association between maternal infection and neurodevelopmental defects in progeny is well established, although the biological mechanisms and the pathogenic trajectories involved have not been defined. METHODS Pregnant dams were injected intraperitoneally at gestational day 9 with polyinosinic:polycytidylic acid. Neuronal development was assessed by means of electrophysiological, optical, and biochemical analyses. RESULTS Prenatal exposure to polyinosinic:polycytidylic acid causes an imbalanced expression of the Na+-K+-2Cl- cotransporter 1 and the K+-Cl- cotransporter 2 (KCC2). This results in delayed gamma-aminobutyric acid switch and higher susceptibility to seizures, which endures up to adulthood. Chromatin immunoprecipitation experiments reveal increased binding of the repressor factor RE1-silencing transcription (also known as neuron-restrictive silencer factor) to position 509 of the KCC2 promoter that leads to downregulation of KCC2 transcription in prenatally exposed offspring. Interleukin-1 receptor type I knockout mice, which display braked immune response and no brain cytokine elevation upon maternal immune activation, do not display KCC2/Na+-K+-2Cl- cotransporter 1 imbalance when implanted in a wild-type dam and prenatally exposed. Notably, pretreatment of pregnant dams with magnesium sulfate is sufficient to prevent the early inflammatory state and the delay in excitatory-to-inhibitory switch associated to maternal immune activation. CONCLUSIONS We provide evidence that maternal immune activation hits a key neurodevelopmental process, the excitatory-to-inhibitory gamma-aminobutyric acid switch; defects in this switch have been unequivocally linked to diseases such as autism spectrum disorder or epilepsy. These data open the avenue for a safe pharmacological treatment that may prevent the neurodevelopmental defects caused by prenatal immune activation in a specific pregnancy time window.
Collapse
Affiliation(s)
- Irene Corradini
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Institute of Neuroscience - National Research Council, Milan, Italy
| | - Elisa Focchi
- Institute of Neuroscience - National Research Council, Milan, Italy; Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Marco Rasile
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Hunimed University, Rozzano, Italy
| | - Raffaella Morini
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy
| | - Genni Desiato
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; University of Milano-Bicocca, Milan, Italy
| | - Romana Tomasoni
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy
| | - Michela Lizier
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Institute for Genetic and Biomedical Research - National Research Council, Milan, Italy
| | - Elsa Ghirardini
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Riccardo Fesce
- Hunimed University, Rozzano, Italy; Neuroscience Center, Dipartimento di Scienze Teoriche e Applicate, Insubria University, Busto Arsizio, Italy
| | - Diego Morone
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy
| | | | - Flavia Antonucci
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Davide Pozzi
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Hunimed University, Rozzano, Italy
| | - Michela Matteoli
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas, Rozzano, Italy; Institute of Neuroscience - National Research Council, Milan, Italy.
| |
Collapse
|
28
|
Medelin M, Giacco V, Aldinucci A, Castronovo G, Bonechi E, Sibilla A, Tanturli M, Torcia M, Ballerini L, Cozzolino F, Ballerini C. Bridging pro-inflammatory signals, synaptic transmission and protection in spinal explants in vitro. Mol Brain 2018; 11:3. [PMID: 29334986 PMCID: PMC5769440 DOI: 10.1186/s13041-018-0347-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/04/2018] [Indexed: 01/30/2023] Open
Abstract
Multiple sclerosis is characterized by tissue atrophy involving the brain and the spinal cord, where reactive inflammation contributes to the neurodegenerative processes. Recently, the presence of synapse alterations induced by the inflammatory responses was suggested by experimental and clinical observations, in experimental autoimmune encephalomyelitis mouse model and in patients, respectively. Further knowledge on the interplay between pro-inflammatory agents, neuroglia and synaptic dysfunction is crucial to the design of unconventional protective molecules. Here we report the effects, on spinal cord circuits, of a cytokine cocktail that partly mimics the signature of T lymphocytes sub population Th1. In embryonic mouse spinal organ-cultures, containing neuronal cells and neuroglia, cytokines induced inflammatory responses accompanied by a significant increase in spontaneous synaptic activity. We suggest that cytokines specifically altered signal integration in spinal networks by speeding the decay of GABAA responses. This hypothesis is supported by the finding that synapse protection by a non-peptidic NGF mimetic molecule prevented both the changes in the time course of GABA events and in network activity that were left unchanged by the cytokine production from astrocytes and microglia present in the cultured tissue. In conclusion, we developed an important tool for the study of synaptic alterations induced by inflammation, that takes into account the role of neuronal and not neuronal resident cells.
Collapse
Affiliation(s)
- M Medelin
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy.,International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy
| | - V Giacco
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy
| | - A Aldinucci
- Department NEUROFARBA, University of Florence, 50139, Florence, Italy
| | - G Castronovo
- Department of DSBSC, University of Florence, 50134, Florence, Italy
| | - E Bonechi
- Department NEUROFARBA, University of Florence, 50139, Florence, Italy
| | - A Sibilla
- Department NEUROFARBA, University of Florence, 50139, Florence, Italy
| | - M Tanturli
- Department of DSBSC, University of Florence, 50134, Florence, Italy
| | - M Torcia
- Department of DMSC, University of Florence, 50134, Florence, Italy
| | - L Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
| | - F Cozzolino
- Department of DSBSC, University of Florence, 50134, Florence, Italy
| | - C Ballerini
- Department NEUROFARBA, University of Florence, 50139, Florence, Italy.
| |
Collapse
|
29
|
Kim JY, Seo ES, Kim H, Park JW, Lim DK, Moon DW. Atmospheric pressure mass spectrometric imaging of live hippocampal tissue slices with subcellular spatial resolution. Nat Commun 2017; 8:2113. [PMID: 29235455 PMCID: PMC5727394 DOI: 10.1038/s41467-017-02216-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 11/14/2017] [Indexed: 12/03/2022] Open
Abstract
We report a high spatial resolution mass spectrometry (MS) system that allows us to image live hippocampal tissue slices under open-air atmospheric pressure (AP) and ambient temperature conditions at the subcellular level. The method is based on an efficient desorption process by femtosecond (fs) laser assisted with nanoparticles and a subsequent ionization step by applying nonthermal plasma, termed AP nanoparticle and plasma assisted laser desorption ionization (AP-nanoPALDI) MS method. Combining the AP-nanoPALDI with microscopic sample scanning, MS imaging with spatial resolution of 2.9 µm was obtained. The observed AP-nanoPALDI MS imaging clearly revealed the differences of molecular composition between the apical and basal dendrite regions of a hippocampal tissue. In addition, the AP-nanoPALDI MS imaging showed the decrease of cholesterol in hippocampus by treating with methyl β-cyclodextrin, which exemplifies the potential of AP-nanoPALDI for live tissue imaging for various biomedical applications without any chemical pretreatment and/or labeling process. Ambient mass spectrometry-based approaches have found application in biology and medicine. Here the authors report a mass spectrometric imaging method (ambient nanoPALDI) for live hippocampal tissues, based on gold nanorodassisted femtosecond laser desorption and subsequent non-thermal plasma induced ionization.
Collapse
Affiliation(s)
- Jae Young Kim
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Eun Seok Seo
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Hyunmin Kim
- Companion Diagnostics and Medical Technology Research Group, DGIST, Daegu, 42988, Republic of Korea
| | - Ji-Won Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dae Won Moon
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
30
|
Stein LR, Zorumski CF, Izumi Y. Dissection method affects electrophysiological properties of hippocampal slices. ORUEN : THE CNS JOURNAL 2017; 3:94-101. [PMID: 30556063 PMCID: PMC6292686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The rodent hippocampal slice preparation has long been a critical tool for studying the electrophysiological effects of pharmacological and genetic manipulations. Slices can be prepared with several different slicing methods including the tissue chopper, vibratome, and rotary slicer. To examine how slicing methods affect slice integrity, we generated hippocampal slices by these three methods and compared their histology and electrophysiological responses. Although all three methods generate histological alterations, the time course is slowest in slices generated with a rotary slicer. Furthermore, although paired-pulse facilitation in dendritic field EPSPs was observed in slices generated by all three methods, paired-pulse potentiation in population spikes, which is common in chopper- and vibratome-generated slices was seldom observed in rotary-generated slices, suggesting less disinhibiton. For preservation of hippocampal slice integrity, the rotary slicer may offer advantages over the other two devices.
Collapse
Affiliation(s)
- Liana Roberts Stein
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Charles F. Zorumski
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, Campus Box 8134, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
31
|
Effects of Gualou Guizhi Decoction Aqueous Extract on Axonal Regeneration in Organotypic Cortical Slice Culture after Oxygen-Glucose Deprivation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5170538. [PMID: 29075304 PMCID: PMC5624132 DOI: 10.1155/2017/5170538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/28/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022]
Abstract
Gualou Guizhi decoction (GLGZD) is effective for the clinical treatment of limb spasms caused by ischemic stroke, but its underlying mechanism is unclear. Propidium iodide (PI) fluorescence staining, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), immunohistochemistry, western blot, and real-time qPCR were used to observe the axonal regeneration and neuroprotective effects of GLGZD aqueous extract on organotypic cortical slices exposed to oxygen-glucose deprivation (OGD) and further elucidate the potential mechanisms. Compared with the OGD group, the GLGZD aqueous extract decreased the red PI fluorescence intensity; inhibited neuronal apoptosis; improved the growth of slice axons; upregulated the protein expression of tau and growth-associated protein-43; and decreased protein and mRNA expression of neurite outgrowth inhibitor protein-A (Nogo-A), Nogo receptor 1 (NgR1), ras homolog gene family A (RhoA), rho-associated coiled-coil-containing protein kinase (ROCK), and phosphorylation of collapsin response mediator protein 2 (CRMP2). Our study found that GLGZD had a strong neuroprotective effect on brain slices after OGD injury. GLGZD plays a vital role in promoting axonal remodeling and functional remodeling, which may be related to regulation of the expression of Nogo-A and its receptor NgR1, near the injured axons, inhibition of the Rho-ROCK pathway, and reduction of CRMP2 phosphorylation.
Collapse
|
32
|
Khakipoor S, Ophoven C, Schrödl‐Häußel M, Feuerstein M, Heimrich B, Deitmer JW, Roussa E. TGF-β signaling directly regulates transcription and functional expression of the electrogenic sodium bicarbonate cotransporter 1, NBCe1 (SLC4A4), via Smad4 in mouse astrocytes. Glia 2017; 65:1361-1375. [PMID: 28568893 PMCID: PMC5518200 DOI: 10.1002/glia.23168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/27/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023]
Abstract
The electrogenic sodium bicarbonate cotransporter NBCe1 (SLC4A4) expressed in astrocytes regulates intracellular and extracellular pH. Here, we introduce transforming growth factor beta (TGF-β) as a novel regulator of NBCe1 transcription and functional expression. Using hippocampal slices and primary hippocampal and cortical astrocyte cultures, we investigated regulation of NBCe1 and elucidated the underlying signaling pathways by RT-PCR, immunoblotting, immunofluorescence, intracellular H(+ ) recording using the H(+ ) -sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein, mink lung epithelial cell (MLEC) assay, and chromatin immunoprecipitation. Activation of TGF-β signaling significantly upregulated transcript, protein, and surface expression of NBCe1. These effects were TGF-β receptor-mediated and suppressed following inhibition of JNK and Smad signaling. Moreover, 4-aminopyridine (4AP)-dependent NBCe1 regulation requires TGF-β. TGF-β increased the rate and amplitude of intracellular H+ changes upon challenging NBCe1 in wild-type astrocytes but not in cortical astrocytes from Slc4a4-deficient mice. A Smad4 binding sequence was identified in the NBCe1 promoter and Smad4 binding increased after activation of TGF-β signaling. The data show for the first time that NBCe1 is a direct target of TGF-β/Smad4 signaling. Through activation of the canonical pathway TGF-β acts directly on NBCe1 by binding of Smad4 to the NBCe1 promoter and regulating its transcription, followed by increased protein expression and transport activity.
Collapse
Affiliation(s)
- Shokoufeh Khakipoor
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Christian Ophoven
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Magdalena Schrödl‐Häußel
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Melanie Feuerstein
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Bernd Heimrich
- Department of NeuroanatomyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Joachim W. Deitmer
- Department of General ZoologyFB Biology, University of KaiserslauternP.B. 3049D‐67653KaiserslauternGermany
| | - Eleni Roussa
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
- Department of NeuroanatomyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| |
Collapse
|
33
|
Stein LR, Zorumski CF, Izumi Y. Hippocampal slice preparation in rats acutely suppresses immunoreactivity of microtubule-associated protein (Map2) and glycogen levels without affecting numbers of glia or levels of the glutamate transporter VGlut1. Brain Behav 2017; 7:e00736. [PMID: 28729941 PMCID: PMC5516609 DOI: 10.1002/brb3.736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION With its preservation of cytoarchitecture and synaptic circuitry, the hippocampal slice preparation has been a critical tool for studying the electrophysiological effects of pharmacological and genetic manipulations. To analyze the maximum number of slices or readouts per dissection, long incubation times postslice preparation are commonly used. We were interested in how slice integrity is affected by incubation postslice preparation. METHODS Hippocampal slices were prepared by three different methods: a chopper, a vibratome, and a rotary slicer. To test slice integrity, we compared glycogen levels and immunohistochemistry of selected proteins in rat hippocampal slices immediately after dissection and following 2 and 4 hr of incubation. RESULTS We found that immunoreactivity of the dendritic marker microtubule-associated protein 2 (Map2) drastically decreased during this incubation period, whereas immunoreactivity of the glutamate transporter VGlut1 did not significantly change with incubation time. Astrocytic and microglial cell numbers also did not significantly change with incubation time whereas glycogen levels markedly increased during incubation. CONCLUSION Immunoreactivity of the dendritic marker Map2 quickly decreased after dissection with all the slicing methods. This work highlights a need for caution when using long incubation periods following slice preparation.
Collapse
Affiliation(s)
- Liana R Stein
- Department of Psychiatry Washington University School of Medicine St. Louis MO USA
| | - Charles F Zorumski
- Department of Psychiatry Washington University School of Medicine St. Louis MO USA.,The Taylor Family Institute for Innovative Psychiatric Research Washington University School of Medicine St. Louis MO USA.,Center for Brain Research in Mood Disorders Washington University School of Medicine St. Louis MO USA
| | - Yukitoshi Izumi
- Department of Psychiatry Washington University School of Medicine St. Louis MO USA.,The Taylor Family Institute for Innovative Psychiatric Research Washington University School of Medicine St. Louis MO USA.,Center for Brain Research in Mood Disorders Washington University School of Medicine St. Louis MO USA
| |
Collapse
|
34
|
Bhowmick S, Moore JT, Kirschner DL, Curry MC, Westbrook EG, Rasley BT, Drew KL. Acidotoxicity via ASIC1a Mediates Cell Death during Oxygen Glucose Deprivation and Abolishes Excitotoxicity. ACS Chem Neurosci 2017; 8:1204-1212. [PMID: 28117962 DOI: 10.1021/acschemneuro.6b00355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ischemic reperfusion (I/R) injury is associated with a complex and multifactorial cascade of events involving excitotoxicity, acidotoxicity, and ionic imbalance. While it is known that acidosis occurs concomitantly with glutamate-mediated excitotoxicity during brain ischemia, it remains elusive how acidosis-mediated acidotoxicity interacts with glutamate-mediated excitotoxicity. Here, we investigated the effect of acidosis on glutamate-mediated excitotoxicity in acute hippocampal slices. We tested the hypothesis that mild acidosis protects against I/R injury via modulation of NMDAR, but produces injury via activation of acid sensing ion channels (ASIC1a). Using a novel microperfusion approach, we monitored time course of injury in acutely prepared, adult hippocampal slices. We varied the duration of insult to delay the return to preinsult conditions to determine if injury was caused by the primary insult or by the modeled reperfusion phase. We also manipulated pH in presence and absence of oxygen glucose deprivation (OGD). The role of ASIC1a and NMDAR was deciphered by treating the slices with and without an ASIC or NMDAR antagonist. Our results show that injury due to OGD or low pH occurs during the insult rather than the modeled reperfusion phase. Injury mediated by low pH or low pH OGD requires ASIC1a and is independent of NMDAR activation. These findings point to ASIC1a as a mediator of ischemic cell death caused by stroke and cardiac arrest.
Collapse
Affiliation(s)
- Saurav Bhowmick
- Department of Chemistry and Biochemistry and ‡Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Jeanette T. Moore
- Department of Chemistry and Biochemistry and ‡Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Daniel L. Kirschner
- Department of Chemistry and Biochemistry and ‡Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Mary C. Curry
- Department of Chemistry and Biochemistry and ‡Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Emily G. Westbrook
- Department of Chemistry and Biochemistry and ‡Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Brian T. Rasley
- Department of Chemistry and Biochemistry and ‡Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Kelly L. Drew
- Department of Chemistry and Biochemistry and ‡Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| |
Collapse
|
35
|
Syrian hamster neuroplasticity mechanisms fail as temperature declines to 15 °C, but histaminergic neuromodulation persists. J Comp Physiol B 2017; 187:779-791. [PMID: 28391591 DOI: 10.1007/s00360-017-1078-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 12/27/2016] [Accepted: 02/26/2017] [Indexed: 10/19/2022]
Abstract
Previous research suggests that hippocampal neurons in mammalian hibernators shift their major function from memory formation at euthermic brain temperatures (T b = ~37 °C) to modulation of hibernation bout duration as T b decreases. This role of hippocampal neurons during torpor is based in part on in vivo studies showing that histamine (HA) infused into ground squirrel hippocampi lengthened torpor bouts by ~50%. However, it was unclear if HA acted directly on hippocampal neurons or on downstream brain regions via HA spillover into lateral ventricles. To clarify this, we used hippocampal slices to determine if HA would modulate pyramidal neurons at low levels of synaptic activity (as occurs in torpor). We tested the hypotheses that although LTP (a neuroplasticity mechanism) could not be generated at low temperatures, HA (via H2 receptors) would increase population spike amplitudes (PSAs) of Syrian hamster CA1 pyramidal neurons at low stimulation voltages and low temperatures. PSAs were recorded following Schaffer collateral stimulation from subthreshold levels to a maximum response plateau. We found that tetanus evoked LTP at 35 °C but not 15 °C; and at temperatures from 30 to 15 °C, HA significantly enhanced PSA at near threshold levels in slices from non-hibernating hamsters housed in "summer-like" or "winter-like" conditions and from hibernating hamsters. Cimetidine (H2 antagonist) blocked HA-mediated PSA increases in 8 of 8 slices; pyrilamine (H1 antagonist) had no effect in 7 of 8 slices. These results support our hypotheses and show that HA can directly enhance pyramidal neuron excitability via H2 receptors and thus may prolong torpor bouts.
Collapse
|
36
|
Aberrant neuronal activity-induced signaling and gene expression in a mouse model of RASopathy. PLoS Genet 2017; 13:e1006684. [PMID: 28346493 PMCID: PMC5386306 DOI: 10.1371/journal.pgen.1006684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 04/10/2017] [Accepted: 03/13/2017] [Indexed: 12/16/2022] Open
Abstract
Noonan syndrome (NS) is characterized by reduced growth, craniofacial abnormalities, congenital heart defects, and variable cognitive deficits. NS belongs to the RASopathies, genetic conditions linked to mutations in components and regulators of the Ras signaling pathway. Approximately 50% of NS cases are caused by mutations in PTPN11. However, the molecular mechanisms underlying cognitive impairments in NS patients are still poorly understood. Here, we report the generation and characterization of a new conditional mouse strain that expresses the overactive Ptpn11D61Y allele only in the forebrain. Unlike mice with a global expression of this mutation, this strain is viable and without severe systemic phenotype, but shows lower exploratory activity and reduced memory specificity, which is in line with a causal role of disturbed neuronal Ptpn11 signaling in the development of NS-linked cognitive deficits. To explore the underlying mechanisms we investigated the neuronal activity-regulated Ras signaling in brains and neuronal cultures derived from this model. We observed an altered surface expression and trafficking of synaptic glutamate receptors, which are crucial for hippocampal neuronal plasticity. Furthermore, we show that the neuronal activity-induced ERK signaling, as well as the consecutive regulation of gene expression are strongly perturbed. Microarray-based hippocampal gene expression profiling revealed profound differences in the basal state and upon stimulation of neuronal activity. The neuronal activity-dependent gene regulation was strongly attenuated in Ptpn11D61Y neurons. In silico analysis of functional networks revealed changes in the cellular signaling beyond the dysregulation of Ras/MAPK signaling that is nearly exclusively discussed in the context of NS at present. Importantly, changes in PI3K/AKT/mTOR and JAK/STAT signaling were experimentally confirmed. In summary, this study uncovers aberrant neuronal activity-induced signaling and regulation of gene expression in Ptpn11D61Y mice and suggests that these deficits contribute to the pathophysiology of cognitive impairments in NS.
Collapse
|
37
|
The emerging role of in vitro electrophysiological methods in CNS safety pharmacology. J Pharmacol Toxicol Methods 2016; 81:47-59. [DOI: 10.1016/j.vascn.2016.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 01/16/2023]
|
38
|
Gul Z, Demircan C, Bagdas D, Buyukuysal RL. Protective Effects of Chlorogenic Acid and its Metabolites on Hydrogen Peroxide-Induced Alterations in Rat Brain Slices: A Comparative Study with Resveratrol. Neurochem Res 2016; 41:2075-85. [DOI: 10.1007/s11064-016-1919-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/12/2022]
|
39
|
Lin-Holderer J, Li L, Gruneberg D, Marti HH, Kunze R. Fumaric acid esters promote neuronal survival upon ischemic stress through activation of the Nrf2 but not HIF-1 signaling pathway. Neuropharmacology 2016; 105:228-240. [PMID: 26801077 DOI: 10.1016/j.neuropharm.2016.01.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/30/2022]
Abstract
Oxidative stress is a hallmark of ischemic stroke pathogenesis causing neuronal malfunction and cell death. Up-regulation of anti-oxidative genes through activation of the NF-E2-related transcription factor 2 (Nrf2) is one of the key mechanisms in cellular defense against oxidative stress. Fumaric acid esters (FAEs) represent a class of anti-oxidative and anti-inflammatory molecules that are already in clinical use for multiple sclerosis therapy. Purpose of this study was to investigate whether FAEs promote neuronal survival upon ischemia, and analyze putative underlying molecular mechanisms in neurons. Murine organotypic hippocampal slice cultures, and two neuronal cell lines were treated with dimethyl fumarate (DMF) and monomethyl fumarate (MMF). Ischemic conditions were generated by exposing cells and slice cultures to oxygen-glucose deprivation (OGD), and cell death was determined through propidium iodide staining. Treatment with both DMF and MMF immediately after OGD during reoxygenation strongly reduced cell death in hippocampal cultures ex vivo. Both DMF and MMF promoted neuronal survival in HT-22 and SH-SY5Y cell lines exposed to ischemic stress. DMF but not MMF activated the anti-oxidative Nrf2 pathway in neurons. Accordingly, Nrf2 knockdown in murine neurons abrogated the protective effect of DMF but not MMF. Moreover, FAEs did not activate the hypoxia-inducible factor (HIF) pathway suggesting that this pathway may not significantly contribute to FAE mediated neuroprotection. Our results may provide the basis for a new therapeutic approach to treat ischemic pathologies such as stroke with a drug that already has a broad safety record in humans.
Collapse
Affiliation(s)
- Jiemeng Lin-Holderer
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Lexiao Li
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Daniel Gruneberg
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Reiner Kunze
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany.
| |
Collapse
|
40
|
Abstract
Localization of mRNA plays a crucial role in a variety of neuronal processes including synaptogenesis, axonal guidance, and long-term plasticity. Recent advances in fluorescence imaging and RNA labeling techniques allow us to visualize how individual mRNA molecules are dynamically regulated inside live neurons and brain tissues. Here, we describe key methods in imaging mRNA dynamics, including preparation of neuron culture and brain slices from transgenic mice expressing GFP-labeled mRNA, high-resolution detection of single molecules, live tissue imaging, and analysis of mRNA transport.
Collapse
Affiliation(s)
- Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, University 1 Gwanak-ro, Gwanak-gu, Seoul, 151-747, South Korea.
| | - Minho Song
- Department of Physics and Astronomy, Seoul National University, University 1 Gwanak-ro, Gwanak-gu, Seoul, 151-747, South Korea
| |
Collapse
|
41
|
Schrödl-Häußel M, Theparambil SM, Deitmer JW, Roussa E. Regulation of functional expression of the electrogenic sodium bicarbonate cotransporter 1, NBCe1 (SLC4A4), in mouse astrocytes. Glia 2015; 63:1226-39. [DOI: 10.1002/glia.22814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Magdalena Schrödl-Häußel
- Department of Molecular Embryology; Institute for Anatomy and Cell Biology, University of Freiburg; Freiburg Germany
| | - Shefeeq M. Theparambil
- Department of General Zoology; FB Biology, University of Kaiserslautern; Kaiserslautern Germany
| | - Joachim W. Deitmer
- Department of General Zoology; FB Biology, University of Kaiserslautern; Kaiserslautern Germany
| | - Eleni Roussa
- Department of Molecular Embryology; Institute for Anatomy and Cell Biology, University of Freiburg; Freiburg Germany
- Department of Neuroanatomy; University of Freiburg; Freiburg Germany
| |
Collapse
|
42
|
Miller AP, Shah AS, Aperi BV, Budde MD, Pintar FA, Tarima S, Kurpad SN, Stemper BD, Glavaski-Joksimovic A. Effects of blast overpressure on neurons and glial cells in rat organotypic hippocampal slice cultures. Front Neurol 2015; 6:20. [PMID: 25729377 PMCID: PMC4325926 DOI: 10.3389/fneur.2015.00020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/25/2015] [Indexed: 11/13/2022] Open
Abstract
Due to recent involvement in military conflicts, and an increase in the use of explosives, there has been an escalation in the incidence of blast-induced traumatic brain injury (bTBI) among US military personnel. Having a better understanding of the cellular and molecular cascade of events in bTBI is prerequisite for the development of an effective therapy that currently is unavailable. The present study utilized organotypic hippocampal slice cultures (OHCs) exposed to blast overpressures of 150 kPa (low) and 280 kPa (high) as an in vitro bTBI model. Using this model, we further characterized the cellular effects of the blast injury. Blast-evoked cell death was visualized by a propidium iodide (PI) uptake assay as early as 2 h post-injury. Quantification of PI staining in the cornu Ammonis 1 and 3 (CA1 and CA3) and the dentate gyrus regions of the hippocampus at 2, 24, 48, and 72 h following blast exposure revealed significant time dependent effects. OHCs exposed to 150 kPa demonstrated a slow increase in cell death plateauing between 24 and 48 h, while OHCs from the high-blast group exhibited a rapid increase in cell death already at 2 h, peaking at ~24 h post-injury. Measurements of lactate dehydrogenase release into the culture medium also revealed a significant increase in cell lysis in both low- and high-blast groups compared to sham controls. OHCs were fixed at 72 h post-injury and immunostained for markers against neurons, astrocytes, and microglia. Labeling OHCs with PI, neuronal, and glial markers revealed that the blast-evoked extensive neuronal death and to a lesser extent loss of glial cells. Furthermore, our data demonstrated activation of astrocytes and microglial cells in low- and high-blasted OHCs, which reached a statistically significant difference in the high-blast group. These data confirmed that our in vitro bTBI model is a useful tool for studying cellular and molecular changes after blast exposure.
Collapse
Affiliation(s)
- Anna P Miller
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Alok S Shah
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Brandy V Aperi
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Frank A Pintar
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Sergey Tarima
- Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Shekar N Kurpad
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Brian D Stemper
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| | - Aleksandra Glavaski-Joksimovic
- Department of Neurosurgery, Medical College of Wisconsin , Milwaukee, WI , USA ; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin , Milwaukee, WI , USA ; Clement J. Zablocki Veterans Affairs Medical Center , Milwaukee, WI , USA
| |
Collapse
|
43
|
An in vitro model to study brain tissue recovery. Med Hypotheses 2014; 82:674-7. [PMID: 24666964 DOI: 10.1016/j.mehy.2014.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/09/2014] [Accepted: 03/02/2014] [Indexed: 11/20/2022]
Abstract
Brain tissue slices can be maintained within metabolically stable conditions for long periods of time (hours). This experimental setting has been productive for investigating long-term neural function in vitro. Here, we utilize this experimental approach to describe the recovery of functional connectivity in slices from the mouse hippocampus. Hippocampal slices were cut up bisecting the CA1 region (parietal cut) and each severed half placed adjacent to the other. Stimulation and recording electrodes were placed on each side of the cut; with one electrode stimulating one hemi-slice (20 V, 0.033 Hz) and the other electrode recording the evoked response from the adjacent hemi-slice. As expected, no evoked response was observed shortly after the beginning of stimulation. However, 20-40 min after the initiation of stimulation a large depolarization signal was detected. Right after that, fiber volley potentials were observed in the adjacent hemi-slice. After 1h excitatory postsynaptic potentials (EPSP) were detected. Based on this observation, we hypothesize that recovery of functional connectivity is enhanced by constant delivery of electrical pulses at low frequency to the damaged neural tissue. The described in vitro slice system may become a very suitable experimental method to investigate strategies to enhance the recovery of neural connectivity after brain injury.
Collapse
|
44
|
Wu X, Kania-Korwel I, Chen H, Stamou M, Dammanahalli KJ, Duffel M, Lein PJ, Lehmler HJ. Metabolism of 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) atropisomers in tissue slices from phenobarbital or dexamethasone-induced rats is sex-dependent. Xenobiotica 2013; 43:933-47. [PMID: 23581876 DOI: 10.3109/00498254.2013.785626] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1. Chiral polychlorinated biphenyls (PCBs) such as PCB 136 enantioselectively sensitize the ryanodine receptor (RyR). In light of recent evidence that PCBs cause developmental neurotoxicity via RyR-dependent mechanisms, this suggests that enantioselective PCB metabolism may influence the developmental neurotoxicity of chiral PCBs. However, enantioselective disposition of PCBs has not been fully characterized. 2. The effect of sex and cytochrome P450 (P450) enzyme induction on the enantioselective metabolism of PCB 136 was studied using liver tissue slices prepared from naïve control (CTL), phenobarbital (PB; CYP2B inducer) or dexamethasone (DEX; CYP3A inducer) pretreated adult Sprague-Dawley rats. PCB 136 metabolism was also examined in hippocampal slices derived from untreated rat pups. 3. In liver tissue slices, hydroxylated PCB (OH-PCB) profiles depended on sex and inducer pretreatment, and OH-PCB levels followed the rank orders male > female and PB > DEX > CTL. In contrast, the enantiomeric enrichment of PCB 136 and its metabolites was independent of sex and inducer pretreatment. Only small amounts of PCB 136 partitioned into hippocampal tissue slices and no OH-PCB metabolites were detected. 4. Our results suggest that enantioselective metabolism, sex and induction status of P450 enzymes in the liver may modulate the neurotoxic outcomes of developmental exposure to chiral PCBs.
Collapse
Affiliation(s)
- Xianai Wu
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa , Iowa City, IA , USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Glial reaction is a common feature of neurodegenerative diseases. Recent studies have suggested that reactive astrocytes gain neurotoxic properties, but exactly how reactive astrocytes contribute to neurotoxicity remains to be determined. Here, we identify lipocalin 2 (lcn2) as an inducible factor that is secreted by reactive astrocytes and that is selectively toxic to neurons. We show that lcn2 is induced in reactive astrocytes in transgenic rats with neuronal expression of mutant human TAR DNA-binding protein 43 (TDP-43) or RNA-binding protein fused in sarcoma (FUS). Therefore, lcn2 is induced in activated astrocytes in response to neurodegeneration, but its induction is independent of TDP-43 or FUS expression in astrocytes. We found that synthetic lcn2 is cytotoxic to primary neurons in a dose-dependent manner, but is innocuous to astrocytes, microglia, and oligodendrocytes. Lcn2 toxicity is increased in neurons that express a disease gene, such as mutant FUS or TDP-43. Conditioned medium from rat brain slice cultures with neuronal expression of mutant TDP-43 contains abundant lcn2 and is toxic to primary neurons as well as neurons in cultured brain slice from WT rats. Partial depletion of lcn2 by immunoprecipitation reduced conditioned medium-mediated neurotoxicity. Our data indicate that reactive astrocytes secrete lcn2, which is a potent neurotoxic mediator.
Collapse
|
46
|
Abstract
Rapid signal exchange between astroglia and neurons has emerged as a key player in neural communication in the brain. To understand the mechanisms involved, it is often important to have access to individual astrocytes while monitoring the activity of nearby synapses. Achieving this with standard electrophysiological tools is not always feasible. The protocol presented here enables the monitoring of synaptic activity using whole-cell current-clamp recordings from a local astrocyte. This approach takes advantage of the fact that the low input resistance of electrically passive astroglia allows extracellular currents to pass through the astrocytic membrane with relatively little attenuation. Once the slice preparation is ready, it takes ~30 min to several hours to implement this protocol, depending on the experimental design, which is similar to other patch-clamp techniques. The technique presented here can be used to directly access the intracellular medium of individual astrocytes while examining synapses functioning in their immediate proximity.
Collapse
|
47
|
Wayman GA, Yang D, Bose DD, Lesiak A, Ledoux V, Bruun D, Pessah IN, Lein PJ. PCB-95 promotes dendritic growth via ryanodine receptor-dependent mechanisms. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:997-1002. [PMID: 22534141 PMCID: PMC3404670 DOI: 10.1289/ehp.1104832] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/02/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Aroclor 1254 (A1254) interferes with normal dendritic growth and plasticity in the developing rodent brain, but the mechanism(s) mediating this effect have yet to be established. Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) enhance the activity of ryanodine receptor (RyR) calcium ion (Ca(2+)) channels, which play a central role in regulating the spatiotemporal dynamics of intracellular Ca(2+) signaling. Ca(2+) signaling is a predominant factor in shaping dendritic arbors, but whether PCB potentiation of RyR activity influences dendritic growth is not known. OBJECTIVE We determined whether RyR activity is required for PCB effects on dendritic growth. METHODS AND RESULTS Golgi analysis of hippocampi from weanling rats confirmed that developmental exposure via the maternal diet to NDL PCB-95 (2,2',3,5'6-pentachlorobiphenyl), a potent RyR potentiator, phenocopies the dendrite-promoting effects of A1254. Dendritic growth in dissociated cultures of primary hippocampal neurons and in hippocampal slice cultures is similarly enhanced by PCB-95 but not by PCB-66 (2,3,4',4-tetrachlorobiphenyl), a congener with negligible effects on RyR activity. The dendrite-promoting effects of PCB-95 are evident at concentrations as low as 2 pM and are inhibited by either pharmacologic blockade or siRNA knockdown of RyRs. CONCLUSIONS Our findings demonstrate that environmentally relevant levels of NDL PCBs modulate neuronal connectivity via RyR-dependent effects on dendritic arborization. In addition, these findings identify RyR channel dysregulation as a novel mechanism contributing to dysmorphic dendritogenesis associated with heritable and environmentally triggered neurodevelopmental disorders.
Collapse
Affiliation(s)
- Gary A Wayman
- Program in Neuroscience, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, Washington, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Wayman GA, Bose DD, Yang D, Lesiak A, Bruun D, Impey S, Ledoux V, Pessah IN, Lein PJ. PCB-95 modulates the calcium-dependent signaling pathway responsible for activity-dependent dendritic growth. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1003-9. [PMID: 22534176 PMCID: PMC3404671 DOI: 10.1289/ehp.1104833] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/02/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) promote dendritic growth in hippocampal neurons via ryanodine receptor (RyR)-dependent mechanisms; however, downstream signaling events that link enhanced RyR activity to dendritic growth are unknown. Activity-dependent dendritic growth, which is a critical determinant of neuronal connectivity in the developing brain, is mediated by calcium ion (Ca(2+))-dependent activation of Ca(2+)/calmodulin kinase-I (CaMKI), which triggers cAMP response element binding protein (CREB)-dependent Wnt2 transcription. RyRs regulate the spatiotemporal dynamics of intracellular Ca(2+) signals, but whether RyRs promote dendritic growth via modulation of this signaling pathway is not known. OBJECTIVE We tested the hypothesis that the CaMKI-CREB-Wnt2 signaling pathway couples NDL PCB-enhanced RyR activity to dendritic arborization. METHODS AND RESULTS Ca(2+) imaging of dissociated cultures of primary rat hippocampal neurons indicated that PCB-95 (2,2',3,5'6-pentachlorobiphenyl; a potent RyR potentiator), enhanced synchronized Ca(2+) oscillations in somata and dendrites that were blocked by ryanodine. As determined by Western blotting and quantitative polymerase chain reaction, PCB-95 also activated CREB and up-regulated Wnt2. Blocking CaMKK, CaMKIα/γ, MEK/ERK, CREB, or Wnt2 prevented PCB-95-induced dendritic growth. Antagonism of γ-aminobutyric acid (GABA) receptors with bicuculline (BIC) phenocopied the dendrite-promoting effects of PCB-95, and pharmacological antagonism or siRNA knockdown of RyR blocked BIC-induced dendritic growth in dissociated and slice cultures of hippocampal neurons. CONCLUSIONS RyR activity contributes to dynamic remodeling of dendritic architecture in response to NDL PCBs via CaMKI-CREB-Wnt2 signaling in rats. Our findings identify PCBs as candidate environmental risk factors for neurodevelopmental disorders, especially in children with heritable deficits in calcium signaling associated with autism.
Collapse
Affiliation(s)
- Gary A Wayman
- Program in Neuroscience, Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, Washington, USA
| | | | | | | | | | | | | | | | | |
Collapse
|